KR101189153B1 - Method of manufacturing of carbon fibers reinforced composites improved mechanical interface strength - Google Patents

Method of manufacturing of carbon fibers reinforced composites improved mechanical interface strength Download PDF

Info

Publication number
KR101189153B1
KR101189153B1 KR1020090132949A KR20090132949A KR101189153B1 KR 101189153 B1 KR101189153 B1 KR 101189153B1 KR 1020090132949 A KR1020090132949 A KR 1020090132949A KR 20090132949 A KR20090132949 A KR 20090132949A KR 101189153 B1 KR101189153 B1 KR 101189153B1
Authority
KR
South Korea
Prior art keywords
carbon fiber
nylon
sizing
sizing agent
functional silane
Prior art date
Application number
KR1020090132949A
Other languages
Korean (ko)
Other versions
KR20110076281A (en
Inventor
박수진
김병주
최웅기
Original Assignee
인하대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인하대학교 산학협력단 filed Critical 인하대학교 산학협력단
Priority to KR1020090132949A priority Critical patent/KR101189153B1/en
Publication of KR20110076281A publication Critical patent/KR20110076281A/en
Application granted granted Critical
Publication of KR101189153B1 publication Critical patent/KR101189153B1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B1/00Applying liquids, gases or vapours onto textile materials to effect treatment, e.g. washing, dyeing, bleaching, sizing or impregnating
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/01Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with hydrogen, water or heavy water; with hydrides of metals or complexes thereof; with boranes, diboranes, silanes, disilanes, phosphines, diphosphines, stibines, distibines, arsines, or diarsines or complexes thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B2700/00Treating of textile materials, e.g. bleaching, dyeing, mercerising, impregnating, washing; Fulling of fabrics
    • D06B2700/27Sizing, starching or impregnating fabrics
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/40Fibres of carbon
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/10Inorganic fibres based on non-oxides other than metals
    • D10B2101/12Carbon; Pitch
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

본 발명은 사이징제로 사이징 처리한 탄소섬유를 보강제로 사용하여 열가소성 매트릭스와의 계면결합력이 향상시킴으로써 기계적 계면 강도가 강화된 탄소섬유강화 복합재를 제조하는 방법에 관한 것이다.The present invention relates to a method for producing a carbon fiber reinforced composite having enhanced mechanical interfacial strength by improving the interfacial bonding force with a thermoplastic matrix by using a carbon fiber sized with a sizing agent as a reinforcing agent.

본 발명에 따른 방법은 탄소섬유를 사이징 처리하여 탄소섬유의 취급성을 향상시킴과 동시에 매트릭스와의 계면결합력을 최대화함으로써 높은 기계적 계면 강도를 가지는 탄소섬유강화 복합재를 제조할 수 있다.The method according to the present invention can produce a carbon fiber reinforced composite having a high mechanical interface strength by sizing the carbon fiber to improve the handleability of the carbon fiber and at the same time maximize the interfacial bonding force with the matrix.

탄소섬유강화 복합재, 사이징, 계면 강도, 열가소성, 나일론 Carbon Fiber Reinforced Composites, Sizing, Interfacial Strength, Thermoplastic, Nylon

Description

기계적 계면 강도가 강화된 탄소섬유강화 복합재 제조방법{Method of manufacturing of carbon fibers reinforced composites improved mechanical interface strength} Method of manufacturing of carbon fibers reinforced composites improved mechanical interface strength}

본 발명은 기계적 계면 강도가 강화된 탄소섬유강화 복합재의 제조방법에 관한 것으로, 더욱 상세하게는 사이징제로 사이징 처리한 탄소섬유를 보강제로 사용하여 열가소성 매트릭스와의 계면결합력이 향상시킴으로써 기계적 계면 강도가 강화된 탄소섬유강화 복합재를 제조하는 방법에 관한 것이다.The present invention relates to a method for manufacturing a carbon fiber reinforced composite having enhanced mechanical interfacial strength, and more particularly, by using a carbon fiber sizing treated as a sizing agent as a reinforcing agent, the interfacial bonding strength with the thermoplastic matrix is improved, thereby enhancing the mechanical interfacial strength. It relates to a method for producing a carbon fiber reinforced composite material.

탄소섬유 및 이를 이용한 탄소섬유강화 복합재(corbon fibers-reinforced composites)는 금속을 주축으로 했던 여러 산업기계 부품들의 대체 재료로서 각광을 받고 있을 뿐만 아니라 자동차, 항공우주, 전기전자, 기계, 선박, 토목건축, 의학생체 분야 등 미래 최첨단 산업분야에서도 주축인 재료가 될 것으로 예상된다.Carbon fibers and carbon fibers-reinforced composites are not only spotlighted as alternative materials for many industrial machinery parts based on metals, but also in automobiles, aerospace, electrical and electronics, machinery, ships and civil engineering. It is expected to be a key material in future high-tech industries such as medical and medical field.

또한, 높은 비강도, 경량성, 내피로성, 내약품성, 및 고탄성률 등을 가진 소재로서 베어링, 기어, 캠과 같은 고강도를 필요로 하는 곳이나 자동차 동체와 같은 운송장비 분야나 스포츠 용품 분야 등에서도 본격적으로 사용되는 유망한 신소재이다.In addition, it is a material with high specific strength, light weight, fatigue resistance, chemical resistance, and high elastic modulus, and also requires high strength such as bearings, gears and cams, and transportation equipment such as automobile bodies, and sporting goods. It is a promising new material used in earnest.

탄소섬유는 고강도, 고탄성, 높은 열적 특성, 그리고 높은 전도도 등 우수한 특성을 가지고 있어서 탄소섬유강화 복합재의 내부 보강제로 이용 가능하다. 탄소섬유강화 복합재의 최종 기계적 물성은 보강제로 사용되는 탄소섬유와 매트릭스 자체의 물성에 크게 의존하지만 섬유와 매트릭스가 만나는 계면에서의 결합 현상에 의해서도 크게 좌우된다.Carbon fiber has excellent properties such as high strength, high elasticity, high thermal properties, and high conductivity, and can be used as an internal reinforcing agent for carbon fiber reinforced composites. The final mechanical properties of the carbon fiber reinforced composites depend largely on the physical properties of the carbon fiber and the matrix itself, which are used as reinforcing agents, but also on the bonding phenomenon at the interface where the fiber and matrix meet.

종래 탄소섬유강화 복합재는 매트릭스로서 열경화성 수지를 사용하였기 때문에 탄소섬유와 수지와의 표면특성을 맞추기가 쉽지 않았으며, 복합재를 제조한다고 하더라도 기계적 물성이 떨어지는 현상이 나타났다.Conventional carbon fiber-reinforced composite material is not easy to match the surface characteristics of the carbon fiber and the resin because the thermosetting resin was used as a matrix, even if the composite material produced a phenomenon that the mechanical properties are poor.

이에 본 발명자들은 탄소섬유를 사이징제로 처리하여 탄소섬유와 열경화성 매트릭스 수지간의 계면결합력을 향상시켜 높은 기계적 계면 강도를 갖는 탄소섬유강화 복합재를 제조하고 본 발명을 성공적으로 완성하였다.Accordingly, the present inventors treated the carbon fiber with a sizing agent to improve the interfacial bonding force between the carbon fiber and the thermosetting matrix resin to prepare a carbon fiber reinforced composite having a high mechanical interface strength and successfully completed the present invention.

