KR20170028933A - 변조된 파형을 이용한 전기 관리 기법 - Google Patents

변조된 파형을 이용한 전기 관리 기법 Download PDF

Info

Publication number
KR20170028933A
KR20170028933A KR1020177000756A KR20177000756A KR20170028933A KR 20170028933 A KR20170028933 A KR 20170028933A KR 1020177000756 A KR1020177000756 A KR 1020177000756A KR 20177000756 A KR20177000756 A KR 20177000756A KR 20170028933 A KR20170028933 A KR 20170028933A
Authority
KR
South Korea
Prior art keywords
power
electrical
frequency
electricity
alternating
Prior art date
Application number
KR1020177000756A
Other languages
English (en)
Other versions
KR102470841B1 (ko
Inventor
지에 리우
브라이언 자노스
그레고리 조셉 맥나이트
신 제임스
리카도 비안치니
Original Assignee
마이크로소프트 테크놀로지 라이센싱, 엘엘씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 마이크로소프트 테크놀로지 라이센싱, 엘엘씨 filed Critical 마이크로소프트 테크놀로지 라이센싱, 엘엘씨
Publication of KR20170028933A publication Critical patent/KR20170028933A/ko
Application granted granted Critical
Publication of KR102470841B1 publication Critical patent/KR102470841B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/02Circuit arrangements for ac mains or ac distribution networks using a single network for simultaneous distribution of power at different frequencies; using a single network for simultaneous distribution of ac power and of dc power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • H02J13/002
    • H02J13/0048
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00004Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by the power network being locally controlled
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00007Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using the power network as support for the transmission
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00007Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using the power network as support for the transmission
    • H02J13/00009Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using the power network as support for the transmission using pulsed signals
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00007Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using the power network as support for the transmission
    • H02J13/0001Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using the power network as support for the transmission using modification of a parameter of the network power signal
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00032Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for
    • H02J13/00034Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for the elements or equipment being or involving an electric power substation
    • H02J2003/143
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/10The network having a local or delimited stationary reach
    • H02J2310/12The local stationary network supplying a household or a building
    • H02J2310/14The load or loads being home appliances
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/50The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads
    • H02J2310/56The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads characterised by the condition upon which the selective controlling is based
    • H02J2310/58The condition being electrical
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/50The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads
    • H02J2310/56The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads characterised by the condition upon which the selective controlling is based
    • H02J2310/58The condition being electrical
    • H02J2310/60Limiting power consumption in the network or in one section of the network, e.g. load shedding or peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/20Smart grids as enabling technology in buildings sector
    • Y02B90/2615
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/783
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/12Energy storage units, uninterruptible power supply [UPS] systems or standby or emergency generators, e.g. in the last power distribution stages
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/242Home appliances
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • Y04S40/121Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using the power network as support for the transmission

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Ac-Ac Conversion (AREA)

Abstract

본 발명은 변조된 파형을 이용하는 전기 관리와 관련된다. 한 가지 예시에서 전기가 변조되어, 제1 교류 주파수 및 제2 교류 주파수를 포함하는 적어도 2개의 상이한 교류 주파수를 갖는 변조 전기가 획득될 수 있다. 예시에서, 적어도 2개의 상이한 교류 주파수를 갖는 변조된 전기 전력이 상이한 전기 장치, 가령, 제1 교류 주파수를 이용하도록 구성된 제1 전기 장치, 및 제2 교류 주파수를 이용하도록 구성된 제2 전기 장치로 전달된다. 변조 전기는 제1 전기 장치와 제2 전기 장치에 의해 공유되는 전선을 적어도 부분적으로 통해 전달될 수 있다.

