KR20160146489A - 알루미늄 시트 금속에 선택된 지형을 부여하기 위한 장치와 방법, 및 이를 위한 적용례 - Google Patents

알루미늄 시트 금속에 선택된 지형을 부여하기 위한 장치와 방법, 및 이를 위한 적용례 Download PDF

Info

Publication number
KR20160146489A
KR20160146489A KR1020157013854A KR20157013854A KR20160146489A KR 20160146489 A KR20160146489 A KR 20160146489A KR 1020157013854 A KR1020157013854 A KR 1020157013854A KR 20157013854 A KR20157013854 A KR 20157013854A KR 20160146489 A KR20160146489 A KR 20160146489A
Authority
KR
South Korea
Prior art keywords
sheet
roll
silo
friction
handler
Prior art date
Application number
KR1020157013854A
Other languages
English (en)
Other versions
KR102220796B1 (ko
Inventor
쉔 쉐우
쥴리 에이 와이즈
탐 제이 카선
네빌 씨 휘틀
쥰 엠 엡
데이비드 이 콜맨
노만 제이 판세리
고미스 살바도르 아 마르실라
패트리샤 에이 스튜워트
안토니오 아르미글리아토
마르코 이오반
Original Assignee
알코아 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/673,468 external-priority patent/US20130122327A1/en
Priority claimed from US13/892,028 external-priority patent/US20130273394A1/en
Application filed by 알코아 인코포레이티드 filed Critical 알코아 인코포레이티드
Publication of KR20160146489A publication Critical patent/KR20160146489A/ko
Application granted granted Critical
Publication of KR102220796B1 publication Critical patent/KR102220796B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B1/227Surface roughening or texturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B27/00Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
    • B21B27/005Rolls with a roughened or textured surface; Methods for making same
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21HMAKING PARTICULAR METAL OBJECTS BY ROLLING, e.g. SCREWS, WHEELS, RINGS, BARRELS, BALLS
    • B21H8/00Rolling metal of indefinite length in repetitive shapes specially designed for the manufacture of particular objects, e.g. checkered sheets
    • B21H8/005Embossing sheets or rolls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D88/00Large containers
    • B65D88/26Hoppers, i.e. containers having funnel-shaped discharge sections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B2001/228Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length skin pass rolling or temper rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B2003/001Aluminium or its alloys

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Rolling (AREA)
  • Laminated Bodies (AREA)
  • Measurement Of Unknown Time Intervals (AREA)
  • Body Washing Hand Wipes And Brushes (AREA)
  • Forging (AREA)
  • Metal Extraction Processes (AREA)
  • Basic Packing Technique (AREA)
  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)
  • Powder Metallurgy (AREA)

Abstract

구형 매체, 예를 들어 스틸 볼 베어링에 의해 압입된 롤에 의해 압연된 등방성 텍스쳐화된 알루미늄 시트로부터 형성된 물질 핸들러는, 곡물 가루와 같은 입자형 물질에 대해 낮은 마찰 계수를 갖는 시트를 제조한다. 매끄러운 시트는, 입자형 물질의 유동 및 저장을 용이하게 하기 위해서, 탱크, 사일로, 도관 및 가이드를 제조하는데 사용될 수 있다.

