KR20170026863A - Method for manufacturing superconductor - Google Patents
Method for manufacturing superconductor Download PDFInfo
- Publication number
- KR20170026863A KR20170026863A KR1020150122474A KR20150122474A KR20170026863A KR 20170026863 A KR20170026863 A KR 20170026863A KR 1020150122474 A KR1020150122474 A KR 1020150122474A KR 20150122474 A KR20150122474 A KR 20150122474A KR 20170026863 A KR20170026863 A KR 20170026863A
- Authority
- KR
- South Korea
- Prior art keywords
- superconducting
- particles
- superconductor
- materials
- producing
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B12/00—Superconductive or hyperconductive conductors, cables, or transmission lines
- H01B12/02—Superconductive or hyperconductive conductors, cables, or transmission lines characterised by their form
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B12/00—Superconductive or hyperconductive conductors, cables, or transmission lines
- H01B12/14—Superconductive or hyperconductive conductors, cables, or transmission lines characterised by the disposition of thermal insulation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
- H01B13/0016—Apparatus or processes specially adapted for manufacturing conductors or cables for heat treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
- H01B13/0026—Apparatus for manufacturing conducting or semi-conducting layers, e.g. deposition of metal
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
- H01B13/06—Insulating conductors or cables
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
Abstract
Description
본 발명은 초전도체를 생성하는 방법에 관한 것이며, 보다 자세하게는 자속 고정점(vortex pinning center)을 갖는 초전도체를 복수의 초전도 입자를 이용하여 임의의 형상으로 생성하는 방법에 관한 것이다.
The present invention relates to a method of producing a superconductor, and more particularly, to a method of generating a superconductor having a vortex pinning center in an arbitrary shape using a plurality of superconducting particles.
일반적으로 초전도체에서는 초전도체를 관통하는 자속의 움직임으로 인해 전력 손실이 발생할 수 있다. 따라서, 초전도체의 특성은 자속의 움직임에 대한 억제 능력에 따라 달라질 수 있다.Generally, in superconductors, power loss may occur due to the movement of flux passing through the superconductor. Therefore, the characteristics of the superconductor can be varied depending on the suppression ability of the magnetic flux.
초전도체의 자속의 움직임에 대한 억제 능력은 초전도체 내부에 존재하는 자속 고정점(vortex pinning center)의 배치에 영향을 받는다. 여기서 자속 고정점이란 자속을 고정하는 지점을 지칭하는 것이다. 자속 고정점이 3차원 상에서 규칙적으로 배치된 경우 자속 고정 효과는 등방적으로 나타날 수 있는 반면, 자속 고정점이 3차원 상에서 불규칙적으로 배치된 경우에는 자속 고정 효과는 비등방적(이방적)으로 나타날 수 있다. 이 때, 자속 고정점이 3차원 상에서 규칙적으로 배치되는 경우가 자속 고정점이 3차원 상에서 불규칙적으로 배치되는 경우보다 자속의 움직임을 보다 효과적으로 억제할 수 있다.The suppression ability of the magnetic flux of the superconductor is influenced by the arrangement of the vortex pinning center existing inside the superconductor. Here, the magnetic flux fixing point is a point at which the magnetic flux is fixed. When the flux fixation points are regularly arranged on three dimensions, the flux fixation effect may be isotropic, whereas when the flux fixation points are irregularly arranged on the three-dimensional plane, the flux fixation effect may be anisotropic (anisotropic). At this time, the case where the magnetic flux fixing points are regularly arranged on three dimensions can more effectively suppress the movement of the magnetic flux than the case where the magnetic flux fixing points are irregularly arranged on the three-dimensional plane.
종래에는 3차원 상에 자속 고정점이 배치되는 초전도체를 생성하기 위하여, 예를 들면 2차원 상에 배치된 자속 고정점을 갖는 초전도체 박막을 쌓아올리는 방법을 사용하였다. 그러나, 이 방법에 따르면 공정 진행 속도가 느리고 난이도가 높으므로, 대량 생산에 불리하다. 또한, 생성되는 초전도체의 형상은 편평한 시편 위에 쌓아 올리는 막의 형태로 제한된다.Conventionally, a method of stacking a superconductor thin film having magnetic flux fixing points arranged on two dimensions, for example, is used in order to generate a superconductor in which magnetic flux fixing points are arranged on a three-dimensional plane. However, according to this method, since the process speed is slow and the difficulty is high, it is disadvantageous to mass production. In addition, the shape of the resulting superconductor is limited to the form of a film piled on a flat specimen.
또 다른 종래의 방법에 대한 예를 들면, 화합물 초전도체의 화학적 조성비를 조절하거나 또는 불순물을 주입함으로써 3차원 상에 배치된 자속 고정점을 갖는 초전도체를 생성하는 방법을 사용하였다. 그러나 이 방법에 따르면 초전도체를 구성하는 초전도 입자의 크기와 간격을 조절하는 것이 거의 불가능하므로, 경우에 따라서는 자속 고정 효과가 거의 나타나지 않을 수도 있다.As another conventional method, for example, a method of generating a superconductor having a magnetic flux fixing point disposed on three dimensions by controlling a chemical composition ratio of a compound superconductor or injecting an impurity has been used. However, according to this method, it is almost impossible to control the size and spacing of the superconducting particles constituting the superconductor. In some cases, the effect of fixing the flux may hardly be exhibited.
이에, 3차원 상에 배치된 자속 고정점을 갖는 초전도체를 임의의 형상으로 생성하고, 또한 초전도체가 갖는 자속 고정점을 3차원 상에서 규칙적으로 배치되도록 하는 방법에 관한 요구가 있다.
Thus, there is a demand for a method of generating a superconductor having magnetic flux anchoring points arranged on three dimensions in an arbitrary shape and also regularly arranging magnetic flux fixing points of the superconductor on three dimensions.
본 발명이 해결하고자 하는 과제는 3차원 상에서 규칙적으로 배치된 자속 고정점을 갖는 초전도체를 생성하는 방법을 제안하는 것이다.A problem to be solved by the present invention is to propose a method of generating a superconductor having magnetic flux fixing points regularly arranged in three dimensions.
또한, 본 발명의 해결하고자 하는 과제는 3차원 상에서 규칙적으로 배치된 자속 고정점을 갖는 초전도체를 임의의 형상으로 생성하는 방법을 제안하는 것이다.Another problem to be solved by the present invention is to propose a method of generating a superconductor having a magnetic flux fixing point regularly arranged in three dimensions on an arbitrary shape.
다만, 본 발명의 해결하고자 하는 과제는 이상에서 언급한 것으로 제한되지 않으며, 언급되지 않은 또 다른 해결하고자 하는 과제는 아래의 기재로부터 본 발명이 속하는 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
It is to be understood that both the foregoing general description and the following detailed description of the present invention are exemplary and explanatory and are intended to provide further explanation of the invention as claimed. will be.
본 발명의 일 실시예에 따른 초전도체를 생성하는 방법은 (a) 복수의 초전도 입자를 생성하는 단계; (b) 상기 복수의 초전도 입자를 인접시킴으로써 기 정의된 형상의 생성하는 단계; 및 (c) 상기 복수의 초전도 입자에 열을 가하여 상기 인접한 상본 발명의 일 실시예에 따른 초전도체를 생성하는 방법은 (a) 복수의 초전도 입자를 생성하는 단계; (b) 상기 복수의 초전도 입자를 인접 배치 시킴으로써 기 정의된 형상을 형성하는 단계; 및 (c) 상기 복수의 초전도 입자에 열을 가하여 인접 배치된 상기 초전도 입자를 서로 결합시킴으로써, 3차원 상에 배치된 자속 고정점을 갖는 초전도체를 생성하는 단계를 포함한다.A method of producing a superconductor according to an embodiment of the present invention includes the steps of: (a) generating a plurality of superconducting particles; (b) creating a predefined shape by abutting the plurality of superconducting particles; And (c) applying heat to the plurality of superconducting particles to generate the superconductor according to an embodiment of the present invention, the method comprising: (a) generating a plurality of superconducting particles; (b) forming a predefined shape by adjacent arranging the plurality of superconducting particles; And (c) applying heat to the plurality of superconducting particles to bond the adjacent superconducting particles together, thereby producing a superconductor having magnetic flux fixing points arranged on three dimensions.
또한, 상기 (a) 단계는 상기 초전도 입자의 중심이 될 위치에 상기 비초전도 물질을 배치하는 단계; 및 상기 비초전도 물질을 둘러싸도록 초전도 물질을 배치하여 상기 초전도 입자를 생성하는 단계를 포함하며, 상기 비초전도 물질은 상기 자속 고정점으로 작용할 수 있다.In addition, the step (a) may include disposing the non-superconducting material at a position to be a center of the superconducting particle; And disposing a superconducting material to surround the non-superconducting material to produce the superconducting particle, wherein the non-superconducting material can act as the flux fixation point.
또한, 상기 (a) 단계는 상기 초전도 입자의 중심이 될 위치에 상기 비초전도 물질을 배치하는 단계; 상기 비초전도 물질을 둘러싸도록 절연 물질로 구성된 절연층을 배치하는 단계; 및 상기 절연층을 둘러싸도록 초전도 물질을 배치하여 상기 초전도 입자를 생성하는 단계를 포함하며, 상기 비초전도 물질은 상기 자속 고정점으로 작용할 수 있다.In addition, the step (a) may include disposing the non-superconducting material at a position to be a center of the superconducting particle; Disposing an insulating layer composed of an insulating material so as to surround the non-superconducting material; And disposing a superconducting material to surround the insulating layer to produce the superconducting particles, wherein the non-superconducting material can act as the flux fixation point.
또한, 상기 (a) 단계는 상기 초전도 입자의 중심이 될 위치에 절연 물질로 구성되고 내부에 빈 공동(void)을 갖는 절연층을 배치하는 단계; 및 상기 절연층을 둘러싸도록 초전도 물질을배치하여 상기 초전도 입자를 생성하는 단계를 포함하며, 상기 빈 공동은 상기 자속 고정점으로 작용할 수 있다.In addition, the step (a) may include disposing an insulating layer made of an insulating material at a position to be a center of the superconducting particle and having an empty void therein; And disposing a superconducting material so as to surround the insulating layer to generate the superconducting particles, wherein the empty cavity can serve as the flux fixing point.