Description

변조된 파형을 이용한 전기 관리 기법{ELECTRICITY MANAGEMENT USING MODULATED WAVEFORMS}
일반적으로, 에너지 소비 장치로 제공되는 전기는 대체 가능한데, 가령, 전기의 상이한 성분들은 장치의 관점에서 구별되지 않는다. 예를 들어, 전기가 다양한 공급원, 가령, 재생 공급원과 비재생 공급원으로부터 제공될 수 있지만, 사용자는 전기 그리드에 쉽게 연결할 수 없고 그리드 상의 재생 전력과 비재생 전력을 구별할 수 없다. 재생 에너지와 비재생 에너지는 대체 가능하기 때문에, 소비자는 전통적으로 전기 에너지가 어떻게 얻어지는지에 대해 무관심했다. 그러나 환경적 고려사항이 에너지 정책의 선두가 되었기 때문에, "녹색" 즉, 재생 에너지에 대한 수요가 실질적으로 증가했다. "갈색" 즉, 화석 연료 에너지로부터 녹색 에너지를 구별하는 현재의 메카니즘은 일반적으로 간단한 회계 메카니즘인데, 가령, 개체는 법정 요건을 충족하고, 세액 공제를 얻는 등을 하기 위해 특정 양의 재생 전기 에너지를 구매할 수 있다. 그러나 개체가 그리드로부터 인출하는 실제 전기 에너지는 일반적으로 재생 공급원과 비재생 공급원 모두에 의해 여전히 제공된다.
전기 그리드 운영자가 직면하는 또 다른 문제는 전기 컨슈머를 거의 직접 제어할 수 없다는 것이다. 일반적으로, 특정 전기 장치는 단순히 아울렛에 플러그 인되어 전력을 인출하기 시작할 수 있으며, 그리고 운영자는 필요할 때, 가령, 그리드가 공급 부족일 때, 장치가 전력을 인출하기를 중단할 것을 요청하기 위한 매우 제한적인 메카니즘을 가진다. 그리드 운영자가 소비 전력을 개별 전력 소비자에게 할당하기 위한 더 정교한 메카니즘을 갖는 것이 이상적일 것이다.
개요
이 개요는 이하의 상세한 설명에서 더 기재될 개념들의 모음을 단순화된 형태로 소개하도록 제공된다. 이 개요는 본 발명의 핵심 특징 또는 필수 특징을 식별하려는 것이 아니며 청구되는 발명의 범위를 제한하려 사용되는 것도 아니다.
본 명세서는 일반적으로 변조된 파형을 이용하는 전기 관리와 관련된다. 한 가지 예시가 전기를 변조하여 제1 교류 주파수 및 제2 교류 주파수를 포함하는 적어도 2개의 상이한 교류 주파수를 갖는 변조 전기를 획득하는 것을 포함하는 방법 또는 기법이다. 예시는 또한 적어도 2개의 상이한 교류 주파수를 갖는 변조 전기를 복수의 상이한 전기 장치, 가령, 제1 교류 주파수를 이용하도록 구성된 제1 전기 장치 및 제2 교류 주파수를 이용하도록 구성된 제2 전기 장치로 전달하는 것을 포함한다. 변조 전기는 제1 전기 장치와 제2 전기 장치가 공유하는 전선을 통해 적어도 부분적으로 전달될 수 있다.
또 다른 예시가 전선을 통해 적어도 2개의 상이한 교류 주파수를 갖는 변조 전기를 수신하도록 구성된 필터를 포함하는 시스템이며, 이때 적어도 2개의 상이한 교류 주파수는 제1 교류 주파수와 제2 교류 주파수를 포함한다. 상기 필터는 변조 전기의 제2 교류 주파수를 감쇠시켜 제1 교류 주파수를 우세하게 갖는 필터링된 변조 전기를 획득하도록 구성될 수 있다. 상기 시스템은 필터링된 변조 전기로 동작하도록 구성된 전기 소비 장치를 더 포함할 수 있다.
또 다른 예시는 전기를 인출하기 위한 할당된 시구간(time slice)을 갖는 복수의 전기 장치로 전기를 전달하는 것을 포함하는 방법 또는 기법이다. 이 예시는 또한 전기의 사용량을 분석하여 개별 전기 장치가 개별 전기 장치에 할당되지 않은 개별 시구간 동안 전기를 인출했음을 검출할 수 있다.
또 다른 예시는 전기 하드웨어 및 전기 소비 장치를 포함하는 시스템이다. 전기 하드웨어는 할당된 시간 주기 동안 전기를 선택적으로 인출하며 할당된 시간 주기 동안 선택적으로 인출된 전기를 이용해 전기 소비 장치에 전력을 공급하도록 구성될 수 있다.
상세한 설명이 첨부된 도면을 참조하여 기재된다. 도면에서, 도면 부호의 최좌측 숫자는 도면 부호가 최초로 등장한 도면을 식별한다. 설명 및 도면의 상이한 사례에서 유사한 도면 부호의 사용은 동일하거나 유사한 아이템을 가리킬 수 있다.
도 1은 본 발명의 일부 구현예에 따르는 예시적 시나리오를 도시한다.
도 2, 6, 7, 9, 및 10은 본 발명의 일부 구현예에 따르는 예시적 방법 또는 기법을 도시한다.
도 3은 본 발명의 일부 구현예에 따르는 예시적 환경을 도시한다.
도 4는 본 발명의 일부 구현예에 따르는 예시적 그리드 계층구조를 도시한다.
도 5 및 8은 본 발명의 구현예에 따르는 예시적 회로를 도시한다.
도 11 및 12는 본 발명의 일부 구현예에 따르는 전기의 예시적 시 변조 특성을 도시한다.
개관
개시된 구현예는 전기의 다양한 변조된 특성을 이용해 전기를 추적한다. 예를 들어, 일부 구현예는 상이한 유형의 전기에 대해 상이한 교류 전류 주파수를 변조할 수 있는데, 가령, "녹색", 즉, 재생 공급원 전력에 대해 50Hz로, 또한 "갈색", 즉, 화석 연료 공급원 전력에 대해 60Hz로 변조할 수 있다. 그 밖의 다른 구현예가 상이한 전기 장치가 전력을 인출하도록 허용된 상이한 할당된 시구간(time slice)을 제공할 수 있다. 전기 장치가 전력을 인출할 때, 이는 특정 전선 상의 전력의 양을 감소시킴으로써 전기 파형을 변조할 것이다. 본 명세서에서 사용될 때, 용어 "변조된 특성"은 조작될 수 있는 전기 전력의 임의의 특성을 전달할 수 있다. 측정될 수 있는 변조된 특성의 예시로는 교류 주파수, 전력, 전압, 전류, 역률, 전기 파형을 이용해 인코딩된 신호 등이 있을 수 있다.
본 명세서에 언급되는 다양한 전기 장치는 최종 사용자 장치뿐 아니라 최종 사용자 장치로 전기를 전달하는 데 사용되는 다양한 전기 장비까지 포함한다. 본 명세서의 취지를 위해, 용어 "전기 소비 장치(electricity consuming device)"는 다양한 전기 공급원으로부터 전력을 인출하는 개별 최종 사용자 장치를 지칭한다. 용어 "전기 컨슈머(electricity consumer)"는 하나 이상의 전기 소비 장치의 그룹, 예컨대, 한 건물 내 전기 소비 장치, 특정 그리드 상의 전기 소비 장치, 특정 변압기에 의해 전력이 공급되는 전기 소비 장치 등을 더 일반적으로 지칭할 수 있다. 용어 "전기 장비(electrical equipment)"는 전력을 소비 장치로 전달하는 데 사용되는 그 밖의 다른 장치, 가령, 스위치, 변압기, 필터 등을 지칭한다. 전기 장비는 또한 이들 회로로부터 전력을 인출할 수 있다. 용어 "전기 장치(electrical device)"는 전기 장비와 소비 장치 모두를 포함한다.
예시적 시나리오
일반적으로 말하면, 개시된 구현예가 수행될 수 있는 하나의 시나리오가 전기 그리드 상에서 발생한다. 도 1은 전력 생산 시설(110)이 전기 컨슈머(130, 140, 150, 및 160)를 갖는 전기 그리드(120)로 전력을 제공하는 예시적 시나리오(100)를 도시한다. 도 1의 예시에서, 전기 컨슈머는 서버 시설(130), 공장(140), 전기 차(150), 및 세척기(160)로 도시되지만, 해당 분야의 통상의 기술자라면 임의의 개수의 상이한 전력을 공급받는 장치가 그리드(120)에 연결될 수 있음을 알 것이다. 일반적으로 말하면, 화살표(111, 131, 141, 151, 및 161)로 나타나는 바와 같이 전력 생산 시설이 그리드로 전력을 제공하고 전기 컨슈머가 전력을 소비한다. 어떤 경우에는 상이한 개체가 전력 생산 시설과 그리드를 관리할 수 있고(가령, 전력 생산 시설 운영자와 그리드 운영자) 또 다른 경우에는 동일한 개체가 전력 생산 시설과 그리드를 모두 관리할 것이다.
이 예시에서, 전력 생산 시설은 대응하는 에너지 공급원(112, 113, 및 114)을 갖는 것으로 나타난다. 특히, 도시된 에너지 공급원이 재생 에너지 공급원(112)(가령, 풍력, 태양, 수력), 발전기(113)(가령, 화석 연료에 의해 전력이 공급됨), 및 에너지 저장 장치(114)(가령, 배터리)를 포함한다. 전력 생산 시설은 또한 도시되지 않은 그 밖의 다른 에너지 공급원(가령, 핵, 연료 전지 등)을 가질 수 있다.
언급된 바와 같이, 일반적으로 전기는 대체 가능한 자원으로 여겨지는데, 가령, 하나의 전기 컨슈머로 제공된 전기 전력이 다른 전기 컨슈머에 의해 쉽게 사용될 수 있다. 따라서 전기를 제공하기 위한 전통적인 기법은 상이한 전기 컨슈머 또는 상이한 전원을 구별할 수 없다. 일부 개시된 구현예에서, 전기의 변조된 특성이 사용되어 전기가 다양한 전기 컨슈머에 의해 어떻게 소비되는지를 모니터링 및 제어하는 것을 촉진시킬 수 있다. 일부 경우, 전기의 상이한 변조된 특성이 전기 전력의 상이한 공급원에 할당된다. 다른 경우, 전기의 상이한 변조된 특성이 상이한 전기 컨슈머에 할당된다.
그리드(120) 상에서 수행될 수 있는 한 가지 유형의 제어는 전력 또는 에너지 사용량 제한이다. 도 1은 상이한 유형의 화살표에 의해 나타나는 상이한 제한 스킴을 보여주는 오프셋(170)을 포함하며, 가령, 제한되지 않은 전기가 백색으로 도시되며, 제1 임계치로 제한되는 전기가 체크 패턴으로 도시되며, 제2 임계치로 제한되는 전기가 흑색으로 도시된다.
지금부터, 보통의 가정이 가령 전기 컨슈머(150 및 160)로서 나타나는 바와 같이 무제한 전기량을 이용하도록 허용됐다고 가정한다. 도 1은 백색 화살표(151 및 161)를 통해 이를 도시한다. 또한, 서버 시설 컨슈머(130)가 소비하는 전기는 특정 시간 동안 제1 전력 소비량(가령, 킬로와트 단위) 또는 총 에너지량(가령, 일일 킬로와트-시의 고정된 수)으로 제한된다고 가정한다. 도 1은 제1 임계치로 제한되는 전기를 나타내는 체크된 화살표(131)를 통해 이를 도시한다. 마찬가지로, 공장 컨슈머(140)가 소비하는 전기는 제2 전력 소비량 또는 에너지량으로 제한된다. 도 1은 이를 제2 임계치로 제한되는 전기를 나타내는 검은 화살표(141)를 통해 도시한다.
일반적으로, 개시된 구현예가 다양한 컨슈머에 의해 사용되는 전기의 특정 변조된 특성을 이용해 제1 임계치 및 제2 임계치를 보강할 수 있다. 예를 들어 가정 컨슈머(150 및 160)는 제1 주파수(가령, 60헤르츠)로 변조되는 전력을 수신할 수 있고, 이때 제1 주파수로 제공되는 전기가 제한되지 않도록 그리드(120)(및/또는 이와 연관된 전력 생산 시설(110))가 구성된다. 서버 시설(130)은 제2 주파수(가령, 70헤르츠)로 변조된 전력을 수신할 수 있고, 그리드/전력 생산 시설은 70헤르츠로 제공되는 전기를 제한하도록 구성될 수 있다. 예를 들어, 서버 시설(130)은 특정 전력 소비량 또는 누적 에너지 소비량에 제한된다고 서버 시설과 유틸리티(그리드 또는 발전소 운영자)가 미리 동의했을 수 있다. 마찬가지로, 공장(140)은 제3 주파수(가령, 50헤르츠)의 전력을 수신할 수 있으며, 여기서 전기는 상이한 전력 소비량 또는 누적 에너지 소비량에 제한된다.
또 다른 구현예에서, 각각의 주파수에 대한 제한이 반드시 정적인 것은 아니다. 오히려, 그리드 및/또는 전력 생산 시설은, 상이한 조건에 응답하여 상이한 주파수에 따라 제공되는 전력량을 변화시키도록 구성될 수 있다. 예를 들어, 제3 주파수로 공장(140)에 제공되는 전력량이 그리드 상에서의 전력의 부족에 응답하여 감소되며, 반면에 가정 컨슈머(150 및 160) 및 서버 시설(130)로 제공되는 전력이 우선순위화될 수 있다. 예를 들어, 상태가 악화되고 그리드 상의 전력 결핍이 더 치명적이 될 때, 제2 주파수로 서버 시설로 제공되는 전력량이 감소되고 가정 컨슈머에 대한 비제한 전력은 유지될 수 있다. 추가 구현은 가정 컨슈머에 대해 전기 사용량이 제한될 때에도 높은 서비스 수준으로 유지될 수 있는 응급 서비스, 예컨대, 병원, 911 파견, 경찰, 소방서, 군사용 등을 위해 특화된 비제한(또는 우선순위화된) 주파수를 유지할 수 있다.
일부 구현예에서, 다양한 컨슈머는 전기의 변조된 특성에 따라 특정하게 구성되는 전기 하드웨어를 가질 것이다. 예를 들면, 가정 컨슈머(150 및 160)는 60헤르츠의 전력을 인출하는 전기 하드웨어를 가질 수 있고, 서버 시설(130)은 70헤르츠로 전력을 인출하는 전기 하드웨어를 가질 수 있으며, 공장(140)은 50헤르츠의 전력을 인출하는 전기 하드웨어를 가질 수 있다. 이하에서 더 언급되는 바와 같이, 전기 하드웨어가 대응하는 주파수로 튜닝되고 전력을 (가령, 서버 시설의 서버에 전력 공급하기 위한) DC 전압으로 변환하는 정류기를 포함할 수 있다. 다른 경우, 변압기 또는 그 밖의 다른 전기 장비가 특정 주파수로부터 전력을 인출하도록 튜닝될 수 있다.
또 다른 구현예에서, 다양한 이유로 전기가 개별 전원을 유지하도록 변조될 수 있다. 하나의 경우, 재생 에너지 공급원(112)(풍력, 태양, 수력 등)으로부터의 재생 가능한 원료 "녹색" 전력이 제1 주파수로 제공되며, 화석 연료 발전기(113)로부터의 "갈색(brown)" 전력이 제2 주파수로 제공된다. 덧붙여, 상이한 유형의 전력에 대해 상이한 율(rate)이 확립될 수 있다. 이것이 유용할 수 있는 한 가지 특정 사례가 법적 요건이 (가령, 특정 관할권의) 특정 컨슈머가 재생 전력을 이용함을 나타내고 있을 때이다. 녹색 전력을 갈색 전력과는 상이한 주파수로 변조함으로써, 이들 컨슈머로부터 수 마일 떨어진 원격 그리드가 녹색 전력을 지역 그리드로 전송할 수 있다. 따라서 이들 컨슈머가 올바른 주파수로 전력을 인출하도록 구성된 전기 장비를 이용하는 한, 이들은 이들의 지역 그리드가 다른 컨슈머에게도 갈색 전력을 제공하는지 여부와 무관하게 법정 요건에 부합할 수 있다.
전력 관리 방법
도 2는 상기의 시나리오에 따르는 다양한 시스템에 의해 수행될 수 있는 방법(200)을 도시한다. 예를 들어, 방법(200)은 그리드(120) 상에서, 특정 건물 내부에서, 대학 캠퍼스에서, 개별 장치 등에서 수행될 수 있다.
방법(200)의 블록(202)은 다양한 전기 컨슈머에 대한 전기 장비 구성을 결정할 수 있다. 예를 들어, 전기 장비 구성은 변조될 수 있는 전기의 다양한 특성에 대응할 수 있다. 하나의 이러한 특성이 교류의 주파수(헤르츠 단위)이다. 일부 경우, 하나의 컨슈머가 제1 특성을 갖는 전기를 인출하도록 구성된 전기 장치를 가질 것이며, 또 다른 컨슈머가 제2 특성을 갖는 전기를 인출하도록 구성된 전기 장치를 가질 것이다.
블록(204)은 전기를 전기 장치에 적합한 상이한 형태로 변조할 수 있다. 예를 들어, 블록(204)은 전기를 둘 이상의 상이한 교류 주파수로 변조할 수 있다.
블록(206)은 변조된 형태의 전기를 배전할 수 있다. 예를 들어, 제1 주파수의 전기가 제1 전기 컨슈머 그룹으로 배전될 수 있고 제2 주파수의 전기가 제2 전기 컨슈머 그룹으로 배전될 수 있다.
블록(208)은 상이한 형태의 변조된 전기를 독립적으로 관리할 수 있다. 예를 들어, 상이한 변조된 형태의 전기가 상이한 임계치로 제한되는 전력 또는 에너지일 수 있다. 또 다른 예를 들면, 상이한 변조된 형태의 전기는 상이한 율(rate)로 충전될 수 있다.
덧붙여, 설명의 편의상 앞서 언급된 기재가 전기의 변조되는 특성으로서 대부분 주파수의 사용에 집중했다. 그러나 전기의 그 밖의 다른 특성이 유사한 방식으로 사용될 수 있다. 예를 들어, 상이한 컨슈머에게로의 동일 전력 선 상의 주파수를 이용해 전기를 다중화하는 것 대신, 시 분할 및/또는 코드 분할 기법을 이용해 전기가 다중화될 수 있다. 예를 들어, 시 분할 방식에서, 상이한 컨슈머가 상이한 시구간(time slice)에서 전기를 인출하도록 구성된 전기 장비를 가질 수 있고, 아마도 로컬 에너지 저장소, 가령, 배터리에 의해 완화될 수 있다. 일부 경우, 제1 시구간이 하나의 컨슈머에 의해 사용될 수 있고 제2 시구간이 또 다른 컨슈머에 의해 사용될 수 있다. 마찬가지로, 전기는 상이한 코드(code)로 코딩되어, 상이한 컨슈머가 특정 코드, 가령, 하나의 컨슈머에 대해 제1 코드 그리고 또 다른 컨슈머에 대해 제2 코드를 갖는 전력을 인출하도록 구성된 전기 장비를 갖게 한다.
예시적 네트워크 시나리오
개시된 기법이 수행될 수 있는 한 가지 특정 환경이 도 3에 도시되며, 여기서 네트워크(320)를 통해 전력 생산 시설(110) 및 전기 컨슈머, 가령, 서버 시설(130), 공장(140), 전기 차(150), 및 세척기(160)로 연결되는 전력 관리 시스템(310)을 포함하는 예시적 환경(300)이 도시된다. 전력 생산 시설은 또한 클라이언트 장치(330) 및 전기 장비, 가령, 변전소(substation)(340), 변압기(305), 및 스위치(360)(가령, 기계, 트랜지스터 등)에도 연결될 수 있다. 본 명세서에서 더 기재되겠지만, 전력선 통신 기법 및/또는 전통적인 컴퓨터 네트워크(가령, 유선, 셀룰러, 무선 등)를 이용해 네트워크(320)가 구현될 수 있다.
일반적으로, 전력 관리 시스템(310)은 전력 관리 제어 모듈(316)을 이용해 본 명세서에서 언급된 방법들 중 임의의 방법을 수행함으로써 전력 관리 기능을 제공할 수 있다. 예를 들어, 전력 관리 시스템은 임의의 전기 컨슈머에 의해 특정 때에 소비되는 에너지 또는 전력의 양을 제어할 수 있다. 이는 네트워크(320)를 통해 전기 컨슈머와 직접 통신함으로써 구현될 수 있다. 일부 구현예에서, 각각의 컨슈머는, 이하에서 기재되는 바와 같이, 전력 관리 시스템으로부터 수신된 명령에 따라 동작할 수 있는 대응하는 전력 관리 액션 모듈(318)을 가질 수 있다. (이와 관련하여, "(1)" 같은 접미어를 갖는 지시어가 장치 구성요소 또는 모듈의 특정 인스턴스를 지칭하기 위해 사용된다. 이와 달리 접미어 없는 지시어는 포괄적이도록 사용된다). 물론, 모든 장치 구현예가 도시되는 것은 아니며 그 밖의 다른 장치 구현예가 이상 및 이하의 기재로부터 해당 분야의 통상의 기술자에게 자명할 것이다.
일부 경우, 전력 관리 시스템(310)은 컨슈머에게 공급하기 위한 하나 이상의 회로와 함께 전기 장비와 통신할 수 있다. 이 전기 장비는 변전소(340), 변압기(350), 및 스위치(360)뿐 아니라 전력 생산 시설(110)까지 포함할 수 있다. 일부 구현예에서, 각각의 전기 장비가 또한 전력 관리 시스템으로부터 수신된 명령에 따라 동작할 수 있는 전력 관리 액션 모듈을 가진다.
대안적으로 또는 추가로, 개별 전기 컨슈머가 같은 장소에 위치하는 클라이언트 장치, 가령, 현장에서 로컬 전기 소비 장치 및/또는 전기 하드웨어를 제어하는 클라이언트 장치(330)를 가질 수 있다. 예를 들어, 주거지, 공장, 또는 서버 시설 내 랩톱 또는 그 밖의 다른 컴퓨팅 장치가 로컬 전기 소비 장치 및/또는 전기 하드웨어를 직접 제어할 수 있다. 이러한 구현예에서, 전력 관리 시스템은 클라이언트 장치(330)에게 명령하여 수신된 명령에 따라 로컬 전기 소비 장치를 제어하게 함으로써 로컬 전기 소비 장치 및/또는 전기 하드웨어를 제어할 수 있다.
언급된 바와 같이, 네트워크(320)는 전통적인 유선 또는 무선 컴퓨터 네트워크 및/또는 전력 선 통신을 이용해 구현될 수 있다. 따라서 전선을 통해 또는 별개의 컴퓨터 네트워크를 통해, 명령이 특정 전기 장비 또는 전기 소비 장치로 전송될 수 있다. 또한 전력 관리 시스템, 클라이언트 장치(330), 전기 컨슈머, 및 전기 장비가 다양한 처리 자원(312) 및 메모리/저장 자원(314)을 포함할 수 있다. 이들 통신은 이하의 제목 "컴퓨팅 하드웨어 구현" 섹션에서 더 상세히 기재된다.
예시적 전기 그리드 계층구조
본 명세서에서 사용될 때, 용어 "전기 그리드"는 특정 지역 내 컨슈머에게 에너지를 전달하는 전기 장비의 조직 단위를 지칭한다. 예를 들어, 전기 그리드는 변전소, 전선, 변압기, 전력 생성 시설, 및 그 밖의 다른 여러 유형의 전기 장비를 포함할 수 있다. 일부 경우, 전기 그리드가 담당하는 지역이 전체 국가일 수 있는데, 예컨대, 영국 내 내셔널 그리드(National Grid)가 있다. 실제로, 더 넓은 지역도 단일 그리드로 간주될 수 있는데, 가령, 여러 유럽 국가들을 담당하도록 제안되는 유러피안 슈퍼 그리드(European super grid)가 있다. 비교적 대규모의 그리드의 또 다른 예시가 미국 내 다양한 인터커넥션인데, 예컨대, 웨스턴 인터커넥션, 이스턴 인터커넥션, 알래스카 인터커넥션, 텍사스 인터커넥션 등이 있다.
하나의 특정 그리드 내에, 여러 더 작은 조직 유닛이 존재할 수 있으며, 이들 역시 그리드로 간주될 수 있다. 예를 들어, 특정 미국 인터커넥션 내 로컬 유틸리티가 이 안에 위치하는 개별 지역 그리드를 유지/동작시키는 것을 담당할 수 있다. 특정 인터커넥션 내 개별 지역 그리드는 전기적으로 연결되고 특정 교류 주파수에서 총괄적으로 동작할 수 있다. 특정 지역 그리드 내에서 더 작은 그리드, 예컨대, 개별 이웃들에게 전력을 제공할 수 있는 "마이크로그리드(microgrid)"가 존재할 수 있다.
도 4는 특정 구현예에 따르는 예시적 전기 그리드 계층구조(400)를 도시한다. 도 4는 설명 목적으로 도시되며 실제 전기 그리드는 도 4에 도시된 것들보다 상당히 더 복잡한 관계를 보일 가능성이 높음을 알아야 한다. 그럼에도 도 4는 이하에서 설명되겠지만 전기 그리드 상에서 발생할 수 있는 관계를 보여준다.
전기 그리드 계층구조(400)는 일련의 층으로 보일 수 있으며, 이때 상부 층이 그리드(120)를 가진다. 그리드(120)는 다음 하위 층의 다른 더 작은 그리드, 가령, 그리드(402 및 404)와, 각각 전선(401 및 405)을 통해 연결될 수 있다. 그리드(402 및 404)는 다음 하위 층에서 변전소, 가령, 변전소(406, 408, 410, 및 412)를 포함할 수 있으며, 이들은 도 4에 도시되는 바와 같이 전선(405, 407, 409, 및 411)을 통해 그리드(402 및 404)로 연결된다. 각각의 변전소는 다음 하위 층에서 다양한 변압기(414, 416, 418, 420, 422, 424, 426, 및 428)를 가질 수 있으며, 이들은 전선(413, 415, 417, 419, 421, 423, 425, 및 427)을 통해 연결된다. 이들 변압기는 계층구조의 상위 레벨에 의해 제공되는 전기를 최하위 층의 다양한 전기 컨슈머에게 공급할 수 있으며 이는 라인(429, 433, 437, 441, 445, 449, 453, 및 457)에 의해 도시되는 바와 같이 변압기에 연결되는 전기 컨슈머(430, 432, 434, 436, 438, 440, 442, 444, 446, 448, 450, 452, 454, 456, 458, 및 460)를 보여준다.
그리드 계층구조(400)는 그리드(120)의 일반적인 전체 구조를 전달하기 위한 것이며, 여러 변형이 고려될 수 있다. 또한 전기 그리드 계층구조(400)는 도 4에 도시된 요소들 간 전기적 관계를 보여주지만, 이들 전기적 관계는 또한 지리적 관계에 대응할 수 있다. 예를 들어, 그리드(404 및 406)는 2개의 상이한 지역을 위한 지역 그리드일 수 있고 그리드(120)는 이들 지역 모두를 포함하는 인터커넥트 그리드일 수 있다. 또 다른 예를 들면, 그리드(404 및 406)는 2개의 상이한 이웃에게 서비스하는 마이크로-그리드일 수 있고 그리드(120)는 이들 이웃 모두를 포함하는 지역으로 서비스하는 지역 그리드일 수 있다. 더 일반적으로, 그리드 계층구조의 동일한 레벨에서 나타나는 그리드들은 일반적으로, 담당 영역이 약간 겹칠 수 있더라도, 지리적으로 원격지에 위치할 것이다.
주파수 변조 예시
도 5는 가령, 상이한 전원으로부터 획득된 상이한 교류 주파수를 변조하는 데 사용될 수 있는 예시적 주파수 변조 회로(500)를 보여준다. 회로(500)는 AC 전원(502), DC 전원(504), 인버터(506), 주파수 결합 메카니즘(508), 스위치(510 및 512), 필터(514 및 516) 및 전기 소비 장치(518 및 520)를 포함한다. 일반적으로 전기 소비 장치(518 및 520)는 상이한 교류 주파수, 가령, 전기 소비 장치(518)에 대해 50Hz 및 전기 소비 장치(520)에 대해 60Hz를 선택하도록 구성될 수 있다.
AC 전원(502)은 제1 주파수, 가령, 60Hz의 교류를 생성하고 상기 교류를 전선(503)을 통해 주파수 결합 메카니즘(508)으로 전송할 수 있다. DC 전원(504)은 직류 전력을 생성할 수 있고 상기 직류 전력을 전선(505)을 통해 인버터(506)로 송전할 수 있다. 인버터(506)는 직류 전력을 상이한 주파수, 가령, 50Hz의 교류로 변환할 수 있고, 50Hz 교류를 전선(507)을 통해 주파수 결합 메카니즘(508)으로 송전할 수 있다. 주파수 결합 메카니즘은 전선(507)으로부터의 50Hz 교류를 전선(503)으로부터의 60Hz 교류와 결합하여 전선(509)을 통해 혼합된 주파수 교류를 제공할 수 있다.
도 5는 검은색을 이용해 전선(505) 상에서 나타나는 직류를 나타내고, 역슬래시 패턴(backslash pattern)을 이용해 전선(507) 상에 나타나는 50Hz 교류를 나타내며, 정슬래시 패턴(forward slash pattern)을 이용해 전력 선(503) 상에 나타나는 60Hz 교류를 나타내고, 빗금 패턴을 이용해 전력 선(509) 상에 나타나는 혼합된 교류를 나타낸다. 도 5는 이들 표현을 전달하는 오프셋(522)을 포함한다.
또한 주파수 변조 회로(500)는 각각 전기 소비 장치(518 및 520)로 제공되는 전력을 켜거나 끄도록 구성될 수 있는 스위치(510 및 512)를 포함한다. 스위치(510)가 폐쇄될 때, 전력이 전선(511)에 의해 필터(514)를 통해 전기 소비 장치(118)로 흐른다. 스위치(510)가 개방될 때, 전력은 전선(511)에 의해 필터(514)를 통해 전기 소비 장치(518)로 흐르지 않는다. 마찬가지로, 스위치(512)는 필터(516)를 통한 전기 소비 장치(520)로의 전력 전달을 제어한다.
앞서 언급된 바와 같이, 전기 소비 장치(518 및 520)가 상이한 교류 주파수, 가령, 50Hz 및 60Hz에 따라 동작하도록 구성된다. 그러나 이미 언급된 바와 같이 전선(509)은 두 주파수 모두를 반송하고 따라서 전선(511 및 513)은 또한 두 주파수 모두를 반송한다. 필터(514)는 전선(511)으로부터의 60Hz 교류를 필터링 제거하여, 필터링된 50Hz 교류를 전선(515)을 통해 전기 소비 장치(118)로 제공할 수 있다. 마찬가지로, 필터(516)는 전선(513)으로부터의 50Hz 교류를 필터링 제거하여, 필터링된 60Hz 교류를 전선(517)을 통해 전기 소비 장치(520)로 제공할 수 있다. 이는 이들 장치를 잘못된 교류 주파수로 전선에 직접 연결함으로써 발생할 수 있는 전기 소비 장치의 손상을 방지할 수 있다.
또한 도 5는 본 명세서에 기재된 주파수 변조 기법을 구현하는 데 사용될 수 있는 여러 다른 유형의 회로의 단 하나의 예시를 보여준다. 예를 들어, 일부 구현예가 직접 전류를 변환하여 개별 주파수를 획득하는 대신, 복수의 교류 생성기를 이용하여 복수의 교류 주파수(가령, 50Hz 및 60Hz 생성기)를 직접 획득할 수 있다. 또 다른 예를 들면, 단일 DC 전압원이 복수의 인버터를 이용해 복수의 주파수로 변조되거나 상이한 DC 전압원이 상이한 AC 주파수로 변조될 수 있다. 유틸리티는 예를 들어 윈드 팜(wind farm)에 의해 생성된 DC 전류를 70Hz 교류로 변조하고, 광기전 전지에 의해 생성된 DC 전류를 50Hz로 변조하는 것을 선택할 수 있다.
일부 구현예에서, 주파수 결합 메카니즘(508)은 단순히 전선(503 및 507)의 접합, 첨접(splice) 또는 그 밖의 다른 기계적 연결일 수 있다. 추가 구현예에서, 주파수 결합 메카니즘은 전선(503 및 507) 상의 장비를 보호하기 위한 회로 구성요소를 포함할 수 있다. 예를 들어, 주파수 결합 메카니즘은 AC 전원(502)을 보호하기 위해 전선(503) 상으로 피드백될 수 있는 50Hz 전류를 감쇠시키기 위한 필터 및/또는 DC 전원(504) 및/또는 인버터(506)를 보호하기 위해 전선(507) 상으로 피드백될 수 있는 60Hz 전류를 감쇠시키기 위한 또 다른 필터를 포함할 수 있다. 계전기, 회로 차단기, 퓨즈, 및 그 밖의 다른 회로 보호 장치가 전력 생성 장비를 보호하는 데 사용될 수 있다. 일부 경우, 이들 회로 보호 장치는 과다/과소 주파수 상태에서 트리거되도록 구성될 수 있으며, 또한 역 전력 상태, 과전류 상태 등을 검출하는 데 사용될 수 있다.
덧붙여, 주파수 결합 메카니즘(508)은, 일부 경우, 전선(509) 상으로 배치되는 상이한 주파수를 생성하는 데 관련될 수 있다. 예를 들어, 주파수 결합 메카니즘은 주파수 믹서로 구현될 수 있다. 예를 들어, 녹색 에너지가 60Hz에서 획득된다고 가정한다. 녹색 에너지를 갈색 에너지와 구별하기 위해, 녹색 에너지를 전선(509) 상에 배치하기 전에 녹색 에너지가 10Hz 전력과 혼합되어 50Hz 및 70Hz 전류를 획득할 수 있다. 따라서 본래는 녹색 에너지가 갈색 에너지와 동일한 주파수(60Hz)에서 획득되더라도 전선(509) 상의 녹색 에너지는 50 및 70Hz이며 60Hz 갈색 에너지와 구별 가능하다.
개시된 기법이 여러 다른 시나리오에서 전기를 변조하기 위한 여러 다른 기법을 이용해 수행될 수 있다. 예를 들어, 구현예는 파형 보정 회로(waveform correction circuit), 모터 발전기 시스템, 또는 전기를 변조하기 위한 그 밖의 다른 기법을 이용할 수 있다. 덧붙여, 일부 구현예는 마이크로제어기, 마이크로프로세서, ASIC 및/또는 FPGA를 채용하여, 주파수 결합 메카니즘에서 다양한 동작, 가령, 본 명세서에 기재된 바와 같은 상이한 주파수를 필터링 및/또는 조절(throttling)하는 것을 구현할 수 있다.
주파수 결합 메카니즘(508)은 상이한 주파수의 소비 전력을 추적하기 계량기를 포함할 수 있다. 복수의 주파수의 사용량을 추적하도록 구성된 계량기는 주파수 변조 회로(500) 내, 혼합 주파수 교류가 존재하는 임의의 곳에, 가령, 전선(509, 511, 및/또는 513)에 배치될 수 있다. 또는 단일 주파수의 사용량을 추적하도록 구성된 개별 계량기가 전기 전류가 하나의 주파수를 우세하게 갖는 곳이면 어디든, 가령, 전선(503, 507, 515, 및/또는 517)에 배치될 수 있다.
주파수 변조 설명
주파수 변조 회로(500)는 그리드(120) 상에서 여러 다른 방식으로 구현될 수 있다. 일부 경우, 도 5에 도시된 다양한 전기 장치가 동일 장치 내에 위치하고 다른 경우, 서로 지리적으로 원격지에 위치한다. 이에 대해, 도 5에 도시된 주파수 변조 회로(500)의 다양한 구성요소가 도 4에 도시된 그리드 계층구조(400)로 일체 구성될 수 있는 방식을 참조하여 다음에서 설명된다.
하나의 구현예에서, 전체 주파수 변조 회로(500)는 로컬 변압기의 하류에 위치한다. 예를 들어, 변압기(414)는 60Hz 전력을 출력하고 AC 전원(502)으로서 역할 할 수 있다. 이 60Hz 전력은 또한 변압기와 함께 위치하는 정류기에 의해 정류되어 DC 전원(504)으로 역할 할 수 있고 그 후 변압기 및 정류기와 함께 위치하는 인버터(106)에 의해 50Hz 교류로 변환될 수 있다. 이 구성에서, 변압기에 연결된 각각의 단(premise)이 하나 이상의 스위치 및 필터뿐 아니라 전기 소비 장치를 가질 수 있다.
예를 들어, 냉장고(430) 및 레인지(432)를 갖는 단일 가정이 고려될 수 있다. 레인지는 60Hz 전력에서 동작하도록 구성될 수 있고 냉장고는 50Hz 전력에서 동작하도록 구성될 수 있다. 따라서 레인지는 50Hz 전류를 제거하는 필터로부터 전력을 수신할 수 있고 냉장고는 60Hz 전류를 제거하는 또 다른 필터로부터 전력을 수신할 수 있다.
이제, 그리드 상태가 불안정하고 정전 가능성이 높다고 가정하자. 정전을 방지하기 위해, 전력 관리 시스템(310)은 60Hz 장비에 연결된 스위치로 개방하라는 명령을 전송할 수 있고 따라서 이 장비는 전력 인출을 하지 못하게 된다. 그러나 전력 관리 시스템은 50Hz에 연결된 스위치를 폐쇄로 유지함으로써 50Hz 장비가 전력을 계속 인출하게 할 수 있다. 이러한 상황에서, 집주인은 레인지(432)를 사용할 수 없지만, 냉장고(430)는 식품 부패를 방지하도록 계속 동작할 수 있다. 또 다른 예를 들면, 병원은 대부분 50Hz 전력에서 운영될 수 있고 그 밖의 다른 "보통의" 에너지 컨슈머는 60Hz로 운영될 수 있다. 따라서 병원은 "보통의" 60Hz 컨슈머에게 영향을 미치는 정전으로부터 분리될 수 있다. 이러한 구현예에서, 각각의 건물이 건물 내 장비에 의해 사용되지 않는 임의의 주파수를 제거하는 대응하는 필터를 가질 수 있다.
또 다른 구현예에서, 주파수 변조 회로(500)는 그리드 계층구조의 여러 다른 레벨에 걸쳐 확산된다. 예를 들어, 전력 생산 시설(110)의 재생 전원(112)(도 1)이 주파수 변조 회로에서 DC 전원(504)으로서 역할 하고 50Hz "녹색" 전력으로 변환될 수 있으며, 화석 연료 발전기(112)는 60Hz "갈색" 전력으로서 생성되는 주파수 변조 회로에서 AC 전원으로 역할 할 수 있다. 주파수 결합 메카니즘(508)은 변전소에서 전력 생산 시설과 함께 위치할 수 있다. 이로 인해, 그리드 계층구조(400)의 상이한 층에 걸친 그리드(120)로부터의 혼합 주파수 전력이 개별 전력 컨슈머에게로 송전될 수 있다.