Description

알루미늄 시트 금속에 선택된 지형을 부여하기 위한 장치와 방법, 및 이를 위한 적용례{APPARATUS AND METHOD FOR IMPARTING SELECTED TOPOGRAPHIES TO ALUMINUM SHEET METAL AND APPLICATIONS THERE FOR}
본 발명은, 압연 시트 금속 및 그의 표면 작업에 관한 것이고, 보다 구체적으로, 조합된 마찰 및 광학 특성, 예를 들어 알루미늄 시트 상의 등방성 표면을 갖는 특이한 표면 텍스쳐를 제조하기 위한 방법 및 장치에 관한 것이다.
관련 출원에 대한 상호 참조
본원은, 2013년 5월 10일 자로 출원된, "알루미늄 시트 금속에 선택된 지형을 부여하기 위한 장치 및 방법"을 제목으로 하는, 미국 특허출원 제 13/892,028 호의 일부 계속 출원이고, 상기 미국 특허출원 제 13/892,028 호는 2012년 11월 9일 자로 출원된, "알루미늄 시트 금속에 선택된 지형을 부여하기 위한 장치 및 방법"을 제목으로 하는, 미국 특허출원 제 13/673,468 호의 일부 계속 출원이고, 상기 미국 특허출원 제 13/673,468 호는 2011년 11월 11일자로 출원된, "알루미늄 시트 금속에 선택된 지형을 부여하기 위한 장치 및 방법"을 제목으로 하는, 미국 가특허출원 제 61/558,504 호를 우선권으로 주장한다.
현재, 알루미늄 시트 제조자는, 요구되는 두께, 폭 및 표면의 시트를 제조하기 위해서 냉간압연기(cold rolling mill)를 사용한다. 목적하는 표면을 제조하기 위해서, 낮은 감소율(10% 미만)로, 조질 압연기(skin/temper rolling mill)도 사용될 수 있다. 시트 알루미늄이 통과하는 원통형 롤(작업 롤)의 표면은, 연마 연삭 휠 또는 벨트를 사용하는 연삭에 의한 압연 작업을 위해 제조될 수도 있다. 연삭은, 연삭 마크(결)로 인하여 외관상 및 마찰 특성 측면에서 방향성을 갖는 롤 표면을 유발하고, 다시 연삭 작업 롤에 의해 압연된 시트에 옮겨지거나 이에 부여된다. 연삭 작업 롤에 의해 압연된 시트의 방향성 표면은 가시적이고 종종 상기 시트 물질에 또는 상기 시트 물질로부터 제조된 제품, 예를 들어 차체 패널에, 도포된 페인트-발린 코팅 전반에서 관찰될 수 있다.
엠보싱 밀은 시트 금속 위에 소정의 표면 지형을 부여하기 위해서, 예를 들어 비-방향성 지형을 제조하기 위해서 사용된다. 엠보싱 밀 내에서의 시트 가공은, 압연 공정 이후, 및 시트의 최종 치수를 가늠하는 타겟 치수로 시트 두께가 감소된 이후에, 수행된다. 엠보싱 밀은, 시트 상의 실질적인 사이징 효과를 갖는 것이 아니라, 단지 표면 텍스쳐만 부여하고자 하기 때문에, 압연기의 작업 롤에 의해 이미 압연되어 있는 시트에 대해 작업한다. 엠보싱 밀에서 시트를 엠보싱하는 것은, 압연 이외의 부가적인 단계들을 나타내고, 일반적인 압연기에 비해, 부가적인 장치, 금속 취급, 및 매우 다양한 롤 유형의 관리를 요구한다.
본 개시내용은, 하나 이상의 물질 접촉면을 갖는 물질 핸들러(handler)의 제조 방법으로서, 깍인 면(facet)이 없는 압입-자국에 의해 50% 내지 100% 덮인 표면을 갖는 작업 롤로서, 표면의 평균 높이에 비해 함몰된 중앙부 및 표면의 평균 높이에 비해 정점에서 더 높은 높이를 갖는 융기형 평활한 주변 가장자리를 갖는 작업 롤에 의해 압연된 알루미늄 시트를 수득하되, 상기 알루미늄 시트의, 하나 이상의 물질과의 정적 마찰 계수가 0.62 내지 0.79인, 단계; 및
상기 알루미늄 시트로 하나 이상의 물질 접촉면을 만드는 단계
를 포함하는, 방법에 관한 것이다.
또다른 실시양태에서, 상기 압입-자국은, 150㎛ 내지 400㎛의 직경 및 6±2.0㎛ 범위의, 주변 가장자리의 정점에 대한 깊이를 갖는다.
또다른 실시양태에서, 물질 핸들러는, 물질을 저장하기 위한 내부 공간을 갖는 사일로이고, 물질 접촉면은 상기 내부 공간을 한정하는 표면의 적어도 일부를 형성한다.
또다른 실시양태에서, 물질 접촉면은, 사일로의 깔대기 부분을 형성한다.
또다른 실시양태에서, 상기 사일로에 의해 취급되는 물질은 곡물 가루이고, 추가로 상기 곡물 가루를 사일로에 도입하고 상기 물질 접촉면과 곡물 가루를 접촉시키는 단계를 포함한다.
또다른 실시양태에서, 사일로에 의해 취급되는 물질은 설탕이고, 추가로 상기 설탕을 사일로에 도입하고 상기 물질 접촉면과 설탕을 접촉시키는 단계를 포함한다.
또다른 실시양태에서, 물질 핸들러는 배출구 쪽으로 물질을 모으기 위한 내부 공간을 갖는 깔대기이고, 물질 접촉면은 내부 공간을 한정하는 표면의 적어도 일부를 형성한다.
또다른 실시양태에서, 물질 핸들러는 물질을 안내하기 위한 내부 공간을 갖는 홈통이며, 물질 접촉면은 내부 공간을 한정하는 표면의 적어도 일부를 형성한다.
또다른 실시양태에서, 물질 핸들러는 물질을 안내하기 위한 내부 공간을 갖는 도관이고, 물질 접촉면은 내부 공간을 한정하는 표면의 적어도 일부를 형성한다.
또다른 실시양태에서, 알루미늄 시트는, 정적 마찰 계수가 측정되는 방향에 대한 시트의 임의의 2개의 소정의 배향 사이에서 5% 이하의 차이를 갖는 정적 마찰 계수를 갖는다.
또다른 실시양태에서, 하나 이상의 물질 접촉면을 갖는 물질 핸들러는, 물질 접촉면을 적어도 부분적으로 한정하는, 알루미늄 시트로부터 형성된 표면을 포함하되, 상기 알루미늄 시트는, 깍인 면이 없는 압입-자국에 의해 60% 내지 100% 덮인 표면을 갖고 표면의 평균 높이에 비해 함몰된 중앙부와 표면의 평균 높이에 비해 그의 정점에서 더 높은 높이를 갖는 융기형, 평활한 주변 가장자리를 갖는 작업 롤에 의해 압연되어 있고, 상기 알루미늄 시트의 정적 마찰 계수가 0.62 내지 0.79이다.
또다른 실시양태에서, 압입-자국이, 200㎛ 내지 400㎛의 직경, 및 0.5㎛ 내지 2.0㎛의, 주변 가장자리의 정점에 대한 깊이를 갖는다.
또다른 실시양태에서, 물질 핸들러는 물질을 저장하기 위한 내부 공간을 갖는 사일로이고, 물질 접촉면은 내부 공간을 한정하는 표면의 적어도 일부를 형성한다.
또다른 실시양태에서, 물질 접촉면은 사일로의 깔대기 부분을 형성한다.
또다른 실시양태에서, 물질 핸들러는 곡물 가루 사일로이다.
또다른 실시양태에서, 물질 핸들러는 설탕 사일로이다.
또다른 실시양태에서, 물질 핸들러는 배출구 쪽으로 물질을 모을 수 있는 내면(interior surface)을 갖는 깔대기이고, 물질 접촉면은 내면을 한정하는 표면의 적어도 일부를 형성한다.
또다른 실시양태에서, 물질 핸들러는 물질을 안내할 수 있는 안내면을 갖는 홈통이고, 물질 접촉면은 상기 안내면의 적어도 일부를 형성한다.
또다른 실시양태에서, 물질 핸들러는 물질을 안내할 수 있는 내부 안내면을 갖는 도관이고, 물질 접촉면은 내부 안내면을 한정하는 표면의 적어도 일부를 형성한다.
또다른 실시양태에서, 알루미늄 시트는, 정적 마찰 계수가 측정된 방향에 대한 시트의 임의의 2개의 소정의 배향 사이에서 5% 이하의 차이를 갖는 정적 마찰 계수를 갖는다.
본 발명을 보다 완전하게 이해하기 위해서, 첨부된 도면과 함께 고려된 예시적인 실시양태에 대한 하기 상세한 설명을 참고한다.
도 1a 및 1b는, 광학 프로필로메트리에 의해 측정된 것으로서, EDT 텍스쳐화에 의해 제조된 작업 롤의 샘플면의 표면 지형의, 각각 평면도 및 투시도(3D) 그래픽 맵핑이다.
도 2는, 본 개시내용의 실시양태에 따라 작업 롤을 표면 작업하기 위한 장치의 개략도이다.
도 3a는, 광학 프로필로메트리에 의해 측정된 것으로서, 본 개시내용의 실시양태에 따른 방법에 의해 제조된 작업 롤의 샘플면의 표면 지형의 평면도 그래픽 맵핑이다. 도 3b는 도 3a의 일부의 확대도이고, 도 3c 및 3d는, 광학 프로필로메트리에 의해 측정된 것으로서, 각각 도 3a 및 도 3b에 도시된 표면의 투시 그래픽 맵핑이다.
도 4a 및 4b는, 광학 프로필로메트리에 의해 측정된 것으로서, 본 개시내용의 실시양태에 따른 방법에 의해 제조된 작업 롤의 샘플면의 표면 지형의, 각각 평면도 및 투시도(3D) 그래픽 맵핑이다.
도 5a는, 본 개시내용의 실시양태에 따르고, 광학 프로필로메트리에 의해 측정된 것으로서, 본 개시내용의 실시양태에 따른 방법에 의해 제조된 작업 롤에 의해 압연된 압연 알루미늄 시트의 샘플의 표면 지형의 평면도 그래픽 맵핑이다. 광학 프로필로메트리에 의해 측정된 것으로서, 도 5b는 도 5a의 일부의 확대도이고, 도 5c 및 5d는 각각 도 5a 및 5b에 도시된 표면의 투시도 그래픽 맵핑이다.
도 6a, 6b 및 6c는, 각각 광학 프로필로메트리에 의해 측정된 것으로서, 각각 10% 감소, 20% 감소 및 40% 감소에서 본 개시내용의 실시양태에 따른 방법에 의해 제조된 작업 롤에 의해 압연되고, 본 개시내용의 실시양태에 따른 압연 알루미늄 시트의 3개의 샘플의 표면 지형의 평면도 그래픽 맵핑이다. 도 6d, 6e, 및 6f는, 광학 프로필로메트리에 의해 측정된 것으로서, 각각 도 6a, 6b 및 6c에 도시된 표면의 투시도 그래픽 맵핑이다.
도 7a 및 7b는, 본 발명의 실시양태에 따라 표면-작업된 작업 롤의 사진이고, 도 7c 및 7d는, 각각 도 7a 및 7b의 일부의 확대 사진이다.
도 8은, 마찰 계수에 대한 표면 텍스쳐의 영향의 그래프이다.
도 9는, 본 개시내용의 예시적인 실시양태에 따른 표면 텍스쳐의 발달 방법의 개략도이다.
도 10은, 본 개시내용의 또다른 실시양태에 따른 작업 롤의 표면-작업을 위한 장치의 개략도이다.
도 11은, 본 개시내용의 또다른 실시양태에 따른 작업 롤의 표면-작업을 위한 장치의 개략도이다.
도 12 및 13은, 본 개시내용의 또다른 실시양태에 따른 작업 롤의 표면-작업을 위한 매체 시트의, 각각 투시도 및 단면도이다.
도 14는, 본 개시내용의 또다른 실시양태에 따른 작업 롤의 표면-작업을 위한 쐐기(shim)를 발생시키기 위한 장치의 개략도이다.
도 15는, 본 개시내용의 또다른 실시양태에 따른 작업 롤의 표면-작업을 위한 장치의 개략도이다.
16은, 본 개시내용의 또다른 실시양태에 따른 작업 롤의 표면-작업을 위한 장치의 개략도이다.
도 17은, 통상적인 방식으로 연삭된 롤에 의해 제조된 시트의 표면 텍스쳐의 투시도이다.
도 18은, 본 개시내용의 또다른 실시양태에 따른 물질 저장 구조물의 개략도이다.
도 19는, 본 개시내용의 또다른 실시양태에 따른 물질 취급 구조물의 개략도이다.
도 20은, 본 개시내용의 또다른 실시양태에 따른 물질 취급 구조물의 개략도이다.
도 21은, 마찰 계수 테스트 장치의 개략도이다.
본 개시내용의 양태는, 시트 물질의 많은 적용례의 경우, 균일하고 비-방향성인 표면 마무리, 즉 등방성을 나타내고 광을 널리 반사하는 표면을 갖는 것이 바람직하다는 점의 인식이다. 추가로, 본 개시내용은, 외관 효과 이외에, 연삭 작업 롤에 의해 압연된 시트 표면의 방향성-배향된 조도가 시트 물질을 성형품, 예를 들어 자동차 패널로 형성하기 위해서 사용될 수 있는 성형 공정에 영향을 미칠 수 있다는 점, 예를 들어, 상기 조도가, 작업 롤에 의해 부여된 금속 시트의 표면 내의 방향성-배향된 결/연삭 패턴으로 인해 성형 도구와 시트 스톡 사이의 마찰 상호작용에서의 차이에 기여할 수도 있다는 점을 인식한다. 본 개시내용은 또한, 알루미늄 시트에 대해 작용되는 일부 성형 공정을 수행하는데 보다 등방성 표면이 유리함을 인정한다.
알루미늄 시트 금속(주로 자동차 시트용)을 압연하기 위해 사용되는 작업 롤 위에 보다 등방성 표면을 형성하기 위한 한가지 방법은, 전기 방전 텍스쳐화(electric discharge texturing; EDT) 기기로 상기 롤을 표면-작업하는 것이다. 여러 개의 전극을 갖는 EDT 텍스쳐링 헤드는 롤 표면 근처에 배치되어서, 각각의 전극으로부터 롤 표면에 전기 방전/스파크/아크를 발생시켜서, 각각의 스파크 위치에서 상기 롤 표면을 국소적으로 용융하고 용융강을 유도하여서 관련된 크레이터 내부에 용융 금속의 작은 풀을 형성한다. 회전 롤의 표면을 따라 EDT 기기를 작업하면, 개선된 등방성 표면이 제조되지만, 직경이 100 ㎛ 이하이고 가장자리 높이가 15 내지 20 ㎛ 이하인 여러 개의 미세 크레이터를 특징으로 한다(도 1).
출원인은, EDT 방법에 의해 형성된 미세 크레이터의 가장자리가 깨지기 쉬워서, EDT 텍스쳐화 롤이 압연기에서 사용되는 경우, 작업 롤, 시트 및/또는 백업 롤 사이에, 높은 접촉 압력, 예를 들어 200 ksi 이하의 접촉 압력이 등방성 텍스쳐를 마모하여, 압연기 위에 및 윤활제 내에 침착된 잔해를 생성함을 인식하여 왔다.