또한, 상기 (a) 단계는 상기 초전도 입자의 중심이 될 위치에 비초전도 물질을 배치하는 단계; 상기 비초전도 물질 상에 적어도 2종류 이상의 초전도 물질을 교번하여 증착시키는 단계; 및 상기 적어도 2종류 이상의 초전도 물질에 열을 가하여 상기 적어도 2종류 이상의 초전도 물질을 단일한 초전도 물질로 구성된 단일 초전도 층으로 합성함으로써, 상기 단일 초전도 층을 포함하는 상기 초전도 입자를 생성하는 단계를 포함하며, 상기 비초전도 물질은 상기 자속 고정점으로 작용할 수 있다.In addition, the step (a) may include disposing a non-superconducting material at a position to be a center of the superconducting particle; Alternately depositing at least two superconducting materials on the non-superconducting material; And generating the superconducting particles including the single superconducting layer by applying heat to the at least two kinds of superconducting materials to synthesize the at least two kinds of superconducting materials into a single superconducting layer composed of a single superconducting material, , The non-superconducting material may act as the flux fixation point.
또한, 상기 (a) 단계는 상기 초전도 입자의 중심이 될 위치에 비초전도 물질을 배치하는 단계; 및 상기 비초전도 물질 상에 적어도 2종류 이상의 초전도 물질을 교번하여 증착시키는 단계를 포함하고, 상기 (c) 단계는 상기 적어도 2종류 이상의 초전도 물질에 열을 가하여 상기 적어도 2종류 이상의 초전도 물질을 단일한 초전도 물질로 구성된 단일 초전도 층으로 합성하는 단계; 및 상기 열을 이용하여 상기 단일 초전도 층을 포함하는 인접 배치된 초전도 입자를 서로 결합시킴으로써 상기 초전도체를 생성하는 단계를 포함하며, 상기 비초전도 물질은 상기 자속 고정점으로 작용할 수 있다.In addition, the step (a) may include disposing a non-superconducting material at a position to be a center of the superconducting particle; And depositing at least two superconducting materials alternately on the non-superconducting material, wherein the step (c) includes heating at least two or more superconducting materials to heat the at least two superconducting materials Synthesizing a single superconducting layer composed of a superconducting material; And combining the adjacent superconducting particles including the single superconducting layer with each other using the heat to form the superconductor, wherein the non-superconducting material can act as the flux fixing point.
또한, 상기 (a) 단계는 상기 초전도 입자의 중심이 될 위치에 비초전도 물질을 배치하는 단계; 및 상기 비초전도 물질 상에 적어도 2종류 이상의 초전도 물질을 교번하여 증착시키는 단계를 포함하고, 상기 (c) 단계는 상기 복수의 초전도 입자에 열을 가하여 인접 배치된 상기 초전도 입자를 서로 결합시키는 단계; 및 상기 열을 이용하여 상기 적어도 2종류 이상의 초전도 물질을 단일한 초전도 물질로 구성된 단일 초전도 층으로 합성하는 단계를 포함하며, 상기 비초전도 물질은 상기 자속 고정점으로 작용할 수 있다.In addition, the step (a) may include disposing a non-superconducting material at a position to be a center of the superconducting particle; And depositing at least two kinds of superconducting materials on the non-superconducting material in an alternating manner, wherein the step (c) includes the steps of: applying heat to the plurality of superconducting particles to bind adjacent superconducting particles to each other; And synthesizing the at least two or more superconducting materials into a single superconducting layer composed of a single superconducting material using the heat, and the non-superconducting material may serve as the flux fixing point.
또한, 상기 (a) 단계는 상기 초전도 입자의 중심이 될 위치에 비초전도 물질을 배치하는 단계; 상기 비초전도 물질을 둘러싸도록 절연 물질로 구성된 절연층을 배치하는 단계; 상기 절연층 상에 적어도 2종류 이상의 초전도 물질을 교번하여 증착시키는 단계; 및 상기 적어도 2종류 이상의 초전도 물질에 열을 가하여 상기 적어도 2종류 이상의 초전도 물질을 단일한 초전도 물질로 구성된 단일 초전도 층으로 합성함으로써, 상기 단일 초전도 층을 포함하는 상기 초전도 입자를 생성하는 단계를 포함하며, 상기 비초전도 물질은 상기 자속 고정점으로 작용할 수 있다.In addition, the step (a) may include disposing a non-superconducting material at a position to be a center of the superconducting particle; Disposing an insulating layer composed of an insulating material so as to surround the non-superconducting material; Alternately depositing at least two superconducting materials on the insulating layer; And generating the superconducting particles including the single superconducting layer by applying heat to the at least two kinds of superconducting materials to synthesize the at least two kinds of superconducting materials into a single superconducting layer composed of a single superconducting material, , The non-superconducting material may act as the flux fixation point.
또한, 상기 (a) 단계는 상기 초전도 입자의 중심이 될 위치에 상기 비초전도 물질을 배치하는 단계; 상기 비초전도 물질을 둘러싸도록 절연 물질로 구성된 절연층을 배치하는 단계; 및 상기 절연층 상에 적어도 2종류 이상의 초전도 물질을 교번하여 증착시키는 단계를 포함하고, 상기 (c) 단계는 상기 적어도 2종류 이상의 초전도 물질에 열을 가하여 상기 적어도 2종류 이상의 초전도 물질을 단일한 초전도 물질로 구성된 단일 초전도 층으로 합성하는 단계; 및 상기 열을 이용하여 상기 단일 초전도 층을 포함하는 인접 배치된 상기 초전도 입자를 서로 결합시킴으로써 상기 초전도체를 생성하는 단계를 포함할 수 있다.In addition, the step (a) may include disposing the non-superconducting material at a position to be a center of the superconducting particle; Disposing an insulating layer composed of an insulating material so as to surround the non-superconducting material; And a step of alternately depositing at least two kinds of superconducting materials on the insulating layer, wherein the step (c) includes the steps of: applying heat to the at least two kinds of superconducting materials, Synthesizing a single superconducting layer composed of a material; And generating the superconductor by bonding adjacent superconducting particles including the single superconducting layer to each other using the heat.
또한, 상기 (a) 단계는 상기 초전도 입자의 중심이 될 위치에 상기 비초전도 물질을 배치하는 단계; 상기 비초전도 물질을 둘러싸도록 절연 물질로 구성된 절연층을 배치하는 단계; 및 상기 절연층 상에 적어도 2종류 이상의 초전도 물질을 교번하여 증착시키는 단계를 포함하고, 상기 (c) 단계는 상기 복수의 초전도 입자에 열을 가하여 인접 배치된 상기 초전도 입자를 서로 결합시키는 단계; 및 상기 열을 이용하여 상기 적어도 2종류 이상의 초전도 물질을 단일한 초전도 물질로 구성된 단일 초전도 층으로 합성하는 단계를 포함할 수 있다.In addition, the step (a) may include disposing the non-superconducting material at a position to be a center of the superconducting particle; Disposing an insulating layer composed of an insulating material so as to surround the non-superconducting material; And a step of alternately depositing at least two kinds of superconducting materials on the insulating layer, wherein the step (c) includes the steps of: applying heat to the plurality of superconducting particles to bond the superconducting particles disposed adjacent to each other; And synthesizing the at least two kinds of superconducting materials into a single superconducting layer composed of a single superconducting material using the heat.
또한,상기 (a) 단계는 적어도 2종류 이상의 초전도 물질을 교번하여 증착시키는 단계; 및 상기 적어도 2종류 이상의 초전도 물질에 열을 가하여 상기 적어도 2종류 이상의 초전도 물질을 단일한 초전도 물질로 구성된 단일 초전도 층으로 합성함으로써, 상기 단일 초전도 층을 포함하는 상기 초전도 입자를 생성하는 단계를 포함할 수 있다.In addition, the step (a) may include: alternately depositing at least two superconducting materials; And generating the superconducting particles including the single superconducting layer by applying heat to the at least two kinds of superconducting materials to synthesize the at least two kinds of superconducting materials into a single superconducting layer composed of a single superconducting material .
또한, 상기 (a) 단계는 적어도 2종류 이상의 초전도 물질을 교번하여 증착시키는 단계를 포함하고, 상기 (c) 단계는 상기 복수의 초전도 입자에 열을 가하여 인접 배치된 상기 초전도 입자를 서로 결합시키는 단계; 및 상기 열을 이용하여 상기 적어도 2종류 이상의 초전도 물질을 단일한 초전도 물질로 구성된 단일 초전도 층으로 합성하는 단계를 포함할 수 있다.The step (a) includes a step of alternately depositing at least two kinds of superconducting materials, and the step (c) includes the step of bonding the adjacent superconducting particles to each other by applying heat to the plurality of superconducting particles ; And synthesizing the at least two kinds of superconducting materials into a single superconducting layer composed of a single superconducting material using the heat.
또한, 상기 (a) 단계는 상기 초전도 입자의 중심이 될 위치에 절연 물질로 구성되고 내부에 빈 공동(void)을 갖는 절연층을 배치하는 단계; 상기 절연층 상에 적어도 2종류 이상의 초전도 물질을 교번하여 증착시키는 단계; 및 상기 적어도 2종류 이상의 초전도 물질에 열을 가하여 상기 적어도 2종류 이상의 초전도 물질을 단일한 초전도 물질로 구성된 단일 초전도 층으로 합성함으로써, 상기 단일 초전도 층을 포함하는 초전도 입자를 생성하는 단계를 포함하며, 상기 빈 공동은 상기 자속 고정점으로 작용할 수 있다.In addition, the step (a) may include disposing an insulating layer made of an insulating material at a position to be a center of the superconducting particle and having an empty void therein; Alternately depositing at least two superconducting materials on the insulating layer; And generating superconducting particles including the single superconducting layer by applying heat to the at least two superconducting materials to synthesize the at least two superconducting materials as a single superconducting layer composed of a single superconducting material, The empty cavity may act as the flux fixation point.