이들 구현예에서, 특정 전기 장치는 녹색 전력(가령, 50Hz)으로 동작되고 또 다른 전기 장치는 갈색 전력(가령, 60Hz)으로 동작되도록 구성될 수 있다. 전체 그리드 계층구조가 사용되어 두 유형의 전력을 모두 운반할 수 있기 때문에, 상당한 양의 기존 인프라구조가 재사용되어 2개의 상이한 유형의 전력을 제공할 수 있다. 예를 들어, 기존 송전 및 배전 선뿐 아니라 시설 배선까지, 본 명세서에서 기재된 바와 같이, 혼합 주파수 전류를 운반할 수 있다. 일부 경우, 하나의 위치로부터 공급 받는 녹색 에너지(가령, 그리드(402)가 워싱턴 주(Washington state) 안에 있다고 가정)가 매우 긴 거리(가령, 그리드(404)가 매릴랜드(Maryland) 안에 있다고 가정)를 통해 송전될 수 있다. 상이한 공급원은 상이한 대응 주파수를 갖기 때문에, 이는 매릴랜드의 유틸리티가 캘리포니아로부터 전달된 녹색 에너지와 로컬 갈색 에너지를 구별할 수 있게 한다.
또 다른 예시를 들면, 제1 변압기에 의해 전력을 공급 받는 복수의 건물을 갖는 제1 이웃과 제2 변압기에 의해 전력을 공급 받는 또 다른 건물을 갖는 제2 이웃을 가정할 수 있다. 두 이웃 모두 서로 지리적으로 가까이 위치할 수 있는데, 예컨대, 둘 모두 로드 아일랜드 주 안에 위치할 수 있다. 60Hz 전류가 캘리포니아로부터 로드 아일랜드로 그리드(120)를 통해 송전되고 로드 아일랜드는 50Hz 전류로 운영되는 로컬 그리드(402)를 가진다. 50Hz 교류를 제거하기 위한 필터에, 캘리포니아 전력으로 제1 이웃에게 전력을 공급하여 제1 이웃을 운영하는 제1 변압기가 제공될 수 있다. 60Hz 교류를 제거하는 필터에 로드 아일랜드 전력으로 제2 이웃에게 전력을 공급하여 제2 이웃을 운영하는 제2 변압기가 제공될 수 있다.
다른 한편으로는, 기존 전기 그리드의 특정 장비가 혼합 주파수 전류와 효율적으로 동작하지 않을 수 있다. 한 가지 예시는 계층구조 내 필터로서 역할하는 경향이 있는 다양한 변압기이다. 예를 들어, US 전기 그리드 내 기존 변압기가 60Hz 전류를 운반하도록 구성될 수 있으며 50Hz 전류를 감쇠시키는 경향을 가질 수 있다. 덧붙여, 특정 전기 장비가 상이한 전류 주파수에 의해 손상될 수 있다. 따라서 주파수 변조 회로(500)의 특정 구현예 시나리오가 특정 기존 장비를 혼합 주파수 전류를 다룰 수 있는 새로운 장비로 교체하는 것을 포함할 수 있다.
주파수 변조 제공 방법
도 5에 도시된 주파수 변조 회로(500)는 도 6에 도시된 주파수 변조 제공 방법(600)을 구현하는 데 사용될 수 있는 회로의 한 가지 예시이다. 일반적으로 말하면, 방법(600)은 전기 전력을 제공하거나 생성하는 것과 연관되어 수행될 수 있으며 전기 유틸리티, 그리드 운영자 등에 의해 수행될 수 있다. 그러나 방법은 또한 그 밖의 다른 개체에 의해 수행될 수 있으며, 다양한 맥락에서, 예컨대, 단일 장치 내에서, 한 가구 내에서, 한 이웃 내에서, 대규모 지리적 지역 등 내에서 수행될 수 있다.
방법은 블록(602)에서 시작하며, 여기서 전력이 둘 이상의 교번 주파수 전류를 갖도록 변조된다. 일부 전원, 가령, 화석 연료 발전기가 일반적으로 교류를 생성하며, 이들 전원에 의해 사용되는 교류의 주파수는 생성된 전력에서 직접 사용될 수 있다. 또 다른 전원, 가령, 여러 재생 전원(광기전, 수력, 풍력 등)이 직류를 생성한다. 이들 전원으로부터의 직류는, 가령, 앞서 언급된 바와 같은 인버터를 이용해 교류로 변환될 수 있다.
방법(600)은 블록(604)으로 계속되며, 여기서 다중-주파수 교류가 하나 이상의 전기 장치로 전달된다. 예를 들어, 다중-주파수 교류는 두 개의 상이한 전기 장치가 "공유"하는 전선을 통해 전달될 수 있다. 본 명세서의 취지에서, 용어 "공유 전선"은 적어도 2개의 상이한 전기 장치에게 전력을 공급하는 데 사용되는 임의의 전선을 의미한다(가령, 도 5의 전선(509)). 일부 구현예는 교류 중 특정 주파수를 우세하게 포함하는 전선을 더 포함할 수 있다(가령, 필터(514 및 516)에 의한 필터링 후 도 5의 전선(515 및 517)).
방법(600)은 블록(606)으로 계속되며, 여기서 다중-주파수 전기의 사용량이 모니터링된다. 예를 들어, 일부 경우, 상이한 교번 주파수 전류가 개별적으로 모니터링된다. 예를 들어, 60Hz 전류가 50Hz 전류와 개별적으로 모니터링될 수 있다. 일부 경우, 본 명세서에서 설명될 바와 같이, 또한 상이한 제한 및 가격 결정 메카니즘이 상이한 주파수에 적용될 수 있다.
방법(600)은 블록(608)으로 진행되며, 여기서 전기의 사용량의 조정이 이뤄진다. 예를 들면, 도 5를 참조하면, 전기 소비 장치(518)가 소비하는 전력 소비량이, 이 전기 소비 장치에 의해 인출되는 전력의 양을 감소, 중단, 또는 증가하라는 명령을 전송함으로써 조정될 수 있다. 일부 경우, 명령이 전기 소비 장치로 직접 전송되고, 또 다른 경우 회로 내 다른 장치, 가령, 스위치(10)로 전송될 수 있다. 일부 경우, 명령이 컴퓨터 네트워크를 통해 전송되고 또 다른 경우 전력선 통신 기법이 사용되어 전선 중 하나 이상을 통해 명령을 전송할 수 있다.
일반적으로, 앞서 언급된 방법에 의해 상이한 교류 주파수를 이용해 상이한 유형의 전력을 선택적으로 모니터링 및 제어하는 것이 가능해진다. 앞서 언급된 바와 같이, 일부 구현예는 "갈색" 즉 비재생 전력에 대해 하나의 주파수(가령, 60Hz)를 이용하고 "녹색" 즉 재생 전원 전력에 대해 또 다른 주파수(가령, 50Hz)를 이용할 수 있다. 그러나 또 다른 변형이 또한 고려된다. 예를 들어, 하나의 유틸리티(가령, 제1 지역 내 유틸리티)에 의해 제공되는 전기가 하나의 주파수로 제공될 수 있고, 상이한 유틸리티(가령, 제1 지역에서 먼 제2 지역 내 유틸리티)에 의해 제공되는 전기가 또 다른 주파수로 제공될 수 있다. 또 다른 예를 들면, 제1 율로 충전되는 에너지가 제2 율로 충전되는 것과 상이한 주파수로 제공될 수 있다.
또한 특정 주파수의 필터링이 특정 전선으로부터의 상기 주파수를 반드시 모두 제거할 필요는 없을 수 있다. 일반적으로, 제1 주파수에서 동작하도록 구성된 장치는 또 다른 주파수의 특정 양까지 수신하는 것을 허용할 수 있다. 본 명세서에서, 필터는 "우세한" 특정 주파수의 교류를 제공하는 것으로 기재될 수 있다. 이는 다른 주파수가 변조된 전기로부터 상기 특정 주파수에서 동작하도록 구성된 전기 소비 장치가 비교적 안전하게 작동할 수 있는 충분한 범위까지, 가령, 필터링 후 남아 있는 다른 주파수가 거의 손상을 초래하지 않을 범위까지 제거됨을 의미한다.
마찬가지로, 혼합 주파수 교류는 반드시 전기 소비 장치에 전력을 공급하기 위해 의도되거나 사용될 필요가 없는 여기에 포함된 다양한 주파수를 가질 수 있다. 예를 들어, 50Hz 및 60Hz 전류를 운반하는 전선이 고조파, 잡음, 및/또는 허위 신호를 운반할 수 있으며 따라서 50Hz 및 60Hz 교류가 아닌 다른 다양한 주파수 성분을 가질 수 있다. 본 명세서에서, 혼합 주파수 교류를 "우세하게" 운반하는 전선은 혼합 주파수 교류가 적어도 2개의 구별되는 주파수 성분으로 분리(가령, 필터링에 의해)될 수 있고 각각의 개별 주파수 성분은 연속적으로 또는 간헐적으로 하나 이상의 전기 장치에 전력을 공급하기 위해 사용될 수 있음을 의미한다. 그럼에도, 교류의 단일 주파수 또는 복수의 주파수를 우세하게 운반하는 전선은 다른 주파수 성분, 가령, 앞서 언급된 고조파, 허위 신호 및/또는 잡음을 포함할 수 있다.
주파수 변조 소비 방법
도 5에 도시된 주파수 변조 회로(500)는 또한 도 7에 도시된 주파수 변조 소비 방법(700)을 구현하는 데 사용될 수 있는 회로의 예시이다. 일반적으로 말하면, 방법(700)은 전기 전력을 소비하는 것과 연관되어 수행될 수 있고 전기 소비 장치에 의해 또는 전기 소비 장치와 같은 장소에 위치하는 전기 장비에 의해 수행될 수 있다. 일부 경우, 상기 방법은 유틸리티 또는 그리드 운영자에 의해 개별 컨슈머에게 제공되는 장비에 의해 수행되지만, 그 밖의 다른 구현예도 고려되며 본 명세서에서 더 설명된다.
방법(700)은 블록(702)에서 시작되며, 여기서 혼합 주파수 교류를 포함하는 전기가 수신된다. 언급된 바와 같이, 혼합 주파수 교류는 단일 전선을 통해 수신될 수 있다.
방법(700)은 블록(704)으로 계속되며, 여기서 혼합 주파수 교류를 포함하는 전기가 필터링되어 필터링된 전기 전력을 제공할 수 있다. 예를 들어, 혼합 주파수 교류는 필터링되어 제2 교류 주파수를 감쇠 또는 제거함으로써 제1 교류 주파수를 우세하게 포함하는 교류를 제공할 수 있다.
방법(700)은 블록(706)으로 계속되며, 여기서 필터링된 전기 전력이 전기 장치에 공급된다. 예를 들어, 전기 장치는 제1 교류 주파수에서 동작되도록 구성된 장치일 수 있다.
방법(700)은 블록(708)으로 진행되며, 여기서 전기 장치에 의한 전력 또는 에너지 소비량이 조정된다. 예를 들어, 전기 전력의 소비를 감소, 중단, 또는 증가시키기 위한 명령이 수신될 수 있다. 일부 경우, 명령은 전력 공급받는 전기 장치(가령, 전기 소비 장치(518))에 의해 수신되고 다른 경우 또 다른 장치, 가령, 스위치(510)에 의해 수신될 수 있다.
일반적으로, 방법(700)은 방법(600)의 상대 방법으로 역할 할 수 있다. 예를 들어, 재생 에너지 공급원이 50Hz로 제공되고 화석 연료 공급원이 60Hz로 제공된다고 가정하자. 또한 재생 공급원은, 과도한 손상, 재생 에너지 발전을 제한하는 날씨 조건(가령, 구름이 덮임)에 의해 제한적이라고 가정한다. 50Hz 전기 공급원으로부터 인출하는 전기 소비 장치를 비활성화하고 60Hz 전기 소비 장치는 계속 동작하도록 하는 명령이 전송될 수 있다.
또한 방법(700)은 복수의 장치에 대해 수행될 수 있다. 예를 들어, 블록(704)은 2개의 상이한 필터를 이용해 혼합 주파수 교류를 필터링하는 것을 포함할 수 있다. 제1 필터는 제2 교류 주파수를 감쇠 또는 제거함으로써 제1 교류 주파수를 우세하게 포함하는 교류를 제공할 수 있고 제2 필터는 제1 교류 주파수를 감쇠 또는 제거함으로써 제2 교류 주파수를 우세하게 포함하는 교류를 제공할 수 있다. 블록(706)은 대응하는 필터링된 교번 주파수 전류를 갖는 상이한 전선에 의해 제1 장치와 제2 장치에 전력을 공급하는 것을 포함할 수 있다. 달리 말하면, 필터에 의해 수신되는 전기는 우세하게 혼합된 교번 주파수 전류이고 전력 소비 장치에 의해 수신되는 전기는 이들 장치가 동작하도록 구성된 올바른 교번 주파수 전류를 우세하게 가진다.
또한 스위치가 아닌 다른 전기 장치는 특정 주파수에 대해 전기 에너지의 소비량을 조정하도록 사용될 수 있다. 예를 들어, 선택 가능 필터 배열이 그리드 계층구조(400) 내에 배치될 수 있다. 예를 들어, 50Hz 전류가 제한적일 때 필터로 적절한 명령을 전송함으로써 50Hz 전류를 제거하기 위한 필터가 그리드 계층 구조 내 임의의 곳에 활성화될 수 있다. 예를 들어, 필터는 변전소(406)에 위치하여, 전기 컨슈머(430, 432, 434, 및 436)가 50Hz 전류를 인출하는 것을 중단시키면서 다른 컨슈머는 계속 인출하게 할 수 있다. 또 다른 예를 들면, 필터는 변압기(414)에 위치하고 활성화되어 컨슈머(430 및 432)가 50Hz 전류를 인출하지 못하게 하면서 컨슈머(434 및 436)는 계속 인출하게 할 수 있다.
주파수 파형 특성
일반적으로, 개별 파형들을 합함으로써 복수의 교번 주파수가 특정 전선을 통해 전송될 수 있다. 극단적인 경우에서, 복수의 상이한 주파수 성분을 갖는 임펄스 또는 사각파 신호가 전선 상에 위치할 수 있으며 소비 측에서 이들 주파수 성분을 추출하기 위해 적절한 필터가 사용된다.
사용되는 특정 필터는 상이한 주파수가 사용되는 방식에 따라 달라질 수 있다. 예를 들어, 특정 전선에 단 2개의 주파수만 존재하는 경우, 고역 통과 필터(high pass filter)(가령, 55Hz 미만의 주파수를 필터링 제거)가 60Hz 장치에 대해 사용될 수 있고 저역 통과 필터(low pass filter)(가령, 55Hz를 초과하는 주파수를 필터링 제거)가 50Hz 장치에 대해 사용될 수 있다. 추가 구현예에서, 대역통과 필터가 사용될 수 있는데, 가령, 50Hz 장치는 49-51 Hz 대역 통과 필터를 가져 50Hz 전류에서 동작할 수 있으며, 55Hz 장치는 54-56 Hz 대역 통과 필터를 가져서 55Hz 전류에서 동작할 수 있고, 60Hz 장치는 59-61 Hz 대역 통과 필터를 가져서 60Hz 전류에서 동작할 수 있으며, 특정 전기 회로를 모두 공유한다.
시 변조 예시
도 8은 전기 전력의 시 변조를 위해 사용될 수 있는 시 변조 회로(temporal modulation circuit)(800)를 보여준다. 회로(800)는 AC 전원(802), 감지 메카니즘(804), 정류기(806 및 808), 스위치(810 및 812), 에너지 저장소(814 및 816), 및 전기 소비 장치(818 및 820)를 포함한다. 일반적으로 전기 소비 장치(818 및 820)는 AC 전원(802)에 의해 생산된 전력을 인출하기 위해 할당된 상이한 시구간을 가질 수 있다. 감지 메카니즘(804)은 전기 소비 장치가 올바른 시구간에서 전력을 인출했는지 또는 할당되지 않은 시구간에서 부적절하게 전력을 인출했는지를 검출하는 데 사용될 수 있다. 예를 들어, 감지 메카니즘은 전압, 주파수, 및/또는 전력을 감지하는 집적 회로이고, 전력 관리 시스템(310)에 의해 분석되도록 감지된 값을 디지털화할 수 있다.
AC 전원(802)은 앞서 언급된 바와 같이, 특정 주파수, 가령, 50 또는 60Hz에서 교류 전력을 생성할 수 있다. 교류 전력은 전선(803 및 805)을 통해 정류기(806 및 808)로 각각 운반될 수 있다. 정류기(806)는 교류를 직류로 변환하고 전선(807)을 통해 직류를 스위치(810)로 제공할 수 있다. 마찬가지로, 정류기(808)는 교류를 직류로 변환하고 전선(809)을 통해 직류를 스위치(812)로 제공할 수 있다. 오프셋(822)으로 나타나는 바와 같이, 직류는 도 8에서 검은색으로 나타나고 교류는 도 8에서 정 슬래시 패턴으로 나타난다.
스위치(810 및 812)가 도 5와 관련하여 앞서 언급된 바와 같이 스위치(510 및 512 )와 유사하게 동작할 수 있다. 스위치(810)가 폐쇄될 때, 정류기(806)가 생성한 직류가 사용되어 에너지 저장소(814)를 충전할 수 있고, 이 스위치가 개방될 때 에너지 저장소(814)는 충전되지 않는다. 마찬가지로, 스위치(812)가 폐쇄될 때, 정류기(808)가 생성하는 직류가 사용되어 에너지 저장소(816)를 충전할 수 있고 이 스위치가 개방될 때 에너지 저장소(816)는 충전되지 않는다. 전기 소비 장치(818 및 220)는 각각 전선(815 및 817)을 통해 제공되는 직류를 이용해 동작할 수 있다.
스위치(810 및 812)는 다양한 메카니즘에 의해 제어되어 다양한 할당 시구간에서 개방 및 폐쇄될 수 있다. 예를 들어, 전기 소비 장치(818)에 홀수 시구간이 할당되고 전기 소비 장치(820)에는 짝수 시구간이 할당된다고 가정할 수 있다. 이러한 상태에서, 감지 메카니즘(804)은 각각의 시구간에서 인출되는 비교적 고른 전력량을 인식해야 한다. 홀수 시구간 동안 과도한 전력이 인출되는 경우, 이는 스위치(812)가 스위치가 개방되어야 할 홀수 시구간 동안 폐쇄되어 있음을 나타낸다. 마찬가지로 짝수 시구간 동안 과도한 전력이 인출되는 경우, 이는 스위치(810)가 개방되어야 하는 짝수 시구간 동안 폐쇄되었음을 나타낸다.
시 변조에 대한 설명
이 변조 회로(800)는 다양한 방식으로 구현될 수 있다. 일부 경우, 감지 메카니즘(804)은 정류기(806 및 808), 스위치(810 및 812), 에너지 저장소(814 및 816), 및 전기 소비 장치(818 및 820)와 같은 장소에 있거나 지리적으로 가까이 위치할 수 있다. 다른 경우, 이하에서 설명될 바와 같이 감지 메카니즘은 이들 장치와 지리적으로 매우 원거리에 위치한다. 다음에서 도 8에 도시된 시 변조 회로(800)의 다양한 구성요소가 어떻게 도 4에 도시된 그리드 계층구조(400)로 일체 구성될 수 있는지를 참조하여 설명이 이뤄진다.