결국, 본 발명의 주된 목적은 사이징제로 사이징 처리한 탄소섬유를 보강제로 사용하여 열가소성 매트릭스와의 계면결합력이 향상시킴으로써 기계적 계면 강도가 강화된 탄소섬유강화 복합재를 제조하는 방법을 제공하는데 있다.As a result, the main object of the present invention is to provide a method for producing a carbon fiber reinforced composite having enhanced mechanical interfacial strength by improving the interfacial bonding force with the thermoplastic matrix by using a carbon fiber sized with a sizing agent as a reinforcing agent.

상기 목적을 달성하기 위하여, 본 발명은 사이징제에 탄소섬유를 침지시켜 사이징 처리하는 단계를 포함하는 기계적 계면 강도가 강화된 탄소섬유강화 복합재의 제조방법을 제공한다.In order to achieve the above object, the present invention provides a method for producing a carbon fiber-reinforced composite having an enhanced mechanical interfacial strength comprising the step of sizing the carbon fiber in the sizing agent.

본 발명에 있어서, 상기 사이징제는 주성분으로 아미노 기능성 실란, 예를 들면, 아미노프로필트리에톡시실란(3-Aminopropyltriethoxysilane) 아미노프로필메톡시다이에톡시실란(3-Aminopropylmethoxydiethoxysilane), 아미노프로필메톡시다이메톡시실란(Aminopropylmethoxydimethoxysilane), 아미노에틸아미노프로필트리메톡시실란(3-(2-Aminoethyl)aminopropyl]trimethoxysilane) 등; 황 기능성 실란, 예를 들면, 비스(트리에톡시실릴프로필)테트라설파이드(Bis(3-(triethoxysilyl)propyl) tetrasulfide), 메르캅토프로필트리메톡시실란(Mercaptopropyltrimethoxysilane), 메르캅토프로필트리에톡시실란(Mercaptopropyltriethoxysilane) 등; 에폭시 기능성 실란, 예를 들면, 글리시독시프로필트리메톡시실란(Glycidoxypropyltrimethoxysilane), 글리시독시프로필트리 에톡시실란(Glycidoxypropyltriethoxysilane), 글리시독시프로필메틸다이에톡시실란(Glycidoxypropylmethyldiethoxysilane), 글리시독시프로필메틸다이메톡시실란(Glycidoxypropylmethlydimethoxysilane) 등; 바이닐 기능성 실란, 예를 들면, 바이닐트리메톡시실란(Vinyltrimethoxysilane), 바이닐트리에톡시실란(Vinyltriethoxysilane) 등;으로 이루어진 군에서 선택되는 1종 이상을 사용하는 것이 바람직하다. In the present invention, the sizing agent is an amino functional silane as a main component, for example, 3-aminopropyltriethoxysilane, 3-aminopropylmethoxydiethoxysilane, aminopropylmethoxydimethoxy Methoxysilane (Aminopropylmethoxydimethoxysilane), aminoethylaminopropyltrimethoxysilane (3- (2-Aminoethyl) aminopropyl] trimethoxysilane), and the like; Sulfur functional silanes such as bis (triethoxysilylpropyl) tetrasulfide (Bis (3- (triethoxysilyl) propyl) tetrasulfide), mercaptopropyltrimethoxysilane, mercaptopropyltriethoxysilane ( Mercaptopropyltriethoxysilane) and the like; Epoxy functional silanes, for example, glycidoxypropyltrimethoxysilane, glycidoxypropyltriethoxysilane, glycidoxypropylmethyldiethoxysilane, glycidoxypropylmethyl Dimethoxysilane (Glycidoxypropylmethlydimethoxysilane) and the like; It is preferable to use at least one member selected from the group consisting of vinyl functional silanes such as vinyltrimethoxysilane, vinyltriethoxysilane, and the like.

또한, 상기 탄소섬유는 피치, 레이온 또는 폴리아크릴로니트릴 등의 어떤 원료 물질로부터 얻어진 것이거나 고강도 유형(저탄성률 탄소섬유), 중고탄성 탄소섬유, 또는 초고탄성 탄소섬유 중 어떤 것일 수도 있다. 그러나, 본 발명이 상기 탄소섬유의 종류에 한정되는 것은 아니다. Further, the carbon fiber may be obtained from any raw material such as pitch, rayon or polyacrylonitrile, or may be any of high strength type (low modulus carbon fiber), used elastic carbon fiber, or ultra high elastic carbon fiber. However, the present invention is not limited to the kind of carbon fiber.

또한, 상기 탄소섬유의 사이징욕 노출 시간은 10초 내지 60분이 바람직하다. 10초 미만에서는 반응시간이 너무 짧기 때문에 탄소섬유 표면에 사이징 되는 양이 적어 바람직하지 못하며, 60분을 초과하면 피막이 손상되어 보강제로 사용하기 어렵다.In addition, the sizing bath exposure time of the carbon fiber is preferably 10 seconds to 60 minutes. In less than 10 seconds, the reaction time is too short, so the amount of sizing on the surface of the carbon fiber is not preferable, and if it exceeds 60 minutes, the film is damaged and difficult to use as a reinforcing agent.

또한, 최종적으로 제조되는 복합재 내의 탄소섬유 함유량은 10 내지 50%가 적합하다. 탄소섬유의 함량이 10% 미만일 경우 높은 기계적 물성을 얻기 힘들고, 50%를 초과하는 경우에는 매트릭스의 양이 탄소섬유의 양보다 적어 오히려 물성이 떨어지기 때문이다.In addition, the carbon fiber content in the finally produced composite material is suitable for 10 to 50%. If the content of the carbon fiber is less than 10%, it is difficult to obtain high mechanical properties, and if the content of the carbon fiber exceeds 50%, the amount of the matrix is less than that of the carbon fiber, and thus the physical properties are deteriorated.

또한, 본 발명에서 사용가능한 매트릭스 수지로는 열가소성 수지가 바람직하고, 더욱 바람직하게는 폴리올레핀 수지, 폴리아미드, 아크릴(공)중합체, 폴리알킬 렌 테레프탈레이트, 폴리카보네이트 등에서 선택되는 것이 좋으며, 가장 바람직하게는 폴리에틸렌, 폴리프로필렌, 폴리아미드-6(나일론-6), 폴리아미드-6,6(나일론-6,6), 폴리아미드-6,10(나일론-6,10), 폴리아미드-6,12(나일론-6,12), 아크릴로니트릴-스티렌 공중합체 및 폴리카보네이트 중에서 선택되는 1종 이상인 것이 좋다.In addition, the matrix resin usable in the present invention is preferably a thermoplastic resin, more preferably polyolefin resin, polyamide, acrylic (co) polymer, polyalkylene terephthalate, polycarbonate and the like, most preferably Polyethylene, polypropylene, polyamide-6 (nylon-6), polyamide-6,6 (nylon-6,6), polyamide-6,10 (nylon-6,10), polyamide-6,12 (Nylon-6,12), an acrylonitrile-styrene copolymer, and at least 1 sort (s) chosen from a polycarbonate are preferable.

또한, 본 발명에서 탄소섬유강화 복합재 제작시 가열프레스의 압력은 2.0 내지 10.0 MPa이 바람직하다. 2.0 MPa 미만에서는 복합재 내부에 기공이 생겨 물성을 저하하기 때문에 바람직하기 못하다.In addition, in the present invention, the pressure of the heating press when manufacturing the carbon fiber reinforced composite is preferably 2.0 to 10.0 MPa. If it is less than 2.0 MPa, pores are generated inside the composite material, which is not preferable because of deterioration of physical properties.

이러한 탄소섬유강화 복합재는 일반적으로 통상 행하여지는 방법을 채용할 수 있다. 예를 들면, 핫멜트법, 용제업, 시럽법 또는 시트 몰드 컴파운드(SMC) 등에 사용되는 증점 수지법 등이 가능하며, 본 발명에 따른 사이징제로 처리된 탄소섬유와 매트릭스 수지를 블렌딩 하는 방법은 특별히 한정시킬 필요는 없다.Such carbon fiber-reinforced composite materials can be generally adopted a method generally performed. For example, a thickening resin method used in a hot melt method, a solvent industry, a syrup method or a sheet mold compound (SMC), etc. is possible, and the method of blending the carbon fiber and the matrix resin treated with the sizing agent according to the present invention is particularly limited. You don't have to.

또한, 본 발명에서 탄소섬유강화 복합재 제작시 가열프레스의 온도는 200 내지 265℃가 바람직하다. 200℃ 미만에서는 매트릭스로 사용하는 수지가 용해되지 않아 복합재 제작이 어려우며, 265℃를 초과하면 매트릭스 수지가 열화되는 현상이 발생되기 때문에 상기 온도 범위에서 진행하는 것이 좋다.In addition, in the present invention, the temperature of the heating press is preferably 200 to 265 ° C. in manufacturing the carbon fiber reinforced composite material. If the resin used as a matrix is less than 200 ℃ is difficult to produce a composite material, and if it exceeds 265 ℃ it is preferable to proceed in the above temperature range because the phenomenon that the matrix resin deteriorates occurs.

또한, 본 발명의 탄소섬유강화 복합재는 본 발명의 복합재가 목적하는 특성에 손상을 주지 않는 범위로 통상적으로 탄소섬유강화 복합재 제작시 사용되는 분산제, 열 안정화제 및/또는 내후성제 등을 추가로 포함할 수 있다.In addition, the carbon fiber-reinforced composite of the present invention further includes a dispersing agent, a heat stabilizer and / or a weathering agent, etc. which are usually used in the production of carbon fiber-reinforced composites to the extent that the composite of the present invention does not impair the desired properties. can do.

본 발명은 기계적 물성이 우수한 탄소섬유강화 복합재를 제조하는 방법을 제 공하는 효과가 있다.The present invention has the effect of providing a method for producing a carbon fiber reinforced composite having excellent mechanical properties.

본 발명에 따른 방법은 탄소섬유를 사이징 처리하여 탄소섬유의 취급성을 향상시킴과 동시에 매트릭스와의 계면결합력을 최대화함으로써 높은 기계적 계면 강도를 가지는 탄소섬유강화 복합재를 제조할 수 있다.The method according to the present invention can produce a carbon fiber reinforced composite having a high mechanical interface strength by sizing the carbon fiber to improve the handleability of the carbon fiber and at the same time maximize the interfacial bonding force with the matrix.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. It is to be understood by those skilled in the art that these examples are for illustrative purposes only and that the scope of the present invention is not construed as being limited by these examples.

측정예 1. 탄소섬유-나일론 복합재의 기계적 계면 강도 측정Measurement Example 1 Measurement of Mechanical Interfacial Strength of Carbon Fiber-Nylon Composite

본 발명에서 제조된 탄소섬유-나일론 복합재의 기계적 계면 강도 측정을 위하여, 삼점 굴곡 시험(Three-point bending test)로부터 얻은 ILSS, KIC와 인장실험으로부터 얻은 GIC를 측정한 후 고찰하였다. 이때, KIC는 Instron #1125 시험기(LR5K plus, Lloyd, England)를 사용하여 ASTM E399에 준하여 지지대간 거리와 시편 두께와의 비(span-to-depth ratio) 4 : 1, cross head speed 1 ㎜/분의 속도로, GIC는 ASTM D5528에 따라 Double Cantilever Beam 방법으로 인장속도 2 ㎜/분으로 하여 측정하였다.In order to measure the mechanical interfacial strength of the carbon fiber-nylon composite prepared in the present invention, ILSS, K IC obtained from the three-point bending test and G IC obtained from the tensile test were measured and discussed. At this time, K IC is using Instron # 1125 tester (LR5K plus, Lloyd, England) in accordance with ASTM E399, span-to-depth ratio 4: 1, cross head speed 1 mm At a rate of / min, G IC was measured at a tensile rate of 2 mm / min by the Double Cantilever Beam method according to ASTM D5528.

측정예 2. 탄소섬유-나일론 복합재의 표면구조 및 특성 확인Measurement Example 2 Surface Structure and Characterization of Carbon Fiber-Nylon Composite

본 발명에서 제조된 탄소섬유-나일론 복합재의 표면구조를 관찰하기 위하여, 주사전자현미경(Scanning electron microscope, SEM; S-4200, HITACHI, JAPAN)를 사용하였다.In order to observe the surface structure of the carbon fiber-nylon composite prepared in the present invention, a scanning electron microscope (SEM; S-4200, HITACHI, JAPAN) was used.

실시예 1. 탄소섬유-나일론 복합재의 제조(1)Example 1 Preparation of Carbon Fiber-Nylon Composite (1)

본 발명에서 사용된 탄소섬유는 Formosa Platic Co.에서 생산된 폴리아크릴로니트릴(polyacrylonitrile, PAN)계 고강도 탄소섬유(TC-3K-36)로, 사이징 처리 전 표면의 불순물 제거를 위해 0.1 M HNO3 으로 30분 동안 전처리한 다음 사용하였다.Carbon fiber used in the present invention is a polyacrylonitrile (PAN) -based high-strength carbon fiber (TC-3K-36) produced by Formosa Platic Co., 0.1 M HNO 3 to remove impurities on the surface before sizing Pretreated for 30 minutes and then used.

또한, 나일론과 탄소섬유의 계면결합력을 향상시키기 위하여 아미노 기능성 실란 중 아미노프로필메톡시다이에톡실란을 10중량% 사용하여, 상기 전처리한 탄소섬유를 20분 동안 사이징 처리하였으며, 나일론의 경우 습기에 약하므로 80℃ 진공오븐에서 24시간 건조시킨 후 밀봉 보관하였다.In addition, in order to improve the interfacial bonding force between nylon and carbon fiber, 10% by weight of aminopropylmethoxydiethoxysilane in amino functional silane was used, and the pretreated carbon fiber was sized for 20 minutes. As it was weak, it was dried for 24 hours in a vacuum oven at 80 ℃ and kept sealed.

또한, 탄소섬유-나일론 복합재 중의 탄소섬유 함량을 10중량%로 하고, 나일론-6과 혼합기(internal mixer)를 이용하여 60 rpm으로 10분 동안 혼합한 후, 물성 측정을 위한 시편을 가열프레스를 이용해 220℃에서 조성물을 충분히 녹인 다음 2.0 MPa의 압력으로 30분간 가압하여 제조하였다.In addition, the carbon fiber content of the carbon fiber-nylon composite material is 10% by weight, and after mixing for 10 minutes at 60 rpm using a nylon-6 and an internal mixer, the specimen for measuring the physical properties using a heat press The composition was sufficiently dissolved at 220 ° C. and then pressurized at a pressure of 2.0 MPa for 30 minutes.

실시예 2. 탄소섬유-나일론 복합재의 제조(2)Example 2 Preparation of Carbon Fiber-Nylon Composites (2)

상기 실시예 1과 동일한 공정으로 수행하되, 사이징제로 아미노 기능성 실란 중 아미노프로필메톡시다이에톡실란 10중량%를 사용하여 60분 동안 사이징 처리하였스며, 나일론과 탄소섬유 혼합시 탄소섬유의 함량을 50중량%로 하였다.Performing the same process as in Example 1, but sizing treatment for 60 minutes using 10% by weight of aminopropyl methoxy diethoxysilane in the amino functional silane as a sizing agent, the content of the carbon fiber when mixing nylon and carbon fiber It was 50 weight%.

또한, 시편은 가열프레스를 이용하여 265℃에서 조성물을 충분히 녹인 후 10.0 MPa의 압력으로 제조하였다.In addition, the specimen was prepared at a pressure of 10.0 MPa after sufficiently dissolving the composition at 265 ℃ using a heating press.

실시예 3. 탄소섬유-나일론 복합재의 제조(3)Example 3 Preparation of Carbon Fiber-Nylon Composites (3)

상기 실시예 1과 동일한 공정으로 수행하되, 사이징제로 아미노 기능성 실란 중 아미노프로필메톡시다이에톡실란 10중량%를 사용하여 40분 동안 사이징 처리하였으며, 나일론과 탄소섬유 혼합시 탄소섬유의 함량을 50중량%로 하고, 시편은 가열프레스를 이용하여 245℃에서 조성물을 충분히 녹인 후 5.0 MPa의 압력으로 제조하였다.Performing the same process as in Example 1, but was sizing treatment for 40 minutes using 10% by weight of aminopropyl methoxy diethoxysilane in the amino functional silane as a sizing agent, the content of the carbon fiber 50 when mixing nylon and carbon fiber The sample was prepared by weight, and the specimen was prepared at a pressure of 5.0 MPa after sufficiently dissolving the composition at 245 ° C. using a heating press.

실시예 4. 탄소섬유-나일론 복합재의 제조(4)Example 4 Preparation of Carbon Fiber-Nylon Composites (4)

상기 실시예 1과 동일한 공정으로 수행하되, 사이징제로 황 기능성 실란 중 비스(트리에톡시실릴프로필)테트라설파이드 10중량%를 사용하여 20분 동안 사이징 처리하였으며, 나일론과 탄소섬유 혼합시 탄소섬유의 함량을 10중량%로 하고, 시편은 가열프레스를 이용하여 220℃에서 조성물을 충분히 녹인 후 2.0 MPa의 압력으로 제조하였다.Performed in the same process as in Example 1, but was sizing treatment for 20 minutes using 10% by weight of bis (triethoxysilylpropyl) tetrasulfide of sulfur functional silane as a sizing agent, the content of carbon fiber when nylon and carbon fiber mixed To 10% by weight, the specimen was prepared using a pressure of 2.0 MPa after sufficiently dissolving the composition at 220 ℃ using a heating press.

실시예 5. 탄소섬유-나일론 복합재의 제조(5)Example 5 Preparation of Carbon Fiber-Nylon Composites (5)

상기 실시예 1과 동일한 공정으로 수행하되, 사이징제로 황 기능성 실란 중 비스(트리에톡시실릴프로필)테트라설파이드 10중량%를 사용하여 60분 동안 사이징 처리하였으며, 나일론과 탄소섬유 혼합시 탄소섬유의 함량을 50중량%로 하고, 시편은 가열프레스를 이용하여 265℃에서 조성물을 충분히 녹인 후 10.0 MPa의 압력으로 제조하였다.Performing the same process as in Example 1, but was sizing treatment for 60 minutes using 10% by weight of bis (triethoxysilylpropyl) tetrasulfide of sulfur functional silane as a sizing agent, the content of carbon fiber when nylon and carbon fiber mixed To 50% by weight, the specimen was prepared by using a heating press at 265 ℃ sufficiently dissolved the composition at a pressure of 10.0 MPa.

실시예 6. 탄소섬유-나일론 복합재의 제조(6)Example 6 Preparation of Carbon Fiber-Nylon Composites (6)

상기 실시예 1과 동일한 공정으로 수행하되, 사이징제로 황 기능성 실란 중 비스(트리에톡시실릴프로필)테트라설파이드 10중량%를 사용하여 40분 동안 사이징 처리하였으며, 나일론과 탄소섬유 혼합시 탄소섬유의 함량을 25중량%로 하고, 시편은 가열프레스를 이용하여 245℃에서 조성물을 충분히 녹인 후 5.0 MPa의 압력으로 제조하였다.Performing the same process as in Example 1, but was sizing treatment for 40 minutes using 10% by weight of bis (triethoxysilylpropyl) tetrasulfide of sulfur functional silane as a sizing agent, the content of carbon fiber when mixing nylon and carbon fiber Was 25% by weight, and the specimen was prepared at a pressure of 5.0 MPa after the composition was sufficiently dissolved at 245 ° C. using a heating press.

실시예 7. 탄소섬유-나일론 복합재의 제조(7)Example 7 Preparation of Carbon Fiber-Nylon Composites (7)

상기 실시예 1과 동일한 공정으로 수행하되, 사이징제로 에폭시 기능성 실란 중 글리시독시프로필트리메톡시실란 10중량%를 사용하여 20분 동안 사이징 처리하였으며, 나일론과 탄소섬유 혼합시 탄소섬유의 함량을 10중량%로 하고, 시편은 가열프레스를 이용하여 220℃에서 조성물을 충분히 녹인 후 2.0 MPa의 압력으로 제조 하였다.The same process as in Example 1 was performed, but the sizing treatment was performed for 10 minutes using 10% by weight of glycidoxypropyltrimethoxysilane in the epoxy functional silane as a sizing agent. By weight, the specimen was prepared at a pressure of 2.0 MPa after sufficiently dissolving the composition at 220 ℃ using a heating press.

실시예 8. 탄소섬유-나일론 복합재의 제조(8)Example 8 Preparation of Carbon Fiber-Nylon Composites (8)

상기 실시예 1과 동일한 공정으로 수행하되, 사이징제로 에폭시 기능성 실란 중 글리시독시프로필트리메톡시실란 10중량%를 사용하여 60분 동안 사이징 처리하였으며, 나일론과 탄소섬유 혼합시 탄소섬유의 함량을 50중량%로 하고, 시편은 가열프레스를 이용하여 265℃에서 조성물을 충분히 녹인 후 10.0 MPa의 압력으로 제조하였다.The same process as in Example 1 was carried out, but sizing treatment was performed for 60 minutes using 10% by weight of glycidoxypropyltrimethoxysilane in the epoxy functional silane as a sizing agent. The sample was prepared by weight, and the specimen was prepared at a pressure of 10.0 MPa after sufficiently dissolving the composition at 265 ° C. using a heating press.

실시예 9. 탄소섬유-나일론 복합재의 제조(9)Example 9 Preparation of Carbon Fiber-Nylon Composites (9)

상기 실시예 1과 동일한 공정으로 수행하되, 사이징제로 에폭시 기능성 실란 중 글리시독시프로필트리메톡시실란 10중량%를 사용하여 40분 동안 사이징 처리하였으며, 나일론과 탄소섬유 혼합시 탄소섬유의 함량을 25중량%로 하고, 시편은 가열프레스를 이용하여 245℃에서 조성물을 충분히 녹인 후 5.0 MPa의 압력으로 제조하였다.The same process as in Example 1 was performed, but the sizing treatment was performed for 10 minutes using 10% by weight of glycidoxypropyltrimethoxysilane in the epoxy functional silane as a sizing agent. The sample was prepared by weight, and the specimen was prepared at a pressure of 5.0 MPa after sufficiently dissolving the composition at 245 ° C. using a heating press.

실시예 10. 탄소섬유-나일론 복합재의 제조(10)Example 10 Preparation of Carbon Fiber-Nylon Composites (10)

상기 실시예 1과 동일한 공정으로 수행하되, 사이징제로 바이닐 기능성 실란 중 바이닐트리메톡시실란 10중량%를 사용하여 20분 동안 사이징 처리하였으며, 나일론과 탄소섬유 혼합시 탄소섬유의 함량을 10중량%로 하고, 시편은 가열프레스를 이용하여 220℃에서 조성물을 충분히 녹인 후 2.0 MPa의 압력으로 제조하였다.The same process as in Example 1 was performed, but the sizing treatment was performed for 10 minutes using 10% by weight of vinyltrimethoxysilane in the vinyl functional silane as a sizing agent, and the carbon fiber content was 10% by weight when the nylon and carbon fiber were mixed. And, the specimen was prepared at a pressure of 2.0 MPa after sufficiently dissolving the composition at 220 ℃ using a heating press.

실시예 11. 탄소섬유-나일론 복합재의 제조(11)Example 11 Preparation of Carbon Fiber-Nylon Composites (11)

상기 실시예 1과 동일한 공정으로 수행하되, 사이징제로 에폭시 기능성 실란 중 글리시독시프로필트리메톡시실란 10중량%를 사용하여 60분 동안 사이징 처리하였으며, 나일론과 탄소섬유 혼합시 탄소섬유의 함량을 50중량%로 하고, 시편은 가열프레스를 이용하여 265℃에서 조성물을 충분히 녹인 후 10.0 MPa의 압력으로 제조하였다.The same process as in Example 1 was carried out, but sizing treatment was performed for 60 minutes using 10% by weight of glycidoxypropyltrimethoxysilane in the epoxy functional silane as a sizing agent. The sample was prepared by weight, and the specimen was prepared at a pressure of 10.0 MPa after sufficiently dissolving the composition at 265 ° C. using a heating press.

실시예 12. 탄소섬유-나일론 복합재의 제조(12)Example 12 Preparation of Carbon Fiber-Nylon Composites (12)

상기 실시예 1과 동일한 공정으로 수행하되, 사이징제로 에폭시 기능성 실란 중 글리시독시프로필트리메톡시실란 10중량%를 사용하여 40분 동안 사이징 처리하였으며, 나일론과 탄소섬유 혼합시 탄소섬유의 함량을 25중량%로 하고, 시편은 가열프레스를 이용하여 245℃에서 조성물을 충분히 녹인 후 5.0 MPa의 압력으로 제조하였다.The same process as in Example 1 was performed, but the sizing treatment was performed for 10 minutes using 10% by weight of glycidoxypropyltrimethoxysilane in the epoxy functional silane as a sizing agent. The sample was prepared by weight, and the specimen was prepared at a pressure of 5.0 MPa after sufficiently dissolving the composition at 245 ° C. using a heating press.

비교예 1. Comparative Example 1

상기 실시예 1과 동일한 공정으로 수행하되, 사이징제를 사용하지 않았으며, 나일론과 탄소섬유의 혼합시 탄소섬유의 함량은 60중량%로 하고, 시편은 가열프레스를 이용하여 300℃에서 조성물을 충분히 녹인 후 13.0 MPa의 압력으로 제조하였 다. Perform the same process as in Example 1, but did not use a sizing agent, the content of the carbon fiber is 60% by weight when the nylon and carbon fibers are mixed, the specimen is sufficiently heated the composition at 300 ℃ using a heating press After melting, it was prepared at a pressure of 13.0 MPa.

실시예 13. 탄소섬유-나일론 복합재의 제조(13)Example 13. Preparation of Carbon Fiber-Nylon Composite (13)

상기 실시예 1과 동일한 공정을 수행하되, 사이징제로 아미노 기능성 실란 중 아미노프로필트리에톡시실란을 10중량% 사용하여 탄소섬유-나일론 복합재를 제조하였다.A carbon fiber-nylon composite was prepared by following the same process as Example 1 except using 10% by weight of aminopropyltriethoxysilane in the amino functional silane as a sizing agent.

실시예 14. 탄소섬유-나일론 복합재의 제조(14)Example 14 Preparation of Carbon Fiber-Nylon Composites (14)

상기 실시예 1과 동일한 공정을 수행하되, 사이징제로 아미노 기능성 실란 중 아미노프로필메톡시다이메톡시실란을 10중량% 사용하여 탄소섬유-나일론 복합재를 제조하였다.A carbon fiber-nylon composite was prepared by following the same process as Example 1 except using 10% by weight of aminopropylmethoxydimethoxysilane in the amino functional silane as a sizing agent.

실시예 15. 탄소섬유-나일론 복합재의 제조(15)Example 15 Preparation of Carbon Fiber-Nylon Composites (15)

상기 실시예 1과 동일한 공정을 수행하되, 사이징제로 아미노 기능성 실란 중 아미노에틸아미노프로필트리메톡시실란을 10중량% 사용하여 탄소섬유-나일론 복합재를 제조하였다.A carbon fiber-nylon composite was prepared by following the same process as Example 1 except using 10% by weight of aminoethylaminopropyltrimethoxysilane in the amino functional silane as a sizing agent.

실시예 16. 탄소섬유-나일론 복합재의 제조(16)Example 16. Preparation of Carbon Fiber-Nylon Composites (16)

상기 실시예 1과 동일한 공정을 수행하되, 사이징제로 황 기능성 실란 중 메르캅토프로필트리메톡시실란을 10중량% 사용하여 탄소섬유-나일론 복합재를 제조하 였다.The same process as in Example 1 was performed, but a carbon fiber-nylon composite was prepared using 10 wt% of mercaptopropyltrimethoxysilane in the sulfur functional silane as a sizing agent.

실시예 17. 탄소섬유-나일론 복합재의 제조(17)Example 17. Preparation of Carbon Fiber-Nylon Composites (17)

상기 실시예 1과 동일한 공정을 수행하되, 사이징제로 황 기능성 실란 중 메르캅토프로필트리에톡시실란을 10중량% 사용하여 탄소섬유-나일론 복합재를 제조하였다.The same process as in Example 1 was performed, but a carbon fiber-nylon composite was prepared using 10 wt% of mercaptopropyltriethoxysilane in sulfur functional silane as a sizing agent.

실시예 18. 탄소섬유-나일론 복합재의 제조(18)Example 18. Preparation of Carbon Fiber-Nylon Composites (18)

상기 실시예 1과 동일한 공정을 수행하되, 사이징제로 에폭시 기능성 실란 중 글리시독시프로필트리에톡시실란을 10중량% 사용하여 탄소섬유-나일론 복합재를 제조하였다.A carbon fiber-nylon composite was prepared by following the same process as Example 1 except using 10% by weight of glycidoxypropyltriethoxysilane in an epoxy functional silane as a sizing agent.

실시예 19. 탄소섬유-나일론 복합재의 제조(19)Example 19. Preparation of Carbon Fiber-Nylon Composites (19)

상기 실시예 1과 동일한 공정을 수행하되, 사이징제로 에폭시 기능성 실란 중 글리시독시프로필메틸다이에톡시실란을 10중량% 사용하여 탄소섬유-나일론 복합재를 제조하였다.A carbon fiber-nylon composite was prepared by following the same process as Example 1 except using 10% by weight of glycidoxypropylmethyldiethoxysilane in the epoxy functional silane as a sizing agent.

실시예 20. 탄소섬유-나일론 복합재의 제조(20)Example 20 Preparation of Carbon Fiber-Nylon Composites (20)

상기 실시예 1과 동일한 공정을 수행하되, 사이징제로 에폭시 기능성 실란 중 글리시독시프로필메톡시다이메톡시실란을 10중량% 사용하여 탄소섬유-나일론 복 합재를 제조하였다.A carbon fiber-nylon composite material was prepared by following the same process as Example 1 except using 10% by weight of glycidoxypropylmethoxydimethoxysilane in an epoxy functional silane as a sizing agent.

실시예 21. 탄소섬유-나일론 복합재의 제조(21)Example 21. Preparation of Carbon Fiber-Nylon Composites (21)

상기 실시예 1과 동일한 공정을 수행하되, 사이징제로 바니일 기능성 실란 중 바이닐트리에톡시실란을 10중량% 사용하여 탄소섬유-나일론 복합재를 제조하였다.A carbon fiber-nylon composite was prepared by following the same process as Example 1 except using 10% by weight of vinyltriethoxysilane in the vanyl functional silane as a sizing agent.

비교예 2.Comparative Example 2

상기 실시예 1과 동일한 공정을 수행하되, 사이징제를 사용하지 않고 탄소섬유-나일론 복합재를 제조하였다.Following the same process as in Example 1, a carbon fiber-nylon composite was prepared without using a sizing agent.

하기 표 1은 상기 실시예 1~12 및 비교예에서 제조한 탄소섬유-나일론 복합재의 기계적 계면 강도를 측정한 결과를 나타낸 것이고, 표 2는 상기 실시예 13~21 및 비교예 2의 탄소섬유-나일론 복합재의 기계적 계면 강도 결과를 나타낸 것이다.Table 1 shows the results of measuring the mechanical interfacial strength of the carbon fiber-nylon composites prepared in Examples 1 to 12 and Comparative Examples, Table 2 is the carbon fiber of Examples 13 to 21 and Comparative Example 2 Mechanical interface strength results of nylon composites are shown.

표 1과 2에서 보이는 바와 같이, 사이징 처리를 통해 계면결합력이 증가된 탄소섬유-나일론 복합재를 높은 기계적 계면 강도가 유도되었다. 그러나, 사이징 처리시간 및 탄소섬유의 함량, 복합재 제조시 가열프레스의 압력 및 온도가 과다한 경우에는 기계적 계면 강도가 감소하였다.As shown in Tables 1 and 2, the sizing treatment resulted in high mechanical interfacial strength of the carbon fiber-nylon composite with increased interfacial bonding force. However, when the sizing treatment time, the carbon fiber content, the pressure and temperature of the heating press during the manufacture of the composite were excessive, the mechanical interface strength decreased.

따라서 적절한 조건을 부여하였을 때 높은 기계적 계면 강도의 확보와 함께 다양한 소재로써 응용 가능한 탄소섬유강화 복합재가 얻어지는 것을 확인할 수 있 었다. Therefore, when the appropriate conditions are given, it can be confirmed that a carbon fiber reinforced composite obtained by applying various materials with high mechanical interfacial strength.

구분division 사이징제Sizing agent 사이징
시간
(분)
Sizing
time
(minute)
탄소섬유
함량
(중량%)
Carbon fiber
content
(weight%)
가열프레스온도
(℃)
Heating press temperature
(℃)
가열프레스압력
(MPa)
Heating press pressure
(MPa)
기계적
계면강도
Mechanical
Interface strength
실시예 1Example 1 아미노프로필메톡시다이에톡실란Aminopropylmethoxydiethoxysilane 2020 10 10 220 220 2.0 2.0 ILSSILSS 2.222.22 KIC K IC 3.113.11 GIC G IC 6.546.54 실시예 2Example 2 6060 5050 265265 10.010.0 ILSSILSS 2.712.71 KIC K IC 3.453.45 GIC G IC 7.017.01 실시예 3Example 3 4040 2525 245245 5.05.0 ILSSILSS 2.582.58 KIC K IC 3.303.30 GIC G IC 6.856.85 실시예 4Example 4 비스(트리에톡시실릴프로필)테트라설파이드Bis (triethoxysilylpropyl) tetrasulfide 2020 1010 220220 2.02.0 ILSSILSS 1.511.51 KIC K IC 2.112.11 GIC G IC 3.123.12 실시예 5Example 5 6060 5050 265265 10.010.0 ILSSILSS 1.921.92 KIC K IC 2.612.61 GIC G IC 3.703.70 실시예 6Example 6 4040 2525 245245 5.05.0 ILSSILSS 1.641.64 KIC K IC 3.233.23 GIC G IC 3.413.41 실시예 7Example 7 글리시독시프로필트리메톡시실란Glycidoxypropyltrimethoxysilane 2020 1010 220220 2.02.0 ILSSILSS 1.801.80 KIC K IC 2.612.61 GIC G IC 5.125.12 실시예 8Example 8 6060 5050 265265 10.010.0 ILSSILSS 2.152.15 KIC K IC 3.123.12 GIC G IC 5.915.91 실시예 9Example 9 4040 2525 245245 5.05.0 ILSSILSS 2.092.09 KIC K IC 2.962.96 GIC G IC 5.555.55 실시예10Example 10 바이닐트리메톡시실란Vinyltrimethoxysilane 2020 1010 220220 2.02.0 ILSSILSS 1.511.51 KIC K IC 2.122.12 GIC G IC 3.423.42 실시예11Example 11 6060 5050 265265 10.010.0 ILSSILSS 1.731.73 KIC K IC 2.512.51 GIC G IC 3.843.84 실시예12Example 12 4040 2525 245245 5.05.0 ILSSILSS 1.711.71 KIC K IC 2.432.43 GIC G IC 3.723.72 비교예 1Comparative Example 1 -- -- 6060 300300 13.013.0 ILSSILSS 1.121.12 KIC K IC 1.721.72 GIC G IC 2.032.03

구분division 사이징제Sizing agent 기계적 계면강도Mechanical interfacial strength 실시예 2Example 2 아미노프로필메톡시다이에톡실란Aminopropylmethoxydiethoxysilane ILSSILSS 2.222.22 KIC K IC 3.113.11 GIC G IC 6.546.54 실시예13Example 13 아미노프로필트리에톡시실란Aminopropyltriethoxysilane ILSSILSS 2.182.18 KIC K IC 3.073.07 GIC G IC 6.326.32 실시예14Example 14 아미노프로필메톡시다이메톡시실란Aminopropylmethoxydimethoxysilane ILSSILSS 2.242.24 KIC K IC 3.353.35 GIC G IC 6.676.67 실시예15Example 15 아미노에틸아미노프로필트리메톡시실란Aminoethylaminopropyltrimethoxysilane ILSSILSS 2.322.32 KIC K IC 3.423.42 GIC G IC 6.716.71 실시예 4Example 4 비스(트리에톡시실릴프로필)테트라설파이드Bis (triethoxysilylpropyl) tetrasulfide ILSSILSS 1.511.51 KIC K IC 2.112.11 GIC G IC 3.123.12 실시예16Example 16 메르캅토프로필트리메톡시실란Mercaptopropyltrimethoxysilane ILSSILSS 1.461.46 KIC K IC 2.082.08 GIC G IC 3.073.07 실시예17Example 17 메르캅토프로필트리에톡시실란Mercaptopropyltriethoxysilane ILSSILSS 1.611.61 KIC K IC 2.132.13 GIC G IC 3.093.09 실시예 7Example 7 글리시독시프로필트리메톡시실란Glycidoxypropyltrimethoxysilane ILSSILSS 1.801.80 KIC K IC 2.612.61 GIC G IC 5.125.12 실시예18Example 18 글리시독시프로필트리에톡시실란Glycidoxypropyltriethoxysilane ILSSILSS 1.761.76 KIC K IC 2.562.56 GIC G IC 5.045.04 실시예19Example 19 글리시독시프로필메틸다이에톡시실란Glycidoxypropylmethyldiethoxysilane ILSSILSS 1.821.82 KIC K IC 2.662.66 GIC G IC 5.155.15 실시예20Example 20 글리시독시프로필메톡시다이메톡시실란Glycidoxypropylmethoxydimethoxysilane ILSSILSS 1.901.90 KIC K IC 2.822.82 GIC G IC 5.245.24 실시예10Example 10 바이닐트리메톡시실란Vinyltrimethoxysilane ILSSILSS 1.511.51 KIC K IC 2.122.12 GIC G IC 3.423.42 실시예21Example 21 바이닐트리에톡시실란Vinyltriethoxysilane ILSSILSS 1.531.53 KIC K IC 2.082.08 GIC G IC 3.343.34 비교예 2Comparative Example 2 -- ILSSILSS 1.081.08 KIC K IC 1.341.34 GIC G IC 1.831.83

이상, 본 발명의 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적인 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다. As described above, specific portions of the contents of the present invention have been described in detail, and for those skilled in the art, these specific techniques are merely preferred embodiments, and the scope of the present invention is not limited thereto. Will be obvious. Accordingly, the actual scope of the present invention will be defined by the appended claims and their equivalents.

도 1은 본 발명의 일실시예에 따라 사이징제로 아미노프로필메톡시다이에톡실란을 사용하여 제조된 탄소섬유강화 복합재의 SEM 사진이다.1 is an SEM image of a carbon fiber reinforced composite prepared using aminopropylmethoxydiethoxysilane as a sizing agent according to one embodiment of the present invention.

도 2는 본 발명의 일실시예에 따라 사이징제로 비스(트리에톡시실릴프로필)테트라설파이드를 사용하여 제조된 탄소섬유강화 복합재의 SEM 사진이다. 2 is a SEM photograph of a carbon fiber reinforced composite prepared using bis (triethoxysilylpropyl) tetrasulfide as a sizing agent according to one embodiment of the present invention.

도 3은 본 발명의 일실시예에 따라 사이징제로 글리시독시프로필트리메톡시실란을 사용하여 제조된 탄소섬유강화 복합재의 SEM 사진이다. 3 is an SEM image of a carbon fiber reinforced composite prepared using glycidoxypropyl trimethoxysilane as a sizing agent according to one embodiment of the present invention.

Claims (7)

탄소섬유를 사이징제에 침지시켜 사이징 처리하는 단계를 포함하는 탄소섬유강화 복합재 제조방법에 있어서,In the carbon fiber reinforced composite manufacturing method comprising the step of sizing the carbon fiber in the sizing agent, (1) 탄소섬유를 사이징 처리 전 표면의 불순물을 제거하기 위해 0.1M HNO3으로 30분 동안 전 처리하는 단계;(1) pretreatment of the carbon fiber with 0.1 M HNO 3 for 30 minutes to remove impurities on the surface before sizing; (2) 상기 (1)단계에서 전 처리된 탄소섬유를 아미노 기능성 실란, 황기능성 실란, 에폭시 기능성 실란 및 바이닐 기능성 실란 중에서 선택되는 하나를 사이징제로 사용하여 10초 내지 60분 동안 사이징 처리하는 단계;(2) sizing for 10 seconds to 60 minutes using the carbon fiber pretreated in step (1) using one selected from amino functional silane, sulfur functional silane, epoxy functional silane and vinyl functional silane as a sizing agent; (3) 상기 (2)단계에 의해 사이징 처리된 탄소섬유를 탄소섬유-나일론 복합재 내에 10 내지 50중량% 포함되도록 탄소섬유와 나일론을 혼합하는 단계; 및(3) mixing the carbon fiber and nylon so that the carbon fiber sized by the step (2) is contained in the carbon fiber-nylon composite 10 to 50% by weight; And (4) 상기 (3)단계에 의해 혼합된 탄소섬유-나일론 복합재를 가열프레스를 이용하여 200 내지 265℃ 온도 및 2.0 내지 10.0MPa 압력에서 가열 및 가압하는 단계;를 포함하는 탄소섬유강화 복합재 제조방법.(4) heating and pressurizing the carbon fiber-nylon composite mixed by the step (3) using a heating press at a temperature of 200 to 265 ° C. and a pressure of 2.0 to 10.0 MPa. . 제 1 항에 있어서,The method of claim 1, 상기 (2)단계에서 사용되는 사이징제는 아미노프로필트리에톡시실란 (3-Aminopropyltriethoxysilane) 아미노프로필메톡시다이에톡시실란(3-Aminopropylmethoxydiethoxysilane), 아미노프로필메톡시다이메톡시실란(Aminopropylmethoxydimethoxysilane), 아미노에틸아미노프로필트리메톡시실란(3-(2-Aminoethyl)aminopropyl]trimethoxysilane), 비스(트리에톡시실릴프로필)테트라설파이드(Bis(3-(triethoxysilyl)propyl) tetrasulfide), 메르캅토프로필트리메톡시실란(Mercaptopropyltrimethoxysilane), 메르캅토프로필트리에톡시실란(Mercaptopropyltriethoxysilane), 글리시독시프로필트리메톡시실란(Glycidoxypropyltrimethoxysilane), 글리시독시프로필트리에톡시실란(Glycidoxypropyltriethoxysilane), 글리시독시프로필메틸다이에톡시실란(Glycidoxypropylmethyldiethoxysilane), 글리시독시프로필메틸다이메톡시실란(Glycidoxypropylmethlydimethoxysilane), 바이닐트리메톡시실란(Vinyltrimethoxysilane), 바이닐트리에톡시실란(Vinyltriethoxysilane) 중에서 어느 하나인 것을 특징으로 하는 탄소섬유강화 복합재 제조방법.The sizing agent used in step (2) is 3-aminopropyltriethoxysilane, 3-Aminopropylmethoxydiethoxysilane, aminopropylmethoxydimethoxysilane, aminoethyl Aminopropyltrimethoxysilane (3- (2-Aminoethyl) aminopropyl] trimethoxysilane), bis (triethoxysilylpropyl) tetrasulfide (Bis (3- (triethoxysilyl) propyl) tetrasulfide), mercaptopropyltrimethoxysilane ( Mercaptopropyltrimethoxysilane), Mercaptopropyltriethoxysilane, Glycidoxypropyltrimethoxysilane, Glycidoxypropyltriethoxysilane, Glycidoxypropyltriethoxysilane, Glycidoxypropylmethyldiethoxysilane Glycidoxypropylmethlydimethoxysilane, bi Trimethoxysilane (Vinyltrimethoxysilane), carbon fibers, characterized in that the vinyl-tree is one of a silane (Vinyltriethoxysilane) reinforced composite material manufacturing method. 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete
KR1020090132949A 2009-12-29 2009-12-29 Method of manufacturing of carbon fibers reinforced composites improved mechanical interface strength KR101189153B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090132949A KR101189153B1 (en) 2009-12-29 2009-12-29 Method of manufacturing of carbon fibers reinforced composites improved mechanical interface strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090132949A KR101189153B1 (en) 2009-12-29 2009-12-29 Method of manufacturing of carbon fibers reinforced composites improved mechanical interface strength

Publications (2)

Publication Number Publication Date
KR20110076281A KR20110076281A (en) 2011-07-06
KR101189153B1 true KR101189153B1 (en) 2012-10-10

Family

ID=44916199

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090132949A KR101189153B1 (en) 2009-12-29 2009-12-29 Method of manufacturing of carbon fibers reinforced composites improved mechanical interface strength

Country Status (1)

Country Link
KR (1) KR101189153B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150142103A (en) * 2014-06-10 2015-12-22 중앙대학교 산학협력단 Carbon fiber reinforced plastic, manufacturing method and molded article thereof
KR101741052B1 (en) * 2015-08-27 2017-05-30 영남대학교 산학협력단 Method of Manufacturing of Composite Material for Carbon Fiber-reinforced Thermoplastic Plastic
KR102403343B1 (en) * 2021-03-12 2022-05-30 경북대학교 산학협력단 Composite material comprising silane-based sizing agent and method for preparing thereof
KR20230137633A (en) 2022-03-22 2023-10-05 도레이첨단소재 주식회사 Epoxy resin composition and carbon fiber composite materials and pressure vessels prepared therefrom
KR20230140109A (en) 2022-03-29 2023-10-06 도레이첨단소재 주식회사 Epoxy resin composition and carbon fiber composite material using the same
KR20230166290A (en) 2022-05-30 2023-12-07 재단법인 한국탄소산업진흥원 Fiber reinforced with mechanical strength reinforced by hybrid sizing treatment and manufacturing method thereof, and fiber-reinforced composite material using same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101652174B1 (en) * 2014-10-06 2016-08-29 주식회사 두산 Prepreg, and metal-clad laminate and printed circuit board comprising the same
CN116640441A (en) * 2023-05-23 2023-08-25 中山市富恒科技有限公司 Nylon composite material based on carbon fiber reinforcement

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150142103A (en) * 2014-06-10 2015-12-22 중앙대학교 산학협력단 Carbon fiber reinforced plastic, manufacturing method and molded article thereof
KR101627622B1 (en) 2014-06-10 2016-06-08 중앙대학교 산학협력단 Carbon fiber reinforced plastic, manufacturing method and molded article thereof
KR101741052B1 (en) * 2015-08-27 2017-05-30 영남대학교 산학협력단 Method of Manufacturing of Composite Material for Carbon Fiber-reinforced Thermoplastic Plastic
KR102403343B1 (en) * 2021-03-12 2022-05-30 경북대학교 산학협력단 Composite material comprising silane-based sizing agent and method for preparing thereof
KR20230137633A (en) 2022-03-22 2023-10-05 도레이첨단소재 주식회사 Epoxy resin composition and carbon fiber composite materials and pressure vessels prepared therefrom
KR20230140109A (en) 2022-03-29 2023-10-06 도레이첨단소재 주식회사 Epoxy resin composition and carbon fiber composite material using the same
KR20230166290A (en) 2022-05-30 2023-12-07 재단법인 한국탄소산업진흥원 Fiber reinforced with mechanical strength reinforced by hybrid sizing treatment and manufacturing method thereof, and fiber-reinforced composite material using same

Also Published As

Publication number Publication date
KR20110076281A (en) 2011-07-06

Similar Documents

Publication Publication Date Title
KR101189153B1 (en) Method of manufacturing of carbon fibers reinforced composites improved mechanical interface strength
Ma et al. Effects of surface treating methods of high-strength carbon fibers on interfacial properties of epoxy resin matrix composite
CN101831800B (en) Method for modifying aramid fiber by using carbon nano tubes
WO2013108811A1 (en) Fiber reinforced polypropylene resin composition, molding material and prepreg
CN103665851B (en) A kind of manufacture method of gear
CN111851068B (en) Method for repairing surface interface of modified carbon fiber and application thereof
US10738170B2 (en) Method for the open-mold production of a fiber-reinforced semi-crystalline polyamide matrix composite material from a prepolymer reactive precursor composition
TW201343742A (en) Carbon fiber thermoplastic resin prepreg, carbon fiber composite material and fabricating method thereof
KR20120108002A (en) Modified resin systems for liquid resin infusion applications & process methods related thereto
KR102159239B1 (en) A method for manufacturing a hetero-element-doped carbon nanofibers, a hetero-element-doped carbon nanofibers manufactured by the same, and carbon nanofiber-polymer composite thereby
Zhao et al. Fabrication and characterization of polyphenylene sulfide composites with ultra-high content of carbon fiber fabrics
CN103788632A (en) High-rigidity high-durability carbon fiber enhanced polyamide composite material and preparation method thereof
Jaafar et al. Preparation and characterisation of epoxy/silica/kenaf composite using hand lay-up method
JP6107154B2 (en) Prepreg
KR20200086123A (en) Basalt fiber reinforced epoxy composites reinforced with ozone treated single-walled carbon nanotubes and method for manufacturing the same
JP2013173811A (en) Resin composition, molding material and method for producing the same
CN111971343A (en) Thermoplastic resin composition, material for fiber-reinforced plastic molding, and molded article
Wu et al. Interfacial properties and thermo-oxidative stability of carbon fiber reinforced methylphenylsilicone resin composites modified with polyhedral oligomeric silsesquioxanes in the interphase
Ren et al. Improving Interfacial Interactions of CF/PEEK composites with sulfonated polyether sulfone
JP6803912B2 (en) Method for Producing Fiber Reinforced Polyamide Matrix Composite from Reactive Prepolymer Precursor Composition
Song et al. Aramid fiber coated with aramid nanofiber coating to improve its interfacial properties with polycarbonate
Ibrahim et al. Preparation of Kevlar-49 Fabric/E-Glass Fabric/Epoxy Composite Materials and Characterization of Their Mechanical Properties.
JP2022020762A (en) Polymer-metal hybrid article
Feng et al. Construction of dendritic polymers on carbon fiber surfaces to improve the interfacial bonding of carbon fiber/silicone rubber composites
KR102214478B1 (en) Carbon fiber-reinforced epoxy composites with ozone-treated carbon blacks and manufacturing method.

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20151001

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160912

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170829

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180823

Year of fee payment: 7