또한, 상기 (a) 단계는 상기 초전도 입자의 중심이 될 위치에 절연 물질로 구성되고 내부에 빈 공동(void)을 갖는 절연층을 배치하는 단계; 및 상기 절연층 상에 적어도 2종류 이상의 초전도 물질을 교번하여 증착시키는 단계를 포함하고, 상기 (c) 단계는 상기 적어도 2종류 이상의 초전도 물질에 열을 가하여 상기 적어도 2종류 이상의 초전도 물질을 단일한 초전도 물질로 구성된 단일 초전도 층으로 합성하는 단계; 및 상기 열을 이용하여 상기 단일 초전도 층을 포함하는 상기 인접 배치된 초전도 입자를 서로 결합시킴으로써 상기 형상의 초전도체를 생성하는 단계를 포함하고, 상기 빈 공동은 상기 자속 고정점으로 작용할 수 있다.In addition, the step (a) may include disposing an insulating layer made of an insulating material at a position to be a center of the superconducting particle and having an empty void therein; And a step of alternately depositing at least two kinds of superconducting materials on the insulating layer, wherein the step (c) includes the steps of: applying heat to the at least two kinds of superconducting materials, Synthesizing a single superconducting layer composed of a material; And forming the superconductor of the shape by bonding the adjacent superconducting particles including the single superconducting layer to each other using the heat, wherein the empty cavity can serve as the flux fixing point.
또한, 상기 (a) 단계는 상기 초전도 입자의 중심이 될 위치에 절연 물질로 구성되고 내부에 빈 공동(void)을 갖는 절연층을 배치하는 단계; 및 상기 절연층 상에 적어도 2종류 이상의 초전도 물질을 교번하여 증착시키는 단계를 포함하고, 상기 (c) 단계는 상기 복수의 초전도 입자에 열을 가하여 인접 배치된 상기 초전도 입자를 서로 결합시키는 단계; 및 상기 열을 이용하여 상기 적어도 2종류 이상의 초전도 물질을 단일한 초전도 물질로 구성된 단일 초전도 층으로 합성하는 단계를 포함하며, 상기 빈 공동은 상기 자속 고정점으로 작용할 수 있다.In addition, the step (a) may include disposing an insulating layer made of an insulating material at a position to be a center of the superconducting particle and having an empty void therein; And a step of alternately depositing at least two kinds of superconducting materials on the insulating layer, wherein the step (c) includes the steps of: applying heat to the plurality of superconducting particles to bond the superconducting particles disposed adjacent to each other; And synthesizing the at least two types of superconducting materials into a single superconducting layer composed of a single superconducting material by using the heat, and the empty cavity may serve as the flux fixing point.
또한, 상기 (a) 단계는 상기 복수의 초전도 입자의 크기를 적어도 2종류 이상의 크기로 생성할 수 있다.In addition, the step (a) may generate at least two sizes of the plurality of superconducting particles.
또한, 상기 (b) 단계는 상기 형상과 크기 및 모양이 동일한 빈 공간을 갖는 틀에 대해서, 상기 빈 공간에 상기 복수의 초전도 입자를 주입하여 인접 배치시킴으로써 상기 형상을 형성할 수 있다.In the step (b), the shape may be formed by inserting the plurality of superconducting particles into the void space and arranging the superconducting particles adjacent to each other with respect to a frame having an empty space having the same shape, size, and shape.
또한, 상기 (b) 단계는 상기 복수의 초전도 입자를 노즐(nozzle)로부터 분출시키고, 분출된 상기 복수의 초전도 입자를 기판(substrate) 상에 인접 배치시키는 단계를 포함할 수 있다.The step (b) may include ejecting the plurality of superconducting particles from a nozzle and disposing the plurality of ejected superconducting particles on a substrate.
또한, 상기 (b) 단계는 상기 복수의 초전도 입자를 기 정의된 패턴에 대응되는 개구부를 갖는 제1 기판에 통과시키고, 통과된 상기 복수의 초전도 입자를 제2 기판 상에 인접 배치된 상태로 도포시키는 단계를 포함할 수 있다.In the step (b), the plurality of superconducting particles are passed through a first substrate having an opening corresponding to a predefined pattern, and the plurality of superconducting particles passed through the second substrate are coated . ≪ / RTI >
또한, 상기 (c) 단계는 상기 결합된 초전도 입자 사이에 틈을 생성하는 단계를 포함하며, 상기 틈은 상기 자속 고정점으로 작용할 수 있다.
In addition, the step (c) may include the step of creating a gap between the superconducting particles, and the gap may serve as the flux fixing point.
본 발명의 일 실시예에 따르면, 초전도체를 구성하는 복수의 초전도 입자의 크기를 조절함으로써 3차원 상에서 규칙적으로 배치된 자속 고정점을 갖는 초전도체를 생성할 수 있다. 또한, 복수의 초전도 입자를 이용하여 3차원 상에서 규칙적으로 배치된 자속 고정점을 갖는 초전도체를 임의의 형상으로 생성할 수 있다.
According to an embodiment of the present invention, by controlling the sizes of the superconducting particles constituting the superconductor, it is possible to generate the superconductor having the flux fixing points regularly arranged on three dimensions. In addition, a superconductor having magnetic flux fixing points regularly arranged on three-dimensionally using a plurality of superconducting particles can be formed in an arbitrary shape.
도 1은 본 발명의 일 실시예에 따른 초전도체를 생성하는 방법의 절차를 예시적으로 도시한 도면이다.
도 2는 본 발명의 일 실시예에 따른 초전도 입자를 생성하는 방법의 절차를 예시적으로 도시한 도면이다.
도 3a 내지 3d는 본 발명의 일 실시예에 따른 방법에 의하여 생성된 초전도 입자를 예시적으로 도시한 도면이다.
도 4는 본 발명의 일 실시예에 따른 복수의 초전도 입자가 인접 배치된 것을 예시적으로 도시한 도면이다.
도 5a 내지 5e는 발명의 일 실시예에 따른 방법에 의하여 초전도체를 생성하는 방법을 예시적으로 도시한 도면이다.
도 6은 본 발명의 일 실시예에 따라 상이한 크기의 초전도 입자가 서로 결합된 것을 예시적으로 도시한 도면이다.
도 7은 본 발명의 다른 실시예에 따라 초전도 입자를 생성하는 방법을 예시적으로 도시한 도면이다.
도 8a 내지 8d는 본 발명의 다른 실시예에 따른 방법에 의하여 생성된 초전도 입자를 예시적으로 도시한 도면이다.FIG. 1 is a view illustrating an example of a procedure of a method of producing a superconductor according to an embodiment of the present invention. Referring to FIG.
FIG. 2 is a view illustrating an example of a procedure of a method for producing superconducting particles according to an embodiment of the present invention. Referring to FIG.
FIGS. 3A-3D illustrate superconducting particles produced by the method according to an embodiment of the present invention. FIG.
FIG. 4 is a view illustrating an example in which a plurality of superconducting particles are disposed adjacent to each other according to an embodiment of the present invention.
5A to 5E are views illustrating a method of generating a superconductor according to a method according to an embodiment of the present invention.
FIG. 6 is an exemplary view illustrating superconducting particles of different sizes combined with each other according to an embodiment of the present invention. FIG.
FIG. 7 is an exemplary illustration of a method for producing superconducting particles according to another embodiment of the present invention.
8A to 8D are diagrams illustrating superconducting particles produced by a method according to another embodiment of the present invention.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.BRIEF DESCRIPTION OF THE DRAWINGS The advantages and features of the present invention, and the manner of achieving them, will be apparent from and elucidated with reference to the embodiments described hereinafter in conjunction with the accompanying drawings. The present invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. To fully disclose the scope of the invention to those skilled in the art, and the invention is only defined by the scope of the claims.
본 발명의 실시예들을 설명함에 있어서 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 그리고 후술되는 용어들은 본 발명의 실시예에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.In the following description of the present invention, a detailed description of known functions and configurations incorporated herein will be omitted when it may make the subject matter of the present invention rather unclear. The following terms are defined in consideration of the functions in the embodiments of the present invention, which may vary depending on the intention of the user, the intention or the custom of the operator. Therefore, the definition should be based on the contents throughout this specification.
먼저, 본 발명의 일 실시예에 따른 초전도체를 생성하는 방법은 초전도 물질을 생성한 뒤 이러한 초전도 물질을 인접 배치시키고, 초전도 물질에 열을 가하여 결합시킴으로써, 임의의 형상의 초전도체를 생성하는 초전도체 생성 장치(미도시)에 의하여 수행될 수 있으나 이에 한정되는 것은 아니다.A method of generating a superconductor according to an embodiment of the present invention includes generating a superconducting material, arranging the superconducting material adjacent to the superconducting material, and applying heat to the superconducting material to bond the superconducting material, (Not shown), but the present invention is not limited thereto.
도 1은 본 발명의 일 실시예에 따른 초전도체를 생성하는 방법의 절차를 예시적으로 도시한 도면이다. FIG. 1 is a view illustrating an example of a procedure of a method of producing a superconductor according to an embodiment of the present invention. Referring to FIG.
도 1을 참조하면, 일 실시예에 따른 초전도체를 생성하는 방법은 복수의 초전도 입자를 생성하는 단계(S100), 복수의 초전도 입자를 인접 배치시킴으로써 기 정의된 형상을 형성하는 단계(S200) 및 복수의 초전도 입자에 열을 가하여 인접 배치된 초전도 입자를 서로 결합시킴으로써 3차원 상에 배치된 자속 고정점을 갖는 초전도체를 생성하는 단계(S300)를 포함한다. 다만, 이는 일 실시예에 따른 것이므로 본 발명의 사상이 이에 한정되는 것은 아니며, 이 중 적어도 하나 이상의 단계를 포함하지 않거나 또는 이외의 다른 단계를 더 포함할 수도 있다. 아울러, 도 2에 도시된 방법의 절차가 순차적으로 수행되어야 하는 것은 아니며 실시예에 따라서는 절차의 수행 순서가 변경될 수 있다.Referring to FIG. 1, a method of generating a superconductor according to an exemplary embodiment includes generating a plurality of superconducting particles (S100), forming a predefined shape by arranging a plurality of superconducting particles adjacent to each other (S200) (S300) of forming a superconductor having magnetic flux fixing points disposed on three dimensions by applying heat to the superconducting particles of the adjacent superconducting particles to bind adjacent superconducting particles to each other. However, the present invention is not limited to the above embodiment, and may include at least one of the steps, or may include other steps. In addition, the procedure of the method shown in FIG. 2 is not necessarily performed sequentially, and the order of procedure may be changed depending on the embodiment.
먼저, 초전도 입자를 생성하는 단계(S100)에서는 초전도 물질(150)을 포함하는 초전도 입자를 복수 개로 생성한다. 이하에서는 이와 같은 초전도 입자를 생성하는 단계(S100)에 대하여 보다 구체적으로 살펴보기 위하여 도 2 및 도 3a 내지 3d를 살펴보기로 한다.First, in step S100 of generating superconducting particles, a plurality of superconducting particles including the
도 2는 본 발명의 일 실시예에 따른 초전도 입자를 생성하는 방법의 절차를 예시적으로 도시한 도면이고, 도 3a는 도 2에 따른 방법의 절차에 따라 생성되는 초전도 입자를 도시한 도면이다.FIG. 2 is a diagrammatic view of a procedure of a method for producing superconducting particles according to an embodiment of the present invention, and FIG. 3 a is a view showing superconducting particles generated according to the procedure of the method according to FIG.
도 2와 도 3a를 참조하면, 초전도 입자(100a)를 생성하는 방법은 자속 고정점으로 작용하는 비초전도 물질(110)을 초전도 입자(100a)의 중심이 될 위치에 배치하는 단계 (S110), 비초전도 물질(110)을 둘러싸도록 절연 물질로 구성된 절연층(120)을 배치하는 단계(S120) 및 절연층(120)을 둘러싸도록 초전도 물질(150)을 배치하여 초전도 입자(100a)를 생성하는 단계(S130)를 포함할 수 있다.Referring to FIGS. 2 and 3A, a method of generating
여기서, 초전도 입자(100a)는 예를 들면 구형일 수 있으나 그 밖에 타원형 기타 다른 형태일 수 있다.Here, the
비초전도 물질(110)은 초전도 입자(100a)의 중심이 될 위치에 배치된다(S110). 비초전도 물질(110)은 예를 들면 강자성체, 반강자성체, 상자성체 또는 비자성체일 수 있다. 또한 비초전도 물질(110)은 비초전도의 성질을 갖는 금속 또는 비금속일 수 있다. 이러한 비초전도 물질(110)은 초전도체 내부에서 자속 고정점으로 작용할 수 있다.The
다음으로, 절연층(120)은 비초전도 물질(110)을 둘러싸도록 배치된다(S120). 절연층(120)은 예를 들면 비초전도 물질(110)에 절연 물질을 증착시킴으로써 생성 및 배치될 수 있다. 이러한 절연층(120)은 초전도 입자(100a)에 열이 가해졌을 때 초전도 물질(150)과 비초전도 물질(110) 간에 열확산이 발생하지 않도록 하는 역할을 수행할 수 있다.Next, the insulating
이 후, 초전도 물질(150)은 절연층(120)을 둘러싸도록 배치된다(S130). 초전도 물질(150)은 단일한 원소로 이루어진 순물질이거나 또는 적어도 2종류 이상의 원소가 합성된 화합물일 수 있다. 초전도 물질(150)은 예를 들면 전술한 순물질 또는 화합물을 절연층(120)에 증착시킴으로써 생성 및 배치될 수 있다.Thereafter, the
여기서, 도 2에 도시된 초전도 입자(100a)를 생성하는 방법은 일 실시예에 따른 것이므로 본 발명의 사상이 이에 한정되는 것은 아니다. 예를 들면, 실시예에 따라서 단계 S120이 수행되지 않을 수 있으며, 따라서 비초전도 물질(110)과 초전도 물질(150) 사이에 절연층(120)이 존재하지 않을 수 있다. 이 경우 도 3b에 도시된 것과 같이 비초전도 물질(110)을 초전도 물질(150)이 둘러싸도록 배치된 초전도 입자(100b)가 생성될 수 있다. Here, the method of producing the
이와 달리 실시예에 따라서 단계 S110에서 비초전도 물질 대신에 빈 공동(void)(105)이 배치될 수 있다. 이 경우 도 3c에 도시된 것과 같이 빈 공동을 포함하는 절연층(120)을 초전도 물질(150)이 둘러싸도록 배치된 초전도 입자(100c)가 생성될 수 있다. Alternatively,
또는, 실시예에 따라서 단계 S110과 단계 S120이 수행되지 않을 수 있으며, 이 경우 도 3d에 도시된 것과 같이 초전도 물질(150)로 구성된 초전도 입자(100d)가 생성될 수 있다. 다만, 이하에서는 도 3a에 도시된 초전도 입자(100a)를 기초로 설명하기로 한다.Alternatively, steps S110 and S120 may not be performed according to the embodiment, and
다시 도 1을 참조하되 도 4와 함께 참조하면, 복수의 초전도 입자를 인접 배치시킴으로써 기 정의된 형상을 형성하는 단계(S200)가 수행된다. 복수의 초전도 입자(100a)를 인접 배치시키는 힘은 복수의 초전도 입자(100a)를 응축시키는 외력일 수 있다. 이러한 외력은 복수의 초전도 입자(100a)를 인접 배치시킴으로써 기 정의된 형상이 형성되도록 할 수 있다. 예를 들면, 복수의 초전도 입자(100a)는 임의의 형상의 틀 내부에 주입되는 경우, 노즐로부터 분출되는 경우, 기 정의된 개구부를 갖는 기판의 전술한 개구부를 통과하여 또 다른 기판 상에 도포되는 경우 등에 전술한 외력에 의하여 인접 배치됨으로써 기 정의된 형상으로 형성될 수 있는데, 이러한 예에 대해서는 도 5a 내지 5e에서 보다 자세하게 살펴보기로 한다. 이와 달리, 복수의 초전도 입자(100a)를 인접 배치시키는 힘은 각각의 초전도 입자(100a)의 분산력(반데르 발스 힘)일 수도 있다.Referring again to FIG. 1 and referring to FIG. 4, a step S200 of forming a predefined shape by arranging a plurality of superconducting particles adjacent to each other is performed. The force for placing the plurality of
이 때, 도 4에 도시된 것과 같이 크기가 동일한 복수의 초전도 입자(100a)가 인접 배치되는 경우, 이러한 복수의 초전도 입자(100a)는 3차원 상에서 규칙적으로 배치될 수 있으며, 이 경우 복수의 초전도 입자(100a) 각각에 포함되어 자속 고정점 역할을 수행하는 비초전도 물질(110) 또한 3차원 상에서 규칙적으로 배치될 수 있다. 이에 따라서, 복수의 초전도 입자(100a) 각각이 갖는 자속 고정점은 3차원 상에서 규칙적으로 배치될 수 있다.At this time, when a plurality of
다시 도 1을 참조하면, 복수의 초전도 입자(100a)에 열을 가하여 초전도체를 생성하는 단계(S300)가 수행된다. 보다 자세하게 살펴보면, 복수의 초전도 입자(100a)는 도 5a 내지 5e에서 후술하겠지만 인접 배치되어 기 정의된 형상을 형성한다. 다음으로, 복수의 초전도 입자(100a) 각각은 외부로부터 가해지는 열에 의하여 표면이 용융될 수 있다. 표면 용융에 의하여, 인접 배치된 초전도 입자(100a)는 서로 간에 결합될 수 있다. 이 때, 결합된 복수의 초전도 입자(100a)는 인접 배치된 초전도 입자(100a) 간의 결합에 의해 초전도체로 생성될 수 있는데, 복수의 초전도 입자(100a)에 가해지는 열은 예를 들면 진공 상태의 공간에서 가해질 수 있다.Referring again to FIG. 1, a step S300 of generating a superconductor by applying heat to a plurality of
여기서, 전술한 바와 같이 크기가 동일한 복수의 초전도 입자(100a)가 인접 배치되는 경우, 복수의 초전도 입자(100a)는 3차원 상에서 규칙적으로 배치될 수 있으며, 따라서 복수의 초전도 입자(100a) 각각이 갖는 자속 고정점 또한 3차원 상에서 규칙적으로 배치될 수 있다. 이 때, 인접 배치된 초전도 입자(100a)가 서로 결합되어 초전도체로 생성되면, 이러한 초전도체는 3차원 상에서 규칙적으로 배치된 자속 고정점을 포함할 수 있다.Here, when a plurality of
따라서, 본 발명의 일 실시예에 따르면 3차원 상에서 규칙적으로 배치된 자속 고정점을 갖는 초전도체를 생성할 수 있다. Therefore, according to an embodiment of the present invention, a superconductor having magnetic flux fixing points regularly arranged in three dimensions can be produced.
아울러, 이와 같이 생성된 초전도체의 형상은 결합된 복수의 초전도 입자(100a)가 형성하는 형상과 동일하다. 또한, 초전도체의 형상은 인접 배치되는 초전도 입자(100a)가 형성하는 형상을 변형함으로써 임의로 조정할 수 있다.In addition, the shape of the superconductor thus formed is the same as the shape formed by the plurality of
따라서, 본 발명의 일 실시예에 따르면 3차원 상에서 규칙적으로 배치된 자속 고정점을 갖는 초전도체를 임의의 형상으로 생성할 수 있다.Therefore, according to an embodiment of the present invention, a superconductor having magnetic flux fixing points regularly arranged on three dimensions can be formed in an arbitrary shape.
한편, 이하에서는 복수의 초전도 입자(100a)를 외력에 의하여 인접 배치되어 기 정의된 형상을 형성하고(S200), 또한 이러한 기 정의된 형상을 형성하는 복수의 초전도 입자(100a)에 열을 가하여 초전도체를 생성하는 과정(S300)에 대하여 예를 들어 살펴보기로 한다.In the following description, a plurality of
도 5a 내지 5e는 본 발명의 일 실시예에 따른 방법에 의하여 임의의 형상의 초전도체를 생성하는 방법을 예시적으로 도시한 도면이다.FIGS. 5A through 5E are views illustrating a method of generating a superconductor of an arbitrary shape by a method according to an embodiment of the present invention.
도 5a를 참조하면, 복수의 초전도 입자(100a)는 내부에 빈 공간을 갖는 틀(201)에 주입된다. 주입된 복수의 초전도 입자(100a)는 이러한 빈 공간 내에서 서로 인접 배치된다. 이러한 복수의 초전도 입자(100a)에 외부로부터 열이 가해지면(220), 틀(201) 내부에서 복수의 초전도 입자(100a)는 이러한 열에 의하여 표면이 용융된다. 표면 용융에 의하여, 인접 배치된 초전도 입자(100a)는 서로 간에 결합되어 초전도 입자(300a)로 생성된다.Referring to FIG. 5A, a plurality of
이 때, 이와 같이 결합된 형태의 초전도 입자(300a)가 일 실시예에 따라서 생성하고자 하는 초전도체이다. 이러한 초전도체는 틀(201)의 내부와 그 크기와 모양과 동일 또는 유사하다. 따라서, 일 실시예에 따르면, 생성하고자 하는 초전도체의 모양과 크기를 반영하여 틀(201)을 형성하는 경우 이러한 틀(201)을 이용하여 임의의 크기와 모양, 즉 임의의 형상의 초전도체를 생성할 수 있다.At this time, the
한편, 틀(201) 내부에 주입된 복수의 초전도 입자(100a)가 도 5a에 도시된 것과 같이 동일한 크기인 경우 이러한 복수의 초전도 입자(100a)는 서로 인접 배치되어 3차원 상에서 규칙적으로 배치될 수 있다. 인접 배치된 초전도 입자(100a)는 열에 의하여 서로 간에 결합된 형태의 초전도 입자(300a)로 생성될 수 있으며, 이와 같이 결합된 형태의 초전도 입자(300a)는 3차원 상에서 규칙적으로 배치될 수 있다. 여기서, 결합된 형태의 초전도 입자(300a) 각각의 중심에는 자속 고정점으로 작용하는 비초전도 물질(110)이 배치될 수 있으며, 이를 통해 자속 고정점 또한 3차원 상에서 규칙적으로 배치될 수 있다. 따라서, 일 실시예에 따르면 자속 고정점이 3차원 상에서 규칙적으로 배치된 초전도체를 생성할 수 있다.On the other hand, when the plurality of
도 5b를 참조하면, 복수의 초전도 입자(100a)는 내부에 빈 공간을 갖는 틀(202)에 주입된다. 이 때, 도 5b는 틀(202)의 모양이 도 5a의 틀(201)의 모양과 상이한 것을 제외하고는 동일하다. 따라서, 도 5b에서 복수의 초전도 입자(100a)를 이용하여 초전도체를 생성하는 방법 또한 도 5a에서 설명한 방법과 동일하므로 이에 대한 설명은 생략하기로 한다.Referring to FIG. 5B, a plurality of
도 5c를 참조하면, 복수의 초전도 입자(100a)는 노즐(nozzle)(204)로부터 분출된다. 분출된 복수의 초전도 입자(100a)는 기판(substrate)(203) 상에 임의의 패턴으로 도포된다. 도포된 복수의 초전도 입자(100a)는 노즐(204)로부터 분출될 때의 압력으로 인해 서로 인접 배치된다. 이 후, 외부로부터 열이 가해지면(220), 인접 배치된 초전도 입자(100a)는 이러한 열에 의하여 표면이 용융되어 서로 간에 결합된 형태의 초전도 입자(300a)로 변형된다. 이와 같이 결합된 형태의 초전도 입자(300a)는 일 실시예에 따라서 생성하고자 하는 초전도체이다.Referring to FIG. 5C, a plurality of
따라서, 일 실시예에 따르면, 노즐(204)의 움직임을 조정함으로써 임의의 패턴의 초전도체를 생성할 수 있다.Thus, according to one embodiment, any pattern of superconductors can be created by adjusting the movement of the
도 5d를 참조하면, 기 정의된 패턴에 대응되는 개구부(208)를 갖는 제1 기판(206)에 대하여, 복수의 초전도 입자(100a)는 스퀴져(squeezer)(204)에 의하여 이러한 개구부(208)를 통과한다. 통과된 복수의 초전도 입자(100a)는 제2 기판(207) 상에 도포된다. 도포된 복수의 초전도 입자(100a)는 개구부(208)를 통과할 때의 압력으로 인해 서로 인접 배치된다. 이 후, 외부로부터 열이 가해지면(220), 인접 배치된 초전도 입자(100a)는 이러한 열에 의하여 표면이 용융되어 서로 간에 결합된 형태의 초전도 입자(300a)로 변형된다. 이와 같이 결합된 형태의 초전도 입자(300a)는 일 실시예에 따라서 생성하고자 하는 초전도체이다.5d, for a
따라서, 일 실시예에 따르면, 기 정의된 패턴에 대응되는 개구부를 갖는 제1 기판을 이용함으로써 임의의 패턴의 초전도체를 생성할 수 있다.Thus, according to one embodiment, a superconductor of any pattern can be created by using a first substrate having an opening corresponding to a predefined pattern.
도 5e를 참조하면, 복수의 초전도 입자(100a)는 내부에 빈 공간을 갖는 원통형 틀(211)에 주입된다. 이 때, 주입되는 복수의 초전도 입자(100a)의 부피는 내부의 빈 공간보다 부피가 작다. 원통형 틀(211)이 원통형 틀(211)의 길이 방향의 중심을 가로지르는 축을 기준으로 회전(215)하면, 주입된 복수의 초전도 입자(100a)는 도 5e에 도시된 것과 같이 빈 공간의 가장자리에 인접 배치된다. 이 후, 외부로부터 열이 가해지면(220), 원통형 틀(211) 내부의 복수의 초전도 입자(100a)는 이러한 열에 의하여 표면이 용융되며, 인접 배치된 초전도 입자(100a)는 서로 간에 결합된 형태의 초전도 입자(300a)로 변형된다. 이와 같이 결합된 형태의 초전도 입자(300a)는 일 실시예에 따라서 생성하고자 하는 초전도체이다.Referring to FIG. 5E, a plurality of
따라서, 일 실시예에 따르면, 중심축에 빈 공간이 존재하는 원통형의 초전도체를 생성할 수 있다.Thus, according to one embodiment, it is possible to produce a cylindrical superconductor with void spaces in the central axis.
아울러, 전술한 도 5a 내지 5e에서 언급하고 있는 방법에서 복수의 초전도 입자(100a)의 크기가 동일한 경우, 이러한 복수의 초전도 입자(100a)를 이용하여 생성된 초전도체가 3차원 상에서 규칙적으로 배치된 자속 고정점을 포함할 수 있음은 전술한 바와 같다.5A to 5E, when the plurality of
한편, 인접 배치된 초전도 입자(100a)가 열에 의하여 서로 결합될 경우, 각각의 초전도 입자(100a) 사이에는 틈(310)이 생성될 수 있다. 예를 들면, 도 5a 내지 도 5e에서 결합된 형태의 초전도 입자(300a)에는 적어도 하나 이상의 틈(310)이 존재할 수 있다. 이러한 틈(310) 또한 자속 고정점으로 작용할 수 있다. 아울러, 이러한 틈(310)의 크기와 개수 등은 인접 배치된 초전도 입자(100a)를 결합시키기 위하여 가해지는 열의 세기와 시간 등을 조절함으로써 임의로 조정될 수 있다.On the other hand, when adjacent
다른 한편으로, 초전도체를 생성하는데 사용되는 복수의 초전도 입자의 크기는 적어도 2종류 이상일 수 있다. 도 6에 도시된 것과 같이 초전도 입자의 크기가 2종류 이상일 경우 초전도 입자(100a)의 배치에 따른 완전한 등방성의 구현이 가능하다.On the other hand, the size of the plurality of superconducting particles used for producing the superconductor may be at least two or more. As shown in FIG. 6, when the size of the superconducting particles is two or more, complete isotropy can be realized according to the arrangement of the
이하에서는 전술한 실시예와는 상이한 방법으로 초전도 입자를 생성하는 다른 실시예에 대하여 살펴보기로 하겠다. 이러한 다른 실시예에 따라 생성된 초전도 입자는 초전도 입자의 생성 절차를 제외하고는 전술한 일 실시예에 따라 생성된 초전도 입자와 동일하다. 따라서, 초전도 입자를 이용하여 초전도체를 생성하는 방법에 대해서는 동일한 기술이 적용될 수 있는바, 동일한 기술이 적용 가능한 부분에 대해서는 설명을 생략할 것이다.Hereinafter, another embodiment for generating superconducting particles in a manner different from the above-described embodiment will be described. The superconducting particles produced according to this another embodiment are the same as the superconducting particles produced according to the above-described embodiment, except for the procedure of producing superconducting particles. Therefore, the same technique can be applied to a method of producing a superconductor by using superconducting particles, and a description of a portion to which the same technology can be applied will be omitted.
도 7은 본 발명의 다른 실시예에 따른 초전도 입자를 생성하는 방법의 절차를 예시적으로 도시한 도면이고, 도 8a는 도 7에 따른 방법의 절차에 따라 생성되는 초전도 입자를 도시한 도면이다.FIG. 7 is a view illustrating an example of a procedure of a method for producing superconducting particles according to another embodiment of the present invention, and FIG. 8A is a view showing superconducting particles generated according to the procedure of the method according to FIG.
도 7과 도 8a를 참조하면, 초전도 입자(60a)를 생성하는 방법은 자속 고정점으로 작용하는 비초전도 물질(110)이 초전도 입자(100a)의 중심에 위치하도록 비초전도 물질(110)을 배치하는 단계(S111), 절연 물질로 구성된 절연층(120)이 비초전도 물질(110)을 둘러싸도록 배치하는 단계(S121), 적어도 2종류 이상의 초전도 물질(130,140)이 절연층(120)을 교번하여 둘러싸도록 증착하는 단계(S131) 및 열을 가하여 적어도??2종류 이상의 초전도 물질(130,140)을 초전도 층(150)으로 합성하여 초전도 입자(100a)를 생성하는 단계(S141)를 포함할 수 있다.7 and 8A, a method of generating the
여기서, 초전도 입자(60a)는 예를 들면 구형일 수 있으나 그 밖에 타원형 기타 다른 형태일 수 있다. 아울러, 비초전도 물질(110)을 배치하는 단계(S111)와 절연층(120)을 배치하는 단계(S121) 각각은 전술한 일 실시예에 따른 방법에서의 단계(S110, S120)와 각각 동일하므로 이에 대한 설명은 생략하기로 한다.Here, the
다음으로, 적어도 2종류 이상의 초전도 물질(130,140)은 절연층(120)을 교번하여 둘러싸도록 증착된다(S131). 2종류의 초전도 물질이면 Nb, Ti이거나 Nb, Sn일 수 있으며, 3종류의 초전도 물질이면 (Y,Sm), Ba, Co일 수 있으나 이는 예시에 불과하므로 이에 한정되는 것은 아니며 더 많은 종류의 초전도 물질이 절연층(120)을 교번하여 둘러싸도록 증착될 수 있다.Next, at least two kinds of
이 후, 적어도??2종류 이상의 초전도 물질(130,140)에 열이 가해진다. 이 때, 이러한 열은 적어도 2종류 이상의 초전도 물질(130,140)이 불활성 기체 내에 있거나 또는 진공 상태에 있을 때 가해질 수 있다. 가해진 열에 의한 열분산으로 인하여, 적어도 2종류 이상의 초전도 물질(130,140)을 구성하는 원자들은 단일한 초전도 물질로 구성된 초전도 층(150)으로 합성될 수 있으며, 이에 따라 이러한 초전도 층(150)을 포함하는 초전도 입자(160a)로 생성될 수 있다(S141). Thereafter, at least two kinds of
여기서, 도 8a에 도시된 초전도 입자(160a)를 생성하는 방법은 일 실시예에 따른 것이므로 본 발명의 사상이 이에 한정되는 것은 아니다. Here, the method of generating the
예를 들면, 실시예에 따라서 단계 S121이 수행되지 않을 수 있으며, 따라서 비초전도 물질(110)과 초전도 물질(150) 사이에 절연층(120)이 존재하지 않을 수 있다. 이 경우 도 8b에 도시된 것과 같이 비초전도 물질(110)을 초전도 물질(150)이 둘러싸도록 배치된 초전도 입자(160b)가 생성될 수 있다. For example, step S121 may not be performed according to the embodiment, and thus the insulating
이와 달리 실시예에 따라서 단계 S111에서 비초전도 물질 대신에 빈 공동(void)(105)이 배치될 수 있으며, 이에 따라 도 8c에 도시된 것과 같이 빈 공동을 포함하는 절연층(120)을 초전도 물질(150)이 둘러싸도록 배치된 초전도 입자(160c)가 생성될 수 있다. Alternatively, an
또한, 실시예에 따라서 단계 S111과 단계 S121이 수행되지 않을 수 있으며, 이 경우 도 8d에 도시된 것과 같이 초전도 물질(150)로 구성된 초전도 입자(160d)가 생성될 수 있다. 다만, 이하에서는 도 8a에 도시된 초전도 입자(160a)를 기초로 설명하기로 한다.Also, steps S111 and S121 may not be performed according to the embodiment, and
이와 같이 생성된 복수의 초전도 입자(160a) 또한 일 실시예에 따른 초전도 입자(100a)와 마찬가지로 인접 배치될 수 있으며, 또한 외부로부터 가해지는 열에 의하여 초전도체로 생성될 수 있다.The plurality of
따라서, 본 발명의 다른 실시예에 따르는 경우에도 3차원 상에서 규칙적으로 배치된 자속 고정점을 갖는 초전도체를 생성할 수 있으며, 또한 3차원 상에서 규칙적으로 배치된 자속 고정점을 갖는 초전도체를 임의의 형상으로 생성할 수 있다.Therefore, according to another embodiment of the present invention, it is possible to produce a superconductor having magnetic flux fixing points regularly arranged on three-dimensionally, and also to form a superconductor having magnetic flux fixing points regularly arranged on three- Can be generated.
한편, 전술한 본 발명의 다른 실시예에 따른 초전도 입자(160a)를 생성하는 과정에서는, 적어도 2종류 이상의 초전도 물질을 단일한 물질의 초전도 층으로 합성하기 위하여 열을 가하는 제1 열처리 과정과, 이러한 초전도 층을 갖는 복수의 초전도 입자(160a)가 인접 배치되는 경우 이와 같이 인접 배치된 복수의 초전도 입자(160a)가 서로 결합되도록 열을 가하는 제2 열처리 과정이 개별적으로 수행된다. 그러나, 이는 예시적인 것이므로 본 발명의 사상이 이에 한정되는 것은 아니다. Meanwhile, in the process of producing the
예를 들면, 실시예에 따라서는 제1 열처리 과정이 수행되지 않을 수 있다. 보다 구체적으로 살펴보면, 적어도 2종류 이상의 초전도 물질을 포함하는 복수의 초전도 입자(60a)가 서로 인접 배치된다. 다음으로, 복수의 초전도 입자(60a)에 열이 가해진다. 열에 의하여 적어도 2종류 이상의 초전도 물질은 단일한 물질의 초전도 층으로 합성되며, 이와 함께 초전도 층의 표면은 용융되고, 이로 인해 인접 배치된 초전도 입자(60a)는 서로 결합될 수 있다. 따라서, 이 경우에는 2번의 열을 가하는 과정이 아닌 1번의 열을 가하는 과정으로 초전도체를 생성할 수 있다.For example, depending on the embodiment, the first heat treatment process may not be performed. More specifically, a plurality of
또 다른 예를 들면, 실시예에 따라서는 복수의 초전도 입자(60a)에 열이 가해졌을 때, 열에 의하여 인접 배치된 적어도 2종류 이상의 초전도 물질의 표면은 용융되고, 이로 인해 인접 배치된 초전도 입자(60a)는 서로 결합될 수 있다. 다음으로, 적어도 2종류 이상의 초전도 물질은 단일한 물질의 초전도 층으로 합성될 수 있다. 즉, 이 경우에는 초전도 입자(60a)의 결합이 먼저 발생한 후에 적어도 2종류 이상의 초전도 물질이 단일 초전도 층으로 합성될 수 있다.As another example, according to the embodiment, when heat is applied to the plurality of
이상에서 살펴본 바와 같이, 본 발명의 일 실시예에 따르면 초전도체를 구성하는 초전도 입자의 크기와 배치를 조절할 수 있으므로, 3차원 상에서 규칙적으로 배치된 자속 고정점을 갖는 초전도체를 생성할 수 있다. 또한, 복수의 초전도 입자를 이용하여 3차원 상에서 규칙적으로 배치된 자속 고정점을 갖는 초전도체를 임의의 형상으로 생성할 수 있다.As described above, according to one embodiment of the present invention, the size and arrangement of the superconducting particles constituting the superconductor can be controlled, so that the superconductor having the magnetic flux fixing points regularly arranged in three dimensions can be produced. In addition, a superconductor having magnetic flux fixing points regularly arranged on three-dimensionally using a plurality of superconducting particles can be formed in an arbitrary shape.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.
The foregoing description is merely illustrative of the technical idea of the present invention and various changes and modifications may be made by those skilled in the art without departing from the essential characteristics of the present invention. Therefore, the embodiments disclosed in the present invention are intended to illustrate rather than limit the scope of the present invention, and the scope of the technical idea of the present invention is not limited by these embodiments. The scope of protection of the present invention should be construed according to the following claims, and all technical ideas within the scope of equivalents should be construed as falling within the scope of the present invention.
100a 내지 100d: 초전도 입자100a to 100d: superconducting particles
Claims (20)
(b) 상기 복수의 초전도 입자를 인접 배치 시킴으로써 기 정의된 형상을 형성하는 단계; 및
(c) 상기 복수의 초전도 입자에 열을 가하여 인접 배치된 상기 초전도 입자를 서로 결합시킴으로써, 3차원 상에 배치된 자속 고정점을 갖는 초전도체를 생성하는 단계를 포함하는
초전도체를 생성하는 방법.
(a) generating a plurality of superconducting particles;
(b) forming a predefined shape by adjacent arranging the plurality of superconducting particles; And
(c) applying heat to the plurality of superconducting particles to bond the adjacent superconducting particles together, thereby producing a superconductor having magnetic flux anchoring points arranged on three dimensions
A method of producing a superconductor.
상기 (a) 단계는,
상기 초전도 입자의 중심이 될 위치에 비초전도 물질을 배치하는 단계; 및
상기 비초전도 물질을 둘러싸도록 초전도 물질을 배치하여 상기 초전도 입자를 생성하는 단계를 포함하며,
상기 비초전도 물질은 상기 자속 고정점으로 작용하는
초전도체를 생성하는 방법.
The method according to claim 1,
The step (a)
Placing a non-superconducting material at a position to be a center of the superconducting particle; And
Forming superconducting particles by disposing a superconducting material so as to surround the non-superconducting material,
Wherein the non-superconducting material acts as the flux-
A method of producing a superconductor.
상기 (a) 단계는,
상기 초전도 입자의 중심이 될 위치에 비초전도 물질을 배치하는 단계;
상기 비초전도 물질을 둘러싸도록 절연 물질로 구성된 절연층을 배치하는 단계; 및
상기 절연층을 둘러싸도록 초전도 물질을 배치하여 상기 초전도 입자를 생성하는 단계를 포함하며,
상기 비초전도 물질은 상기 자속 고정점으로 작용하는
초전도체를 생성하는 방법.
The method according to claim 1,
The step (a)
Placing a non-superconducting material at a position to be a center of the superconducting particle;
Disposing an insulating layer composed of an insulating material so as to surround the non-superconducting material; And
And forming superconducting particles by disposing a superconducting material so as to surround the insulating layer,
Wherein the non-superconducting material acts as the flux-
A method of producing a superconductor.
상기 (a) 단계는,
상기 초전도 입자의 중심이 될 위치에 절연 물질로 구성되고 내부에 빈 공동(void)을 갖는 절연층을 배치하는 단계; 및
상기 절연층을 둘러싸도록 초전도 물질을배치하여 상기 초전도 입자를 생성하는 단계를 포함하며,
상기 빈 공동은 상기 자속 고정점으로 작용하는
초전도체를 생성하는 방법.
The method according to claim 1,
The step (a)
Disposing an insulating layer made of an insulating material at a position to be a center of the superconducting particle and having an empty void therein; And
And forming superconducting particles by disposing a superconducting material so as to surround the insulating layer,
The hollow cavity is formed by a plurality of
A method of producing a superconductor.
상기 (a) 단계는,
상기 초전도 입자의 중심이 될 위치에 비초전도 물질을 배치하는 단계;
상기 비초전도 물질 상에 적어도 2종류 이상의 초전도 물질을 교번하여 증착시키는 단계; 및
상기 적어도 2종류 이상의 초전도 물질에 열을 가하여 상기 적어도 2종류 이상의 초전도 물질을 단일한 초전도 물질로 구성된 단일 초전도 층으로 합성함으로써, 상기 단일 초전도 층을 포함하는 상기 초전도 입자를 생성하는 단계를 포함하며,
상기 비초전도 물질은 상기 자속 고정점으로 작용하는
초전도체를 생성하는 방법.
The method according to claim 1,
The step (a)
Placing a non-superconducting material at a position to be a center of the superconducting particle;
Alternately depositing at least two superconducting materials on the non-superconducting material; And
Generating superconducting particles including the single superconducting layer by applying heat to the at least two superconducting materials to synthesize the at least two superconducting materials as a single superconducting layer composed of a single superconducting material,
Wherein the non-superconducting material acts as the flux-
A method of producing a superconductor.
상기 (a) 단계는,
상기 초전도 입자의 중심이 될 위치에 비초전도 물질을 배치하는 단계; 및
상기 비초전도 물질 상에 적어도 2종류 이상의 초전도 물질을 교번하여 증착시키는 단계를 포함하고,
상기 (c) 단계는,
상기 적어도 2종류 이상의 초전도 물질에 열을 가하여 상기 적어도 2종류 이상의 초전도 물질을 단일한 초전도 물질로 구성된 단일 초전도 층으로 합성하는 단계; 및
상기 열을 이용하여 상기 단일 초전도 층을 포함하는 인접 배치된 초전도 입자를 서로 결합시킴으로써 상기 초전도체를 생성하는 단계를 포함하며,
상기 비초전도 물질은 상기 자속 고정점으로 작용하는
초전도체를 생성하는 방법.
The method according to claim 1,
The step (a)
Placing a non-superconducting material at a position to be a center of the superconducting particle; And
And alternately depositing at least two superconducting materials on the non-superconducting material,
The step (c)
Synthesizing the at least two superconducting materials into a single superconducting layer composed of a single superconducting material by applying heat to the at least two superconducting materials; And
And forming the superconductor by bonding adjacent superconducting particles including the single superconducting layer to each other using the heat,
Wherein the non-superconducting material acts as the flux-
A method of producing a superconductor.
상기 (a) 단계는,
상기 초전도 입자의 중심이 될 위치에 비초전도 물질을 배치하는 단계; 및
상기 비초전도 물질 상에 적어도 2종류 이상의 초전도 물질을 교번하여 증착시키는 단계를 포함하고,
상기 (c) 단계는,
상기 복수의 초전도 입자에 열을 가하여 인접 배치된 상기 초전도 입자를 서로 결합시키는 단계; 및
상기 열을 이용하여 상기 적어도 2종류 이상의 초전도 물질을 단일한 초전도 물질로 구성된 단일 초전도 층으로 합성하는 단계를 포함하며,
상기 비초전도 물질은 상기 자속 고정점으로 작용하는
초전도체를 생성하는 방법.
The method according to claim 1,
The step (a)
Placing a non-superconducting material at a position to be a center of the superconducting particle; And
And alternately depositing at least two superconducting materials on the non-superconducting material,
The step (c)
Applying heat to the plurality of superconducting particles to couple adjacent superconducting particles to each other; And
And synthesizing the at least two types of superconducting materials into a single superconducting layer composed of a single superconducting material by using the heat,
Wherein the non-superconducting material acts as the flux-
A method of producing a superconductor.
상기 (a) 단계는,
상기 초전도 입자의 중심이 될 위치에 비초전도 물질을 배치하는 단계;
상기 비초전도 물질을 둘러싸도록 절연 물질로 구성된 절연층을 배치하는 단계;
상기 절연층 상에 적어도 2종류 이상의 초전도 물질을 교번하여 증착시키는 단계; 및
상기 적어도 2종류 이상의 초전도 물질에 열을 가하여 상기 적어도 2종류 이상의 초전도 물질을 단일한 초전도 물질로 구성된 단일 초전도 층으로 합성함으로써, 상기 단일 초전도 층을 포함하는 상기 초전도 입자를 생성하는 단계를 포함하며,
상기 비초전도 물질은 상기 자속 고정점으로 작용하는
초전도체를 생성하는 방법.
The method according to claim 1,
The step (a)
Placing a non-superconducting material at a position to be a center of the superconducting particle;
Disposing an insulating layer composed of an insulating material so as to surround the non-superconducting material;
Alternately depositing at least two superconducting materials on the insulating layer; And
Generating superconducting particles including the single superconducting layer by applying heat to the at least two superconducting materials to synthesize the at least two superconducting materials as a single superconducting layer composed of a single superconducting material,
Wherein the non-superconducting material acts as the flux-
A method of producing a superconductor.
상기 (a) 단계는,
상기 초전도 입자의 중심이 될 위치에 비초전도 물질을 배치하는 단계;
상기 비초전도 물질을 둘러싸도록 절연 물질로 구성된 절연층을 배치하는 단계; 및
상기 절연층 상에 적어도 2종류 이상의 초전도 물질을 교번하여 증착시키는 단계를 포함하고,
상기 (c) 단계는,
상기 적어도 2종류 이상의 초전도 물질에 열을 가하여 상기 적어도 2종류 이상의 초전도 물질을 단일한 초전도 물질로 구성된 단일 초전도 층으로 합성하는 단계; 및
상기 열을 이용하여 상기 단일 초전도 층을 포함하는 인접 배치된 상기 초전도 입자를 서로 결합시킴으로써 상기 초전도체를 생성하는 단계를 포함하는
초전도체를 생성하는 방법.
The method according to claim 1,
The step (a)
Placing a non-superconducting material at a position to be a center of the superconducting particle;
Disposing an insulating layer composed of an insulating material so as to surround the non-superconducting material; And
And alternately depositing at least two superconducting materials on the insulating layer,
The step (c)
Synthesizing the at least two superconducting materials into a single superconducting layer composed of a single superconducting material by applying heat to the at least two superconducting materials; And
And using the heat to bond the adjacent superconducting particles comprising the single superconducting layer to one another to produce the superconductor
A method of producing a superconductor.
상기 (a) 단계는,
상기 초전도 입자의 중심이 될 위치에 비초전도 물질을 배치하는 단계;
상기 비초전도 물질을 둘러싸도록 절연 물질로 구성된 절연층을 배치하는 단계; 및
상기 절연층 상에 적어도 2종류 이상의 초전도 물질을 교번하여 증착시키는 단계를 포함하고,
상기 (c) 단계는,
상기 복수의 초전도 입자에 열을 가하여 인접 배치된 상기 초전도 입자를 서로 결합시키는 단계; 및
상기 열을 이용하여 상기 적어도 2종류 이상의 초전도 물질을 단일한 초전도 물질로 구성된 단일 초전도 층으로 합성하는 단계를 포함하는
초전도체를 생성하는 방법.
The method according to claim 1,
The step (a)
Placing a non-superconducting material at a position to be a center of the superconducting particle;
Disposing an insulating layer composed of an insulating material so as to surround the non-superconducting material; And
And alternately depositing at least two superconducting materials on the insulating layer,
The step (c)
Applying heat to the plurality of superconducting particles to couple adjacent superconducting particles to each other; And
And synthesizing the at least two types of superconducting materials into a single superconducting layer composed of a single superconducting material by using the heat
A method of producing a superconductor.
상기 (a) 단계는,
적어도 2종류 이상의 초전도 물질을 교번하여 증착시키는 단계; 및
상기 적어도 2종류 이상의 초전도 물질에 열을 가하여 상기 적어도 2종류 이상의 초전도 물질을 단일한 초전도 물질로 구성된 단일 초전도 층으로 합성함으로써, 상기 단일 초전도 층을 포함하는 상기 초전도 입자를 생성하는 단계를 포함하는
초전도체를 생성하는 방법.
The method according to claim 1,
The step (a)
Alternately depositing at least two superconducting materials; And
Generating superconducting particles comprising the single superconducting layer by applying heat to the at least two superconducting materials and synthesizing the at least two superconducting materials into a single superconducting layer composed of a single superconducting material
A method of producing a superconductor.
상기 (a) 단계는,
적어도 2종류 이상의 초전도 물질을 교번하여 증착시키는 단계를 포함하고,
상기 (c) 단계는,
상기 복수의 초전도 입자에 열을 가하여 인접 배치된 상기 초전도 입자를 서로 결합시키는 단계; 및
상기 열을 이용하여 상기 적어도 2종류 이상의 초전도 물질을 단일한 초전도 물질로 구성된 단일 초전도 층으로 합성하는 단계를 포함하는
초전도체를 생성하는 방법.
The method according to claim 1,
The step (a)
Alternately depositing at least two superconducting materials,
The step (c)
Applying heat to the plurality of superconducting particles to couple adjacent superconducting particles to each other; And
And synthesizing the at least two types of superconducting materials into a single superconducting layer composed of a single superconducting material by using the heat
A method of producing a superconductor.
상기 (a) 단계는,
상기 초전도 입자의 중심이 될 위치에 절연 물질로 구성되고 내부에 빈 공동(void)을 갖는 절연층을 배치하는 단계;
상기 절연층 상에 적어도 2종류 이상의 초전도 물질을 교번하여 증착시키는 단계; 및
상기 적어도 2종류 이상의 초전도 물질에 열을 가하여 상기 적어도 2종류 이상의 초전도 물질을 단일한 초전도 물질로 구성된 단일 초전도 층으로 합성함으로써, 상기 단일 초전도 층을 포함하는 초전도 입자를 생성하는 단계를 포함하며,
상기 빈 공동은 상기 자속 고정점으로 작용하는
초전도체를 생성하는 방법.
The method according to claim 1,
The step (a)
Disposing an insulating layer made of an insulating material at a position to be a center of the superconducting particle and having an empty void therein;
Alternately depositing at least two superconducting materials on the insulating layer; And
Generating superconducting particles comprising the single superconducting layer by applying heat to the at least two kinds of superconducting materials to synthesize the at least two kinds of superconducting materials into a single superconducting layer composed of a single superconducting material,
The hollow cavity is formed by a plurality of
A method of producing a superconductor.
상기 (a) 단계는,
상기 초전도 입자의 중심이 될 위치에 절연 물질로 구성되고 내부에 빈 공동(void)을 갖는 절연층을 배치하는 단계; 및
상기 절연층 상에 적어도 2종류 이상의 초전도 물질을 교번하여 증착시키는 단계를 포함하고,
상기 (c) 단계는,
상기 적어도 2종류 이상의 초전도 물질에 열을 가하여 상기 적어도 2종류 이상의 초전도 물질을 단일한 초전도 물질로 구성된 단일 초전도 층으로 합성하는 단계; 및
상기 열을 이용하여 상기 단일 초전도 층을 포함하는 상기 인접 배치된 초전도 입자를 서로 결합시킴으로써 상기 형상의 초전도체를 생성하는 단계를 포함하고,
상기 빈 공동은 상기 자속 고정점으로 작용하는
초전도체를 생성하는 방법.
The method according to claim 1,
The step (a)
Disposing an insulating layer made of an insulating material at a position to be a center of the superconducting particle and having an empty void therein; And
And alternately depositing at least two superconducting materials on the insulating layer,
The step (c)
Synthesizing the at least two superconducting materials into a single superconducting layer composed of a single superconducting material by applying heat to the at least two superconducting materials; And
And forming the superconductor of the shape by bonding the adjacent superconducting particles including the single superconducting layer to each other using the heat,
The hollow cavity is formed by a plurality of
A method of producing a superconductor.
상기 (a) 단계는,
상기 초전도 입자의 중심이 될 위치에 절연 물질로 구성되고 내부에 빈 공동(void)을 갖는 절연층을 배치하는 단계; 및
상기 절연층 상에 적어도 2종류 이상의 초전도 물질을 교번하여 증착시키는 단계를 포함하고,
상기 (c) 단계는,
상기 복수의 초전도 입자에 열을 가하여 인접 배치된 상기 초전도 입자를 서로 결합시키는 단계; 및
상기 열을 이용하여 상기 적어도 2종류 이상의 초전도 물질을 단일한 초전도 물질로 구성된 단일 초전도 층으로 합성하는 단계를 포함하며,
상기 빈 공동은 상기 자속 고정점으로 작용하는
초전도체를 생성하는 방법.
The method according to claim 1,
The step (a)
Disposing an insulating layer made of an insulating material at a position to be a center of the superconducting particle and having an empty void therein; And
And alternately depositing at least two superconducting materials on the insulating layer,
The step (c)
Applying heat to the plurality of superconducting particles to couple adjacent superconducting particles to each other; And
And synthesizing the at least two types of superconducting materials into a single superconducting layer composed of a single superconducting material by using the heat,
The hollow cavity is formed by a plurality of
A method of producing a superconductor.
상기 (a) 단계는,
상기 복수의 초전도 입자의 크기를 적어도 2종류 이상의 크기로 생성하는
초전도체를 생성하는 방법.
The method according to claim 1,
The step (a)
The size of the plurality of superconducting particles is made to be at least two kinds of sizes
A method of producing a superconductor.
상기 (b) 단계는,
상기 형상과 크기 및 모양이 동일한 빈 공간을 갖는 틀에 대해서, 상기 빈 공간에 상기 복수의 초전도 입자를 주입하여 인접 배치시킴으로써 상기 형상을 형성하는
초전도체를 생성하는 방법.
The method according to claim 1,
The step (b)
The superconducting particles are injected into the hollow space and disposed adjacent to the hollow space having the same shape and size and shape, thereby forming the shape
A method of producing a superconductor.
상기 (b) 단계는,
상기 복수의 초전도 입자를 노즐(nozzle)로부터 분출시키고, 분출된 상기 복수의 초전도 입자를 기판(substrate) 상에 인접 배치시키는 단계를 포함하는
초전도체를 생성하는 방법.
The method according to claim 1,
The step (b)
Ejecting the plurality of superconducting particles from a nozzle and placing the ejected superconducting particles adjacent to each other on a substrate,
A method of producing a superconductor.
상기 (b) 단계는,
상기 복수의 초전도 입자를 기 정의된 패턴에 대응되는 개구부를 갖는 제1 기판에 통과시키고, 통과된 상기 복수의 초전도 입자를 제2 기판 상에 인접 배치된 상태로 도포시키는 단계를 포함하는
초전도체를 생성하는 방법.
The method according to claim 1,
The step (b)
Passing the plurality of superconducting particles through a first substrate having an opening corresponding to a predefined pattern and applying the plurality of superconducting particles that have passed through the second substrate in a state of being disposed adjacent to the second substrate
A method of producing a superconductor.
상기 (c) 단계는,
상기 결합된 초전도 입자 사이에 틈을 생성하는 단계를 포함하며,
상기 틈은 상기 자속 고정점으로 작용하는
초전도체를 생성하는 방법.
The method according to claim 1,
The step (c)
And creating a gap between the superconducting particles,
The gap may be formed by a plurality of
A method of producing a superconductor.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020150122474A KR101805871B1 (en) | 2015-08-31 | 2015-08-31 | Method for manufacturing superconductor |
PCT/KR2015/013890 WO2017039078A1 (en) | 2015-08-31 | 2015-12-17 | Method for producing superconductor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020150122474A KR101805871B1 (en) | 2015-08-31 | 2015-08-31 | Method for manufacturing superconductor |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020170162085A Division KR101991842B1 (en) | 2017-11-29 | 2017-11-29 | Method for manufacturing superconductor |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20170026863A true KR20170026863A (en) | 2017-03-09 |
KR101805871B1 KR101805871B1 (en) | 2017-12-08 |
Family
ID=58188962
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020150122474A KR101805871B1 (en) | 2015-08-31 | 2015-08-31 | Method for manufacturing superconductor |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101805871B1 (en) |
WO (1) | WO2017039078A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20170135805A (en) * | 2017-11-29 | 2017-12-08 | 기초과학연구원 | Method for manufacturing superconductor |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20130058880A (en) | 2011-11-28 | 2013-06-05 | 한국전기연구원 | Magnetic nano particles and superconductor having them |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6953770B2 (en) * | 2001-06-01 | 2005-10-11 | International Superconductivity Technology Center, The Juridical Foundation | MgB2—based superconductor with high critical current density, and method for manufacturing the same |
US20060272145A1 (en) * | 2005-03-11 | 2006-12-07 | Alabama Cryogenic Engineering, Inc. | Method of producing superconducting wire and articles produced thereby |
KR100779378B1 (en) * | 2006-10-10 | 2007-11-23 | 성균관대학교산학협력단 | Multi-filament super conductors wire for reducing ac loss and method for producing the same |
DE102007018268A1 (en) * | 2007-04-18 | 2008-11-06 | European Advanced Superconductors Gmbh & Co. Kg | Multifilament superconductor and method for its production |
KR20100026138A (en) * | 2008-08-29 | 2010-03-10 | 성균관대학교산학협력단 | Method of manufacturing doped mgb2 superconductivity using mechanical alloying |
KR101044890B1 (en) * | 2009-02-18 | 2011-06-28 | 한국원자력연구원 | FABRICATION METHOD OF MgB2 SUPERCONDUCTING WIRE |
KR20140049296A (en) * | 2012-10-17 | 2014-04-25 | 한국전기연구원 | Eddc flux pinning points formed using a hybrid sputtering device |
-
2015
- 2015-08-31 KR KR1020150122474A patent/KR101805871B1/en active IP Right Grant
- 2015-12-17 WO PCT/KR2015/013890 patent/WO2017039078A1/en active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20130058880A (en) | 2011-11-28 | 2013-06-05 | 한국전기연구원 | Magnetic nano particles and superconductor having them |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20170135805A (en) * | 2017-11-29 | 2017-12-08 | 기초과학연구원 | Method for manufacturing superconductor |
Also Published As
Publication number | Publication date |
---|---|
KR101805871B1 (en) | 2017-12-08 |
WO2017039078A1 (en) | 2017-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7482042B2 (en) | Film forming method and film forming apparatus | |
CN110349609A (en) | A kind of three-dimensional magnetic device and magnetic memory | |
CN102637939B (en) | Spinning microwave oscillator based on vertical magnetizing free layer and manufacturing method thereof | |
CN110459376A (en) | Monolithic construction with magnetic phase and non-magnetic phase | |
US8765053B2 (en) | Sn based alloys with fine compound inclusions for Nb3Sn superconducting wires | |
US20200157689A1 (en) | Cold spray of brittle materials | |
KR101805871B1 (en) | Method for manufacturing superconductor | |
US4190817A (en) | Persistent current superconducting method and apparatus | |
KR101991842B1 (en) | Method for manufacturing superconductor | |
KR20120029172A (en) | Oscillator and methods of manufacturing and operating the same | |
Keshri et al. | Influence of BTO phase on structural, magnetic and electrical properties of LCMO | |
Wang et al. | 3D printing of soft magnetic materials: From printing to applications | |
AU673330B2 (en) | High-Tc superconducting ceramic oxide products and macroscopic and microscopic methods of making the same | |
Li et al. | Two-dimensional gapless spin liquids in frustrated SU (N) quantum magnets | |
US20130169371A1 (en) | Spin transfer oscillator | |
Vlasko-Vlasov et al. | Soft magnetic lithography and giant magnetoresistance in superconducting/ferromagnetic hybrids | |
CN113809229A (en) | Spin orbit torque magnetic memory and preparation method thereof | |
Yan et al. | Neutron diffraction and ferromagnetic resonance studies on plasma-sprayed MnZn ferrite films | |
Sampath et al. | Thermal spray techniques for fabrication of meso-electronics and sensors | |
JP4528941B2 (en) | One-dimensional multilayer organometallic complex nanomagnetic element and one-dimensional multilayer organometallic complex | |
US20240177927A1 (en) | Templated fabrication of materials using cold spray deposition | |
WO2024018624A1 (en) | Magnetic structure and method for producing same | |
Gifford et al. | Continuous control of spin polarization using a magnetic field | |
Sukegawa et al. | Revisiting Fe/MgO/Fe (001): Giant tunnel magnetoresistance up to~ 420% at room temperature | |
Karki Chhetri et al. | Evolution of magnetism in the magnetic topological semimetal NdS bx T e 2− x+ δ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E90F | Notification of reason for final refusal | ||
E701 | Decision to grant or registration of patent right | ||
R401 | Registration of restoration |