하나의 구현예에서, 전체 시 변조 회로(800)가 로컬 변압기의 하류에 위치한다. 예를 들어, 변압기(414)는 60Hz 전력을 출력하고 AC 전원(802)으로서 역할 한다. 감지 메카니즘(804)은 변압기와 이와 연결된 전력 컨슈머 사이에 위치할 수 있다. 이 구성에서, 변압기에 연결된 각각의 단(premise)이 대응하는 정류기, 스위치, 에너지 저장소, 및 전기 소비 장치를 가질 수 있다.
예를 들어, 냉장고(430)와 레인지(432)를 갖는 단일 가정을 고려할 수 있다. 레인지는 짝수 시구간에서 동작하도록 구성될 수 있고 냉장고는 홀수 시구간에서 동작하도록 구성될 수 있다. 이제, 그리드 상태는 불안정해지고 정전 가능성이 높다고 가정할 수 있다. 정전을 방지하기 위해, 전력 관리 시스템(310)은 짝수 시구간에서 전력을 인출하는 장치에게 인출을 중단하고 홀수 시구간에서 전력을 인출하는 장치는 계속 인출할 것을 명령할 수 있다. 이로 인해 그리드의 부하가 감소될 수 있으며 정전이 방지될 수 있다. 유사한 방식으로, 높은 우선순위 컨슈머, 가령, 병원에 제1 시구간 시리즈가 할당될 수 있으며, "보통"의 컨슈머에게 제2 시구간 시리즈가 할당될 수 있다. 그리드가 과부하되는 경우, "보통"의 컨슈머는 소비량을 감소하도록 명령 받고 병원은 완전 전력을 계속 제공받을 수 있다. 마찬가지로, 상이한 이웃, 도시, 주 등이 또한 시구간 단위로 조직될 수 있는데, 가령, 하나의 이웃에 대해 특정 시구간이 또 다른 이웃에 대해 또 다른 시구간이 할당될 수 있다.
앞서 언급된 주파수 변조 회로(500)처럼, 시 변조 회로(800)는 그리드 계층구조의 상이한 레벨에 걸쳐 확산될 수 있다. 예를 들어, 감지 메카니즘(804)은 전력 생산 시설(110)과 같은 장소에 위치할 수 있다. 이러한 상황에서, 감지 메카니즘은 복수의 상이한 그리드 장치에 의해 어떻게 전력이 인출되는지를 평가하여 임의의 장치가 할당되지 않은 시구간 동안 전력을 인출하는지 여부를 결정할 수 있다. 대안적으로, 감지 메카니즘은 개별 변전소 또는 변압기에 위치하여 특정 전기 장비의 하류에서의 전력 사용량을 검출할 수 있다.
본 명세서에서 제공되는 시 변조 예시가 상당한 양의 재사용될 수 있는 기존 인프라구조도 이용할 수 있다. 실제로, 일부 구현예에서, 공급 측(가령, 전력 생산)에서 어떠한 추가 변조도 존재하지 않는다. 오히려 이들 할당된 시간 사이클 동안 전기가 개별 소비 장치에 의해 변조된다.
시 변조 제공 방법
도 8에 도시된 시 변조 제공 방법(800)은 도 9에 도시된 시 변조 제공 방법(900)을 구현하는 데 사용될 수 있는 회로의 하나의 예시이다. 앞서 도 6과 관련하여 언급된 방법(600)처럼, 방법(900)은 전기 전력을 제공 또는 생성하는 것과 연관되어 수행될 수 있고 전기 유틸리티, 그리드 운영자 등에 의해 수행될 수 있다. 그러나 방법은 또한 그 밖의 다른 개체에 의해 수행될 수 있고 다양한 맥락에서, 가령, 단일 장치 내에서, 한 가구 내에서, 한 이웃 내에서, 대규모 지리 영역 등에 걸쳐 수행될 수 있다.
방법(900)은 블록(902)에서 시작하며, 여기서 시구간이 상이한 전기 장치에 할당된다. 앞서 언급된 예시에서, 홀수 및 짝수 번호 시구간이 설명을 위해 사용되었다. 일부 경우, 이하에서 더 설명될 이유로 상이한 직교 코드가 개별 전력 컨슈머에게 할당될 수 있다. 각각의 코드는 특정 전기 컨슈머에 할당된 시구간 세트와 전력 컨슈머가 전력을 인출하도록 허용되지 않은 대응하는 다른 시간 시퀀스를 식별할 수 있다.
방법(900)은 블록(904)에서 계속되며, 여기서 전력이 복수의 상이한 전기 컨슈머로 전달된다. 일반적으로 이하에서 더 설명될 이유로, 전력은 전력 생성 측 상에서 어떠한 시 변조도 없이 교류로서 전달될 수 있다.
방법(900)은 블록(906)에서 계속되며, 여기서 전력의 사용량이 분석된다. 예를 들어, 도 8의 전기 소비 장치(818 및 820)가 동일한 양의 전력을 인출하도록 허용되는데, 이때, 장치(818)는 홀수 시구간에서 인출하고 장치(820)는 짝수 시구간에서 인출한다. 앞서 언급된 바와 같이, 두 장치 모두 지정 시구간 동안 인출하는 경우, 감지 메카니즘(804)은 허가되지 않은 장치가 해당 시구간 동안 전력을 인출했음을 검출할 수 있다.
방법(900)은 블록(908)에서 계속되며, 여기서 전기의 사용량이 조정된다. 예를 들어, 특정 전기 컨슈머의 전력 소비량을 조정하기 위한 명령이 전송될 수 있다. 일반적으로 말하자면, 방법(900)의 블록(908)은 방법(600)의 블록(608)과 유사할 수 있다. 예를 들어, 전기 소비 장치(818)에 의한 전력 소비량은, 이 전기 소비 장치에 의해 인출되는 전력량을 감소, 중단, 또는 증가시키는 명령을 전송함으로써 조정될 수 있다. 일부 경우, 명령이 전기 소비 장치로 직접 전송되고 다른 경우 회로 내 또 다른 장치, 가령, 스위치(810) 또는 전기 소비 장치에 의한 전력 사용량을 제어하는 로컬 컴퓨팅 장치로 전송될 수 있다. 일부 경우, 명령은 컴퓨터 네트워크를 통해 전송되고 또 다른 경우 전력 선 통신 기법이 사용되어 하나 이상의 전선을 통해 명령을 전송할 수 있다.
시 변조를 이용할 때, 전기 소비 장치에게 이의 전력 소비량을 감소할 것을 명령하는 한 가지 방식이 상기 장치에 할당된 시구간을 변경하는 것이다. 예를 들어, 특정 장치가, 평균적으로 매 3번째 시구간에서 인출하고 장치(또는 연관된 스위치 또는 그 밖의 다른 전기 하드웨어)가 매 4번째 시구간으로 자신의 소비를 감소하도록 명령받을 수 있다. 일부 경우, 명령은 이진 코드일 수 있으며, 가령, 1100이 시구간 0 및 1에서 전력을 인출하고 시구간 2 및 3에서 전력을 인출하지 말라는 명령으로 해석될 수 있다.
시 변조 소비 방법
도 8의 시 변조 회로(800)가 또한 도 10에 도시된 시 변조 소비 방법(1000)을 구현하는 데 사용될 수 있는 회로의 하나의 예시이다. 앞서 도 7과 관련하여 언급된 방법(700)처럼, 방법(1000)은 전기 전력을 소비하는 것과 연관하여 수행될 수 있고 전기 소비 장치 또는 상기 전기 소비 장치와 회로를 공유하는 전기 장비에 의해 수행될 수 있다. 일부 경우, 방법은 유틸리티 또는 그리드 운영자에 의해 (가령, 사용자 단 또는 그리드 내 그 밖의 다른 곳에) 제공되는 전기 장비에 의해 수행되지만, 그 밖의 다른 구현예가 고려될 수 있고 본 명세서에서 더 설명된다.
방법(1000)은 블록(1002)에서 시작되며, 여기서 시구간 할당이 특정 전기 컨슈머에 의해 수신된다. 앞서 언급된 바와 같이, 시구간 할당은 전력 컨슈머가 어느 시구간에서 전력을 인출하도록 허용됐는지를 식별하는 이진 문자열로서 나타날 수 있다. 또한, 일부 경우, 시구간 할당은 특정 전력 슬라이스 동안 허가되지 않은 전력 인출을 검출하는 데 사용될 수 있는 코딩 스킴을 따를 수 있다.
방법(1000)은 블록(1004)에서 계속되며, 여기서 전력은 선택적으로 할당된 시구간 동안 인출되고 그 밖의 다른 시구간 동안은 인출되지 않는다. 예를 들어, 스위치(810)는 전기 소비 장치(818)에 할당된 시구간 동안 폐쇄되고 그 밖의 다른 시구간 동안 개방될 수 있다.
방법(1000)은 블록(1006)에서 계속되며, 여기서 전기 컨슈머에 전력이 공급된다. 일부 경우, 블록(1004)에서 인출된 전력이 에너지 저장 장치를 충전하는 데 사용되며 블록(1006)은 에너지 저장 장치로부터 전력을 인출하는 것을 포함한다.
방법(1000)은 블록(1008)에서 계속되며, 여기서 수신된 명령에 따라 소비량이 조정된다. 예를 들어, 명령은 전기 전력의 소비량의 감소, 중단 또는 증가일 수 있다. 일부 경우, 명령이 전력이 공급되는 전기 장치(가령, 전기 소비 장치(818)에 의해 수신되고, 또 다른 경우 또 다른 장치, 가령, 스위치(810)에 의해 수신될 수 있다. 일부 경우, 명령은 소비 장치에 의해 사용될 새 시구간 패턴 또는 코드를 식별한다.
일반적으로, 방법(1000)은 방법(900)의 대응하는 방법으로 역할 할 수 있다. 예를 들어, 전기 소비 장치(818)(도 8)가 매우 중요한 것, 가령, 병원 장비라고 가정하자. 전기 소비 장치(820)는 덜 중요한 것, 가령, 텔레비전이라고 가정하자. 전기 자원이, 가령, 과도한 수요, 재생 에너지 생산을 제한하는 날씨 상태(가령, 구름이 덮임) 때문에 제한적인 상황에서, 전기 소비 장치(820)를 감소 또는 비활성화하면서 전기 소비 장치(818)는 계속 완전 전력을 인출하도록 하는 명령이 전송될 수 있다.
예시적 시구간 분석
도 11 및 12는 전력 관리 시스템(310)이 어떻게 할당된 시구간을 이용하여 비인가 전력 사용을 추론할 수 있는지를 더 도시한다. 일반적으로 말하면, 도 11은 3개의 전기 소비 장치가 인가된 시구간 동안만 전력을 획득하는 시나리오를 도시하고 도 12는 전기 소비 장치들 중 하나가 비인가 시구간 동안 전력을 획득하는 또 다른 시나리오를 도시한다.
도 11은 제1 전력 소비 패턴(1102), 제2 전력 소비 패턴(1104), 제3 전력 소비 패턴(1106), 누적 전력 소비 패턴(1108), 및 타임라인(1110)을 도시한다. 타임라인(1110)은 참조용으로 도시되며 T0 내지 T7로 넘버링된 8개의 시구간을 보여준다. 제1 전력 소비 패턴(1102)은 제1 전기 소비 장치에 의한 이들 8개의 시구간 동안의 전력 소비를 보여주며, 제2 전력 소비 패턴(1104)은 제2 전기 소비 장치에 의한 이들 8개의 시구간 동안의 전력 소비를 보여주며, 제3 전력 소비 패턴(1106)은 제3 전기 소비 장치에 의한 이들 8개의 시구간 동안의 전력 소비를 보여준다. 누적 전력 소비 패턴(1108)은 각각의 시구간에서의 패턴(1102, 1104 및 1106)으로부터의 전력 소비량의 합을 보여준다.
패턴(1102, 1104, 및 1106) 각각은 인가된 소비 패턴을 나타낸다고 가정할 수 있다. 따라서 제1 전력 소비 패턴(1102)은 제1 장치가 제1 장치에 할당된 시구간 T1, T3, T5, 및 T7 동안 전력을 올바르게 인출하는 것을 보여준다. 제2 전력 소비 패턴(1104)은 제2 장치가 제2 장치에 할당된 시구간 TO, T3, T5, 및 T7 동안 전력을 올바르게 인출하는 것을 보여준다. 제3 전력 소비 패턴(1106)은 제3 장치가 제3 장치에 할당된 시구간 TO, T3, T4, 및 T5 동안 전력을 올바르게 인출하는 것을 보여준다.
도 8에 도시된 감지 메카니즘(804)은 누적 전력 인출 패턴, 가령, (1108)을 시구간 회로 상에서 감지하고 이 데이터를 전력 관리 시스템(310)으로 제공할 수 있다. 전력 관리 시스템(310)은 누적 전력 인출 패턴을 분석하고 누적 전력 인출 패턴이 어떠한 비인가 전력 사용량도 보이지 않는다고 결정할 수 있다.
이하에서, 도 11의 패턴과 유사한 패턴(1202, 1204, 1206, 및 1208)을 포함하는 도 12를 고려한다. 그러나 도 12에서, 소비 패턴(1206)은 제3 장치가 이 장치에게 할당되지 않은 시구간 T1 동안 전력을 인출했음을 보여준다. 결과적으로 누적 전력 인출 패턴(1208)이 제1 장치만 전력을 인출하도록 인가된 시구간 T1에서 2개의 전력 유닛이 인출했음을 보여준다. 누적 인출 패턴(1208)이 감지 메카니즘(804)에 의해 전력 관리 시스템(310)으로 제공될 때, 전력 관리 시스템(310)은 제2 장치 및 제3 장치 중 적어도 하나가 비인가 시구간 동안 전력을 인출했음을 검출할 수 있다.
더 복잡한 시 패턴이 포함될 수 있으며 따라서 도 11 및 12는 예시에 불과함을 알아야 한다. 일부 구현예에서, 상이한 시구간 패턴을 나타내는 여러 직교 코드가 생성되고, 이들 패턴이 상이한 장치에 할당된다. 임의의 비인가 사용량이 발생했는지 여부를 결정하기 위해 할당된 알려진 코드가 주어질 때 누적 전력 인출 패턴을 분석함으로써 코딩 이론(가령, 상관 분석)이 수행될 수 있다. 일부 구현예는 코딩 이론을 이용해 어느 특정 장치가 할당되지 않은 사이클 동안 부적절하게 인출했는지를 검출할 수 있고, 반면에 다른 구현예는 단순히 비인가 사용량을 검출하고 어느 장치가 비인가 전력을 인출하는지를 실제로 식별하기 위해 추가 조사 단계가 취해진다.
또한 일부 구현예가 발전 측에서 시 변조를 수행할 수 있다. 예를 들어, 전력 관리 시스템(310)은 전기 장비를 제어하여, 가령, 각각의 할당된 시구간에 대해 각각의 장치에 의해 사용되는 것으로 예상되는 전력량의 합을 기초로 각각의 시구간 동안 그리드 상에 배치된 전력의 양을 조작할 수 있다. 그러나 전력 인출 패턴이 어느 장치에 의해 어느 시구간이 사용되는지를 나타내기에 충분하기 때문에, 전력 생성 측은 잘못된 사용을 검출하기 위해 전력 생성을 조작할 필요는 없다.
명령 스킴
일부 구현예에서, 전력 관리 시스템(310)은 네트워크(320)를 통해 전기 장비로 명령을 전송함으로써 전기 장비의 동적 재구성을 수행할 수 있다. 앞서 언급된 바와 같이, 네트워크(320)는 전통적인 유선 또는 무선 컴퓨팅 네트워크 및/또는 전력 선 통신 기법을 이용해 구현될 수 있다. 예를 들어, 전력 관리 시스템(310)은 명령을 전기 연결, 유선 컴퓨터 네트워킹 연결, 무선 컴퓨터 네트워킹 조합 또는 이의 조합을 통해 스위치(360)에게 전송할 수 있다.
일부 경우, 신뢰 및/또는 도난 방지 장비가 특정 전기 컨슈머에게 전력을 제공하는 회로와 함께 배치될 수 있다. 예를 들어, 신뢰 스위치가 가정 내에 배치될 수 있으며 전력 관리 시스템(310)으로부터 수신된 명령을 기초로 꺼지거나 켜질 수 있다. 주파수 변조 스킴에서, 전력 관리 시스템은 60Hz 장비에 연결된 스위치는 폐쇄 상태로 유지하면 50Hz 장비에 연결된 스위치가 개방되도록 명령할 수 있다. 시 변조 스킴에서, 전력 관리 시스템은 일부 장치(가령, 서버 시설(130) 내 장치)에게 더 적은 시구간(가령, 33%의 시구간 내지 20%의 시구간에서 인출) 동안 인출함으로써 이들의 배터리의 충전율을 감소시킬 것을 명령하고, 나머지 장치(가령, 병원 또는 컨슈머 집 내 장치)는 동일한 율로 인출을 계속하게 할 수 있다.
일부 경우, 개별 장치는 네트워크(320)를 통해 전송된 할당 식별자(가령, 주소)를 가질 수 있다. 전력 선 통신의 경우, 코딩 기법이 전기 전류에 적용되어, 전기 전류에 명령 및/또는 식별자가 실리게 할 수 있다. 일부 경우, 특정 소비 장치에 대해 특정 전기 에너지 유닛을 지정함으로써 전기 에너지의 유닛은 그리드(120) 상에서 "패킷화"될 수 있다. 예를 들어, 제1 패킷이 3개의 장치가 첫 번째 8개의 시구간 동안 도 11에 도시된 전류 인출 패턴을 구현하게 인가할 수 있으며, 그 후 제2 패킷이 3개의 장치가 도 12에 도시된 전류 인출 패턴을 구현하도록 인가할 수 있다. 다시 말하면, 2개의 연속된 패킷이 다른 방식으로 동일한 인출 패턴을 인가할 수 있지만 제2 패킷에서 추가 시구간 (T1)을 인가할 수 있다. 더 일반적으로 말하자면, 각각의 패킷이 각각의 장치가 각각 8개의 시구간으로 이뤄진 2개의 개별 간격 동안 인출하도록 허용되는 특정 에너지 양을 식별한다. 일부 경우, 각각의 장치는 연관된 신뢰 스위치 또는 할당된 시구간 동안 에너지 저장소를 충전하는 그 밖의 다른 장치를 가지며, 또 다른 경우 전력을 소비하는 장치가 자신의 전력 소비를 직접 제어한다.
추가 구현예에서, 개별 장치에 전력을 제공하기 위해 비밀 키 또는 그 밖의 다른 보안 접근법이 사용될 수 있다. 예를 들어, 각각의 장치에 직접 대응하거나 에너지를 인출하기 위한 대응하는 패턴을 유도하는 데 사용될 수 있는 고유의 비밀 키가 할당될 수 있다. 상기 장치는 전력 관리 시스템(310)으로 전력을 소비하라는 요청을 전송할 수 있고, 전력 관리 시스템은 요청을 검증할 수 있다. 예를 들어, 요청은 상기 장치에 대한 비밀 키를 이용해 생성된 디지털 서명을 가질 수 있다.
전력 관리 시스템(310)은 장치에게, 장치가 전력을 인출하도록 허가된 시구간의 특정 패턴을 식별하는 암호화된 응답을 전송할 수 있다. 그 후 전력 관리 시스템은 누적 전력 인출 패턴을 평가하여 요청 장치가 올바른 타임 슬롯을 이용 중인지 여부를 결정할 수 있다. 그렇지 않은 경우, 이는 요청 장치가 유효한 비밀 키를 갖지 않음을 의미한다. 일부 경우, 전력 관리 시스템은 한 번에 하나의 패턴 슬라이스를 할당할 수 있다. 따라서 10개의 장치에 할당된 전력이 올바른 누적 패턴을 갖고 11번째 장치가 전력을 할당받은 경우, 그 이후에 생성되는 잘못된 누적 패턴은 11번째 장치가 올바른 키를 갖지 않았기 때문일 가능성이 높다.
변조된 전기를 이용한 제한
일부 경우, 에너지 및/또는 전력 제한이 회로 보호 기법, 가령, 회로 차단기, 퓨즈, 및/또는 전기 장비, 가령, 발전기, 변압기 등의 비활성화에 의해 구현될 수 있다. 예를 들어, 주파수 변조 구현예에서, 50Hz 장비에, 50Hz 전력이 과부하될 때, 가령, 50Hz 전력에 대한 수요가 특정 경계를 벗어난 역률, 전압, 또는 주파수를 초래할 때, 50Hz 장비가 전력 인출을 중단하게 하는 회로 보호 장비가 제공될 수 있다. 장비를 비활성화함으로써 50Hz 전력의 인출이 감소되기 때문에, 이들 구현예에서, 이는 효과적으로 한 형태의 에너지 및/또는 전력 제한을 제공할 수 있다. 회로 보호 장비는 또한 시 변조 구현예에서도 에너지 및/또는 전력 제한을 제공할 수 있다.
주파수 변조 및 시 변조 구현예 모두에서, 전력 제한이 또한 전력 관리 시스템(310)이 다양한 장치로 특정 주파수 또는 시구간에서 인출되는 전력의 양을 감소하도록 명령함으로써 수행될 수 있다. 앞서 언급된 바와 같이, 특정 주파수에서 인출하는 장비는 상기 특정 주파수에서의 에너지 가용성이 제한적일 때 전력 사용을 감소 또는 중단하도록 명령받을 수 있다. 마찬가지로, 개별 장치는 상이한 시구간을 이용하도록 재구성되거나 완전히 꺼질 수 있다.
설계 대안
본 명세서는 다양한 구성에서 사용될 수 있는 개념을 소개한다. 하나의 예시로서, 일부 구현예가 복수의 상이한 주파수에서 동작할 수 있는 듀얼-주파수 가능 장치를 제공할 수 있다. 도 5를 다시 참조하면, 전기 소비 장치(518 및 520)가 회로(500)에서, 전기 소비 장치 자체에 스위치 및 필터(514 및 516)를 포함시킴으로써, 스위치(510 및 512) 중 하나로부터 전력을 수신하는 단일 전기 소비 장치로 대체될 수 있다. 이러한 전기 소비 장치는 가령, 전력 관리 시스템(310)으로부터의 명령에 응답하여, 상이한 주파수 상의 전기에 대한 상이한 비용 등을 기초로 상이한 때에 상이한 주파수를 이용할 수 있는 프로세싱 능력을 가질 수 있다. 이러한 전기 소비 장치는 또한 명령을 기초로 단일 전선 상의 이용 가능한 주파수를 감지하고 상이한 때에 개별 주파수로부터 선택적으로 인출하는 주파수 감지 회로(가령, 집적 회로)를 포함할 수 있다. 추가 구현예에서, 이러한 전기 소비 장치는 필터, 정류기 및/또는 주파수 감지 회로의 어레이를 가질 수 있으며 더 많은 주파수(가령, 연관된 스위치 및 필터를 각각 갖는 100개의 주파수)에서 전력을 인출할 수 있다. 일부 경우, 장치는 상이한 주파수로부터의 특정 퍼센티지의 전력을 인출, 가령, 50Hz에서 10%의 전력, 60Hz에서 50%의 전력, 및 70Hz에서 30%의 전력을 인출하도록 명령될 수 있다. 이들 퍼센티지는 전력 관리 시스템이 전력 소비량을 할당하는 방식에 따라 시간에 따라 변할 수 있다.
또 다른 예를 들면, 일부 구현예에서 단일 선 상에서 주파수 변조와 시 변조가 조합될 수 있다. 듀얼-주파수 가능 전기 소비 장치에 제1 주파수에서 제1 시구간 시리즈가 할당될 수 있고 제2 주파수에서 제2 시구간 시리즈가 할당될 수 있다. 에너지 저장소는 어느 주파수에 의해서든 충전되어, 장치가 어느 주파수가 저장소를 충전하는 데 사용되는 것에 무관하게 동작하게 할 수 있다. 이는 재생 에너지가 희박할 때 에너지 저장소를 충전하기 위한 더 적은 시구간을 개별 장치에 할당하고 추가 시구간을 갈색 에너지에 대해 추가함으로써 50Hz에서 녹색 에너지의 사용량을 감소시킬 때 유용할 수 있다. 장치에 의한 순 전력 소비량은 반드시 변할 필요는 없지만 이로 인해 특정 주파수를 인출하도록 특정 시구간을 이용하라는 장치 명령을 전송함으로써 전력 관리 시스템(310)이 상이한 전력원이 사용되는 방식을 관리할 수 있다.
단일 장치가 또한 동일한 주파수를 이용해 전력이 공급되는 2개의 시구간 회로를 가질 수 있다. 예를 들어, 제1 정류기 및 스위치는 제1 시구간 시리즈 동안 배터리를 충전할 수 있고 제2 정류기 및 스위치는 제2 시구간 시리즈 동안 배터리를 충전할 수 있다. 예를 들어, 제1 시구간 세트가 녹색 에너지를 나타내고 제2 세트가 갈색 에너지를 나타내거나, 상이한 공급원으로부터의 에너지, 상이한 가격 등을 나타낼 수 있다. 전력 관리 시스템(310)은 제1 스위치에게 제2 스위치와 상이한 시구간 세트 동안 인출하도록 명령할 수 있다.
또한 상기의 기재는 시구간 구현예에서 DC 에너지 저장소, 가령, 배터리에 집중한다. 그러나 교류 에너지 저장소, 가령, 플라이휠(flywheel)이 또한 개시된 구현예와 일치하여 사용될 수 있다. 덧붙여, 에너지 저장소는 주파수 변조 예시와 함께 사용될 수 있다. 예를 들어, 50Hz 녹색 전력이 간헐적으로 이용 가능한 경향이 있고 60Hz 갈색 전력은 거의 항상 이용 가능한 경향이 있다. 60Hz에서 동작하도록 구성된 장치는 갈색 전력으로 직접 동작될 수 있다. 50Hz 녹색 전력은, 이용 가능할 때, 60Hz 전류를 생성하는 인버터에 연결된 에너지 저장 장치를 충전하는 데 사용될 수 있다. 따라서 장치는 녹색 전력이 직접 이용 가능하지 않을 때 녹색 전력에 의해 전력을 공급받고 에너지 저장소가 완전히 방전될 때에야 갈색 전력으로 스위칭될 수 있다.
또한 상이한 주파수 및 시구간이 여러 가지 목적으로 전기 컨슈머을 구별하거나 공급원을 구별하는 데 사용될 수 있다. 일부 구현예에서, 특정 개체가 특정 공급원으로부터 사용되는 에너지에 대한 에너지 리베이트를 제공할 수 있는데, 예컨대, 특정 유틸리티가 특정 주파수에서 전기를 생성할 수 있고 사용자에게 상기 특정 주파수를 사용하도록 인센티브를 부여할 수 있다. 대안적으로 유틸리티로부터의 에너지가 특정 시구간에서 대규모 지역을 통해 전송될 수 있고 유틸리티는 사용자가 이들 특정 시구간에서 에너지를 이용하도록 인센티브를 제공할 수 있다.
컴퓨팅 하드웨어 구현
도 3을 다시 참조하면, 도시된 환경(300)은 복수의 구성요소를 포함한다. 이 경우, 설명 목적으로, 구성요소는 전력 관리 시스템(310), 클라이언트 장치(330), 전력 컨슈머(130, 140, 150, 및 160) 및 전기 하드웨어(110, 340, 350, 및 360)로 특징지어진다. 이 예시에서, 전력 관리 시스템은 서버 컴퓨팅 장치, 데스크톱, 태블릿, 랩톱 장치 등으로 나열될 수 있다. 일반적으로 장치가 일부 계산 하드웨어를 갖는 한, 장치는 개시된 구현예에 따르면 전력 관리 시스템 또는 클라이언트 장치로 역할을 할 수 있다. 마찬가지로, 장치가 일부 계산 하드웨어를 갖는 한, 장치는 본 명세서에 기재되는 전력 관리 제어 모듈(316) 및/또는 전력 관리 액션 모듈(318)을 구현할 수 있다. 물론 모든 장치 구현예가 도시될 수 있는 것은 아니며 그 밖의 다른 장치 구현예가 상기 및 하기의 기재로부터 해당 분야의 통상의 기술자에게 자명할 것이다.
본 명세서에서 사용될 때 용어 "장치", "컴퓨터", "컴퓨팅 장치", "클라이언트 장치", 및/또는 "서버 장치"가 일부 양의 하드웨어 처리 능력(가령, 처리 자원(312)) 및/또는 하드웨어 저장/메모리 능력(가령, 메모리/저장 자원(314))을 갖는 임의의 유형의 장치를 의미할 수 있다. 처리 능력은 기능을 제공하기 위해 컴퓨터 판독형 명령을 실행할 수 있는 하나 이상의 프로세서(가령, 하드웨어 처리 유닛/코어)에 의해 제공될 수 있다. 컴퓨터 판독형 명령 및/또는 데이터가 저장장치, 가령, 저장소/메모리 및/또는 데이터 저장소에 저장될 수 있다.
저장소/메모리는 장치의 내부 또는 외부에 있을 수 있다. 저장소는 휘발성 또는 비휘발성 메모리, 하드 드라이브, 플래시 저장 장치, 및/또는 광학 저자 장치(가령, CD, DVD 등) 중 임의의 하나 이상을 포함할 수 있다. 본 명세서에서 사용될 때, 용어 "컴퓨터 판독형 매체"는 신호를 포함할 수 있다. 이와 달리, 용어 "컴퓨터 판독형 저장 매체"는 신호를 배제한다. 컴퓨터 판독형 저장 매체는 "컴퓨터 판독형 저장 장치"를 포함한다. 컴퓨터 판독형 저장 장치의 예로는 휘발성 저장 매체, 가령, RAM, 및 비휘발성 매체, 가령, 하드 드라이브, 광학 디스크, 및 플래시 메모리 등을 포함한다.
일부 경우, 장치는 범용 프로세서 및 저장소/메모리를 갖는 것으로 구성된다. 또 다른 경우, 장치는 시스템 온 칩(SOC) 유형 설계를 포함할 수 있다. SOC 설계 구현예에서, 장치에 의해 제공되는 기능이 단일 SOC 또는 복수의 연결된 SOC에 집적될 수 있다. 하나 이상의 연관된 프로세서는 공유 자원, 가령, 메모리, 저장소 등 및/또는 하나 이상의 전용 자원, 가령, 특정 기능을 수행하도록 구성된 하드웨어 블록과 조화되도록 구성될 수 있다.
덧붙여, 일부 구현예는 전용 논리 회로, 가령, 주문형 집적 회로("ASIC") 또는 필드-프로그래머블 게이트 어레이("FPGA")를 이용할 수 있다. 특히, 전기 하드웨어가 가령, 전력 관리 액션 모듈(318)로서 동작하고 전력 관리 시스템(310)으로부터의 명령에 응답하도록 전용 논리 회로를 갖도록 구성될 수 있다. 따라서 본 명세서에 사용될 때 용어 "프로세서"는 또한 중앙 처리 장치(CPU), 그래픽 처리 장치(GPU), 제어기, 마이크로제어기, 프로세서 코어, 전용 논리 회로, 또는 종래의 컴퓨팅 아키텍처 및 SOC 설계에서 구현되기에 적합한 그 밖의 다른 유형의 처리 장치를 지칭할 수 있다.
일부 구성에서, 전력 관리 모듈(316) 및 전력 관리 액션 모듈(318)이 장치의 제조 동안 또는 최종 사용자에게 판매되도록 장치를 준비하는 중간자에 의해 하드웨어, 펌웨어, 또는 소프트웨어로서 설치될 수 있다. 또 다른 경우, 가령, 실행 코드를 다운로드하고 실행 코드를 대응하는 장치에 설치함으로써 최종 사용자가 전력 관리 모듈을 차후에 설치할 수 있다.
또한 장치는 일반적으로 입력 및/또는 출력 기능부를 가질 수 있다. 예를 들어, 컴퓨팅 장치는 다양한 입력 메카니즘, 가령, 키보드, 마우스, 터치패드, 음성 인식 등을 가질 수 있다. 장치는 또한 다양한 출력 메카니즘, 가령, 프린터, 모니터 등을 가질 수 있다.
또한 본 명세서에 기재된 장치는 기재된 기술을 구현하기 위해 독립적으로 또는 협력적으로 기능할 수 있다. 예를 들어, 본 명세서에 기재된 방법들 각각은 단일 컴퓨팅 장치 상에 수행되거나 및/또는 네트워크(320)를 통해 통신하는 복수의 컴퓨팅 장치에 분산될 수 있다. 비제한적으로, 네트워크(320)는 하나 이상의 로컬 영역 네트워크(LAN), 광역 네트워크(WAN), 인터넷 등을 포함할 수 있다.
추가 예시
본 명세서에 개시된 다양한 예시는 제1 방법 예시를 포함할 수 있다. 제1 방법 예시는 제1 교류 주파수와 제2 교류 주파수를 포함하는 적어도 2개의 상이한 교류 주파수를 갖는 변조 전기를 획득하도록 전기를 변조하는 단계 및 상기 적어도 2개의 상이한 교류 주파수를 갖는 변조 전기를 복수의 상이한 전기 장치, 가령, 제1 교류 주파수를 이용하도록 구성된 제1 전기 장치 및 제2 교류 주파수를 이용하도록 구성된 제2 전기 장치로 전달하는 단계를 포함할 수 있다. 적어도 2개의 상이한 교류 주파수를 갖는 변조 전기는 제1 전기 장치와 제2 전기 장치에 의해 공유되는 전선을 통해 적어도 부분적으로 전달될 수 있다. 제2 방법 예시에서, 제1 방법 예시는 제2 교류 주파수와 상이하게 제1 교류 주파수의 에너지 사용량을 제한(cap)하는 단계를 포함한다. 제3 방법 예시에서, 제1 방법 예시 또는 제2 방법 예시는 제1 전기 장치가 제1 교류 주파수를 이용해 전력을 인출하는 것을 중단시키고 제2 전기 장치는 제2 교류 주파수를 이용해 계속 전력을 인출하게 하는 명령을 전송하는 단계를 포함할 수 있다. 제4 방법 예시에서, 제3 방법 예시는 전선을 통해 명령을 나타내는 코드를 전송하는 단계를 포함할 수 있다. 제5 방법 예시에서, 제4 방법 예시의 코드가 제1 전기 장치와 같은 장소에 위치하는 스위치에 의해 판독 가능하도록 구성된다.
본 명세서에 개시된 다양한 예시는 또한 제1 시스템 예시를 포함할 수 있다. 제1 시스템 예시는 전선을 통해 적어도 2개의 상이한 교류 주파수를 갖는 변조 전기를 수신하도록 구성된 필터를 포함할 수 있다. 적어도 2개의 상이한 교류 주파수는 제1 교류 주파수 및 제2 교류 주파수를 포함할 수 있다. 제1 필터는 또한 변조 전기의 제2 교류 주파수를 감쇠시켜 제1 교류 주파수를 우세하게 갖는 필터링된 변조 전기를 획득하도록 구성될 수 있다. 제1 시스템 예시는 또한 필터링된 변조 전기에서 동작하도록 구성된 전기 소비 장치를 포함할 수 있다. 제2 시스템 예시에서, 제1 시스템 예시는 전선을 통해 적어도 2개의 상이한 교류 주파수를 갖는 변조 전기를 수신하고 변조 전기의 제1 교류 주파수를 감쇠시켜 제2 교류 주파수를 우세하게 갖는 제2 필터링된 변조 전기를 획득하도록 구성된 제2 필터를 포함할 수 있다. 제2 시스템 예시는 또한 필터링된 변조 전기에서 동작하도록 구성된 제2 전기 장치를 포함할 수 있다. 제3 시스템 예시에서, 제1 또는 제2 시스템 예시는 스위치 및 프로세서를 포함할 수 있으며, 상기 프로세서는 제1 교류 주파수에서 전력을 인출하는 것을 중단하기 위한 명령을 수신하고 제1 전기 장치가 제1 교류 주파수에서 전력을 인출하는 것을 중단시키면서 제2 전기 장치는 제2 교류 주파수에서 계속 전력을 인출하게 하도록 구성된다. 제4 시스템 예시에서, 제3 시스템 예시의 명령은 컴퓨터 네트워크 또는 제1 교류 주파수와 제2 교류 주파수 모두를 운반하는 전선을 통해 수신될 수 있다. 제5 시스템 예시에서, 제1 내지 제4 시스템 예시는 제2 교류 주파수에서의 에너지 소비량과 별개로 제1 교류 주파수에서의 에너지 소비량을 계량하도록 구성된 계량기를 포함할 수 있다.
본 명세서에 개시된 다양한 예시는 제1 추가 방법 예시를 포함할 수 있다. 제1 추가 방법 예시는 개별 전기 장치가 전기를 인출하기 위한 할당된 시구간을 갖는 복수의 전기 장치에게 전기를 전달하는 단계 및 상기 개별 전기 장치에게 할당되지 않은 개별 시구간 동안 전기를 인출했음을 검출하기 위해 전기의 사용량을 분석하는 단계를 포함한다. 제2 추가 방법 예시에서, 제1 추가 방법 예시의 전기 사용량을 분석하는 단계는 복수의 전기 장치에 의해 인출된 전력을 평가하는 단계를 포함한다. 제3 추가 방법 예시에서, 제1 추가 방법 예시 또는 제2 추가 방법 예시는 코딩 스킴의 상이한 코드로서 시구간을 할당하는 단계를 포함한다. 제4 추가 방법 예시에서, 제3 추가 방법 예시는 상이한 코드의 상관 분석을 이용해 개별 전기 장치를 식별하는 단계를 포함한다. 제5 추가 방법 예시에서, 제3 또는 제4 추가 방법 예시는 상이한 코드들의 합으로서 전기 에너지를 생성하는 단계를 포함한다.
본 명세서에 개시된 다양한 예시는 제1 추가 시스템 예시를 더 포함할 수 있다. 제1 추가 시스템 예시는 전기 하드웨어 및 전기 소비 장치를 포함할 수 있다. 전기 하드웨어는 할당된 시간 주기 동안 전기를 선택적으로 인출하고 상기 할당된 시간 주기 동안 선택적으로 인출된 전기를 이용해 전기 소비 장치에 전력을 공급하도록 구성될 수 있다. 제2 추가 시스템 예시에서, 제1 추가 시스템 예시는 에너지 저장 장치를 포함하며 전기 하드웨어는 할당된 시간 주기 동안 에너지 저장 장치를 충전하도록 구성된다. 제3 추가 시스템 예시에서, 제2 추가 시스템 예시의 전기 하드웨어는 전기 에너지를 교류에서 직류로 변환하도록 구성된 정류기를 포함하여 에너지 저장 장치를 충전할 수 있다. 제4 추가 시스템 예시에서, 제1 내지 제3 추가 시스템 예시는 컴퓨터 네트워크 또는 전기를 운반하는 전선을 통해 할당된 시간 주기를 수신하도록 구성된 프로세서를 포함한다. 제5 추가 시스템 예시에서, 제4 추가 시스템 예시의 전기 하드웨어는 스위치를 포함하며 프로세서는 할당되지 않은 시간 주기 동안 고 저항 및 할당된 시간 주기 동안 저 저항을 제공하도록 스위치를 제어하도록 구성된다.
결론
본 발명이 구조적 특징 및/또는 방법적 동작에 특정적인 언어로 기재되었지만, 이하의 청구범위에서 정의되는 본 발명은 앞서 기재된 특정 특징 또는 동작에 반드시 한정되는 것은 아니다. 오히려, 앞서 기재된 특정 특징 및 동작이 청구항을 구현하는 예시적 형태로서 개시되고 해당 분야의 통상의 기술자에 의해 인지될 그 밖의 다른 특징 및 동작이 청구범위 내에 있도록 의도된다.

Claims (15)

  1. 시스템으로서,
    필터, 및
    전기 소비 장치를 포함하되,
    상기 필터는 적어도 2개의 상이한 교류 주파수를 갖는 변조 전기(modulated electricity)를 전선을 통해 수신하고- 상기 적어도 2개의 상이한 교류 주파수는 제1 교류 주파수와 제2 교류 주파수를 포함함 - , 상기 변조 전기의 상기 제2 교류 주파수를 감쇠시켜 상기 제1 교류 주파수를 우세하게 갖는 필터링된 변조 전기를 획득하도록 구성되고,
    상기 전기 소비 장치는 상기 필터링된 변조 전기로 동작하도록 구성된
    시스템.
  2. 제1항에 있어서,
    제2 필터, 및
    제2 전기 소비 장치를 더 포함하되,
    상기 제2 필터는 상기 적어도 2개의 상이한 교류 주파수를 갖는 상기 변조 전기를 상기 전선을 통해 수신하며, 상기 변조 전기의 상기 제1 교류 주파수를 감쇠시켜 상기 제2 교류 주파수를 우세하게 갖는 제2 필터링된 변조 전기를 획득하도록 구성되고,
    상기 제2 전기 소비 장치는 상기 제2 필터링된 변조 전기로 동작하도록 구성된
    시스템.
  3. 제2항에 있어서,
    스위치, 및
    프로세서를 더 포함하되,
    상기 프로세서는
    상기 제1 교류 주파수에서 전력을 인출하는 것을 중단하라는 명령을 수신하며,
    제1 전기 장치가 상기 제1 교류 주파수에서 전력을 인출하는 것을 중단하고 제2 전기 장치는 상기 제2 교류 주파수에서 전력을 계속 인출하게 하도록 구성된
    시스템.
  4. 제3항에 있어서,
    상기 명령은 상기 제1 교류 주파수와 제2 교류 주파수를 모두 운반하는 전선 또는 컴퓨터 네트워크를 통해 수신되는
    시스템.
  5. 제1항에 있어서,
    상기 제1 교류 주파수에서의 에너지 소비량을 상기 제2 교류 주파수에서의 에너지 소비량과 별개로 계량하도록 구성된 계량기를 더 포함하는
    시스템.
  6. 제1항에 있어서,
    상기 제1 교류 주파수로 전기를 제공하도록 구성된 교류 전원을 더 포함하는
    시스템.
  7. 제6항에 있어서,
    상기 제2 교류 주파수로 전기를 제공하도록 직류를 변환하도록 구성된 인버터를 더 포함하는
    시스템.
  8. 제7항에 있어서,
    상기 직류를 제공하도록 구성된 직류 전원을 더 포함하는
    시스템.
  9. 시스템으로서,
    전기 하드웨어, 및
    전기 소비 장치를 포함하되,
    상기 전기 하드웨어는
    할당된 시간 주기 동안 전기를 선택적으로 인출하며,
    상기 할당된 시간 주기 동안 선택적으로 인출된 전기를 이용해 상기 전기 소비 장치에 전력을 공급하도록 구성된
    시스템.
  10. 제9항에 있어서,
    에너지 저장 장치를 더 포함하되, 상기 전기 하드웨어는 상기 할당된 시간 주기 동안 상기 에너지 저장 장치를 충전하도록 구성된
    시스템.
  11. 제10항에 있어서,
    상기 전기 하드웨어는 상기 전기 에너지를 교류에서 직류로 변환하여 상기 에너지 저장 장치를 충전하도록 구성된 정류기를 더 포함하는
    시스템.
  12. 제11항에 있어서,
    컴퓨터 네트워크 또는 전기를 운반하는 전선을 통해 상기 할당된 시간 주기를 수신하도록 구성된 프로세서를 더 포함하는
    시스템.
  13. 제12항에 있어서,
    상기 전기 하드웨어는 스위치를 포함하고 상기 프로세서는 할당되지 않은 시간 주기 동안 고 저항을 제공하고 할당된 시간 주기 동안에는 저 저항을 제공하도록 상기 스위치를 제어하도록 더 구성되는
    시스템.
  14. 제9항에 있어서,
    상기 전기 하드웨어에 의해 인출된 전력을 감지하도록 구성된 감지 메카니즘을 더 포함하는
    시스템.
  15. 제14항에 있어서,
    할당되지 않은 시간 주기 동안 전력이 인출될 때를 검출하도록 구성된 프로세서를 더 포함하는
    시스템.
KR1020177000756A 2014-07-11 2015-07-08 변조된 파형을 이용한 전기 관리 기법 KR102470841B1 (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201462023782P 2014-07-11 2014-07-11
US62/023,782 2014-07-11
US14/675,030 US9954365B2 (en) 2014-07-11 2015-03-31 Electricity management using modulated waveforms
US14/675,030 2015-03-31
PCT/US2015/039464 WO2016007569A2 (en) 2014-07-11 2015-07-08 Electricity management using modulated waveforms

Publications (2)

Publication Number Publication Date
KR20170028933A true KR20170028933A (ko) 2017-03-14
KR102470841B1 KR102470841B1 (ko) 2022-11-25

Family

ID=53716583

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020177000756A KR102470841B1 (ko) 2014-07-11 2015-07-08 변조된 파형을 이용한 전기 관리 기법

Country Status (5)

Country Link
US (2) US9954365B2 (ko)
EP (1) EP3167524B1 (ko)
KR (1) KR102470841B1 (ko)
CN (1) CN106575871A (ko)
WO (1) WO2016007569A2 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8849469B2 (en) 2010-10-28 2014-09-30 Microsoft Corporation Data center system that accommodates episodic computation
US20160011617A1 (en) * 2014-07-11 2016-01-14 Microsoft Technology Licensing, Llc Power management of server installations
US9933804B2 (en) 2014-07-11 2018-04-03 Microsoft Technology Licensing, Llc Server installation as a grid condition sensor
US10234835B2 (en) 2014-07-11 2019-03-19 Microsoft Technology Licensing, Llc Management of computing devices using modulated electricity
US10316621B2 (en) * 2016-12-15 2019-06-11 Schlumberger Technology Corporation Downhole tool power balancing
CN111193257A (zh) * 2020-01-10 2020-05-22 安徽正光电气自动化科技有限公司 消防水泵用双电源柜

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970045566U (ko) * 1995-12-30 1997-07-31 컴퓨터용 전원공급기 구조
US6812811B2 (en) * 2002-05-14 2004-11-02 Halliburton Energy Services, Inc. Power discriminating systems
KR20100051069A (ko) * 2007-07-18 2010-05-14 엑사플롭 엘엘씨 데이터 센터를 위한 전력 공급부
US20110276194A1 (en) * 2010-05-10 2011-11-10 Emalfarb Hal A System and method for energy management

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8708098D0 (en) 1987-04-04 1987-05-13 Screening Consultants Ltd Timeswitches
US4857759A (en) 1988-02-17 1989-08-15 Murphy Gordon J Alternating current outlet adapter
US6633823B2 (en) 2000-07-13 2003-10-14 Nxegen, Inc. System and method for monitoring and controlling energy usage
JP2002271992A (ja) 2001-03-14 2002-09-20 Internatl Business Mach Corp <Ibm> 電力供給装置、電力供給方法、電気機器および電気機器における電力供給方法
US6644247B2 (en) 2001-08-08 2003-11-11 General Electric Company Frequency switching systems for portable power modules
US7149605B2 (en) 2003-06-13 2006-12-12 Battelle Memorial Institute Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices
WO2006108892A1 (es) 2005-04-11 2006-10-19 Julio Ricardo Fuchelman Gross Sistema analógico indicador del estado de conexión de un subconjunto seleccionado zd de las cargas eléctricas z conectadas en paralelo a una fuente de alimentación
US7825793B1 (en) * 2006-06-21 2010-11-02 Sunrise Technologies, Inc. Remote monitoring and control system
FR2904486B1 (fr) 2006-07-31 2010-02-19 Jean Marc Oury Procede et systeme de gestion et de modulation en temps reel de consommation electrique.
US8258761B2 (en) 2007-07-31 2012-09-04 Battelle Memorial Institute Electrical energy consumption control apparatuses and electrical energy consumption control methods
DE102009007795A1 (de) 2009-02-06 2010-07-08 Siemens Aktiengesellschaft Unabhängiger Mehrmotorbetrieb über gemeinsame Motorstromleitung
US8674823B1 (en) * 2009-05-12 2014-03-18 Plug ID, LLC. Power management system
JP2011066967A (ja) 2009-09-15 2011-03-31 Panasonic Electric Works Co Ltd 配電システム
GB2469361B (en) * 2010-01-28 2011-04-13 Energy2Trade Ltd Power flow measurement and management
US20120086286A1 (en) 2010-10-12 2012-04-12 Schneider Electric USA, Inc. Cycling load controller having a learn mode for automatically determining when the load is turned on and off
US8957634B2 (en) * 2011-03-15 2015-02-17 Siemens Aktiengesellschaft Network as automation platform for collaborative E-car charging at the residential premises
US10879727B1 (en) * 2011-05-26 2020-12-29 James Carl Cooper Power source load control
US9748771B2 (en) 2012-04-12 2017-08-29 International Business Machines Corporation Plug arrangements for alleviating peak loads
US9564757B2 (en) * 2013-07-08 2017-02-07 Eaton Corporation Method and apparatus for optimizing a hybrid power system with respect to long-term characteristics by online optimization, and real-time forecasts, prediction or processing
WO2016134014A1 (en) * 2015-02-17 2016-08-25 Black & Decker Inc. Hybrid interactive storage system and method
US10454267B1 (en) * 2018-06-01 2019-10-22 Franklin Electric Co., Inc. Motor protection device and method for protecting a motor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970045566U (ko) * 1995-12-30 1997-07-31 컴퓨터용 전원공급기 구조
US6812811B2 (en) * 2002-05-14 2004-11-02 Halliburton Energy Services, Inc. Power discriminating systems
KR20100051069A (ko) * 2007-07-18 2010-05-14 엑사플롭 엘엘씨 데이터 센터를 위한 전력 공급부
US20110276194A1 (en) * 2010-05-10 2011-11-10 Emalfarb Hal A System and method for energy management

Also Published As

Publication number Publication date
EP3167524B1 (en) 2018-05-23
US20180205227A1 (en) 2018-07-19
WO2016007569A3 (en) 2016-03-03
US20160013647A1 (en) 2016-01-14
CN106575871A (zh) 2017-04-19
KR102470841B1 (ko) 2022-11-25
WO2016007569A2 (en) 2016-01-14
EP3167524A2 (en) 2017-05-17
US9954365B2 (en) 2018-04-24
US11368021B2 (en) 2022-06-21

Similar Documents

Publication Publication Date Title
KR102470841B1 (ko) 변조된 파형을 이용한 전기 관리 기법
KR102463510B1 (ko) 변조 전기를 이용하는 컴퓨팅 장치의 관리 기법
Amirioun et al. Metrics and quantitative framework for assessing microgrid resilience against windstorms
Kabalci A survey on smart metering and smart grid communication
McLaughlin et al. Protecting consumer privacy from electric load monitoring
Eder-Neuhauser et al. Resilience and security: A qualitative survey of urban smart grid architectures
Kulkarni et al. Power systems automation, communication, and information technologies for smart grid: A technical aspects review
JP5439233B2 (ja) 制御装置
WO2011133558A1 (en) Utility monitoring
CN105305786B (zh) 用于模块化功率变换器的高级诊断的系统和方法
Simonov Dynamic partitioning of DC microgrid in resilient clusters using event-driven approach
Seal et al. Automatic identification of service phase for electric utility customers
CN103887882B (zh) 一种用于变电站的预制定模块化二次设备系统
CN105119378A (zh) 低压配电线路在线监测系统
de Carvalho et al. Analyzing impact of communication network topologies on reconfiguration of networked microgrids, impact of communication system on smart grid reliability, security and operation
CN108011447A (zh) 一种电站监控设备、电站监控系统
CN105098991A (zh) 一种低压配电线路在线监测系统
Lin et al. Modular power architectures for microgrid clusters
CN105305482A (zh) 基于b/s架构的分布式电源并网监控系统
CN204928369U (zh) 一种低压配电线路在线监测系统
Vivek et al. Role of telecommunication technologies in microgrids and smart grids
Akpojedje et al. A survey of smart grid systems on electric power distribution network and its impact on reliability
Zbunjak et al. SIPS development method and busbar splitting scheme supported by PMU technology
CN203951264U (zh) 一种用于变电站的预制定模块化二次设备系统
Vijayakumar et al. A resilient scheme for a flexible smart grid using Transformation optimization towards sustainable energy

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant