KR20170026741A - Method of Manufacturing of Composite Material for Carbon Fiber-reinforced Thermoplastic Plastic - Google Patents

Method of Manufacturing of Composite Material for Carbon Fiber-reinforced Thermoplastic Plastic Download PDF

Info

Publication number
KR20170026741A
KR20170026741A KR1020150120880A KR20150120880A KR20170026741A KR 20170026741 A KR20170026741 A KR 20170026741A KR 1020150120880 A KR1020150120880 A KR 1020150120880A KR 20150120880 A KR20150120880 A KR 20150120880A KR 20170026741 A KR20170026741 A KR 20170026741A
Authority
KR
South Korea
Prior art keywords
carbon fiber
composite material
nitric acid
binder
base material
Prior art date
Application number
KR1020150120880A
Other languages
Korean (ko)
Other versions
KR101741052B1 (en
Inventor
백응률
로힙
이영우
강지목
Original Assignee
영남대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 영남대학교 산학협력단 filed Critical 영남대학교 산학협력단
Priority to KR1020150120880A priority Critical patent/KR101741052B1/en
Publication of KR20170026741A publication Critical patent/KR20170026741A/en
Application granted granted Critical
Publication of KR101741052B1 publication Critical patent/KR101741052B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/06Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/06Properties of polyethylene
    • C08L2207/066LDPE (radical process)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention relates to a method for manufacturing a composite material for a carbon fiber-reinforced thermoplastic resin. The manufacturing method suggests a new method for improving mechanical properties of the composite material. In the new composite manufacturing process, in order to bond polypropylene (PP) as a basic material, linear low density polyethylene (LLDPE), and a nitric acid-treated high strength carbon fiber surface functionalizer, a silane-based binder is added. The process is a very useful technique, capable of improving the mechanical properties, such as excellent strength, particularly excellent tensile strength, and flexural strength.

Description

탄소섬유 강화 열가소성 플라스틱용 복합재료의 제조방법{Method of Manufacturing of Composite Material for Carbon Fiber-reinforced Thermoplastic Plastic}BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to a carbon fiber-reinforced thermoplastic composite material,

본 발명은 탄소섬유의 표면처리를 통해 탄소섬유 및 폴리프로필렌 복합재료를 개선하고, 선형저밀도폴리에틸렌을 기존의 모재인 폴리프로필렌에 혼합하여 기계적 특성이 향상된 탄소섬유 강화 열가소성 플라스틱용 복합재료의 제조방법에 관한 것이다. The present invention relates to a method for producing a composite material for a carbon fiber-reinforced thermoplastics in which the carbon fiber and the polypropylene composite material are improved by surface treatment of the carbon fiber and the mechanical properties are improved by mixing the linear low density polyethylene with the polypropylene .

탄소섬유는 고강도, 고탄성, 높은 열적 특성, 그리고 높은 전도도를 보이는 첨단소재로서 군사용품, 항공, 건축자재 및 선박 등의 산업에 폭 넓게 이용되는 재료이다. 특히, 자동차 업계에서 인장강도, 파괴인성 그리고 충격강도와 같이 우수한 기계적 특성을 가질 뿐만 아니라 재료의 경량화에 대한 요구와 필요성이 증가하고 있다. 탄소섬유강화고분자(Carbon fiber reinforcement polymer, CFRP)는 상기 요구사항의 해법 중의 하나이다. CFRP의 1세대는 에폭시(epoxy), 비닐에스터(vinyl ester), 폴리에스터(polyester)와 페놀수지(phenolic resin)과 같은 열경화성 수지를 모재로 사용하였고, 2세대로 전환되면서 탄소섬유강화열가소성플라스틱(Carbon fiber reinforcement thermoplastic, CFRT)이라고 불리는 열가소성 계열 폴리머로 교체되는 경향을 보이고 있다. 열가소성 수지는 가열과정을 거치면서 재활용이 가능하고 새로운 부품으로 재성형이 가능하기 때문에 열경화성 수지보다 더욱 친환경적이라는 것은 잘 알려져 있다. 또한 열가소성 수지는 열경화성 수지와 다르게 가교결합이 존재하지 않다는 것도 이미 알려져 있다. 복합재료의 모재로 열경화성 수지를 사용하였을 경우보다 열가소성 수지를 사용할 경우 높은 인성을 가진 복합재료를 생산할 수 있을 뿐만 아니라 생산단가를 낮출 수 있다.Carbon fiber is a high-tech material with high strength, high elasticity, high thermal properties and high conductivity, which is widely used in industries such as military supplies, aviation, building materials and ships. Particularly, in the automobile industry, not only have excellent mechanical properties such as tensile strength, fracture toughness and impact strength, but also demands and necessity for lightening of materials are increasing. Carbon fiber reinforcement polymer (CFRP) is one of the solutions to this requirement. The first generation of CFRP used thermosetting resins such as epoxy, vinyl ester, polyester and phenolic resin as the base material and converted to carbon fiber-reinforced thermoplastics ( Carbon fiber reinforcement thermoplastic (CFRT). It is well known that thermoplastic resins are more environmentally friendly than thermosetting resins because they can be recycled while being heated and re-molded with new components. It is also known that thermoplastic resins have no cross-linking unlike thermosetting resins. When a thermoplastic resin is used as a base material of a composite material, the composite material having high toughness can be produced and the production cost can be lowered.

열가소성 수지 중에서 폴리프로필렌은 우수한 가공성, 낮은 단가 그리고 고성능의 장점이 있기 때문에 촉망받는 재료 중에 하나이다. 폴리프로필렌은 자동차 산업뿐만 아니라 다양한 산업 분야에서 이미 널리 상용되고 있다. 자동차 산업에 적용하기 위해서는 우수한 인장특성과 충격강도와 파괴인성이 필요한 실정이다.Among the thermoplastic resins, polypropylene is one of the promising materials because of its excellent processability, low unit cost and high performance. Polypropylene is already widely used not only in the automobile industry but also in various industrial fields. For the automotive industry, excellent tensile properties, impact strength and fracture toughness are required.

대한민국 공개특허 제1995-0018178호Korean Patent Publication No. 1995-0018178

본 발명의 목적은, 우수한 강도 특히 우수한 인장강도 및 굴곡강도 등과 같은 기계적 특성을 향상시킬 수 있는 탄소섬유 강화 열가소성 플라스틱용 복합재료의 제조방법을 제공하는 데에 있다.It is an object of the present invention to provide a method for producing a composite material for a carbon fiber-reinforced thermoplastic resin which can improve mechanical properties such as excellent strength, particularly excellent tensile strength and flexural strength.

상기 목적을 달성하기 위하여, 본 발명은 탄소섬유를 질산용액에 침지시켜 질산처리하는 단계(제1단계); 실레인(silane)계 결합제인 3-메타아크릴옥시프로필 트리메톡시실레인(3-methylacryloxypropyl trimethoxysilane)을 증류수에 용해시켜 결합제 용액을 준비하는 단계(제2단계); 상기 질산처리된 탄소섬유를 상기 결합제 용액에 침지시켜 결합제로 처리된 탄소섬유를 제조하는 단계(제3단계); 및 상기 결합제로 처리된 탄소섬유를 모재와 혼합하는 단계(제4단계); 를 포함하는, 탄소섬유 강화 열가소성 플라스틱용 복합재료의 제조방법이 제공된다.In order to accomplish the above object, the present invention provides a method for producing a carbon nanotube, comprising: (a) a step of nitric acid treatment by immersing carbon fibers in a nitric acid solution; Preparing a binder solution by dissolving 3-methylacryloxypropyl trimethoxysilane as a silane coupling agent in distilled water (second step); Immersing the nitric acid-treated carbon fibers in the binder solution to prepare a carbon fiber treated with the binder (third step); And mixing the carbon fiber treated with the binder with a base material (fourth step); A method of producing a composite material for a carbon fiber-reinforced thermoplastic polymer is provided.

본 발명에 따른 탄소섬유 강화 열가소성 플라스틱용 복합재료의 제조방법은, 탄소섬유의 표면에 질산처리 및 결합제의 첨가로 인하여 기존의 복합재료에 비해 우수한 인장강도 및 굴곡강도 등의 뛰어난 물리적 성질을 가질 수 있다.The method for producing a composite material for a carbon fiber-reinforced thermoplastics according to the present invention has excellent physical properties such as tensile strength and flexural strength as compared with a conventional composite material due to nitric acid treatment and addition of a binder to the surface of the carbon fiber have.

도 1은 탄소섬유 강화 열가소성 플라스틱용 복합재료의 인장강도를 나타내는 그래프이다.
도 2는 탄소섬유 강화 열가소성 플라스틱용 복합재료의 굴곡강도 및 굴곡 탄성률을 나타내는 그래프이다.
도 3은 탄소섬유 강화 열가소성 플라스틱용 복합재료의 충격강도를 나타내는 그래프이다.
1 is a graph showing the tensile strength of a composite material for a carbon fiber-reinforced thermoplastic resin.
2 is a graph showing flexural strength and flexural modulus of a composite material for a carbon fiber-reinforced thermoplastic resin.
3 is a graph showing the impact strength of the composite material for a carbon fiber-reinforced thermoplastic resin.

이하, 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명의 발명자들은 탄소섬유 강화 열가소성 플라스틱용 복합재료의 제조방법에 대해 연구 개발하던 중, 탄소섬유의 표면에 질산처리 및 모재와 탄소섬유 표면의 기능화기 사이를 결합시키기 위한 실레인계 결합재를 첨가함으로써 우수한 강도, 즉 인장강도 및 굴곡강도 등의 기계적·물리적 특성이 향상된 탄소섬유 강화 열가소성 플라스틱용 복합재료의 제조방법을 개발하여 본 발명을 완성하였다.The inventors of the present invention have conducted research and development on a method for producing a composite material for a carbon fiber-reinforced thermoplastic resin by adding a silane-based bonding agent for bonding nitriding to the surface of the carbon fiber and functionalizing the surface of the carbon fiber The present inventors have developed a method for producing a composite material for a carbon fiber-reinforced thermoplastics in which mechanical and physical properties such as tensile strength and flexural strength are improved.

본 발명은, 탄소섬유를 질산용액에 침지시켜 질산처리하는 단계(제1단계); 실레인(silane)계 결합제인 3-메타아크릴옥시프로필 트리메톡시실레인(3-methylacryloxypropyl trimethoxysilane)을 증류수에 용해시켜 결합제 용액을 준비하는 단계(제2단계); 상기 질산처리된 탄소섬유를 상기 결합제 용액에 침지시켜 결합제로 처리된 탄소섬유를 제조하는 단계(제3단계); 및 상기 결합제로 처리된 탄소섬유를 모재와 혼합하는 단계(제4단계); 를 포함하는, 탄소섬유 강화 열가소성 플라스틱용 복합재료의 제조방법을 제공한다.The present invention relates to a process for nitric acid treatment by immersing carbon fibers in a nitric acid solution (first step); Preparing a binder solution by dissolving 3-methylacryloxypropyl trimethoxysilane as a silane coupling agent in distilled water (second step); Immersing the nitric acid-treated carbon fibers in the binder solution to prepare a carbon fiber treated with the binder (third step); And mixing the carbon fiber treated with the binder with a base material (fourth step); The present invention provides a method for producing a composite material for a carbon fiber-reinforced thermoplastic polymer.

상기 질산처리는 탄소섬유를 64 내지 66 중량% 질산용액에 100 내지 115℃에서 2 내지 3시간 동안 침지시킬 수 있다. 상기 질산용액이 64 중량% 미만인 경우에는 탄소섬유의 표면이 충분히 처리되지 않아 기능화기가 충분히 형성하지 않을 문제점이 있고, 66 중량%를 초과하는 경우에는 과도한 질산처리로 인해 탄소섬유 표면특성을 잃게 될 수 있는 문제점이 발생할 수 있는 바, 상기 질산처리는 탄소섬유를 64 내지 66 중량% 질산용액에서 수행하는 것이 보다 바람직하다.The nitric acid treatment can immerse the carbon fiber in a 64 to 66 wt% nitric acid solution at 100 to 115 캜 for 2 to 3 hours. If the amount of the nitric acid solution is less than 64 wt%, the surface of the carbon fiber may not be sufficiently treated and the functionalizer may not be sufficiently formed. If the nitric acid solution is more than 66 wt% It is more preferable that the nitric acid treatment is performed in a 64 to 66 wt% nitric acid solution.

상기 질산처리에 사용되는 질산용액은 약 65%의 농도를 가지는 질산용액일 수 있다. 상기 해당 농도는 약 16M의 몰농도 값을 가지며, 약 16M의 질산용액을 사용하였을 때 탄소섬유의 표면을 활성화시켜 반응이 적절하게 일어날 수 있다.The nitric acid solution used in the nitric acid treatment may be a nitric acid solution having a concentration of about 65%. The corresponding concentration has a molar concentration value of about 16M, and when a nitric acid solution of about 16M is used, the surface of the carbon fiber can be activated to suitably react.

상기 탄소섬유 표면을 질산처리하기 위해, 탄소섬유를 극성비양자성 용액인 아세톤 용액에 10 내지 12시간 침전시켜 불순물을 제거하며, 이후 호발공정(desizing)을 거치는 이유는 탄소섬유의 표면에 존재하는 에폭시가 효과적으로 제거되기 때문이다.In order to treat the surface of the carbon fiber with nitric acid, the carbon fiber is precipitated in an acetone solution of a polar aprotic solution for 10 to 12 hours to remove impurities. Thereafter, desizing is performed to remove the epoxy present on the surface of the carbon fiber Is effectively removed.

상기 호발과정 후, 증류수로 세정하고 90 내지 110℃에서 탄소섬유를 건조시키며, 상기 건조과정 후 약 65% 농도의 질산용액에 100 내지 115℃에서 2 내지 3시간 동안 침전과정을 거쳐 증류수로 세정하며, 남은 수분을 증발시키기 위해 진공로에서 80 내지 100℃에서 탄소섬유를 건조시킬 수 있다.After the drying process, the carbon fiber is dried at 90 to 110 ° C. After the drying process, the carbon fiber is precipitated in a nitric acid solution having a concentration of about 65% at 100 to 115 ° C for 2 to 3 hours and then washed with distilled water , And the carbon fibers can be dried at 80-100 ° C in a vacuum furnace to evaporate the remaining moisture.

상기 질산처리는 탄소섬유의 표면 거칠기를 동시에 증가시킬 수 있고 탄소섬유의 표면에 산성 기능화기를 유도하는데 효과적이기 때문에 표면처리를 위한 방법 중에서 가장 좋은 방법이다.The nitric acid treatment is the best method for surface treatment because it can increase the surface roughness of the carbon fiber at the same time and is effective in inducing an acid functional group on the surface of the carbon fiber.

상기 결합제의 종류는 실레인계, 설파이드계, 이미드계의 결합제 등이 존재하나, 상기 결합제 중에서 실레인계 결합제가 가장 큰 분자부피를 갖으며, 높은 표면에너지와 높은 비극성 값을 갖는 바, 본 발명의 복합재료중 일부인 모재는 비극성 값이 크기 때문에 상기 실레인계 결합제를 첨가하여 탄소섬유의 비극성 값을 증가시킬 경우 상기 모재와 탄소섬유의 표면간의 높은 접착력을 통해 우수한 기계적 강도를 보일 수 있고, 특히 히드록시기, 아민기, 카르복시기와 같은 화학적 기능화기가 탄소섬유 표면에 포함될 때 메톡시기에 의해 높은 극성을 가질 수 있으므로, 실례인계 결합제를 사용하는 것이 보다 바람직하다.The silane-based coupling agent has the largest molecular volume, high surface energy, and high non-polarity value. However, since the silane-based coupling agent has high molecular weight and high non-polarity value, When the non-polarity value of the carbon fiber is increased by adding the silane-based binder to the base material, which is a part of the material, since the base material has a large non-polarity value, the base material and the surface of the carbon fiber can show high mechanical strength, When a chemical functional group such as a carboxyl group or a carboxyl group is included in the surface of the carbon fiber, it can have a high polarity due to the methoxy group, and therefore, it is more preferable to use an example phosphorous bonding agent.

상기 실레인계 결합제는 유기 기능화기의 종류에 따라 다양한 실레인 결합제가 존재하나, 일반적인 실레인 결합제의 화학구조는 하기 화학식 1로 표시된다.The silane coupling agent has various silane coupling agents depending on the type of the organic functional group, but the chemical structure of a typical silane coupling agent is represented by the following formula (1).

[화학식 1][Chemical Formula 1]

R´-Si-(OR)3 R'-Si- (OR) 3

상기 화학식 1에서, R은 (C1 내지 C4)알킬기이며, R´은 아미노기, 메타아크릴옥시(C1 내지 C4)알킬기, 스티릴(styryl)기, 에폭시기, 비닐기, 우레이도(ureido)기, 황화(sulfide)기 및 메르캅토(mercapto)기로 이루어진 군에서 선택된 어느 하나 일 수 있으며, 보다 상세하게는 상기 실레인계 결합제는 폴리프로필렌 및 폴리에틸렌과 호환성이 우수하고, 무기 표면에 대한 유기 수지의 접착력을 개선시키며, 탄소섬유와 모재와의 복합체 형성 시 인장 강도 및 굽힘 강도의 개선이 가능하고, 무기 광물질뿐만 아니라 유기 열경화성수지와도 반응 할 수 있는 3-메타아크릴옥시프로필 트리메톡시실레인(3-methylacryloxypropyl trimethoxysilane)인 것이 보다 바람직하다.In the above formula (1), R is a (C1 to C4) alkyl group, and R 'is an alkyl group having 1 to 4 carbon atoms such as an amino group, a methacryloxy (C1 to C4) alkyl group, a styryl group, an epoxy group, a vinyl group, a ureido group, sulfide group and mercapto group. More specifically, the silane-based bonding agent is excellent in compatibility with polypropylene and polyethylene, and can improve adhesion of an organic resin to an inorganic surface. 3-methylacryloxypropyl (meth) acrylate, which is capable of improving tensile strength and bending strength when forming a composite of a carbon fiber and a base material and capable of reacting not only with inorganic minerals but also with an organic thermosetting resin trimethoxysilane).

보다 구체적으로, 도 1 및 도 2를 참조하면, 3-메타아크릴옥시프로필 트리메톡시실레인을 사용한 경우 모재와 탄소섬유 사이의 결합력이 증가하여 상호간의 호환성이 우수하다는 것을 알 수 있으므로, 상기 실레인계 결합제 중에서 3-메타아크릴옥시프로필 트리메톡시실레인을 사용하였을 때, 인장강도, 굴곡강도 및 굴곡탄성률이 높아진다.More specifically, referring to FIG. 1 and FIG. 2, it can be seen that when 3-methacryloxypropyltrimethoxysilane is used, the bonding force between the base material and the carbon fiber increases, When 3-methacryloxypropyltrimethoxysilane is used as the phosphorus-containing binder, tensile strength, flexural strength and flexural modulus increase.

상기 실레인계 결합제 용액을 증류수 100 중량% 기준으로, 1 내지 2 중량% 만큼 용해시킨다.The silane-based binder solution is dissolved in an amount of 1 to 2% by weight based on 100% by weight of distilled water.

상기 증류수와의 용해를 통해 가수분해 반응이 일어나며, 용액 내 실레인 기능화기가 존재하므로, 이를 안정화시키기 위해 용액의 pH를 약 3.5 내지 4.5로 조절할 필요가 있으며, 상기 pH를 조절하기 위해 아세트산과 같은 유기산을 첨가하는 것이 보다 바람직하며, 상기 유기산은 반드시 아세트산으로 제한되는 것은 아니다.Since the hydrolysis reaction takes place through dissolution with the distilled water and the silane functionalizing agent is present in the solution, it is necessary to adjust the pH of the solution to about 3.5 to 4.5 in order to stabilize it. To adjust the pH, an organic acid such as acetic acid , And the organic acid is not necessarily limited to acetic acid.

상기 아세트산 첨가 후, 자성 교반기를 이용하여 30 내지 60분 동안 교반 시킨다.After the addition of acetic acid, the mixture is stirred for 30 to 60 minutes using a magnetic stirrer.

상기 질산처리된 탄소섬유는 결합제 용액에 45 내지 60분 동안 침지시키고, 진공로에서 80 내지 100℃의 온도로 건조시킬 수 있으며, 80℃ 미만인 경우에는 탄소섬유에 잔류하는 물을 건조시키지 못하는 문제점이 발생하며, 100℃ 초과하는 경우에는 탄소섬유 표면의 기능화기가 손실될 수 있는 문제점이 발생할 수 있으므로 진공로에서 80 내지 100℃의 온도로 건조시키는 것이 보다 바람직하다.The nitric acid-treated carbon fibers may be immersed in a binder solution for 45 to 60 minutes and then dried in a vacuum furnace at a temperature of 80 to 100 ° C. If the carbon fiber is heated to less than 80 ° C, If the temperature exceeds 100 ° C, the functioning group of the surface of the carbon fiber may be lost. Therefore, it is more preferable to dry the carbon fiber at a temperature of 80 to 100 ° C in a vacuum furnace.

상기 모재는 폴리프로필렌 단독일 경우 자유표면 에너지가 낮고 비활성의 특성을 가지고 있어 모재로서 폴리프로필렌을 사용하기에 제한이 있으며, 형태와 충격특성 등을 고려하였을 때 폴리프로필렌과 폴리에틸렌과 혼합한 모재를 사용할 수 있다.When the polypropylene alone is used, the free base material has a low free surface energy and is inactive. Therefore, there is a limitation in using polypropylene as a base material. When considering the shape and impact characteristics, a base material mixed with polypropylene and polyethylene is used .

보다 상세하게는 상기 폴리프로필렌과 폴리에틸렌의 종류 중에서 폴리프로필렌과 선형저밀도폴리에틸렌과의 혼합을 통한 모재의 경우, 혼합과정에서 중요한 것은 두 수지간의 혼화성(miscibility)과 형상(morphology)이며, 폴리프로필렌은 선형저밀도폴리에틸렌과 혼합할 경우 혼화성이 우수하고, 결정화 속도가 감소하여 선형저밀도폴리에틸렌 이외에 다른 종류의 폴리에틸렌의 경우와 비교하였을 때 결정화 속도가 감소하지 않아 혼화성이 좋지 않으므로 폴리프로필렌과 선형저밀도폴리에틸렌의 혼합한 모재의 사용이 보다 바람직하다.More specifically, in the case of a base material obtained by mixing polypropylene and linear low density polyethylene among the types of polypropylene and polyethylene, the important factors in the mixing process are miscibility and morphology between the two resins, When mixed with linear low density polyethylene, it has excellent compatibility and low crystallization rate. Therefore, it is difficult to mix low-density polyethylene with linear low-density polyethylene because the crystallization rate is not reduced compared with other types of polyethylene other than linear low density polyethylene. The use of the mixed base material is more preferable.

상기 모재는 폴리프로필렌 60 내지 80 중량% 및 선형저밀도폴리에틸렌 20 내지 40 중량%로 이루어질 수 있으며, 상기 범위를 벗어난 경우 복합재료의 인성이 충분하지 않거나 인장강도 또는 굴곡강도와 같은 기계적 특성이 감소하는 문제점이 발생할 수 있으며, 보다 상세하게는 폴리프로필렌 80 중량%와 선형저밀도폴리에틸렌 20 중량%를 혼합할 경우, 폴리프로필렌의 넓은 표면적으로 인해 선형저밀도폴리에틸렌과 접촉이 용이하여 구결정(Spherulite) 소지 형상을 가지게 되며, 이러한 상기 구결정 형상의 소지를 가지게 되면 인장강도의 특성이 개선되므로, 상기 모재 100 중량% 기준으로 폴리프로필렌 80 중량%와 선형저밀도폴리에틸렌 20 중량%를 혼합한 모재를 사용하는 것이 보다 바람직하다.The base material may be composed of 60 to 80% by weight of polypropylene and 20 to 40% by weight of linear low density polyethylene. If it is out of the above range, the toughness of the composite material is insufficient or mechanical properties such as tensile strength or flexural strength are decreased In particular, when 80% by weight of polypropylene and 20% by weight of linear low density polyethylene are mixed, it is easy to make contact with linear low density polyethylene due to the large surface area of polypropylene, so that it has a spherical base shape It is more preferable to use a base material in which 80% by weight of polypropylene and 20% by weight of linear low density polyethylene are mixed with respect to 100% by weight of the base material .

상기 중량비율을 갖는 모재와 표면 처리된 탄소섬유를 교반혼합기를 이용하여 혼합한다. The base material having the weight ratio described above and the surface-treated carbon fibers are mixed using a stirring mixer.

상기 혼합은 결합제로 처리된 탄소섬유 5 내지 15 중량% 및 모재 85 내지 95 중량%를 160 내지 180℃에서, 90 내지 120분 동안, 110 내지 130 m/s의 회전속도로 혼합하며, 상기 혼합조건을 벗어나는 경우 충분하게 혼합되지 않아 사출성형성이 좋지 않거나 탄소섬유 표면 특성이 감소하는 문제점이 있으므로, 상기 혼합조건 내에서 반응을 수행하는 것이 보다 바람직하다.The mixing is carried out by mixing 5 to 15% by weight of the carbon fibers treated with the binder and 85 to 95% by weight of the base material at 160 to 180 DEG C for 90 to 120 minutes at a rotation speed of 110 to 130 m / s, There is a problem that the injection moldability is not good or the carbon fiber surface characteristics are decreased. Therefore, it is more preferable to perform the reaction in the mixing condition.

상기 혼합공정 후, 사출성형하기 위해 과립형태로 분쇄하며, 사출성형을 위해 사출기의 온도는 160 내지 180℃로 설정할 수 있다.After the mixing process, the mixture is pulverized into granules for injection molding, and the temperature of the extruder may be set to 160 to 180 ° C for injection molding.

이하, 하기 실시예에 의해 본 발명을 보다 상세하게 설명한다. 다만, 이러한 실시예에 의해 본 발명이 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the present invention is not limited by these examples.

(실시예)(Example)

1. 탄소섬유 모재의 준비 1. Preparation of carbon fiber and base metal

탄소섬유는 4900 MPa의 인장강도, 230 GPa의 탄성계수, 1.80 g/cm3의 밀도를 가지며, 2 내지 5 mm의 길이를 가지는 탄소섬유를 준비하였다.The carbon fiber had a tensile strength of 4900 MPa, an elastic modulus of 230 GPa, a density of 1.80 g / cm < 3 >, and carbon fibers having a length of 2 to 5 mm were prepared.

또한, 모재의 경우 한국고분자사의 폴리프로필렌(밀도 0.89 g/cm3)과 선형저밀도폴리에틸렌(밀도 0.92 g/cm3)을 준비하였다.Further, to prepare a base material for polyester's Korea propylene polymer (density 0.89 g / cm 3) and linear low density polyethylene (density 0.92 g / cm 3).

상기 탄소섬유 강화 열가소성 플라스틱용 복합재료를 제조하기 위한 폴리프로필렌, 선형저밀도폴리에틸렌 그리고 탄소섬유의 분율은 각각 60%wt, 30%wt, 10%wt 이었다. The fractions of polypropylene, linear low density polyethylene and carbon fiber for producing the composite material for the carbon fiber-reinforced thermoplastics were 60% wt, 30% wt and 10% wt, respectively.

2. 사용된 실레인계 결합제의 종류 및 양 2. Type and amount of silane-based binder used

실레인계 결합제는 3-메타아크릴옥시프로필 트리메톡시실레인(3-Methacryloxypropyl trimethoxysilane, MEMO, Korea Bio-Gen)을 사용하였고, 상기 복합재료 100중량부 기준으로 결합제 1 내지 2중량부를 사용하였다. 3-Methacryloxypropyl trimethoxysilane (MEMO, Korea Bio-Gen ) was used as a silane-based binder, and 1 to 2 parts by weight of a binder was used based on 100 parts by weight of the composite material.

3. 탄소섬유의 표면 처리공정 3. Surface treatment of carbon fiber

상기 준비된 탄소섬유를 아세톤 용액에 12시간 침전시키는 호발과정을 거치고, 상기 호발과정 후 Romax사의 순수제조장치(Pure Power)로부터 얻은 증류수로 세정하고 100℃에서 건조시켰다.The prepared carbon fibers were precipitated in an acetone solution for 12 hours, washed with distilled water obtained from a Pure Power manufactured by Romax Company, and dried at 100 ° C.

상기 건조과정 후, 65% 질산용액에 110℃에서 2시간 동안 침전시켰고, 침전과정 후 증류수로 세정하였다.After the drying process, it was precipitated in a 65% nitric acid solution at 110 ° C for 2 hours, and after the precipitation, it was washed with distilled water.

상기 세정과정 후, 남아있는 수분을 증발시키기 위해 진공로에서 탄소섬유를 80 내지 100℃에서 건조시켰다.After the cleaning process, the carbon fibers were dried at 80 to 100 DEG C in a vacuum furnace to evaporate the remaining moisture.

4. 결합제 용액의 준비 4. Preparation of binder solution

상기 3-메타아크릴옥시프로필 트리메톡시실레인 용액을 증류수에 1 내지 2 중량% 용해시켰다. 이에 대해, 가수분해 반응과 용액 내의 실레인 기능화기를 안정화시키기 위해 용액의 pH를 3.5 내지 4.5로 조절하였고, 상기 pH를 조절하기 위해 아세트산을 첨가하였다. 투명한 균일계 용액을 형성할 때 까지 자성 교반기를 이용하여 3-메타아크릴옥시프로필 트리메톡시실레인 용액과 증류수를 30 내지 60분 동안 교반시켰고, 완벽한 가수분해 가능한 조건을 얻기 위해 3-메타아크릴옥시프로필 트리메톡시실레인을 조심스럽게 첨가하였다. 표면 처리된 탄소섬유를 3-메타아크릴옥시프로필 트리메톡시실레인이 첨가된 용액에 45 내지 60분 동안 침전시켰고, 진공로에서 약 80℃의 온도로 건조시켰다.The 3-methacryloxypropyltrimethoxysilane solution was dissolved in distilled water in an amount of 1 to 2% by weight. On the other hand, the pH of the solution was adjusted to 3.5 to 4.5 to stabilize the hydrolysis reaction and the silane functional group in the solution, and acetic acid was added to adjust the pH. The 3-methacryloxypropyltrimethoxysilane solution and distilled water were stirred for 30 to 60 minutes using a magnetic stirrer until a clear homogeneous solution was formed, and 3-methacryloxy The propyl trimethoxysilane was carefully added. The surface treated carbon fibers were precipitated in a solution containing 3-methacryloxypropyltrimethoxysilane for 45 to 60 minutes and dried in a vacuum furnace at a temperature of about 80 ° C.

5. 탄소섬유와 모재의 혼합과정 5. Carbon fiber and Mixing process of base metal

혼합조건은 약 180℃에서 90분 동안 120 m/s의 회전속도로 혼합시켰고, 질산처리, 결합제, 선형저밀도폴리에틸렌 첨가의 효과를 파악하기 위해 140 내지 180℃의 온도에서 사출성형공법을 이용하여 5종류의 시편을 각각 제작하였다.The mixing conditions were mixed at a rotational speed of 120 m / s for 90 minutes at about 180 ° C. and the injection molding process was carried out at a temperature of 140 to 180 ° C. to determine the effect of the nitric acid treatment, the binder, and the addition of the linear low density polyethylene. Respectively.

6. 과립형태의 분쇄과정 6. Grinding process in granular form

상기 혼합과정 후, 사출성형을 하기 위해 과립형태로 분쇄하였으며, 사출성형을 위해 사출기의 온도는 약 170℃로 설정하였다.After the mixing process, the mixture was pulverized into granules for injection molding, and the temperature of the extruder was set at about 170 ° C for injection molding.

(비교예 1)(Comparative Example 1)

모재를 폴리프로필렌만을 사용하고 탄소섬유에 질산처리와 3-메타아크릴옥시프로필 트리메톡시실레인을 첨가하지 않은 공정을 제외하고는 상기 실시예와 동일한 조건이었다.The conditions were the same as those of the above example, except that only the polypropylene was used as the base material and the nitric acid treatment and 3-methacryloxypropyltrimethoxysilane were not added to the carbon fibers.

(비교예 2)(Comparative Example 2)

모재를 폴리프로필렌만을 사용하고 3-메타아크릴옥시프로필 트리메톡시실레인을 첨가하지 않은 공정을 제외하고는 상기 실시예와 동일한 조건이었다.The conditions were the same as those of the above example, except that only the polypropylene was used as the base material and 3-methacryloxypropyltrimethoxysilane was not added.

(비교예 3)(Comparative Example 3)

모재를 폴리프로필렌만을 사용한 경우를 제외하고는 상기 실시예와 동일한 조건이었다.The conditions were the same as those of the above example except that only the polypropylene was used as the base material.

(비교예 4)(Comparative Example 4)

탄소섬유에 질산처리와 3-메타아크릴옥시프로필 트리메톡시실레인을 첨가하지 않은 공정을 제외하고는 상기 실시예와 동일한 조건이었다.The conditions were the same as those of the above example, except that nitric acid treatment and 3-methacryloxypropyltrimethoxysilane were not added to the carbon fibers.

(비교예 5)(Comparative Example 5)

탄소섬유에 3-메타아크릴옥시프로필 트리메톡시실레인을 첨가하지 않은 공정을 제외하고는 상기 실시예와 동일한 조건이었다.The conditions were the same as those of the above example, except that the 3-methacryloxypropyltrimethoxysilane was not added to the carbon fibers.

(실험예)(Experimental Example)

1. 실험 방법 1. Experimental Method

(1) 인장강도 시험법(1) Tensile strength test method

미국재료시험학회(ASTM) D638-08 에 따라 실험Experiment according to American Society for Testing and Materials (ASTM) D638-08

시험편 형상 : 도그본(dog-bone)Specimen shape: dog-bone

시험기기 : SHIMADZU사의 만능시험기(Universal testing machine)Test equipment: SHIMADZU's universal testing machine

하중 : 500 kNLoad: 500 kN

크로스헤드 속도(시험속도) : 5 mm/minCrosshead speed (test speed): 5 mm / min

(2) 굴곡강도 시험법(2) Flexural strength test method

3점 굽힘시험3 point bending test

시험편 형상 : 막대(bar)형상(64.5 x 11.5 x 5.7 mm)Specimen configuration: Bar shape (64.5 x 11.5 x 5.7 mm)

시험기기 : SHIMADZU사의 만능시험기(Universal testing machine)Test equipment: SHIMADZU's universal testing machine

하중 : 300 kNLoad: 300 kN

시험속도 : 3 mm/minTest speed: 3 mm / min

하부 지지점 간 거리(Span length) : 42.5 mmSpan length between lower supports: 42.5 mm

(3) 충격강도 시험법(3) Impact strength test method

샤르피 충격시험Charpy impact test

시험편 형상 : 막대(bar)형상(64.5 x 11.5 x 5.7 mm)Specimen configuration: Bar shape (64.5 x 11.5 x 5.7 mm)

시험기기 : SSAUL BESTECH사의 충격시험기(BESTIPT-334CI)Test equipment: SSAUL BESTECH's impact tester (BESTIPT-334CI)

2. 인장강도에 대한 특성 비교 2. Comparison of properties against tensile strength

도 1을 참조하면, 실시예와 비교예 1 내지 비교예 5에 따라 제조된 복합재료의 인장강도 측정시, 실시예에 따라 제조된 복합재료는 비교예 1 내지 3에 따라 제조된 복합재료에 비해 인장강도는 44.7%, 49.8%, 53.7% 감소하였고, 비교예 4 및 비교예 5에 따라 제조된 복합재료에 비해 인장강도는 24.0%, 4.3% 증가하였다.Referring to FIG. 1, in measuring the tensile strengths of the composite materials produced according to Examples and Comparative Examples 1 to 5, the composite materials prepared according to the Examples were compared with the composite materials prepared according to Comparative Examples 1 to 3 The tensile strengths were decreased by 44.7%, 49.8% and 53.7%, respectively, and the tensile strengths were increased by 24.0% and 4.3%, respectively, as compared with the composite materials prepared according to Comparative Example 4 and Comparative Example 5.

3. 굴곡강도 및 굴곡탄성률에 대한 특성 비교 3. Comparison of properties of flexural strength and flexural modulus

도 2를 참조하면, 실시예와 비교예 4 및 비교예 5에 따라 제조된 복합재료의 굴곡강도 및 굴곡탄성률 측정시, 실시예에 따라 제조된 복합재료는 비교예 4 및 비교예 5에 따라 제조된 복합재료에 비해 굴곡강도는 20.4%, 굴곡탄성률은 32.3% 증가하였다.Referring to FIG. 2, in measuring the flexural strength and flexural modulus of the composite material produced according to Examples, Comparative Examples 4 and 5, the composite material produced according to Examples was prepared according to Comparative Example 4 and Comparative Example 5 The flexural strength and flexural modulus of composites increased by 20.4% and 32.3%, respectively.

4. 충격강도에 대한 특성 비교 4. Comparison of properties against impact strength

반응조건은 30초 동안 175℃를 설정하였을 때 개선된 폴리프로필렌/선형저밀도폴리에틸렌 혼합으로 결정조직과 충격 강도에 영향을 주는 배치 포밍(batch foaming) 공정의 효과를 관찰하였다.The reaction conditions were observed when batch polypropylene / linear low density polyethylene blends at 175 ° C for 30 seconds were used to effect crystal batches and batch foaming processes affecting the impact strength.

도 3을 참조하면, 실시예와 비교예 1 내지 5에 따라 제조된 복합재료의 충격강도 측정시, 실시예에 따라 제조된 복합재료는 비교예 1 내지 5에 따라 제조된 복합재료에 비해 충격강도는 127.3%, 50.9%, 43.3%, 96.6, 10.9% 증가하였다.Referring to FIG. 3, in the measurement of the impact strength of the composite material produced according to Examples and Comparative Examples 1 to 5, the composite material produced according to the Example had a higher impact strength than the composite material prepared according to Comparative Examples 1 to 5 Increased by 127.3%, 50.9%, 43.3%, 96.6% and 10.9%, respectively.

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.While the present invention has been particularly shown and described with reference to specific embodiments thereof, those skilled in the art will appreciate that such specific embodiments are merely preferred embodiments and that the scope of the present invention is not limited thereby. something to do. It is therefore intended that the scope of the invention be defined by the claims appended hereto and their equivalents.

Claims (5)

탄소섬유를 질산용액에 침지시켜 질산처리하는 단계(제1단계);
실레인(silane)계 결합제인 3-메타아크릴옥시프로필 트리메톡시실레인(3-methylacryloxypropyl trimethoxysilane)을 증류수에 용해시켜 결합제 용액을 준비하는 단계(제2단계);
상기 질산처리된 탄소섬유를 상기 결합제 용액에 침지시켜 결합제로 처리된 탄소섬유를 제조하는 단계(제3단계); 및
상기 결합제로 처리된 탄소섬유를 모재와 혼합하는 단계(제4단계);
를 포함하는, 탄소섬유 강화 열가소성 플라스틱용 복합재료의 제조방법.
Immersing the carbon fibers in a nitric acid solution and nitric acid treatment (first step);
Preparing a binder solution by dissolving 3-methylacryloxypropyl trimethoxysilane as a silane coupling agent in distilled water (second step);
Immersing the nitric acid-treated carbon fibers in the binder solution to prepare a carbon fiber treated with the binder (third step); And
Mixing the carbon fibers treated with the bonding agent with the base material (step 4);
Wherein the carbon fiber-reinforced thermoplastics composite material is a carbon fiber-reinforced thermoplastic resin.
청구항 1에 있어서, 상기 질산처리는 탄소섬유를 64 내지 66 중량% 질산용액에 100 내지 115℃에서 2 내지 3시간 동안 침지시킨 것을 특징으로 하는, 탄소섬유 강화 열가소성 플라스틱용 복합재료의 제조방법.[2] The method of claim 1, wherein the nitric acid treatment is performed by immersing the carbon fibers in a nitric acid solution having a concentration of 64 to 66% by weight at 100 to 115 캜 for 2 to 3 hours. 청구항 1에 있어서, 상기 질산처리된 탄소섬유는 결합제 용액에 45 내지 60분 동안 침지시키고, 진공로에서 80 내지 100℃의 온도로 건조시킨 것을 특징으로 하는, 탄소섬유 강화 열가소성 플라스틱용 복합재료의 제조방법.The carbon fiber-reinforced thermoplastics composite material according to claim 1, wherein the nitrided carbon fiber is immersed in a binder solution for 45 to 60 minutes and dried in a vacuum furnace at a temperature of 80 to 100 ° C. Way. 청구항 1에 있어서, 상기 모재는 폴리프로필렌 60 내지 80 중량% 및 선형저밀도폴리에틸렌 20 내지 40 중량%로 이루어진 것을 특징으로 하는, 탄소섬유 강화 열가소성 플라스틱용 복합재료의 제조방법.The method of claim 1, wherein the base material comprises 60 to 80% by weight of polypropylene and 20 to 40% by weight of linear low density polyethylene. 청구항 1에 있어서, 상기 혼합은 결합제로 처리된 탄소섬유 5 내지 15 중량% 및 모재 85 내지 95 중량%를 160 내지 180℃에서 90 내지 120분 동안 110 내지 130 m/s의 회전속도로 혼합한 것을 특징으로 하는, 탄소섬유 강화 열가소성 플라스틱용 복합재료의 제조방법.The method of claim 1, wherein the mixing is performed by mixing 5-15 wt% of the carbon fiber treated with the binder and 85-95 wt% of the base material at a rotation speed of 110-130 m / s for 90-120 minutes at 160-180 캜 Wherein the carbon fiber-reinforced thermoplastic composite material is a carbon fiber-reinforced thermoplastic composite material.
KR1020150120880A 2015-08-27 2015-08-27 Method of Manufacturing of Composite Material for Carbon Fiber-reinforced Thermoplastic Plastic KR101741052B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150120880A KR101741052B1 (en) 2015-08-27 2015-08-27 Method of Manufacturing of Composite Material for Carbon Fiber-reinforced Thermoplastic Plastic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150120880A KR101741052B1 (en) 2015-08-27 2015-08-27 Method of Manufacturing of Composite Material for Carbon Fiber-reinforced Thermoplastic Plastic

Publications (2)

Publication Number Publication Date
KR20170026741A true KR20170026741A (en) 2017-03-09
KR101741052B1 KR101741052B1 (en) 2017-05-30

Family

ID=58402723

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150120880A KR101741052B1 (en) 2015-08-27 2015-08-27 Method of Manufacturing of Composite Material for Carbon Fiber-reinforced Thermoplastic Plastic

Country Status (1)

Country Link
KR (1) KR101741052B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101985766B1 (en) * 2019-01-23 2019-06-04 경북대학교 산학협력단 Method for improving characteristics of fiber recoverd from fiber reinforced plastic
KR102276413B1 (en) 2020-12-22 2021-07-12 주식회사 에디스플레이 Resin composition for mobile display device bracket comprising carbon fiber composite resin and mobile display for mobile using the same
KR102311364B1 (en) 2020-12-22 2021-10-13 주식회사 에디스플레이 Wood plastic compound comprising carbon fiber composite resin
KR20220090386A (en) 2020-12-22 2022-06-29 주식회사 에디스플레이 Carbon fiber composite resin composition and carbon fiber composite resin and cfrp prepreg and cfrp using the same
CN117050452A (en) * 2023-08-16 2023-11-14 泰州鑫兴盛新材料科技有限公司 High-strength composite material for new energy automobile and preparation method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102394794B1 (en) 2017-09-01 2022-05-04 현대자동차주식회사 Polymer composite reinforced with carbon fibers and method of preparing the same
KR102279992B1 (en) * 2019-12-19 2021-07-21 한국신발피혁연구원 Rubber composition for shoes outsole having recycled carbon fiber

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR950018178A (en) 1993-12-01 1995-07-22 박흥기 Manufacturing Method of Fiber Reinforced Thermoplastics

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1652997B1 (en) 2003-07-31 2012-04-04 Mitsubishi Rayon Co., Ltd. Carbon fiber bundle, process for producing the same, and thermoplastic resin composition and molded article thereof
KR101189153B1 (en) * 2009-12-29 2012-10-10 인하대학교 산학협력단 Method of manufacturing of carbon fibers reinforced composites improved mechanical interface strength
KR101428423B1 (en) 2013-11-15 2014-08-08 주식회사 포스코 Manufacturing method of carbon fiber reinforced thermoplastic composite and the composite manufactured by the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR950018178A (en) 1993-12-01 1995-07-22 박흥기 Manufacturing Method of Fiber Reinforced Thermoplastics

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101985766B1 (en) * 2019-01-23 2019-06-04 경북대학교 산학협력단 Method for improving characteristics of fiber recoverd from fiber reinforced plastic
KR102276413B1 (en) 2020-12-22 2021-07-12 주식회사 에디스플레이 Resin composition for mobile display device bracket comprising carbon fiber composite resin and mobile display for mobile using the same
KR102311364B1 (en) 2020-12-22 2021-10-13 주식회사 에디스플레이 Wood plastic compound comprising carbon fiber composite resin
KR20220090386A (en) 2020-12-22 2022-06-29 주식회사 에디스플레이 Carbon fiber composite resin composition and carbon fiber composite resin and cfrp prepreg and cfrp using the same
CN117050452A (en) * 2023-08-16 2023-11-14 泰州鑫兴盛新材料科技有限公司 High-strength composite material for new energy automobile and preparation method thereof

Also Published As

Publication number Publication date
KR101741052B1 (en) 2017-05-30

Similar Documents

Publication Publication Date Title
KR101741052B1 (en) Method of Manufacturing of Composite Material for Carbon Fiber-reinforced Thermoplastic Plastic
Hou et al. Recent advances and future perspectives for graphene oxide reinforced epoxy resins
Nasser et al. Enhanced interfacial strength of aramid fiber reinforced composites through adsorbed aramid nanofiber coatings
Zhou et al. Interfacial crystallization enhanced interfacial interaction of Poly (butylene succinate)/ramie fiber biocomposites using dopamine as a modifier
Moaseri et al. Improvements in mechanical properties of carbon fiber-reinforced epoxy composites: a microwave-assisted approach in functionalization of carbon fiber via diamines
Mao et al. Hybrid polyurethane and silane sized carbon fibre/epoxy composites with enhanced impact resistance
Shi et al. Enhanced interfacial strength of natural fiber/polypropylene composite with mechanical-interlocking interface
KR101481263B1 (en) Silica-graphene oxide complex, Compositon of that and High strength plastic resin containing that
Zhao et al. Si-Al hybrid effect of waterborne polyurethane hybrid sizing agent for carbon fiber/PA6 composites
Sun et al. Temperature-dependent mechanical properties of polyetherimide composites reinforced by graphene oxide-coated short carbon fibers
Yao et al. Fracture toughness enhancement of epoxy resin reinforced with graphene nanoplatelets and carbon nanotubes
Aparna et al. Effect of compatibilizer on the properties of polyamide 6 blend based carbon fiber reinforced composites
CN109181289A (en) A kind of tenacity nylon material and preparation method thereof
Wu et al. Preparation and characterization of polyamide composites with modified graphite powders
CN114410059A (en) High-strength polyformaldehyde and preparation method thereof
Raja et al. Effect of one-step dipping coating process on microstructure and tribology of polypropylene/graphene oxide/carbon nanotube nanocomposites
KR20150026158A (en) Resin composition comprising carbon-nanomaterial, and plastic molded products
JP5054344B2 (en) Heat-resistant resin composite composition and method for producing the same
Wu et al. Water-dispersible hydrothermal aramid nanofibers reinforced styrene-butadiene rubber with enhanced mechanical behaviour and solvent resistance
Wu et al. Molecular motion, morphology and properties of 3-isocyanato-propyltriethoxysilane-modified multi-walled carbon nanotube/epoxy composites
Wang et al. Aluminium borate whiskers grafted with boric acid containing poly (ether ether ketone) as a reinforcing agent for the preparation of poly (ether ether ketone) composites
CN108559259A (en) A kind of waste rubber powder doping nylon plastic material and preparation method thereof
Das et al. Thermo-mechanical stability of epoxy composites induced with surface silanized recycled carbon fibers
Zhang et al. New Strategy for Improvement of Interfacial Interactions between Poly (arylene sulfide sulfone) and Carbon Fiber by Grafting Polymeric Chains via Thiol-Ene Click Chemistry
CN106811966B (en) A kind of method of acrylic amide aqueous solution grafting modified carbon fiber surface size agent

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant
R401 Registration of restoration