도 1은, 알루미늄 시트의 압연을 위해 사용된 EDT 처리된 작업 롤의 표면 S1의 샘플 표면 지형을 도시한다. 인식할 수 있는 바와 같이, 표면 지형은, 기준면에 비해, 크기가 5.0 ㎛인, 여러 개의 골짜기와 뾰족한 피크로 덮여 있음을 특징으로 할 수 있다.
도 2는, 작업 롤(14)을 포함하기 위한 캐비넷(12)을 갖는 압연 처리 장치(10)를 도시한다. 작업 롤(14)은, 베어링(16, 18) 위에 지지되어서, 예를 들어 작업 롤(14)에 결합된 모터(20)에 의해, 회전할 수 있다. 캐비넷(12)은 또한, 예를 들어, 노즐(22)과 관련된 모터-구동 마찰 휠 드라이브를 경유하는 구동, 또는 체인, 랙(rack), 케이블 드라이브의 구동 또는 스크류 드라이브를 회전시키는 모터(26)의 작용에 의해, 노즐(22)이 선택적으로 움직이고 위치하도록 하는, 갠드리(24) 위에 장착될 수도 있는, 쇼트/볼 피닝 노즐(22)을 하우징한다. 노즐(22)은 컴프레서(28)와 매체 호퍼(30)에 의해 공급된다. 노즐(22)은 컴프레서(28)로부터의 압축 가스, 예를 들어 공기, 및 호퍼(30)로부터의 매체(32)를 혼합하여, 롤(14)의 외면 S를 향해 매체(30)를 몰고 가서 이를 향하게 한다. 매체는, 하기에서 추가로 설명하는 바와 같이, 강철, 유리 또는 세라믹 볼, 연마 그리츠 또는 기타 블라스팅/샷 피닝 매체일 수도 있다. 컴퓨터(34)는 프로그램적으로 제어하기 위해서 사용될 수 있다: 모터(26)를 제어함으로서 노즐(22)의 위치를; 모터(20), 컴프레서(28)의 작업, 및 호퍼(30)로부터의 분배 매체(32)의 속도를 제어함으로써, 롤의 회전을 제어할 수 있다. 비젼 시스템(36)은, 소정의 타겟 표면 테스쳐가 롤 처리 장치(10)의 작동의 실행을 통해 달성되는지 여부를 알아내기 위해서, 표면 S의 상태의 도면을 제공하기 위해서 캐비넷(12) 내부에 하우징될 수도 있다. 이 비젼 시스템은 노즐(22)에 부착될 수 있거나 갠트리(24) 위에서 독립적으로 이동가능하고, 매체(32)로부터의 충격으로부터 주입구 천공 및 렌즈를 보호하기 위해 실드(shield) 및 배율(magnification)을 포함할 수도 있다. 노즐(22)을 통해 사출되는 매체(32)는 캐비넷(12)의 깔대기부(38)를 통해 리사이클링 라인(40)으로 제공될 수도 있고, 상기 리사이클링 라인은 예를 들어 스크류 공급기를 통해 또는 압축 공기, 송풍기 또는 흡입기의 영향 하에서 매체(32)를 호퍼(30)로 되돌린다. 캐비넷(12)에는 문(도시되지 않음)과 검사 유리창(도시되지 않음)이 제공되어서, 캐비넷(12)의 안과 밖에서 롤(14)의 이동을 용이하게 하고 롤 처리 장치(10)의 작업을 모니터링할 수도 있다. 노즐(22) 및 컴프레서(28)는 목적하는 표면 지형을 만들기 위한 타겟 피닝 강도를 달성하기 위해서 시판중인 유형일 수도 있다.
다르게는, 노즐(22)은, 통상적인 샷-피닝 장치에서와 같이, 손으로 고정될 수도 있다. 상이한 유형의 매체(32)를 수용할 뿐만 아니라, 다양한 작업 조건, 예를 들어 소정의 매체(32)에 의해, 스틸 볼/샷에 의해 롤의 표면에 제조된 딤플/크레이터의 깊이 및 원주에 기여가능한, 예를 들어 롤(14) 경도, 초기 표면 텍스쳐 및 표면 S를 위해 요구되는 텍스쳐의 유형을 수용하기 위해, 노즐(22)로부터 사출되는 매체(32)의 속도를 조절하도록, 즉 수동으로 또는 컴퓨터 제어 하에서, 타겟 피닝 세기 압력 출력을 수득하기 위해서 컴프레서(28) 및 노즐(22)이 변할 수도 있다. 총 면적에 비해, 롤 표면적 위의 매체에 의해 형성된 압입-자국의 치수 및 충격의 갯수는, "% 도포율"로서 기술될 수 있고, 노즐(22)이 롤(14) 위를 통과하고/통과하거나 롤(14)이 모터(20)에 의해 회전함에 따라, 롤(14)에 비해 노즐(33)의 횡방향 속도, 매체 유속, 및 컴프레서 출력 설정에 의해 조절될 수 있다. 샷-피닝 공정의 제어는 자동이거나 수동일 수 있다. 예를 들어, 사람이 보호용 기어를 갖고 부분적으로 또는 완전히 작업편-함유 캐비넷에 들어가는 통상적인 샷-피닝 작업에서와 같이, 사람이 노즐(22) 및/또는 롤(14)을 수동으로 잡고, 배치하고, 움직일 수 있다. 적합한 작업을 확인하고/확인하거나 장치(10)를 조절하고, 피닝/블라스팅 작업의 종료 시점에서 허용가능하게 표면-작업된 롤(14)을 확인하기 위해서, 롤의 가시적 또는 미세한 검사를 수행할 수도 있다.
또다른 대안으로서, 표면 S에 대해 가압하여, 사용된 매체를 포획하여 호퍼(30)와 같은 저장 용기로 되돌리도록 재안내하는 이동성 피닝 챔버를 형성하는, 휴대용 개방측 용기(도시되지 않음) 내에, 노즐(22)이 포함될 수도 있다. 이러한 피닝 챔버는, 예를 들어 갠트리(24)와 같은 모터-구동식 공급 메카니즘에 의해 선택적으로 컴퓨터(34)의 제어 하에서, 수동으로 또는 기계적으로 배치되고 이동될 수도 있다.
본 개시내용의 장치 및 방법은, 사이징하기 위해 압연될 때, 예를 들어 등방성 산란 또는 밝은 외관을 갖는 시트를 제공하기 위해서, 압연될 때 소정의 목적하는 표면을 부여하는 작업 롤로 시트를 표면-작업하여서, 텍스쳐화된 시트를 만들기 위한 조질-압연(temper pass)의 사용 또는 엠보싱에 대한 필요를 배제할 수도 있다. 이러한 문맥에서, "밝은"이란 반사성을 지칭하고, "산란"이란 비-반사성 외관을 지칭한다. 표면 텍스쳐는, 소정의 목적하는 외관을 달성하기 위해 변할 수 있고, 매체 및 작업 파라미터의 적절한 선택에 의해 마찰 특성과 관련된 작업능을 형성할 수 있다.
본 개시내용의 하나의 양태에 따르면, 공기압에 의해 노즐(22)을 통해 작업 롤 표면 S에 선택된 매체를 몰고 가는 피닝/블라스팅 방법에 의해, 목적하는 텍스쳐가 작업 롤 표면, 예를 들어 S에 적용된다. 압력, 단위 면적 당 가공 시간, 예를 들어 작업 롤(14) 회전 속도 및 노즐(22) 횡방향 속도의 함수, 노즐(22) 구조 및 매체(32) 유형은, 매체(32) 크기, 형태, 밀도, 경도, 속도 및 결과물인 딤플/크레이터 또는 압입-자국 깊이, 폭 및 형태, 및 처리된 표면 영역 S 위에서의 딤플/크레이터의 % 도포율에 의해 영향받는 목적하는 작업 롤 텍스쳐를 제조하기 위해서 제어된다. 본 개시내용의 일부 실시양태에 따르면, 선택된 매체(32)는 완만한 크레이터, 예를 들어 고품질, 정밀 스틸 볼 베어링 또는 샷, 비드(유리, 세라믹)를 제조하는 구형 압입-자국 가공 매체를 포함한다. 생성된 표면에서 요구되는 특성에 따라, 비드와 그리츠의 혼합물, 예를 들어 알루미늄 옥사이드, 규소 카바이드 또는 기타 그리츠 유형이 사용될 수도 있다.
도 3a 내지 3d는, 본 개시내용의 실시양태에 따라 표면-작업된 작업 롤 표면의 광학 프로필로메트리에 의해 측정된, 표면 지형의 그래픽 맵핑을 도시한다. 도 3a 내지 3d에 도시된 표면 S3은, 직경이 0.125" 이하이고 경도 Rc가 60 이상인, 등급 1000의 스틸 볼 베어링에 의해 피닝되었다. 등급 1000은 0.001" 구체 및 ±0.005" 크기 공차를 갖는다. 더 높은 등급의 볼 베어링이 사용될 수도 있다. 롤(14)로부터의 노즐(22)의 스탠드-오프(stand off) 거리는 약 1인치 내지 약 12인치이고, 일부 적용례의 경우, 약 5인치의 스탠드-오프가 바람직하다. 알 수 있는 바와 같이, 피닝 매체로서 볼 베어링을 사용하면, 결과적으로 작업 롤 표면 위에 균일한 형태의 크레이터가 형성되고, EDT 텍스쳐에서 전형적인 뾰족한 융기형 가장자리는 없었다. 보다 구체적으로, 구형 압입-가공 매체를 사용하면, 오목부로부터의 물질의 이동에 의해 형성된 오목부 둘레의 평활한 주변 용승부 또는 가장자리와 함께, 이들을 만드는, 구/볼의 형태를 모방한, 여러 개의 평활한 중앙 오목부를 만든다. 표면을 따라 기울기의 점진적인 변화가 있고 갑작스런 레지(ledge) 또는 불연속성이 최소화된다. 일반적으로, 중앙부에서의 각각의 오목부의 깊이는, 표면의 평균 높이 미만이고 주변 가장자리의 정점이 평균 높이 위에 있다. 평활한 표면을 만들기 위해서, 구형 압입-가공 매체는 적절한 깊이의 크레이터를 만들기 위해서 요구되는 힘의 레벨에서 부숴지지 말아야 한다. 그렇지 않으면, 구형 매체는 파열되고, 깨진 매체 위의 결과물인 날카로운 가장자리 및 평활한 깍인 면이, 작업 롤의 표면 위의 깍인 면의 형성을 유발할 것이다. 이러한 깍인 면이 있는 압입-자국은, 충돌시, 또는 구형 매체가 재활용되어 표면에 다시 충돌할 때, 유발될 수 있다. 구형 매체의 파괴를 피하는 것 이외에, 매체에 의해 가해지는 힘이, 구의 크기, 속도 및 밀도를 고려할 때, 충돌시 궤적을 만들지 않고, 이는 결과적으로 작업 롤의 표면에 평행한 방향의 유의한 성분을 갖는 측면 고랑을 형성하는 것이 바람직하다.
작업 롤의 표면 S3에서 일반적으로 평활한 파도 모양은, 전형적으로 +/- 3 내지 6 ㎛의 범위 내의 크기를 갖지만, 예를 들어 10 ㎛ 초과 또는 3 ㎛ 미만의, 임의의 목적하는 크기의 크레이터가, 요구되는 경우, 달성될 수도 있다. 보다 충분히 하기에서 기술될 때, 구형 압입-가공 매체, 예를 들어 볼 베어링에 의해 제조된 평활한 파도모양 표면은, 예를 들어, 하기에서 설명하는 바와 같이, 개별적인 패턴으로 또는 샷 피닝 작업을 기대하는 것과 같이, 랜덤 패턴으로 제조될 수 있다. 전형적인 EDT 표면은 매우 많은 심각한 표면 변형을 갖는다. 전술한 바와 같이, 볼 베어링으로 샷-피닝된 작업 롤은, 개시하는 백그라운드 롤 표면에 따라, 등방성 외관을 갖는 밝은 시트를 제조하기 위해서 사용될 수 있다. 등급 1000 볼 베어링이 전술되었지만, 더 높은 등급의 볼 베어링과 같이, 롤 경도에 따라, 다른 유형의 정밀 볼이 사용될 수도 있다. 언급된 바와 같이, 롤 표면을 압입-가공하기 위해 선택된 구형 매체는, 충돌로 인해 깍인 면을 발달시키거나 깨지지 않으면서, 볼이 소정의 경도의 롤을 때려서 압입-가공하는 것을 허용하는, 밀도, 경도, 탄성, 압축 강도 및 인장 강도와 같은 물질 특성에 따라 바람직하게 선택된다.
도 4a 및 4b는, 본 개시내용의 또다른 실시양태에 따라 제조된 작업 롤 표면 S4를 도시한다. 보다 구체적으로, 도 4a는, 알루미늄 옥사이드 그리츠 혼합물(2:3 비의 120:180 그리츠)로 피닝되고 그다음 등급 AC(60 내지 120 메쉬)의 유리 비드로 피닝된 작업 롤 표면의 지형의 광학 프로필로메트리에 의해 측정된 평면도이다. 알루미늄 옥사이드 그리츠 블라스팅은 예비-연삭된 롤 패턴(시각적인 평가에 의해 예측됨)을 제거하는 방식으로 수행되고, 그다음 요구되는 산란 표면 외관을 달성하기 위해서 유리 비드로 블라스팅함으로써 수행되었다. 도 4b는, 광학 프로필로메트리에 의해 측정된 것으로서, 도 4a에서 도시된 표면 S4의 표면 지형의 투시도(3D) 그래픽 맵핑이다. 도 4a 및 4b에서 알 수 있는 바와 같이, 유리 비드를 사용하면, EDT 표면에 비해 심한 피크가 적은 표면 S4가 형성되고, 표면 차이의 크기도 EDT 표면에 비해 작다. 도 4b는 약 +/- 2.0 ㎛ 범위의 표면 변이를 나타낸다. 따라서, 결과물인 표면 S4가 EDT 표면에 비해 보다 편평하지만, 이러한 유형의 표면을 갖는 작업 롤에 의해 압연된 알루미늄 시트에 산란 등방성 표면 외관을 부여하기 위해서 사용될 수도 있는 미세-조도를 여전히 가진다는 점을 특징으로 한다.
본 개시내용에 따르면, 피닝에 의한 작업 롤의 표면 처리는, EDT 방법에 의해 처리된 작업 롤 표면에 비해 덜 부숴지기 쉬운 표면을 유발한다. 결과적으로, 작업 롤 표면(텍스쳐)은 길게 지속되고, 더 높은 표면 담지 압력을 유지할 수 있으면서, 압연 작업에 사용되는 경우 보다 적은 잔해를 만든다. 본 개시내용의 실시양태에 따르면, 볼 베어링 또는 유리 비드와 같은 구형 매체가 작업 롤을 표면-작업하기 위해서 사용되는 경우, 작업 롤 위에 제조된 완만한 파도모양 표면 텍스쳐가, 압연 공정 동안에 등방성 표면을 제조하는 이점을 제공한다. 일반적인 연삭 작업 롤 또는 EDT 표면-작업된 작업 롤에 비해, 완만한 파도모양은 시트와 작업 롤 사이에 보다 낮은 마찰을 촉진시켜서, 윤활제 또는 롤 표면 손상 이전에 시트 두께 측면에서의 더 높은 감소가 수행되도록 한다. 본 개시내용에 따라 표면-작업된 작업 롤의 텍스쳐는, 전형적-연삭된 작업 롤 또는 EDT 표면-작업된 롤과 같은 속도로 마모되지 않는다. 실험은, 작업 롤-구동 밀에서, 본 개시내용의 방법에 의해 롤에 부여된 텍스쳐가, 일반적으로 연삭된 롤 표면에 비해 5 내지 6배 길다는 점, 및 밀 마력 한계를 능가하고 윤활제 손상을 경험하기 이전에, EDT 작업 롤에 의해 달성된 것에 비해 더 높은 감소가 가능하다는 점이 밝혀졌다. 본 개시내용의 실시양태에 따라 발생된 롤 표면 지형은, 목적하는 텍스쳐화된 시트를 제조하기 위하여 10% 초과의 두께 감소율, 예를 들어 60% 이하의 두께 감소율을 견딜 수 있다. 이는, 약 8% 내지 10% 감소율 범위로 전형적으로 작동하는 EDT 표면-작업 작업 롤과는 대조적이다. 더 높은 감소율을 가지면, 목적하는 두께를 달성하기 위해서 압연기를 통한 필수적인 통과 회수를 제거하는 것이 잠재적으로 가능할 수 있다.
도 5a는, 본 개시내용의 실시양태에 따른 방법에 의해 제조된 것으로, 도 3a 내지 도 3d에서 도시한 롤 표면 S3과 같은, 롤 표면을 갖는 작업 롤(14)에 의해 압연된, 본 개시내용에 따른 압연된 알루미늄 시트의 샘플면 AS5를 도시한다. 도 5b는, 도 5a에 도시된 표면의 확대도이고, 둘다 광학 프로필로메트리에 의한 것이다. 도 5c 및 5d는, 광학 프로필로메트리에 의해 측정된 도 5a 및 도 5b에서 이미지화된 샘플의 투시도(3D) 그래픽 맵핑이다. 도 5a 내지 도 5d에 도시된, 제조된 시트는 정밀 스틸 볼 베어링을 사용하는 샷-피닝에 의해 제조되었다. 도시된 바와 같고 일반적으로, 압연 동안 작업 롤에 의해 시트 금속에 부여되는, 거대-텍스쳐, 예를 들어 피닝된 딤플/압입-자국은, 작업 롤 상의 텍스쳐와 정반대이다. 그러나, 거대 및 미세 특징부는 표면 휘도의 최종 레벨, 즉 시트의, 스펙트럼 반사의 최종 레벨에 영향을 미친다.
도 6a, 6b 및 6c는, 광학 프로필로메트리에 의해 측정된 것으로서, 각각 10% 감소율, 20% 감소율 및 40% 감소율로 본 개시내용의 실시양태에 따른 방법에 의해 제조된 작업 롤에 의해 압연되고, 본 개시내용의 실시양태에 따른, 압연된 알루미늄 시트의 3개의 표면 샘플 AS6a, AS6b 및 AS6c의 표면 지형의 평면도 그래픽 맵핑을 도시한다. 이러한 샘플들을 압연하기 위해 사용된 작업 롤은, 도 4a 및 도 4b에 대해 전술한 바와 같이, 알루미늄 옥사이드 그리츠에 의한 샷-피닝에 의해, 그다음 유리 비드에 의한 샷-피닝에 의해 표면 처리되었다. 도 6d, 6e, 및 6f는, 각각 광학 프로필로메트리에 의해 측정된 것으로, 도 6a, 6b 및 6c에 도시된 표면의 투시도 그래픽 맵핑이다.
도 7a 및 7b는, 본 발명의 실시양태에 따라 표면-작업된 작업 롤의 사진이다. 도 7c 및 7d는, 각각 도 7a 및 7b의 일부의 확대 사진이다. 도 7a 및 도 7c에 도시된 롤은, 직경이 1.6mm인 클래스 1000 스틸 볼 베어링으로 샷-피닝되었다. 롤은 딤플/압입-자국을 갖는 롤의 표면 S7a의 100% 도포율을 생성하는 조건 하에서 샷-피닝되었다. 도 7b 및 7d에 도시된 롤은, 직경이 2.36mm인, 클래스 1000 스틸 볼 베어링으로 샷-피닝되었다. 롤은, 딤플을 갖는 롤의 표면 S7b의 50% 도포율을 생성하는 조건 하에서 샷-피닝되었다.
본 개시내용의 실시양태에 따르면, 시트는 일반적인 압연 제조 스케줄을 통해 제조될 수 있어서, 압연기 상의 템퍼 패스(temper pass)의 사용 또는 엠보싱의 필요를 배제한다. 생성된 작업 롤 표면 텍스쳐는, EDT 제조된 롤 표면 및 일반적으로 연삭된 롤 표면과 같이 빠르게 마모되지 않는다. 결과적으로, 롤 수명이 일반적인 롤의 것보다 5 내지 6배 길다. 작업 롤-구동 밀에서, 텍스쳐의 마모로 인한 밴드화를 발달시키기 않기 때문에, 제조가 넓은 것부터 좁은 생산 스케줄로 제한되지 않는다. 앞에서 언급한 바와 같이, 예를 들어 볼 베어링에 의해 샷-피닝된 작업 롤 표면에 의해 제조된 시트는, EDT 표면-작업되거나 일반적으로 연삭된 표면에 비해 잔해를 덜 발생시켜서, 압연 동안 보다 깨끗한 윤활유 및 시트를 형성한다. 생성된 시트는 외관 측면에서 등방성이다.
도 8은, 성형이 종방향(L) 및 횡방향(T)으로 수행될 때, 다양한 표면의 성형 작업 동안 방향-의존성 마찰 계수를 도시한다. 샘플 6022-T43에 따르면, 피닝된 표면은 평균적으로 마찰의 감소를 나타내고 성형 방향에 의존적인 마찰 변이가 보다 작다. 예를 들어 연신(drawing) 및 다리미질(ironing)에 사용되는 것과 같은 성형 도구와의 등방성 마찰 상호작용은, 성형 성능의 개선을 나타낼 수도 있다, 예를 들어 보다 균일한 연신 및 연장된 연신 한계치를 생성한다.
본 개시내용에 따르면, 예를 들어 볼 베어링에 의한, 피닝 이전의 작업 롤을 위한 초기 표면 마무리 요구사항은, 최종 시트 외관 요구사항, 예를 들어 높은 반사성 또는 다소의 반사성에 좌우된다. 고도로 반사성인 등방성 표면이 요구되는 경우, 백그라운드 조도가 1마이크로인치 미만인 것이 바람직하다. 덜 반사성인 표면이 요구되는 경우, 초기 작업 롤 연삭이 50마이크로인치까지의 임의의 목적하는 연삭일 수 있다. 요구되는 예비-연삭의 양은, 전체 공정의 최종 비용에 영향을 미치며, 그 이유는 1마이크로인치 미만의 조도를 갖는 표면 마무리를 형성하는 것이 일반적으로 보다 비싸기 때문이다. 산란 표면을 제조하기 위한 유리 비드 또는 다른 매체에 의한 피닝 이전에 작업 롤을 위해 요구되는 초기 표면 마무리 요구사항은, 가공 이후에 피닝 작업 롤 상에 롤 연삭 패턴이 보이지 않을 정도로의 조도 또는 15마이크로인치 미만인 것이 바람직하다. 유리 비드 피닝 동안의 백그라운드 롤 연삭의 제거는, 산란 마무리를 생성하도록 선택된 피닝 가공 파라미터에 좌우될 것이다. 본 개시내용은 하기 실시예에 의해 추가로 설명된다.
실시예 1
도 3a 내지 3d, 7a 및 7c는, 본 개시내용의 예시적인 실시양태에 따라 제조된 작업 롤의 예시적인 표면 S3, S7a의 이미지를 나타낸다. 도시된 표면을 발생시키기 위하여, 약 5마이크로인치 미만의 조도의 표준 연삭 공정(예비-연삭)으로, 백그라운드 롤 지형을 형성한다. 200 내지 300 ㎛의 직경을 갖는 일련의 딤플들이, 직경이 1.6mm이고 경도 Rc가 60 이상인, 클래스 1000 스틸 볼에 의한 샷-피닝에 의해 롤 표면 위에 제조되었다. 약 200 ㎛ 내지 400 ㎛의 직경 및 약 0.5 ㎛ 내지 약 4 ㎛의 딤플 깊이를 유발하는 속도로, 약 58 내지 62 Rc의 경도를 갖는 롤의 표면에 대해, 볼을 몰고 간다. 딤플 직경 및 깊이는, 가공 조건(볼 속도)에 의해 영향을 받고 초기 작업 롤 경도에 좌우된다. 이러한 실시예에서, 가시적인 검사에 의해 표면적 중 약 100%가 딤플로 덮이지만, 도포율은 목적하는 표면 외관 마무리에 따라, 약 10% 내지 약 250%의 범위일 수 있다. 60% 내지 100%의 도포율은, 목적하는 광학 및 기계적 특성을 갖는 알루미늄 시트를 제조하는 작업 롤 표면을 제공한다. 측정된 % 도포율은 측정 방법에 따라 변할 수 있다. 광학 방법은, 지형 이미지로부터의 물질 측정치와 비교시, 도포율을 과대평가하는 경향이 있다.
또다른 실시양태에 따르면, 볼의 속도는, 150 ㎛ 내지 400 ㎛의 직경 및 6±2 ㎛ 범위의, 주변 가장자리의 정점에 대한 높이를 갖는 압입-자국을 수득하도록 조절될 수도 있다.
초기 압연(breakdown rolling)에서 이러한 롤을 사용하여 경험하는 이점은: 통과 횟수 제거(냉간 압연에서 1회 통과 제거, 열간 압연에서 3회 통과 제거); 좁게 내지 넓게 압연하는 능력; 증가된 롤 수명; 감소된 물질 이동으로 인한 고온 압연에서 발달하는 보다 적은 롤 코팅; 및 냉간 압연에서의 감소된 잔해 발생을 포함한다.
실시예 2
본 개시내용의 또다른 예시적인 실시양태에 따라, 산란 표면 작업 롤은, 5 마이크로인치 미만의 조도에서 예비-연삭된 작업 롤을 피닝함으로써 제조될 수도 있다. 매체는 유리 비드, 메쉬 크기가 20-30 내지 170-325인, 등급 A 내지 AH인, 기타 "세라믹" 비드, 또는 알루미늄 옥사이드(그리츠 크기 12 내지 400)와 같은 기타 경질 연마 입자일 수도 있다. 연속으로 적용되는, 유리 비드, 세라믹 비드 및 알루미늄 옥사이드 매체의 조합이, 도 4a 및 도 4b에 도시된 것과 같은 표면 마무리를 형성하기 위해 요구될 수도 있다. 예를 들어, 롤 표면은, 먼저 1.5인치/분의 횡방향 속도로 65PSI 및 5/16인치 노즐을 사용하여 혼합된 그리츠 사이즈(2:3 비의 120과 180 그리츠)의 알루미늄 옥사이드로 가공하고, 그다음, 1.5인치/분의 횡방향 속도 및 3/8인치 노즐을 사용하여 100PSI에서 유리 비드 등급 AC(메쉬 크기 60 내지 120)로 가공하였다. 구체적인 피닝 시스템의 노즐 강모(bristle) 길이에 기초하여 스탠드오프 거리가 조절되었다. 노즐, 압력 및 횡방향 속도의 선택은, 피닝하기 위해 사용되는 장치에 좌우될 것이다. 도포율의 % 면적은, 목적하는 표면 마무리에 따라, 10% 내지 250%의 범위일 것이다.
전술한 파라미터에 따라 표면-작업된 작업 롤은, (약 8% 내지 10%의 감소율에서 전형적으로 작동하는, EDT 처리된 압연에 비해) 10 내지 60% 감소율에서 작동될 수도 있다. 더 높은 레벨의 감소율이, 목적하는 두께 및 표면 외관을 달성하기 위해서 요구될 수 있는 하나 이상의 감소 통과 회수를 제거하기 위해서 사용될 수도 있다. 생성된 시트는, 등방성 외관 및 등방성 작용능을 갖는다.
도 9는, 본 개시내용의 예시적인 실시양태에 따라 표면 텍스쳐를 발달시키기 위한 방법의 도면을 도시한다. 제 1 단계(I)(도시하지 않음)에서, 일정 범위의 피닝 조건 및 매체 유형을 사용함으로써 수득된 표면 지형을 예측한다. 샷-피닝에 의해 처리된 작업 롤 표면의 경우, 압연된 제품에 부여되는, 롤의 목적하는 최종 텍스쳐를 제어하기 위해서, 조성 및 피닝 공정 조건, 예를 들어 속도 및 % 도포율이 선택될 수도 있다. 이러한 변수들(매체 크기, 조성 및 피닝 공정 조건)과 수득된 표면 작업 결과 사이의 관계가 기록될 수도 있고, 이는 롤 표면 텍스쳐를 제조하기 위한 임의의 소정의 세트의 파라미터에 대해, 제 1 단계에서의 예측 컴퓨터 모델링을 위한 기초로서 사용될 수도 있다.
그다음 제 2 단계(도 9에 도시됨)에서, 소정의 세트의 실제 또는 가상 표면 지형에 대한 광 산란 및 외관이 예측된다. 도 9에 도시된 바와 같이, 모델링은, 예를 들어 소정의 정도의 휘도를 수득하기 위해서, 예측된 광 산란과 같은 구체적인 광 특성을 갖는, '타겟' 표면을 선택함을 포함한다. 목적하는 광 특성들을 갖는 알루미늄 시트를 발생시키기 위한 방법은, 그다음 하기 단계들에 의해 추구될 수도 있다:
(A) 여러 개의 표면, 각각을 실현하기 위해서 사용된 표면 작업 처리 파라미터 및 광 산란, 길이 스케일을 비롯한, 각각의 표면 프로파일의 상응하는 광학 특성과 함께, 여러 개의 소정의 표면 프로파일을 포괄하는 데이타 파일을 축적하는 단계; (B) 타겟 광학 특성들을 구체화함으로써 가상의 표면을 함축적으로 규정하는 단계; (C) 타겟 광학 특성과 가장 유사하게 측정되거나 예측된 광학 특성을 갖는 하나 이상의 표면 프로파일과 관련된 데이타를 검색함으로써 가상 표면을 모델링하는 단계; (D) 하나 이상의 표면 프로파일의 광학 특성과, 타겟 광학 특성을 비교하는 단계; (E) 단계 (D)에서의 비교가 유사성(identity)을 나타내지 않는 경우, 타겟 특성과 유사하지만 하나 이상의 소정의 표면 프로파일의 광학 특성이 타겟 특성과 어떻게 다른지에 대해 반대 측면에서 타겟 특성과 상충되는, 측정되거나 예측된 광학 특성을 갖는, 데이타 파일에서의 또다른 표면 프로파일과 관련된 데이타를 검색하는 단계; (F) 타겟 특성들이, 보정된 가상 표면의 보정된 광학 특성에 도달하기 위해, 타겟 특성으로부터 그의 개별적인 차이의 크기에 대해 비례하여, 하나 이상의 표면 프로파일의 광학 특성 및 다른 표면 프로파일의 광학 특성으로부터 샘플링, 및 하나 이상의 표면 프로파일과 다른 표면 프로파일의 혼합된 샘플링 조성 기여도를 기록하는 단계; (G) 타겟 광학 특성에 대한 보정된 가상 표면의 광학 특성을 비교함으로써, 이들 사이의 차이 감소를 알아내는 단계; 및 거의 또는 전혀 개선이 인식되지 않아서, 그 결과 타겟에 대해 최고의 가상 표면을 알아낼 때까지, 단계 (E) 내지 (G)를 반복한다.
단계 (C) 내지 (G)는 설명한 바와 같이 실행될 수 있거나, 방법을 자동화하기 위해서 비-선형 최소 제곱 최적화 알고니즘에 의해 대체될 수 있다. 상기 과정을 완료하기 위해서, 모델화 단계 (I) 및 (II)가 조합된다. 즉, (1) 최적의 표면 작업 처리 파라미터를 정의함으로써, 최적의 가상 표면에 조합된 각각의 표면 프로파일의 광학 특성의 기여도에 비례하여 이러한 파라미터들을 조합함으로써 여러 개의 표면 각각을 실현하기 위해서 사용된 표면 작업 처리 파라미터를 알아내는 단계; (2) 최적의 표면 작업 처리 파라미터에 따라 롤의 표면 작업을 수행하는 단계; 및 (3) 단계 (1)에서 표면-작업된 롤로 알루미늄 시트를 압연하는 단계를 포함한다. 관찰될 수 있는 바와 같이, 모델화된 해결책에 도달하는 즉시, 이와 관련된 샷-피닝 파라미터들이 작업 롤을 표면 작업하는데 시행될 수도 있다. 시행의 실제 결과는, 이들이 모델화 용량을 확장시키도록 하는 공정 파라미터들과 함께 데이타베이스에 저장될 수도 있다.
도 10은, 본 개시내용의 또다른 실시양태에 따른 작업 롤(114a, 114b)을 표면 작업하기 위한 대안의 장치(110)를 도시한다. 하기에 기술된 표면 작업 공정 동안, 작업 롤(114a, 114b)은 평행하게 배열되고 서로에 대해 회전가능하며, 도 2의 16, 18과 같은 적합한 베어링(도시되지 않음)에 의해 말단에서 지지되고 도 2에서 도시된 모터(20)와 같이 모터 또는 모터들(도시되지 않음)에 의해 구동된다. 도 2의 노즐(22)과 같은 매체 노즐은, 닙 N으로 지칭될 수도 있는, 롤(114a, 114b)이 수렴되는 곳에 인접한 롤(114a, 114b)의 길이에 따라 노즐(122)을 이동하거나 배치하기 위해 갠트리 위에 유지될 수도 있다. 노즐(122)은 매체, 예를 들어 볼 베어링(132)을 닙 영역 N에 제공하여서, 롤(114a, 114b)이 화살표로 도시한 바와 같은 방향으로 회전할 때, 볼(132)은 롤들 사이로 당겨질 것이다. 노즐(22)과는 다르게, 노즐(122)은, 높은 속도를 달성하기 위해서 가압 하에서 볼(132)을 몰고 갈 필요가 없지만, 제어된 방식으로 볼(132)을 단순히 제공할 수도 있다. 롤(114a, 114b) 사이의 간격이 볼(132)의 직경보다 작으면, 이들이 닙 N으로 당겨질 때, 기계적 방해 상태에 도달한다. 볼(132)이 롤(114a, 114b)의 표면보다 크거나 상응하는 경도이고 파손되지 않으면서 닙 N을 통과하기에 적합한 압축 강도를 갖는, 충분한 탄성체인 경우, 이들이 닙 N을 통과함에 따라, 이들은 롤(114a, 114b)의 표면에 크레이터의 형성을 유도할 것이다. 크레이터는 높은 속도에서 표면에 사출된 볼의 충격력보다는 압축에 의해 롤(114a, 114b)의 표면에 형성된다. 닙 N을 통과한 후, 볼(132)은 재사용을 위해 거터 또는 호퍼(138)에 수집될 수도 있다. 롤(114a, 114b)은, 상이한 크기 볼(132)에 대해 조절하기 위해서 및/또는 롤(114a, 114b) 상에 형성된 크레이터의 깊이를 조절하기 위해서, 서로 근접하게 또는 멀게 떨어지게 이동하여 닙 N을 좁게 또는 넓게 하도록 조절가능할 수도 있다.
도 11은, 볼(232)의 공급을 유지 및 분배할 수 있는, 또다른 유형의 볼 공급 메카니즘, 즉 긴 호퍼/깔대기(230)를 가져서, 닙 N과 호퍼/깔때기(230) 사이의 영역이 항상 볼(132)로 용량까지 채워지는, 도 10과 유사한 장치를 도시한다. 보다 구체적으로, 닙을 통과하는 볼(232)은 마개 라인으로서 작용하여서, 호퍼 깔때기(230)를 통해 떨어지는 볼이 후진하여 볼이 밖으로 떨어지는 것을 방지한다. 깔때기/호퍼(230)는, 닙 N 위에 롤(214a, 214b)에 의해 정의된 일반적으로 V형 영역에 밀접하게 고정될 수도 있어서, 볼(232)이 롤(214a, 214b)과 깔때기/호퍼(230) 사이를 통과하지 않을 수 있다. 볼(232)이 닙 N을 통과함에 따라, 보다 많은 볼들이 호퍼/깔때기(230) 밖으로 흘러나와서 이들을 대체한다. 사용된 볼(232)은 거터(238)에 수집되고 라인(240a, 240c) 및 재활용 장치(240b)로 재순환된다. 롤(214a, 214b)의 양쪽 말단 위의 차단막(242)(단지 하나만 도시함)이 사용되어 롤(214a, 214b)의 말단 위로 볼들(232)이 유동하는 것을 방지하여서, V-형 영역 내에 볼(232)을 함유할 수 있게 한다.
도 12 및 도 13은, 본 개시내용의 또다른 실시양태에 따라 작업 롤을 표면-작업하기 위한 매체 시트(344)를 도시한다. 매체 시트(344)는, 예를 들어 탄성중합체로 제조된, 웹 부분(344a)을 가질 수도 있고, 여기서 표면 작업 매체, 예를 들어 볼 베어링과 같은 구형 인덴터(332)가 매립되어 있다. 대안으로서, 웹 부분(344a)은, 표면 작업 매체가 접착제에 의해 부착되어 있는 종이 또는 중합체 시트로 구성될 수도 있다. 매체 시트(344)는, 느슨한 볼(132, 232) 대신에 닙 N를 통해 매체 시트(344)를 통과시킴으로써, 도 10 및 11에 도시된 바와 같은, 표면 작업 장치(110, 210)로서 사용될 수도 있다. 웹 부분(344a)이 충분히 탄력있고 볼(232)을 단단하게 고정하는 경우, 매체 시트(344)와 연속적인 루프를 만들어서, 목적하는 크레이터 도포가 실현될 때까지 롤(214a, 214b) 사이로 순환하도록 하는 것도 가능할 수도 있다. 도 12에서 도시하는 바와 같이, 볼(332)은 임의의 목적하는 패턴으로, 예를 들어 전체 매체 시트(344)의 포괄적인, 심지어 이격된 도포로, 보다 분산된 패턴으로 또는 랜덤 분포로, 분포될 수도 있다.
도 14는 포토레지스트 또는 광중합체(448)의 층으로 코팅된, 지지체 표면(446), 예를 들어 유리를 개략적으로 도시한다. UV 선, 전자빔 또는 레이저와 같은 방사선의 공급원(452)이 방사선 R1을 방출한다. 광의 경우, 선택적 방사선 분포 구성요소(450), 예를 들어 마스트 또는 렌즈 어레이가 방사선 R1을, 보다 많고 적은 광 노출의 파도모양 패턴(448a)을 형성하는 포토레지스트 층(448) 위에 영향을 주는, 분포된 배열의 방사선 R2로 분포한다. 포토레지스트의 현상 직후에, 목적하는 부드러운 윤곽의 텍스쳐를 갖는 표면이 형성될 수도 있다. 대안으로, 포토레지스트 층이 레이저 스캐너 또는 전자빔 스캐너에 의해 노출/성형될 수도 있어서, 현상 직후에 목적하는 패턴의 노출 및 결과적으로 표면 프로파일이 발생할 수도 있다.
본원의 양수인에 의해 소유되고 그 전체를 본원에서 참고로 인용하는, 세퍼 등의 미국특허 제 7,094,502 호에 기술된 바와 같이, 쐐기(453)는, 현상된 포토레지스트 층(448)의 표면 프로파일로부터 성장될 수도 있다. 미국특허 제 7,094,502 호에서 추가로 기술된 바와 같이, 쐐기(453)는 다양한 도금 및 코팅 방법을 통해 경화되어서, 이것이 금속 롤의 표면 위에 압인되어서, 그의 표면 텍스쳐가 롤의 표면으로 이동되고, 그다음 후속적으로는 제품 표면으로 이동되는 것을 허용한다. 본 개시내용의 양태에 따르면, 부드러운 파도모양 표면 프로파일을 갖는 쐐기(453)는, 롤(114a 및/또는 114b)과 같은 작업 롤에 텍스쳐를 부여하기 위해서 사용될 수도 있다. 예를 들어, 이러한 특성의 쐐기(453)는, 도 11의 장치(210)의 롤(214a, 214b) 사이로 쐐기(453)를 통과시킴으로써 매체 시트(344)와 같이 사용될 수 있다. 동시에 롤(214a, 214b) 둘다를 표면-작업하기 위해서, 2개의 쐐기(453)를 후면끼리 맞대어 배치하거나, 2개의 텍스쳐화된 면을 갖는 쐐기(453)가 사용될 수 있다. 또다른 대안으로서, 텍스쳐화된 쐐기(453)는, 예를 들어 접착제, 납땜 또는 용접을 통해서 롤에 이것을 부착함으로써, 작업 롤의 표면, 예를 들어, 214a에 고정될 수 있고, 그다음 알루미늄 시트를 압연하기 위해서 사용될 수 있다.
도 15는, 본 개시내용의 또다른 실시양태에 따라, 작업 롤을 표면-작업하기 위한 초음파 볼 피닝 장치(510)를 도시한다. 초음파 볼 피닝 장치는, 예를 들어 소나츠 에스에이(Sonats SA)(프랑스 카르퀴포 낭트 소재)로부터 시판중이다. 본 개시내용에 따르면, 이러한 볼 피닝 장치는, 즉, 볼의 속도, 밀도, 크기, 탄성 및 압축 강도가, 피닝 매체 파괴/열화 없이 처리된 롤의 표면 위에 적절한 크레이터 깊이가 실현되도록 한다면, 시트 알루미늄을 압연하기 위해 작업 롤의 표면 작업의 목적에 적용될 수도 있다.
16은, 본 개시내용의 또다른 실시양태에 따른 작업 롤(614)의 표면 작업을 위한 장치(610)를 도시한다. 널링 헤드(662)는 텍스쳐화된 표면(664a)을 갖는 널링 휠(664)을 지지한다. 널링 휠(664)은 축(664b) 위에서 회전가능하고 실질적인 힘 F의 영향 하에서 작업 롤(614)의 표면으로 몰아간다. 널링 휠(664)과 작업 롤(614)의 접촉면이 매우 작기 때문에, 힘 F는 작은 면적에 집중되어서, 표면(664a)의 텍스쳐가 영역(614a)으로 도시된 바와 같이, 롤(614)로 옮겨진다. 갠트리(624)는 널링 헤드(662)가 작업 롤(614)을 횡단하여서 전체 롤(614) 위로 목적하는 텍스쳐를 부여하도록 사용될 수도 있다. 작업 롤(614)은 전기 모터에 의해 회전될 수 있어서, 이것이 작업 롤(614)에 텍스쳐링함에 따라 널링 휠(664)이 회전함을 유도한다. 본 개시내용의 양태는, 결과물인 표면(614a)(또는 도 10 내지 15를 참고하여 기술된 장치에 의해 가공된 작업 롤의 결과물인 표면)이, 예를 들어 도 3a 내지 도 3d를 참고하면서 전술한 바와 같이, 볼 베어링으로 샷-피닝함으로써 달성되는, 전술한 유리한 텍스쳐와 일치하는 배열을 갖는다. 장치(610)를 사용하는 작업 롤(614)의 텍스쳐화는, 요구되는 도포율% 및 표면(664a)의 표면 텍스쳐의 밀도(단위 면적 당 파도모양)에 따라, 널링 헤드(662)에 의한 1회 초과 횡단을 요구할 수도 있다.
도 17은, 연삭에 의해 표면-작업된 롤에 의해 제조된 표면 조도를 갖는 알루미늄 시트 금속 M의 표면을 도시한다. X축이 mm 단위이고 Y 및 Z 축이 ㎛ 단위이다. 연삭된 롤은 시트에, 여러 개의 길고 평행한 고랑을 갖는 패턴을 부여한다. 시트 M의 표면은 모든 방향에서 거칠고, 조도는 방향에 따라서 변하여, 시트가 또다른 물체 또는 물체들과 상호작용하는 경우, 마찰 방향성을 만든다. 전형적으로, 통상적인 압연 시트에 옮겨지는 롤 조도는 약 0.5 내지 1㎛ Ra의 범위일 수 있다. 본 개시내용의 양태는, 연삭 작업 롤에 의해 압연된 통상적인 시트의 조도 및 방향성이, 특정 적용례에 사용되는 경우, 시트의 작용성에 영향을 미친다는 인식이다. 추가로, 본 개시내용에 따라 제조된, 예를 들어 전술한 바와 같은 볼 베어링에 의해 피닝된 롤에 의해 제조된 시트는, 특정 적용례의 경우 통상적인 시트에 비해 유리하게 사용될 수도 있다. 예를 들어, 시트가 곡물, 설탕, 곡물 가루 또는 기타 미세하게 미분된 물질의 유동을 저장 및 안내하기 위한 구조물에 사용되는 경우, 본 개시내용에 따라 제조된 시트는, 방향으로 인한 마찰 변이를 줄이고 물질과의 마찰 상호작용을 감소시켜서, 물질 취급 구조물의 디자인에 개선된 유동 및 우수한 유연성을 유도할 수 있다.
도 18은, 곡물, 곡물 가루, 시리얼, 분말화된 식품, 예를 들어 우유, 초콜렛, 향신료, 달걀, 설탕, 커피, 차 또는 기타 유동성, 미분된, 고체 물질(707), 예를 들어 톱밥을 보유하기 위한 탱크 또는 사일로와 같은 저장 용기(705)를 도시한다. 물질(707)을 용기(705)에 레벨 L1까지 채우고, 이것이 용기(705)로부터 분배되거나 용기(705)를 채울 때, 이는 용기(705) 내부에서, 예를 들어 L2와 같은 다양한 레벨을 가정할 수도 있다. 충전 튜브(709)는, 용기(705)에 물질(707)을 두기 위한 상부 개구(711)에 인접하게 배치되는 것으로 도시된다. 용기(705)는, 배출구(715)까지 모여드는 깔대기형 부분(713)을 가질 수도 있다. 배출구(715)는, 물질 이동/제어 장치, 예를 들어 밸브, 기계적 터빈, 나선형 분배기 또는 공기압 흡입 분배기를 하우징할 수도 있다. 깔때기(717), 작은 채(719) 및 다양한 유형의 배출구 노즐(721)이, 용기(705)에 저장된 물질에 따라 사용될 수도 있다. 용기(705)의 내부벽(723)은, 시트 물질, 예를 들어 강 또는 알루미늄으로 제조될 수도 있다. 본 개시내용의 양태는, 본원에 개시된 기술에 의해 제조된 알루미늄 시트가, 저장 용기(705)의 내부 벽을 형성하는데 사용되는 경우, 유리할 수도 있다는 점의 인식이다. 보다 구체적으로, 본원에서 기술한 바와 같이, 예를 들어 앞의 실시예 1을 참고하여, 처리된 롤에 의해 제조된 알루미늄 시트와 관련된 낮은 마찰 계수는, 용기(705)로부터 물질, 예를 들어 곡물 가루 또는 설탕의 채움 및 분배를 촉진할 수도 있다. 예로서 곡물 가루를 사용하면, 용기(705)에 도입되는 경우(이러한 경우에는, 곡물 가루 사일로), 낮은 정적 마찰 계수가, 곡물 가루를 내면, 예를 들어 (723)으로부터 떨어져 물질(707)에 의해 점유되지 않은 용기의 가장 아래 지점까지 떨어지는 것을 허용한다. 내부(723)의 낮은 정적 마찰 계수는 용기(705) 내 물질(707)의 자가-분포를 촉진한다. 용기(705)에 존재하는 물질(707)은, 중력(물질(707)의 중량)으로 인하여 가장 낮은 가장 적은 에너지 위치를 띠는 것을 원하지만, 물질(707)의 중량은 물질이 펼쳐지고/옆으로 팽창되도록 하여서, 용기(705)의 내부(723)에 대해 힘 FE 을 가한다. 물질(707)이 내면(723)에 대해 이동하는 경우, 마찰력 FF가 발생하여서, 물질(707)의 이동에 저항한다. 예를 들어, 물질(707)이 용기(705)로부터 분배되어서, 이것이 레벨 L2로부터 레벨 L1로 이동하는 경우, 내면(723)과 접촉하는 물질(707)의 표면 영역은, 접촉 영역을 따라 마찰력 FF를 가하여, 물질(707)의 이동 및 용기(705)로부터의 그의 분배를 방해한다. 중량 W의 보다 작은 성분은, 마찰력 FF와 반대로 내면(723)에 평행하게 안내된다는 측면에서, 마찰력 FF이 깔때기 부분(713)에서 보다 중요하다. 내면(723)을 형성하기 위해서 본 개시내용의 알루미늄 시트 물질을 사용함으로써, 정적 마찰 계수가, 통상적인 표면을 갖는 시트 물질(도 17과 유사)에 비해 감소하여서, 용기(705)로부터 물질을 충전 및 분배하는 것이 용이해진다. 물질을 위한 정적 마찰 계수는, 통상적인 시트가 전형적으로 0.5 내지 1.0 ㎛인, 물질의 조도에 좌우된다. 본 개시내용에 따라, 예를 들어 전술한 바와 같이, 볼 베어링에 의한 압입-가공으로 표면-작업된 롤에 의해 제조된 상응하는 시트 물질은, 감소된 표면 조도를 나타내고, 정적 마찰 계수 측면에서 10 내지 30% 개선될 것이다. 이러한 개선은, 예를 들어 깔때기 부분(713)의 경우, 수평에 비해 약 40 내지 70도의, 곡물 가루와 같은 물질과 부딪히는, 가이드/저장면을 위한 작업가능한 배열(기울기)로 번역된다.
정적 마찰 계수를 줄이면, 곡물 가루와 같은 큰 규모의 물질을 취급하는 경우, 마찰로 인해 발생되는 에너지를 줄여서, 분진 폭발로 인한 위험을 줄인다. 추가로, 물질(707)과, 용기의 내부(723)의 마찰 계수를 줄이면, 충전 및 분배를 촉진시킴으로써, 물질 이동 장치(패들, 송풍기, 스크류 드라이브 등)의 요구를 줄여서 이를 구동하기 위한 에너지를 줄인다. 추가로, 물질(707)을 뿌리는 보다 큰 능력은, 내면(723)의 청결 및 선-입 선-출 물질 분배를 촉진할 수도 있다. 곡물 가루 및 기타 식품 물질(707)의 경우에, 선-입 선-출 턴오버는, 원하지 않은 긴 기간 동안 용기에 물질이 계속되어서, 부패되는 것을 방지한다. 곡물 가루는 용기(705)의 내면(723)에 붙어서 많은 시간까지 거기에 계속 있으면 산패될 것이다. 저장된 물질을 뿌리는 내부(723)는, 이것이 이른 분배를 위해 바닥까지 떨어지는 것을 허용한다. 추가로, 이러한 뿌림은 용기의 요구되는 세척 사이의 시간을 연장할 수도 있어서, 곡물 가루 사일로와 같은 큰 저장 용기의 경우에는, 상당한 비용 및 불편함이 수반될 수도 있다.
저장 구조물 이외에, 본 개시내용에 따라 제조된 낮은 마찰 계수 시트 물질의 속성은, 또한 물질 이동 구조물을 제작하기 위해 유리하게 사용될 수도 있다. 도 19는, 본 개시내용에 기술된 롤에 의해 처리된 알루미늄 합금과 같은, 시트 물질로부터 형성된 것으로 복합 나선형 형태를 갖는 홈통(805)을 나타낸다. 홈통(805)의 표면이 낮은 정적 마찰 계수를 갖기 때문에, 높은 정적 마찰 계수를 갖는 물질로 제조된, 유사하게 성형된 홈통에 비해 보다 용이하게, 예를 들어 곡물, 곡물 가루, 설탕, 물체 등과 같은 물질을 통과시킬 것이다. 결과적으로, 홈통(805)은 보다 적은 기울기를 사용할 수도 있고, 보다 큰 정적 마찰 계수를 갖는 시트로부터 제조된 상응하는 홈통에 비해 보다 작은 치수로 제조될 수도 있다. 홈통(805)이 중력 수송을 제안하면서, 낮은 마찰 계수에 의한 시트는, 이동 장치, 예를 들어 푸셔(pusher), 패들, 또는 기타 자동화 장치에 의해 유도되는 것 이상으로 운동을 촉진시킨다.
도 20은, 본 개시내용에 기술된 롤에 의해 처리된, 예를 들어 알루미늄 합금과 같은 시트 물질로 형성되고 복합 나선형 형태를 갖는, 관 또는 도관(905)을 도시한다. 홈통(805)은 작은 정적 마찰 계수를 갖기 때문에, 이것은 높은 정적 마찰 계수를 갖는 물질로 제조된, 유시하게 형성된 홈통보다 보다 용이하게 이를 통해 물질을 통과시킬 것이며, 이로써 보다 큰 정적 마찰 계수를 갖는 시트에 의해 부여되는 디자인 제약도 완화된다. 물질 수송 구조물은 복합 형태를 가질 필요가 없고 경사진 평활한 표면, 직선 튜브 또는 기타 단순한 형태일 수 있고, 낮은 정적 마찰 계수의 잇점을 여전히 나타낼 수 있다.
도 21은, 곡물 가루와 같은 소정의 물질(1007)에 비해, 샘플 시트(1023)의 정적 마찰 계수를 테스트하기 위한 테스트 장치(1003)를 도시한다. 설명을 간단히 하기 위해서, 물질(1007)의 샘플은 중력(중량) FW를 발생시키는 단일점으로부터 나타내는 중량을 갖는 것으로 가정한다. FW는 시트(1023)의 표면에 대해 수직인 힘 FN 및 마찰력 FF에 의해 반대방향인, 시트(1023)에 평행한 힘 FP으로 분해된다. 마찰력 FF는 수학식 FFs·FN으로 표현되는, 정적 마찰 계수에 의한 수직 힘 FN과 관련된다. 평행한 힘 FP가 마찰력 FF를 능가하면, 물질(1007)은 시트의 경사진 표면(1023) 아래로 미끄러질 것이다. 각 A 및 B로 도시된 바와 같이, 시트(1023)는, 물질(1007)이 미끄러지는 각도를 알아내기 위해서 수평에 대해 선택된 각도로 배치할 수도 있다. 하기 실시예에서 기술된 바와 같이, 본 개시내용에 따라 형성된 알루미늄 시트는, 통상적인 시트에 비해 낮은 정적 마찰 계수를 나타내고, 따라서 시트(1023)의 표면에 배치된 물질(1007)은, 상응하는 통상적인 시트 물질에 비해, 수평에 대해 작은 각도에서(보다 작은 기울기에서) 미끄러진다.
예 1
결 방향에 대해 수직으로 테스트하는 경우, 0.92의 정적 마찰 계수, 및 결 방향에 대해 평행하게 테스트하는 경우, 곡물 가루에 대해 0.88 정적 마찰 계수를 갖고 통상적인 방향성을 갖고, 조도가 0.78mm인 연삭 롤에 의해 제조된 알루미늄 합금 60cm × 30cm 시트를 수평 위치 내 표면 위에 놓았다. 본 개시내용에 따라 형성되고(실시예 1에서 앞에서 개요를 서술한 방법에 따라 볼 베어링으로 피닝한 롤에 의해 표면-작업되고) 제 1 방향에서 테스트할 때, 곡물 가루에 비해 0.72의 정적 마찰 계수를 갖고 제 1 방향에 대해 직각인 제 2 방향에서 테스트할 때, 0.73의 정적 마찰 계수를 갖는, 알루미늄 합금의 유사한 치수의 시트를 제 1 시트 옆에 놓았다. 25g의 곡물 가루 한 컵을 거의 동일한 위치에서 각각의 시트의 표면 위에 부었다. 그다음, 수평에 대해 각도를 증가시키면서, 시트를 기울였다. 본 개시내용에 따른 시트 위에 배치된 곡물 가루는, 46°의 각도에서 시트가 미끌어지는 것이 관찰되었다. 통상적인 시트 위에 배치된 곡물 가루는, 61°에 도달된 증가된 각도까지 시트가 미끌어지지 않았다. 통상적인 시트는, 곡물 가루 움직임과 평행한 결 방향으로 배치하였다.
예 2
제 2 예에서, 제 1 샘플로부터 제조된 통상적인 시트 및 본 개시내용에 따라 제조된 시트는, 이전과 동일한 양 및 유형의 곡물 가루와 함께 다시 사용하였지만, 둘다 이들의 원래 위치에 비해 90도로 재배열하였다(그래서, 통상적인 시트의 결 방향은, 기울어진 경우에, 나란히 배열되었다). 실험을 반복하였다. 본 개시내용에 따른 시트는 47°의 각에 도달하였을 때, 곡물 가루가 미끄러진 반면, 통상적인 시트 위의 곡물 가루는 67°에서 미끄러졌다.
전술한 실시예는, 본 개시내용에 따라 제조된 알루미늄 시트가 통상적인 시트에 비해 낮은 정적 마찰 계수를 갖고 있다는 점, 및 상기 마찰 계수가 시트의 배열에 덜 좌우된다는 점을 설명한다. 추가로, 곡물 가루와, 낮은 마찰 계수를 갖는 시트의 상호작용은, 곡물 가루가, 통상적인 시트에 비해 덜 심한 각도에서 미끄러지게 한다. 미끄러짐 용이함의 이러한 차이는, 곡물, 곡물 가루, 설탕, 소금, 분말화되거나 과립화된 화학물질, 예를 들어 중탄산나트륨, 톱밥 또는 임의의 다른 이러한 물질과 같은 물질을, 안내하고 움직이게 하고 저장하기 위해 사용되는 구조물에 유리하게 사용될 수 있다. 감소된 마찰 상호작용은, 활송 장치(chute), 튜브, 깔때기, 파이프, 및 기타 중공 구조물을 통한 물질의 유속을 증가시켜서, 물질 이동의 속도를 높이고, 이러한 물질을 움직이게 하기 위한 송풍기 및 패들과 같은 기계류의 에너지 요구사항을 배제 또는 감소시키고, 물질 취급 장치의 복잡함, 제작과 유지보수 비용 및 에너지 사용을 줄일 수도 있다. 물질 이동의 증가된 속도는 이동을 수행하기 위한 시간 및 비용을 줄인다. 예를 들어, 화물 차량으로부터 곡물, 곡물 가루 또는 설탕으로 사일로를 충전한 것과 관련하여, 10% 개선된 이동 속도는, 차량, 승무원, 창고업자 등의 요구되는 시간 측면에서 10% 감소로 해석되며, 이 모든 것은 상당히 비용을 절약할 수 있다. 증가된 이동 속도 및 감소된 마찰은 또한, 곡물 가루 또는 곡물과 같은 입자형 물질들이, 부가적인 물질이 도입될 때, 사일로의 내면을 따라 보다 용이하게 미끄러질 수 있다는 측면에서, 사일로와 같은 용기의 보다 효율적인 충적을 허용한다. 이러한 미끄럼은, 추가된 물질을 수용하여, 이것이, 예를 들어 충전 도관 하에서, 일정 영역에 집중되지 않고 퍼지는 것을 허용하는데, 그렇지 않으면, 물질의 저 밀도 팩킹 및 고 밀도 팩킹이 유도된다. 물질과, 물질 이동 및 저장 구조물 사이의 감소된 마찰 상호작용은, 또한 이러한 구조물의 보다 큰 디자인의 자유로 해석되며, 이는 예를 들어 물질 취급 구조물을 통해 유동하는 소정의 물질을 유지하기 위해서 요구되는 기울기를 감소하는 것을 포함한다. 등방성 품질이 시트 결의 배열 문제 없이 물질 취급 구조물이 제작되는 것을 허용한다는 측면에서, 본 개시내용에 따라 제조된 시트의 마찰 계수의 등방성 특성에서도 같게 말할 수 있다. 결 방향에 관련하지 않으면서 감소된 마찰 상호작용을 보장하는 것 이외에, 등방성 품질은 또한 물질 움직임이 보다 용이하게 예측되는 것을 가능하게 한다. 예를 들어, 구조물의 제작을 위해 사용된 시트의 결 방향과 무관하게 정적 및 동적 힘, 및 구조에 기초하여 물질의 경로를 알아낼 수 있다.
본원에 기술된 실시양태는 단지 예시라는 점, 및 당업계의 숙련자라면, 청구된 특허청구범위의 진의 및 범주로부터 벗어나지 않으면서 많은 변이 및 개조를 가능하게 할 수도 있다는 점이, 이해될 것이다. 예를 들어, 앞의 일부 개시내용은, 열간 및 냉각 적용례를 포괄하는 알루미늄 압연 작업에 전형적으로 적용되는 조도의 범위(압연 연삭)는 1마이크로인치 미만 내지 50마이크로인치라는 점, 및 Al 작업을 위한 전형적인 작업 롤 경도가 50 내지 70 Rc임을 나타냈다. 그래도, 본 개시내용의 방법 및 장치는, % 도포율을 달성하기 위한 체류 시간 및 압력과 같은, 피닝 파라미터 및 피닝 매체를 조절함으로써, 일부 결과를 수득하기 위해서, 임의의 롤 경도, 및 50마이크로인치 초과의 임의의 표면 마무리에 적용될 수 있다. 모든 이러한 변이 및 개조를, 본 개시내용의 범주 내에 포함하고자 한다.

Claims (20)

  1. 하나 이상의 물질 접촉면을 갖는 물질 핸들러(handler)의 제조 방법으로서,
    깍인 면(facet)이 없는 압입-자국(indentation)에 의해 50% 내지 100% 덮인 표면을 갖고 표면의 평균 높이에 비해 함몰된(depressed) 중앙부 및 표면의 평균 높이에 비해 정점(apex)에서 더 높은 높이를 갖는 융기형 평활한 주변 가장자리를 갖는 작업 롤에 의해 압연된 알루미늄 시트를 수득하되, 상기 알루미늄 시트의, 하나 이상의 물질과의 정적 마찰 계수가 0.62 내지 0.79인, 단계; 및
    상기 알루미늄 시트를 하나 이상의 물질 접촉면으로 형성하는 단계
    를 포함하는, 방법.
  2. 제 1 항에 있어서,
    상기 압입-자국이, 150㎛ 내지 400㎛의 직경, 및 6±2.0㎛ 범위의, 주변 가장자리의 정점에 대한 깊이를 갖는, 방법.
  3. 제 2 항에 있어서,
    상기 물질 핸들러가, 상기 물질을 저장하기 위한 내부 공간을 갖는 사일로(silo)이고,
    상기 물질 접촉면이, 상기 내부 공간을 한정하는 표면의 적어도 일부를 형성하는, 방법.
  4. 제 2 항에 있어서,
    상기 물질 접촉면이 사일로의 깔대기(funnel) 부분을 형성하는, 방법.
  5. 제 3 항에 있어서,
    상기 사일로에 의해 취급되는 물질이 곡물 가루(flour)이고, 추가로 상기 곡물 가루를 상기 사일로에 도입하고 상기 물질 접촉면과 상기 곡물 가루를 접촉시키는 단계를 포함하는, 방법.
  6. 제 3 항에 있어서,
    상기 사일로에 의해 취급되는 물질이 설탕이고, 추가로 상기 설탕을 상기 사일로에 도입하고 상기 물질 접촉면과 상기 설탕을 접촉시키는 단계를 포함하는, 방법.
  7. 제 2 항에 있어서,
    상기 물질 핸들러가, 배출구 쪽으로 상기 물질을 모으기 위한 내부 공간을 갖는 깔대기이고,
    상기 물질 접촉면이 상기 내부 공간을 한정하는 표면의 적어도 일부를 형성하는, 방법.
  8. 제 2 항에 있어서,
    상기 물질 핸들러가, 상기 물질을 안내하기 위한 내부 공간을 갖는 홈통(trough)이며,
    상기 물질 접촉면이 상기 내부 공간을 한정하는 표면의 적어도 일부를 형성하는, 방법.
  9. 제 2 항에 있어서,
    상기 물질 핸들러가, 상기 물질을 안내하기 위한 내부 공간을 갖는 도관(conduit)이고,
    상기 물질 접촉면이 상기 내부 공간을 한정하는 표면의 적어도 일부를 형성하는, 방법.
  10. 제 2 항에 있어서,
    상기 알루미늄 시트가, 정적 마찰 계수가 측정되는 방향에 대한 시트의 임의의 2개의 소정의 배향 사이에서 5% 이하의 차이를 갖는 정적 마찰 계수를 갖는, 방법.
  11. 하나 이상의 물질 접촉면을 갖는 물질 핸들러로서,
    물질 접촉면을 적어도 부분적으로 한정하는, 알루미늄 시트로부터 형성된 표면을 포함하되, 상기 알루미늄 시트가, 깍인 면이 없는 압입-자국에 의해 50% 내지 100% 덮인 표면을 갖고 표면의 평균 높이에 비해 함몰된 중앙부와 표면의 평균 높이에 비해 그의 정점에서 더 높은 높이를 갖는 융기형 평활한 주변 가장자리를 갖는 작업 롤에 의해 압연되고, 상기 알루미늄 시트의 정적 마찰 계수가 0.62 내지 0.79인, 물질 핸들러.
  12. 제 11 항에 있어서,
    상기 압입-자국이, 200㎛ 내지 400㎛의 직경, 및 0.5㎛ 내지 2.0㎛의, 주변 가장자리의 정점에 대한 깊이를 갖는, 물질 핸들러.
  13. 제 12 항에 있어서,
    물질 핸들러가, 상기 물질을 저장하기 위한 내부 공간을 갖는 사일로이고,
    상기 물질 접촉면이, 상기 내부 공간을 한정하는 표면의 적어도 일부를 형성하는, 물질 핸들러.
  14. 제 12 항에 있어서,
    상기 물질 접촉면이 사일로의 깔대기 부분을 형성하는, 물질 핸들러.
  15. 제 13 항에 있어서,
    상기 물질 핸들러가 곡물 가루 사일로인, 물질 핸들러.
  16. 제 13 항에 있어서,
    상기 물질 핸들러가 설탕 사일로인, 물질 핸들러.
  17. 제 12 항에 있어서,
    상기 물질 핸들러가, 배출구 쪽으로 상기 물질을 모을 수 있는 내면(interior surface)을 갖는 깔대기이고,
    상기 물질 접촉면이 상기 내면을 한정하는 표면의 적어도 일부를 형성하는, 물질 핸들러.
  18. 제 12 항에 있어서,
    상기 물질 핸들러가, 상기 물질을 안내할 수 있는 안내면을 갖는 홈통이고,
    상기 물질 접촉면이 상기 안내면의 적어도 일부를 형성하는, 물질 핸들러.
  19. 제 12 항에 있어서,
    상기 물질 핸들러가, 상기 물질을 안내할 수 있는 내부 안내면을 갖는 도관이고,
    상기 물질 접촉면이 상기 내부 안내면을 한정하는 표면의 적어도 일부를 형성하는, 물질 핸들러.
  20. 제 12 항에 있어서,
    상기 알루미늄 시트가, 정적 마찰 계수가 측정되는 방향에 대한 시트의 임의의 2개의 소정의 배향 사이에서 5% 이하의 차이를 갖는 정적 마찰 계수를 갖는, 물질 핸들러.
KR1020157013854A 2012-11-09 2013-11-08 알루미늄 시트 금속에 선택된 지형을 부여하기 위한 장치와 방법, 및 이를 위한 적용례 KR102220796B1 (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US13/673,468 2012-11-09
US13/673,468 US20130122327A1 (en) 2011-11-11 2012-11-09 Apparatus and method for imparting selected topographies to aluminum sheet metal
US13/892,028 US20130273394A1 (en) 2011-11-11 2013-05-10 Apparatus and Method for Imparting Selected Topographies to Aluminum Sheet Metal
US13/892,028 2013-05-10
PCT/US2013/069188 WO2014074844A1 (en) 2012-11-09 2013-11-08 Apparatus and method for imparting selected topographies to aluminum sheet metal and applications there for

Publications (2)

Publication Number Publication Date
KR20160146489A true KR20160146489A (ko) 2016-12-21
KR102220796B1 KR102220796B1 (ko) 2021-02-26

Family

ID=52113174

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020157013854A KR102220796B1 (ko) 2012-11-09 2013-11-08 알루미늄 시트 금속에 선택된 지형을 부여하기 위한 장치와 방법, 및 이를 위한 적용례

Country Status (14)

Country Link
EP (1) EP2919925B1 (ko)
KR (1) KR102220796B1 (ko)
CN (1) CN105377456A (ko)
BR (1) BR112015010578A2 (ko)
CA (1) CA2890916C (ko)
DK (1) DK2919925T3 (ko)
ES (1) ES2727954T3 (ko)
HR (1) HRP20190914T1 (ko)
PL (1) PL2919925T3 (ko)
RU (1) RU2676118C2 (ko)
SA (1) SA515360409B1 (ko)
SI (1) SI2919925T1 (ko)
TW (1) TW201436895A (ko)
WO (1) WO2014074844A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9457392B2 (en) 2011-11-11 2016-10-04 Alcoa Inc. Apparatus and method for imparting selected topographies to aluminum sheet metal and application there for
WO2019051616A1 (en) * 2017-09-18 2019-03-21 Polyvalor, Limited Partnership METHOD AND SYSTEM FOR REALIZING TRAINING SIMULATION
JP7303535B2 (ja) * 2019-03-06 2023-07-05 株式会社不二製作所 粉体接触部材および粉体接触部材の表面処理方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140132002A (ko) * 2012-03-07 2014-11-14 알코아 인코포레이티드 개선된 6xxx 알루미늄 합금, 및 이의 제조 방법

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2361039A (en) * 1939-10-13 1944-10-24 Chicago Metallic Mfg Company Method of producing stippled sheet metal
US2986193A (en) * 1956-01-25 1961-05-30 Lifetime Metal Building Co Method of forming metal building elements
US3824827A (en) * 1973-06-05 1974-07-23 Eastman Kodak Co Apparatus for forming an interference pattern of multiple indentations in the interior wall of conveying tubes
DE3705100A1 (de) * 1987-02-18 1988-09-01 Benecke Gmbh J Verfahren zur herstellung einer oberflaechenstruktur von praegewalzen sowie nach dem verfahren hergestellte praegewalze
DE59005109D1 (de) * 1990-01-17 1994-04-28 Hjl Projects & Dev Verfahren zur Bearbeitung von Oberflächen auf Gebilden und nach diesem Verfahren hergestellte Gebilde.
SE468641B (sv) * 1991-06-12 1993-02-22 Celltec Eng Ab Utmatare foer silor
WO1995007775A1 (en) * 1993-09-17 1995-03-23 Sidmar N.V. Method and device for manufacturing cold rolled metal sheets or strips, and metal sheets or strips obtained
WO1995007774A1 (en) * 1993-09-17 1995-03-23 Sidmar N.V. Method and device for manufacturing cold rolled metal sheets or strips, and metal sheets or strips obtained
DE19947696A1 (de) * 1998-12-07 2001-04-05 Adolf Lesk Verringern oder Auflösen von Verdichtungen
EP1344580A1 (de) * 2002-03-12 2003-09-17 Alcan Technology & Management Ltd. Verfahren und Anlage zur Herstellung eines Aluminiumbandes mit texturierter Oberfläche
US8267635B2 (en) * 2009-03-17 2012-09-18 Schwing Bioset, Inc. Floating seal stuffing box for silo with reciprocating frame

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140132002A (ko) * 2012-03-07 2014-11-14 알코아 인코포레이티드 개선된 6xxx 알루미늄 합금, 및 이의 제조 방법

Also Published As

Publication number Publication date
RU2015121945A (ru) 2017-01-10
KR102220796B1 (ko) 2021-02-26
DK2919925T3 (da) 2019-05-20
CA2890916A1 (en) 2014-05-15
ES2727954T3 (es) 2019-10-21
WO2014074844A1 (en) 2014-05-15
CA2890916C (en) 2021-04-06
BR112015010578A2 (pt) 2017-07-11
TW201436895A (zh) 2014-10-01
PL2919925T3 (pl) 2019-11-29
EP2919925A4 (en) 2016-08-03
EP2919925A1 (en) 2015-09-23
HRP20190914T1 (hr) 2019-07-26
EP2919925B1 (en) 2019-02-27
SI2919925T1 (sl) 2019-08-30
SA515360409B1 (ar) 2019-10-03
CN105377456A (zh) 2016-03-02
RU2676118C2 (ru) 2018-12-26

Similar Documents

Publication Publication Date Title
KR20150082354A (ko) 알루미늄 시트 금속에 선택된 지형을 부여하기 위한 장치와 방법
JP7303535B2 (ja) 粉体接触部材および粉体接触部材の表面処理方法
US20130273394A1 (en) Apparatus and Method for Imparting Selected Topographies to Aluminum Sheet Metal
US9108298B2 (en) Method of treating surface of mold and mold having surface treated by said method
KR20160146489A (ko) 알루미늄 시트 금속에 선택된 지형을 부여하기 위한 장치와 방법, 및 이를 위한 적용례
CA2067840C (en) Ultrafine grinding mill of which fed material flows down through an agitated bed composed of small grinding medium
CN104969292B (zh) 磁盘用基板的制造方法及在磁盘用基板的制造中使用的研磨垫
CN110177650B (zh) 用于使工件成型的方法和设备
US9457392B2 (en) Apparatus and method for imparting selected topographies to aluminum sheet metal and application there for
US20190076987A1 (en) Surface treatment method for metal product and metal product
WO2013071114A1 (en) Apparatus and method for imparting selected topographies to aluminum sheet metal
Zhou et al. Effects of novel rotary-abrasive finishing pad textures on the controlled 2-body abrasive wear of Type 304 stainless steel
JP2003127065A (ja) 鋼板の表面形態制御方法及び鋼板
EP3520964B1 (en) Surface treatment method for metallic three-dimensional products
Srivastava et al. Surface finish in robotic disk grinding
US20200282515A1 (en) Method for surface treatment of dlc coated member
Tamaki et al. Experimental analysis of elastic and plastic behavior in ductile-regime machining of glass quartz utilizing a diamond tool
CN110238756A (zh) 一种砂轮弧线修整方法
JP2024025406A (ja) 平滑処理方法
Chou et al. EROSIVE WEAR OF COBALT FREE CEMENTED CARBIDES
JP2021194758A (ja) 粉体付着抑制部材及び部材の表面処理方法
Momber Abrasive Materials
JP2009279737A (ja) 研磨装置

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant