KR20160139842A - Chimeric carbonic anhydrase from Dunaliella Salina and use thereof - Google Patents

Chimeric carbonic anhydrase from Dunaliella Salina and use thereof Download PDF

Info

Publication number
KR20160139842A
KR20160139842A KR1020150075641A KR20150075641A KR20160139842A KR 20160139842 A KR20160139842 A KR 20160139842A KR 1020150075641 A KR1020150075641 A KR 1020150075641A KR 20150075641 A KR20150075641 A KR 20150075641A KR 20160139842 A KR20160139842 A KR 20160139842A
Authority
KR
South Korea
Prior art keywords
carbonate
carbon dioxide
gly
val
dsp
Prior art date
Application number
KR1020150075641A
Other languages
Korean (ko)
Other versions
KR101716398B1 (en
Inventor
백승필
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Priority to KR1020150075641A priority Critical patent/KR101716398B1/en
Publication of KR20160139842A publication Critical patent/KR20160139842A/en
Application granted granted Critical
Publication of KR101716398B1 publication Critical patent/KR101716398B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • C01B31/24
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/01Carboxy-lyases (4.1.1)
    • C12Y401/01001Pyruvate decarboxylase (4.1.1.1)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/59Biological synthesis; Biological purification

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

The present invention relates to chimeric carbonic anhydrase derived from Dunaliella salina, and to a use thereof. The chimeric carbonic anhydrase derived from Dunaliella salina has excellent activity of decomposing ester and hydrating carbon dioxide, and thus can be used to develop an industrial process of collecting and fixating carbon dioxide. Also, the chimeric carbonic anhydrase derived from Dunaliella salina can be used to prepare a bicarbonate compound, and can be used as a catalyst for synthesizing useful metabolites, thereby increasing synthesis yield of the metabolites.

Description

두날리엘라 살리나 유래의 키메릭 탄산무수화효소 및 이의 용도{Chimeric carbonic anhydrase from Dunaliella Salina and use thereof}Chimeric carbonic anhydrase from Dunaliella salinina and its use {Chimeric carbonic anhydrase from Dunaliella Salina and use thereof}

본 발명은 두날리엘라 살리나 유래의 키메릭 탄산무수화효소 및 이의 용도에 관한 것이다. The present invention relates to chimeric carbonic anhydrase derived from Dnaliella salinina and its use.

이산화탄소(CO2)나 메탄(CH4), 클로로 플루오르 카본(CFCs), 산화질소(NOx) 같은 대기 중의 온실가스의 농도는 20세기 들어서 인류의 활동으로 인한 과학과 기술의 급격한 성장의 결과로 계속해서 증가하고 있다. 석탄, 기름, 천연가스 같은 화석연료를 태우면 생산되는 이산화탄소가 온실가스 중에서 가장 많다. 산업혁명이 일어난 후 2007년에는 이산화탄소의 대기 중 농도가 280 ppm이었으나 계속 증가하여 2013년에서는 400 ppm이 되었다. 그리고 2065년에는 대기 중 이산화탄소 농도가 산업혁명 이전시대의 두 배 수준으로 증가할 것이라고 예상된다. 이에 따라서 많은 연구의 주된 목적이 이산화탄소 방출을 줄이기 위한 방법 개발이 되었다. 지나친 이산화탄소의 방출의 감소나 제한을 위해서 이산화탄소의 포집과 저장을 위한 몇몇 기술들이 창안되었다. 생물학 분야에서 CA를 광범위하게 조사했는데 그 이유가 대기중의 많은 이산화탄소를 포집하기 위한 향상된 청정기술로서 응용하기 위해서였다. CA는 아연을 포함한 금속을 갖는 효소인데 이산화탄소를 탄산수소염이나 양자같이 가역반응이 가능한 수화상태로 바꾸는 촉매 역할을 한다. 이 효소는 살아있는 모든 포유동물에서 발견되었고 마찬가지로 식물, 고세균, 원핵 생물에서도 발견되었다. CA는 광학성이나 호흡, 이산화탄소 이온 전달자, 석회화 그리고 산 염기의 평형 유지 같은 진핵 생물의 생물학적 과정에서 필수적인 단백질이다. CA의 분류는 3가지로 진화적 분류를 하는데 알파(alpha), 베타(beta), 감마(gamma)-CA로 분류되며 정의 되어왔다. 그러나, 새롭게 델타(delta)와 제타(zeta) 두 가지가 추가적으로 확인되었다. Concentrations of atmospheric greenhouse gases such as carbon dioxide (CO 2 ), methane (CH 4 ), chlorofluorocarbons (CFCs) and nitrogen oxides (NO x) continue to rise as a result of the rapid growth of science and technology . Most of the greenhouse gases produced by fossil fuels such as coal, oil, and natural gas are produced. After the Industrial Revolution, the atmospheric concentration of carbon dioxide was 280 ppm in 2007, but it continued to increase to 400 ppm in 2013. And by 2065, atmospheric carbon dioxide concentrations are expected to double to the pre-industrial era. Therefore, the main objective of many studies has been to develop a method to reduce carbon dioxide emissions. Several techniques have been devised for the capture and storage of carbon dioxide for the purpose of reducing or limiting the emission of excess carbon dioxide. In the field of biology, CA was extensively investigated in order to apply it as an improved clean-up technology to capture a large amount of carbon dioxide in the atmosphere. CA is an enzyme with a metal, including zinc, that acts as a catalyst to turn carbon dioxide into a hydration state capable of reversible reaction, such as bicarbonate or both. This enzyme was found in all living mammals and was also found in plants, archaea, and prokaryotes. CA is an essential protein in the biological processes of eukaryotes such as optics, respiration, carbon dioxide ion transport, calcification, and the maintenance of equilibrium of acid bases. The classification of CA has been classified and defined as alpha, beta, gamma-CA in three evolutionary categories. However, two additional delta and zeta additions have been identified.

이전에 본 발명자들은 두날리엘라 종 유래의 α-type의 CA 두 개가 반복해서 존재하는 이중구조 CA(Dsp-CA)의 각 아미노말단 도메인 반과 카르복실 말단 도메인 반을 각각 하나의 α-type CA로 발현시켰다. 이 두 α-type CA는 유사한 구조를 가짐에도 불구하고 카르복실말단 도메인(Dsp-CA-c)만이 효소 활성을 나타냈다. 하지만 Dsp-CA-c는 아미노말단 도메인 반인 Dsp-CA-n의 가용성 단백질 발현량의 1/3밖에 안되었다. 이산화탄소 제거 및 전환을 위해 이 단백질을 생체촉매로 응용을 하려고 할 때 Dsp-CA-c의 낮은 수득율이 문제가 되었다. 그러므로 CA 효소 system을 현실적으로 적용하기 위해서는 발현 양을 늘리는 것이 필수적이었다. 자연 상에서 존재하는 몇몇 multi-domain 단백질에서 아미노말단 도메인은 그들의 나머지 도메인의 용해도를 향상시켰다. 추가적으로 아미노말단 잔기들은 단백질의 기능에 있어서 안정성이나 용해도 등의 중요한 역할을 하는 것으로 알려져 있다[비특허문헌 1~5]. Previously, the inventors of the present invention found that each of the amino terminal domain half and the carboxyl terminal domain half of the double-structure CA (Dsp-CA) in which two α-type CAs derived from dunaliella sp. Lt; / RTI > Only the carboxyl terminal domain (Dsp-CA-c) exhibited the enzyme activity, although these two α-type CAs have a similar structure. However, Dsp-CA-c was only one-third of the soluble protein expression of Dsp-CA-n, the amino terminal domain half. The low yield of Dsp-CA-c became a problem when trying to apply this protein as a biocatalyst for carbon dioxide removal and conversion. Therefore, in order to apply CA enzyme system realistically, it was essential to increase the expression level. In some naturally occurring multi-domain proteins, the amino-terminal domain improved the solubility of the remaining domains. In addition, it is known that amino terminal residues play an important role in the function of the protein, such as stability and solubility [Non-Patent Documents 1 to 5].

Kanth, B.K., Min, K., Kumari, S., Jeon, H., Jin, E.S., Lee, J., Pack, S.P., (2012). Expression and characterization of codon-optimized carbonic anhydrase from Dunaliella species for CO2 sequestration application. Applied biochemistry and biotechnology 167, 2341-2356.Kanth, B. K., Min, K., Kumari, S., Jeon, H., Jin, E. S., Lee, J., Pack, S.P., (2012). Expression and characterization of codon-optimized carbonic anhydrase from Dunaliella species for CO2 sequestration application. Applied biochemistry and biotechnology 167, 2341-2356. Ki, M.R., Kanth, B.K., Min, K.H., Lee, J., Pack, S.P., (2012). Increased expression level and catalytic activity of internally-duplicated carbonic anhydrase from Dunaliella species by reconstitution of two separate domains. Process Biochem 47, 1423-1427.Ki, M. R., Kanth, B. K., Min, K. H., Lee, J., Pack, S. P., (2012). Increased expression level and catalytic activity of internally-duplicated carbonic anhydrase from Dunaliella species by reconstitution of two separate domains. Process Biochem 47, 1423-1427. Kim, C.W., Han, K.S., Ryu, K.S., Kim, B.H., Kim, K.H., Choi, S.I., Seong, B.L., (2007). N-terminal domains of native multidomain proteins have the potential to assist de novo folding of their downstream domains in vivo by acting as solubility enhancers. Protein science : a publication of the Protein Society 16, 635-643.Kim, C. W., Han, K.S., Ryu, K.S., Kim, B.H., Kim, K.H., Choi, S.I., Seong, B.L., (2007). N-terminal domains of native multidomain proteins have the potential to assist de novo folding of their downstream domains in vivo by acting as solubility enhancers. Protein science: a publication of the Protein Society 16, 635-643. Gaudry, A., Lorber, B., Neuenfeldt, A., Sauter, C., Florentz, C., Sissler, M., (2012). Re-designed N-terminus enhances expression, solubility and crystallizability of mitochondrial protein. Protein Engineering Design and Selection 25, 473-481.Gaudry, A., Lorber, B., Neuenfeldt, A., Sauter, C., Florentz, C., Sissler, M., (2012). Re-designed N-terminus enhances expression, solubility and crystallizability of mitochondrial protein. Protein Engineering Design and Selection 25, 473-481. Varshavsky, A., (1997). The N-end rule pathway of protein degradation. Genes to cells: devoted to molecular & cellular mechanisms 2, 13-28.Varshavsky, A., (1997). The N-end rule pathway of protein degradation. Genes to cells: devoted to molecular & cellular mechanisms 2, 13-28.

이에, 본 발명자들은 상기와 같은 문제점을 해결하고자 연구 노력한 결과, Dsp-CA-n과 같이 높은 발현을 보이는 단백질의 아미노말단의 일부분을 Dsp-CA-c처럼 낮은 가용성 발현을 보이는 단백질에 융합하여 발현시켜 그 가용성 발현량을 증가시켰으며, 이중 구조 단백질의 아미노말단 도메인과 카르복실말단 도메인의 융합을 통한 원형단백질과 유사한 효소활성을 유도하는 새로운 CA를 개발함으로써 본 발명을 완성하게 되었다.Accordingly, the present inventors have made efforts to solve the above problems, and as a result, they have found that a part of the amino terminal of a protein having high expression such as Dsp-CA-n is fused to a protein showing low solubility such as Dsp-CA- And the present invention was completed by developing a new CA that induces an enzyme activity similar to a circular protein through fusion of the amino terminal domain and the carboxyl terminal domain of the double structure protein.

본 발명의 목적은 두날리엘라 살리나 유래의 키메릭 탄산무수화효소 및 이의 용도를 제공하는 것이다.
It is an object of the present invention to provide a chimeric carbonic anhydrase derived from Dnaliella salinina and its use.

상기 과제를 해결하기 위한 수단으로서, 본 발명은 서열번호 4로 표시되는 아미노산 서열을 포함하는 탄산무수화효소(carbonic anhydrase)[Dsp-nCA-c]을 제공한다.
As a means for solving the above problems, the present invention provides a carbonic anhydrase [Dsp-nCA-c] comprising an amino acid sequence represented by SEQ ID NO: 4.

또한, 상기 과제를 해결하기 위한 다른 수단으로서, 본 발명은 서열번호 5로 표시되는 아미노산 서열을 포함하는 탄산무수화효소(carbonic anhydrase) [Dsp-nCA-c(G263S)]을 제공한다.
As another means for solving the above problems, the present invention provides a carbonic anhydrase (Dsp-nCA-c (G263S)) comprising an amino acid sequence represented by SEQ ID NO: 5.

또한, 상기 과제를 해결하기 위한 또 다른 수단으로서, 본 발명은 상기 탄산무수화효소(carbonic anhydrase)를 포함하는 이산화탄소의 포집(capture) 또는 고정(fixation)용 조성물을 제공한다.
In another aspect of the present invention, there is provided a composition for capturing or fixing carbon dioxide comprising the carbonic anhydrase.

본 발명의 키메라 단백질 Dsp-nCA-c 및 Dsp-nCA-c(G263S)는 기존 Dsp-CA-c 보다 높은 수용성 발현과 CO2 수화 활성을 보여준다. 또한, 상기 두 가지 단백질은 Dsp-CA와 CO2 광물화에 있어서 비슷한 패턴을 보여준다. 본 발명의 새로운 키메라 단백질은 증가된 가용성 발현과 CO2 수화 활성을 나타내므로 CA 촉매를 이용한 CO2 제거 공정 및 CO2 광물화를 이용한 다양한 산업용 원료 생산에 활용될 수 있다.
The chimeric proteins Dsp-nCA-c and Dsp-nCA-c (G263S) of the present invention show higher water-solubility and CO 2 hydration activity than the conventional Dsp-CA-c. In addition, the two proteins show a similar pattern in Dsp-CA and CO 2 mineralization. Since the novel chimeric protein of the present invention exhibits increased solubility and CO 2 hydration activity, it can be utilized for various industrial raw materials production using CO 2 removal process using CO catalyst and CO 2 mineralization.

도 1은 키메라 단백질 Dsp-nCA-c와 Dsp-nCA-c(G263S)의 제작과정을 나타낸 모식도이다[A: 키메라 단백질 Dsp-nCA-c 구조, B: Overlap PCR을 통한 Dsp-nCA-c 제작 모식도].
도 2는 신규 키메라 단백질 및 이의 변형 단백질의 아미노산 서열 및 변형 전 단백질들과의 서열을 비교한 것이다.
도 3은 SDS-PAGE 분석을 통한 Dsp-CA-n, Dsp-CA-c, Dsp-nCA-c, Dsp-nCA-c(G263S) 단백질 발현을 비교한 것이다[M; marker, lane 1: Dsp-CA-n, lane 2: Ds-CA-c, lane 3: Dsp-nCA-c, and lane 4: Dsp-nCA-c (G263S). 왼쪽 그림은 정제 전 단백질 생산 대장균의 용균액 비교, 오른쪽 그림은 코발트 레진을 이용한 정제 후 정제된 단백질의 양 비교].
도 4는 각 CA들 사이의 에스터레이즈 활성(A) 및 CO2 수화 활성(B)을 비교한 것이다.
도 5는 각 CA에 의해 형성된 CaCO3의 XRD 분석 결과이다[C: calcite; v: vaterite peak].
도 6은 각 CA에 의해 형성된 CaCO3의 SEM 이미지를 비교한 것이다[A: 효소가 존재하지 않는 상태에서 형성된 CaCO3. B: Dsp-CA, C: Dsp-CA-n, D: Dsp-CA-c, E: Dsp-nCA-c, F: Dsp-nCA-c(G263S)에 의해 형성된 CaCO3].
Fig. 1 is a schematic diagram showing the production process of chimeric proteins Dsp-nCA-c and Dsp-nCA-c (G263S) [A: Chimeric protein Dsp-nCA-c structure, B: Overlap PCR Pattern diagram].
Fig. 2 compares the amino acid sequence of the novel chimeric protein and its modified protein and the sequence with the unmodified proteins.
Figure 3 compares Dsp-CA-n, Dsp-CA-c, Dsp-nCA-c and Dsp-nCA-c (G263S) protein expression by SDS-PAGE analysis [M; marker, lane 1: Dsp-CA-n, lane 2: Ds-CA-c, lane 3: Dsp-nca-c, and lane 4: Dsp-nca-c (G263S). The figure on the left shows the comparison of the amount of purified protein in E. coli producing pre-purified protein, and the figure on the right shows the amount of purified protein after purification using cobalt resin.
Figure 4 compares the esterase activity (A) and CO 2 hydration activity (B) between each CA.
Figure 5 shows the XRD analysis of CaCO 3 formed by each CA [C: calcite; v: vaterite peak].
Figure 6 compares SEM images of CaCO 3 formed by each CA [A: CaCO 3 formed in the absence of enzyme. B: Dsp-CA, C: Dsp-CA-n, D: Dsp-CA-c, E: Dsp-nCA-c, F: CaCO 3 formed by Dsp-nCA-c (G263S).

이하, 본 발명의 구성을 구체적으로 설명한다.Hereinafter, the configuration of the present invention will be described in detail.

본 발명자들은 두날리엘라 살리나(Dunaliella Salina)에서 유래의 이중 탄산무수화효소(Dsp-CA)는 각 아미노말단 도메인 절반(Dsp-CA-n)과 카르복실 말단 도메인 절반(Dsp-CA-c)이 각각 완전한 알파형 CA 구조를 가지며 이들을 각각 한 개의 α-type CA로 발현시킬 경우 Dsp-CA-n은 단백질 발현율은 좋으나 활성이 거의 없고 Dsp-CA-c는 발현율은 낮으나 효소 활성을 갖는다. 활성형의 Dsp-CA-c의 발현율을 증가시키기 위해 Dsp-CA-c의 아미노말단 10개의 아미노산을 Dsp-CA-n의 아미노말단의 12개의 아미노산으로 바꿔준 키메라 단백질인 Dsp-nCA-c를 발명하였다. Dsp-nCA-c와 이의 제작 과정에서 자연적으로 발생한 변형 단백질인 Dsp-nCA-c(G263S)는 Dsp-CA-c에 비해 거의 두 배의 증가된 발현량과 CO2 수화능력을 나타내었다. 또한, 이들 신규 키메라 단백질은 원형의 이중 Dsp-CA의 CO2 전환에 의한 미네랄 형성능과 유사한 미네랄 형성능을 나타내었다.(Dsp-CA-n) and half-carboxyl-terminal domain (Dsp-CA-c), respectively, derived from Dunaliella salina. , And Dsp-CA-c, respectively, have a complete alpha-type CA structure. When they are expressed as a single α-type CA, Dsp-CA-n exhibits good protein expression but little activity and Dsp-CA-c exhibits low enzyme activity. In order to increase the expression rate of active Dsp-CA-c, Dsp-nCA-c, a chimeric protein that replaced the amino-terminal 10 amino acids of Dsp-CA-c with 12 amino acids of the amino terminal of Dsp-CA- Invented. Dsp-nCA-c and Dsp-nCA-c (G263S), a naturally occurring variant of Dsp-nCA-c, produced approximately two-fold increased amounts of CO 2 and hydration compared to Dsp-CA-c. In addition, these novel chimeric proteins exhibited mineral forming ability similar to the mineral forming ability by the CO 2 conversion of the circular double Dsp-CA.

따라서, 본 발병은 단백질 발현 증가와 효소활성이 증가된 신규 탄산무수화 효소인 Dsp-nCA-c 및 이의 변형체인 Dsp-nCA-c(G263S)의 제조방법 및 이의 용도를 제공한다.Accordingly, the present invention provides a method for producing Dsp-nCA-c and a modification thereof, Dsp-nCA-c (G263S), which is a novel carbonic anhydrase having increased protein expression and enzyme activity, and uses thereof.

본 발명에 따른 Dsp-nCA-c 탄산무수화효소는 서열번호 4의 아미노산 서열로 표시될 수 있다. 또한, 본 발명에 따른 Dsp-nCA-c(G263S) 탄산무수화효소는 서열번호 5의 아미노산 서열로 표시될 수 있다.The Dsp-nCA-c carbonic anhydrase according to the present invention can be represented by the amino acid sequence of SEQ ID NO: 4. In addition, the Dsp-nCA-c (G263S) carbonic anhydrase according to the present invention can be represented by the amino acid sequence of SEQ ID NO: 5.

또한, 상기 탄산무수화효소는 서열번호 4 또는 5에 기재된 아미노산 서열뿐만 아니라 상기 서열과 서열 상동성이 80% 이상, 85% 이상, 90% 이상, 93% 이상, 94% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상 및 99% 이상인 아미노산 서열을 포함할 수 있다. 본 발명에서 상기 탄산무수화효소가 또 다른 서열에 대하여 특정 비율 (예컨대, 80%, 85%, 90%, 95%, 또는 99%)의 서열 동일성을 가진다는 것은, 상기 두 서열을 정렬시킬 때, 상기 서열들의 비교 시 상기 비율의 아미노산 잔기가 동일함을 의미한다.In addition, the carbonic anhydrase has not only the amino acid sequence of SEQ ID NO: 4 or 5 but also a sequence homology of 80% or more, 85% or more, 90% or more, 93% or more, 94% or more, 95% , 96% or more, 97% or more, 98% or more, and 99% or more. In the present invention, the fact that the carbonic anhydrase has a specific ratio (for example, 80%, 85%, 90%, 95%, or 99%) to another sequence means that when the two sequences are aligned Quot; means that the amino acid residues in the ratio are the same in the comparison of the sequences.

또한, 상기 Dsp-nCA-c 탄산무수화효소는 서열번호 10에 기재된 염기 서열로부터 코딩된 것일 수 있다. 또한, 상기 Dsp-nCA-c(G263S) 탄산무수화효소는 서열번호 11에 기재된 염기 서열로부터 코딩된 것일 수 있다.In addition, the Dsp-nCA-c carbonic anhydrase may be the one encoded from the nucleotide sequence shown in SEQ ID NO: 10. Further, the Dsp-nCA-c (G263S) carbonic anhydrase may be the one encoded from the nucleotide sequence shown in SEQ ID NO: 11.

상기 탄산무수화효소는 에스터레이즈(esterase) 활성과 CO2 수화 활성을 가지는 특징이 있다. The carbonic anhydrase has esterase activity and CO 2 And is characterized by having hydration activity.

본 발명의 일 구현예는, 서열번호 3 또는 서열번호 9에 기재된 염기 서열로 표시되는 탄산무수화효소의 코딩 서열을 포함하는 재조합 벡터를 제조하는 단계를 포함하는 탄산무수화효소의 대량 생산 방법에 관한 것이다.One embodiment of the present invention is a method for mass production of carbonic anhydrase, comprising the step of preparing a recombinant vector comprising a coding sequence of a carbonic anhydrase represented by the nucleotide sequence shown in SEQ ID NO: 3 or SEQ ID NO: 9 .

상기 탄산무수화효소는 유전자 재조합과 단백질 발현 시스템을 통하여 시험관 내에서 합성하는 방법에 의하여 제조할 수 있다. 즉, 탄산무수화효소의 유전자 삽입물이 발현되도록 작동 가능하게 연결된 필수적인 조절 요소를 포함하는 재조합 벡터를 사용할 수 있다.The carbonic anhydrase can be prepared by in vitro synthesis through gene recombination and protein expression system. That is, a recombinant vector containing an essential regulatory element operably linked to the expression of the gene insert of the carbonic anhydrase can be used.

상기 벡터는 플라스미드 벡터, 코즈미드 벡터, 박테리오파아지 벡터 및 바이러스 벡터 등을 포함하나 이에 제한되지 않는다. 적합한 발현 벡터는 프로모터, 오퍼레이터, 개시코돈, 종결코돈, 폴리아데닐화 시그널 및 인핸서 같은 발현 조절 엘리먼트 외에도 막 표적화 또는 분비를 위한 시그널 서열 또는 리더 서열을 포함하며, 목적에 따라 다양하게 제조될 수 있다. 벡터의 프로모터는 구성적 또는 유도성일 수 있다. 또한, 발현벡터는 벡터를 함유하는 숙주세포를 선택하기 위한 선택 마커를 포함하고, 복제 가능한 발현벡터인 경우 복제 기원을 포함한다.Such vectors include, but are not limited to, plasmid vectors, cosmid vectors, bacteriophage vectors, and viral vectors. Suitable expression vectors include signal sequence or leader sequences for membrane targeting or secretion in addition to expression control elements such as promoter, operator, initiation codon, termination codon, polyadenylation signal and enhancer, and may be prepared in various ways depending on the purpose. The promoter of the vector may be constitutive or inducible. Further, the expression vector includes a selection marker for selecting a host cell containing the vector, and includes a replication origin in the case of a replicable expression vector.

본 발명의 재조합 벡터는 바람직하게는 일반적인 대장균 균주 발현용 벡터, pET42b vector에 상기 탄산무수화효소를 코딩하는 핵산을 삽입함으로써 제조될 수 있다. 본 발명의 일 구체예에서는 대장균 발현용 벡터로 pET42b vector를 사용하였지만 반드시 이에 한정되는 것은 아니며, 일반적으로 사용할 수 있는 모든 대장균주 발현용 벡터가 제한 없이 사용될 수 있다.The recombinant vector of the present invention can be preferably prepared by inserting a nucleic acid encoding said carbonic anhydrase into a vector for expression of a common E. coli strain, pET42b vector. In one embodiment of the present invention, pET42b vector is used as a vector for Escherichia coli expression, but not always limited thereto, and all commonly used Escherichia coli expression vectors can be used without limitation.

상기 형질전환은 핵산을 유기체, 세포, 조직 또는 기관에 도입하는 어떤 방법도 포함되며, 당 분야에서 공지된 바와 같이 숙주세포에 따라 적합한 표준 기술을 선택하여 수행할 수 있다. 이런 방법에는 전기충격유전자전달법(electroporation), 원형질 융합, 인산 칼슘(CaPO4) 침전, 염화 칼슘(CaCl2) 침전, 실리콘 카바이드 섬유 이용한 교반, 아그로박테리아 매개된 형질전환, PEG, 덱스트란 설페이트, 리포펙타민 등이 포함되나, 이에 제한되지 않는다.Such transformation includes any method of introducing the nucleic acid into an organism, cell, tissue or organ, and can be carried out by selecting a suitable standard technique depending on the host cell as is known in the art. Such methods include electroporation, protoplast fusion, calcium phosphate (CaPO 4 ) precipitation, calcium chloride (CaCl 2 ) precipitation, agitation with silicon carbide fibers, Agrobacterium mediated transformation, PEG, dextran sulfate, ≪ / RTI > lipofectamine, and the like.

또한, 숙주세포에 따라서 단백질의 발현량과 수식 등이 다르게 나타나므로, 목적에 가장 적합한 숙주세포를 선택하여 사용하면 된다.In addition, since the expression amount of the protein and the expression are different depending on the host cell, the host cell most suitable for the purpose may be selected and used.

숙주세포로는 대장균(Escherichia coli), 바실러스 서브틸리스(Bacillus subtilis), 스트렙토마이세스(Streptomyces), 슈도모나스(Pseudomonas), 프로테우스 미라빌리스(Proteus mirabilis) 또는 스타필로코쿠스(Staphylococcus)와 같은 원핵 숙주 세포가 있으나 이로 제한되는 것은 아니다. 또한, 진균(예를 들어, 아스페르길러스(Aspergillus)), 효모(예를 들어, 피치아 파스토리스(Pichia pastoris), 사카로마이세스 세르비시애(Saccharomyces cerevisiae), 쉬조 사카로마세스(Schizo saccharomyces), 뉴로스포라 크라사(Neurospora crassa))등과 같은 하등 진핵 세포, 곤충 세포, 식물 세포, 포유동물 등을 포함하는 고등 진핵생물 유래 의 세포를 숙주세포로 사용할 수 있다. 상기 형질전환체는 상기 재조합 벡터를 임의의 숙주세포에 도입시킴으로써 용이하게 제조될 수 있다.Examples of host cells include prokaryotic cells such as Escherichia coli, Bacillus subtilis, Streptomyces, Pseudomonas, Proteus mirabilis or Staphylococcus. Host cells, but are not limited thereto. It is also possible to use fungi (for example Aspergillus), yeast (for example, Pichia pastoris, Saccharomyces cerevisiae, Schizo < (R) > Saccharomyces, Neurospora crassa, etc.), insect cells, plant cells, mammals and the like can be used as host cells. The transformant can be easily prepared by introducing the recombinant vector into any host cell.

본 발명의 일 구체예에 따르면, 상기 발현 벡터에 의해 얻어진 탄산무수화효소를 발현시키기 위한 재조합 벡터 pET-Dsp-nCA-c를 대장균 균주 BL21(DE3)에 도입하여 형질전환체를 제조할 수 있다.According to one embodiment of the present invention, a transformant can be prepared by introducing the recombinant vector pET-Dsp-nCA-c for expressing the carbonic anhydrase obtained by the expression vector into E. coli strain BL21 (DE3) .

상기 탄산무수화효소를 발현하는 형질전환체는 통상의 배양방법에 따라 배양하여 분리 정제함으로써 대량 생산이 가능하다. 특별히 제한하지는 않으나, 통상의 LB(Luria broth)에서 배양하고, 배양물로부터 가용성 분획만을 회수하여 크로마토그래피법을 통해 정제할 수 있다.The transformant expressing the above-mentioned carbonic anhydrase can be mass-produced by culturing and isolating and purifying the transformant according to a conventional culture method. Although not particularly limited, it can be purified by chromatographic method by culturing in usual LB (Luria broth) and recovering only the soluble fraction from the culture.

본 발명은 또한 서열번호 4 또는 5에 기재된 아미노산 서열로 표시되는 탄산무수화효소를 포함하는 이산화탄소의 포집 또는 고정용 조성물에 관한 것이다.The present invention also relates to a composition for trapping or fixing carbon dioxide comprising a carbonic anhydrase represented by the amino acid sequence set forth in SEQ ID NO: 4 or 5.

전술한 바와 같이, 본 발명의 탄산무수화효소는 에스터레이즈 활성과 이산화탄소 수화 활성을 가지고 있어, 이산화탄소의 포집 및 고정화에 효과적일 수 있다.As described above, the carbonic anhydrase of the present invention has an ester-raising activity and a carbon dioxide hydration activity, and can be effective for capturing and immobilizing carbon dioxide.

본 발명의 이산화탄소의 포집 또는 고정용 조성물은 펩타이드를 합성하는 당해 분야의 공지된 방법에 의하여 제조된 본 발명에 따른 탄산무수화효소를 포함할 수 있다. 예를 들어 유전자 재조합과 단백질 발현 시스템 또는 펩타이드 합성기 등을 통하여 시험관 내에서 합성하는 방법에 의하여 제조할 수 있다.The composition for trapping or fixing carbon dioxide of the present invention may include a carbonic anhydrase according to the present invention prepared by a known method in the art for synthesizing peptides. For example, by in vitro synthesis through gene recombination, a protein expression system, or a peptide synthesizer.

또한, 본 발명의 이산화탄소의 포집 또는 고정용 조성물은 탄산무수화효소를 발현하는 형질전환체의 배양물 형태로 포함할 수 있다.In addition, the composition for capturing or fixing carbon dioxide of the present invention may be contained in the form of a culture of a transformant expressing a carbonic anhydrase.

본 발명은 또한 본 발명에 따른 이산화탄소의 포집 또는 고정용 조성물을 포함하는 이산화탄소의 포집 및 고정 장치에 관한 것이다.The present invention also relates to an apparatus for collecting and fixing carbon dioxide which comprises a composition for capturing or fixing carbon dioxide according to the present invention.

본 발명의 이산화탄소의 포집 및 고정 장치는 공기로부터 이산화탄소를 추출하여 바이카보네이트로 전환시켜 고정하는 통상의 장치일 수 있다. 예컨대, 이산화탄소의 포집 및 고정 장치는 업라이트 타워(upright towers), 챔버(chamber) 및 물 공급부(source of water)를 포함하고, 상기 업라이트 타워는 하부에 적어도 하나의 공기 투입부(air inlet)를 포함하고 타워의 상부에 적어도 하나의 공기 배출부(air outlet)를 포함하고, 상기 챔버는 적어도 하나의 공기 투입구(air inlet)와 적어도 하나의 공기 배출구(air outlet) 사이에 위치하고 이산화탄소를 포집하기 위한 수집기를 포함하며, 상기 물 공급부에서 수지를 습윤하여 이산화탄소를 방출시키는 구조를 가질 수 있고, 상기 이산화탄소를 포집하기 위한 수집기에 본 발명에 따른 탄산무수화효소를 포함할 수 있다.The apparatus for trapping and fixing carbon dioxide of the present invention may be a conventional apparatus for extracting carbon dioxide from air and converting it into bicarbonate and fixing it. For example, the capture and fixation device of carbon dioxide may include upright towers, a chamber and a source of water, wherein the upright tower includes at least one air inlet at the bottom And at least one air outlet at the top of the tower, the chamber being located between at least one air inlet and at least one air outlet, The water supply unit may have a structure for wetting the resin to release carbon dioxide, and the collector for capturing the carbon dioxide may include the carbonic anhydrase according to the present invention.

다른 구체예에서, 본 발명의 이산화탄소의 포집 및 고정 장치는 실내 공기정화 장치일 수 있다. 상기 실내 공기정화 장치는 기존 분수장치 내에 효소가 포함된 담체를 고정한 것으로, 이산화탄소 저감기능 및 가습기능을 겸비하고, 효소가 지속적으로 그 기능을 할 수 있도록 수용액 저장소의 수용액에 잠기도록 구성할 수 있다. 따라서, 상기 효소가 포함된 담체에 포함된 효소는 용해된 이산화탄소를 바이카보네이트로 빠르게 전환하도록 하는 촉매 기능을 가져 지속적으로 공기 중 이산화탄소를 저감할 수 있다. 상기 효소로 본 발명에 따른 탄산무수화효소를 포함할 수 있다.In another embodiment, the trapping and anchoring device for carbon dioxide of the present invention may be an indoor air purifier. The indoor air cleaning apparatus may be configured such that a carrier containing an enzyme is fixed in an existing fractional apparatus and has a carbon dioxide abatement function and a humidifying function and is submerged in an aqueous solution of an aqueous solution reservoir so that the enzyme can continuously perform its function . Therefore, the enzyme contained in the carrier containing the enzyme has a catalytic function for rapidly converting dissolved carbon dioxide into bicarbonate, so that the carbon dioxide in the air can be continuously reduced. The enzyme may include a carbonic anhydrase according to the present invention.

본 발명은 또한 본 발명에 따른 이산화탄소의 포집 또는 고정용 조성물이 고정화(immobilization)된 이산화탄소의 포집 및 고정용 센서에 관한 것이다.The present invention also relates to a sensor for capturing and fixing carbon dioxide in which a composition for trapping or fixing carbon dioxide according to the present invention is immobilized.

본 발명의 이산화탄소의 포집 및 고정용 센서에 있어서, 효소 고정 방법은 흡착법, 이온결합법, 가교법, 포획법 또는 공유결합법으로 고정할 수 있으나, 이에 특별히 제한하는 것은 아니다.In the sensor for trapping and fixing carbon dioxide in the present invention, the enzyme fixing method can be fixed by an adsorption method, an ion-binding method, a crosslinking method, a capturing method, or a covalent bonding method, but the method is not particularly limited thereto.

본 발명은 또한 이산화탄소 포화 용액과 본 발명에 따른 이산화탄소의 포집 또는 고정용 조성물을 반응시키는 단계를 포함하는 이산화탄소의 포집 또는 고정방법에 관한 것이다.The present invention also relates to a method for trapping or fixing carbon dioxide comprising the step of reacting a carbon dioxide saturated solution with a composition for trapping or fixing carbon dioxide according to the present invention.

상기 이산화탄소 포화 용액은 이산화탄소 가스를 녹여 탄산수용액에 녹여 제조한 것일 수 있으나, 이에 특별히 제한하는 것은 아니다.The carbon dioxide saturation solution may be prepared by dissolving carbon dioxide gas in an aqueous carbonate solution, but is not particularly limited thereto.

본 발명에 따른 알파형 탄산무수화효소는 이산화탄소를 빠른 속도로 탈수시켜 바이카보네이트로 전환시킬 수 있다.The alpha-type carbonic anhydrase according to the present invention can rapidly convert carbon dioxide to bicarbonate by dehydration.

본 발명은 또한 본 발명에 따른 이산화탄소의 포집 또는 고정용 조성물을 포함하는 바이카보네이트 또는 카보네이트 화합물 제조용 키트에 관한 것이다.The present invention also relates to a kit for producing a bicarbonate or a carbonate compound comprising a composition for capturing or fixing carbon dioxide according to the present invention.

또한, 본 발명은 이산화탄소 포화 용액과 본 발명에 따른 이산화탄소의 포집 또는 고정용 조성물을 반응시키는 단계; 및 상기에서 얻은 반응물과 알칼리 양이온 염을 반응시켜 비정질의 바이카보네이트 또는 카보네이트 화합물을 제조하는 단계를 포함하는 바이카보네이트 또는 카보네이트 화합물의 제조방법을 제공한다.The present invention also relates to a method for producing carbon dioxide, comprising the steps of: reacting a carbon dioxide saturated solution with a composition for trapping or fixing carbon dioxide according to the present invention; And reacting the reactant obtained above with an alkali cationic salt to produce an amorphous bicarbonate or carbonate compound. The present invention also provides a method for producing a bicarbonate or a carbonate compound.

상기 탄산무수화효소는 가역반응성이 있어 기질로 이산화탄소뿐만 아니라 바이카보네이트를 사용할 수 있다. 따라서, 이산화탄소 고정 과정에서 이산화탄소에서 전환된 바이카보네이트는 알칼리 양이온의 처리 시 비정질의 바이카보네이트 또는 카보네이트 화합물로 전환될 수 있다.The carbonic anhydrase has reversible reactivity, and bicarbonate as well as carbon dioxide can be used as a substrate. Thus, the bicarbonate converted from carbon dioxide in the carbon dioxide fixation process can be converted to an amorphous bicarbonate or carbonate compound upon treatment of the alkali cation.

상기 바이카보네이트 화합물은 소듐 바이카보네이트(Na2HCO3), 포타슘 바이카보네이트(KHCO3), 마그네슘 바이카보네이트(Mg(HCO3)2), 칼슘 바이카보네이트(Ca(HCO3)2) 또는 암모늄 바이카보네이트((NH4)HCO3) 등일 수 있다.The bicarbonate compound may be selected from the group consisting of sodium bicarbonate (Na 2 HCO 3 ), potassium bicarbonate (KHCO 3 ), magnesium bicarbonate (Mg (HCO 3 ) 2 ), calcium bicarbonate (Ca (HCO 3 ) 2 ) ((NH 4) HCO 3), and the like.

상기 카보네이트 화합물은 카본산(H2CO3), 리튬 카보네이트(Li2CO3), 소듐 카보네이트(Na2CO3), 포타슘 카보네이트(K2CO3), 루비듐 카보네이트(Rb2CO3), 세슘 카보네이트(Cs2CO3), 베릴륨 카보네이트(BeCO3), 마그네슘 카보네이트(MgCO3), 칼슘 카보네이트(CaCO3), 스트론튬 카보네이트(SrCO3), 바륨 카보네이트(BaCO3), 망간 카보네이트(MnCO3), 철 카보네이트(FeCO3), 코발트 카보네이트(CoCO3), 니켈 카보네이트(NiCO3), 구리 카보네이트(CuCO3), 실버 카보네이트(Ag2CO3), 징크 카보네이트(ZnCO3), 카드뮴 카보네이트(CdCO3), 알루미늄 카보네이트(Al2(CO3)3), 탈륨 카보네이트(Tl2CO3), 리드 카보네이트(PbCO3) 또는 란타늄 카보네이트(La2(CO3)3) 등일 수 있다.The carbonate compound is a carbonic acid (H 2 CO 3), lithium carbonate (Li 2 CO 3), sodium carbonate (Na 2 CO 3), potassium carbonate (K2CO 3), rubidium carbonate (Rb2CO 3), cesium carbonate (Cs 2 (BaCO 3 ), manganese carbonate (MnCO 3 ), iron carbonate (FeCO 3 ), barium carbonate (BaCO 3 ), iron carbonate (FeCO 3 ), beryllium carbonate (BeCO 3 ), magnesium carbonate (MgCO 3 ), calcium carbonate (CaCO 3 ), strontium carbonate 3) and cobalt carbonate (CoCO 3), nickel carbonate (NiCO 3), copper carbonate (CuCO 3), silver carbonate (Ag 2 CO 3), zinc carbonate (ZnCO 3), cadmium carbonate (CdCO 3), aluminum carbonate ( Al 2 (CO 3 ) 3 ), thallium carbonate (Tl 2 CO 3 ), lead carbonate (PbCO 3 ), or lanthanum carbonate (La 2 (CO 3 ) 3 ).

상기 알칼리 양이온염은 Mg, K, Na, NH4, Ca, Li, Rb, Cs, Be, Sr, Ba, Mn, Fe, Co, Ni, Cu, Zn, Cd, Ag, Al, Tl, Pb 또는 La의 염 등일 수 있다. 예컨대, 염화칼슘(CaCl2), 황산칼슘(CaSO4), 중탄산칼슘(Ca(HCO3)2), 산화칼슘(CaO), 수산화칼슘(Ca(OH)2) 등을 사용할 수 있으나, 이에 특별히 제한하는 것은 아니다.The alkali cation salt may be at least one selected from the group consisting of Mg, K, Na, NH4, Ca, Li, Rb, Cs, Be, Sr, Ba, Mn, Fe, Co, Ni, Cu, Zn, Cd, Ag, Al, And the like. For example, calcium chloride (CaCl 2 ), calcium sulfate (CaSO 4 ), calcium bicarbonate (Ca (HCO 3 ) 2 ), calcium oxide (CaO) and calcium hydroxide (Ca (OH) 2 ) It is not.

상기 비정질의 바이카보네이트 또는 카보네이트 화합물은 침전 반응을 통해 상 전이를 거쳐 결정상의 바이카보네이트 또는 카보네이트 화합물로 전환될 수 있다.The amorphous bicarbonate or carbonate compound may be converted into a crystal phase bicarbonate or carbonate compound through phase transformation through a precipitation reaction.

상기 침전은 pH 8 내지 10 에서 0 내지 50 ℃의 온도 조건에서 실시할 수 있으나, 이에 특별히 제한하는 것은 아니다.The precipitation can be carried out at a pH of 8 to 10 at a temperature of 0 to 50 ° C, but is not particularly limited thereto.

상기 결정상의 바이카보네이트 또는 카보네이트 화합물은 칼사이트(calcite), 아라고나이트(aragonite) 또는 베터라이트(veterite)일 수 있다.The crystal phase bicarbonate or carbonate compound may be calcite, aragonite or veterite.

본 발명은 또한 본 발명에 따른 이산화탄소의 포집 또는 고정용 조성물을 포함하는 바이카보네이트 또는 이산화탄소를 이용한 대사 산물 생산용 키트에 관한 것이다.The present invention also relates to a kit for the production of metabolites using bicarbonate or carbon dioxide comprising a composition for capturing or fixing carbon dioxide according to the present invention.

또한, 본 발명은 바이카보네이트 또는 이산화탄소를 이용한 C4 대사 또는 지질 대사에서 촉매로 본 발명에 따른 이산화탄소의 포집 또는 고정용 조성물을 사용하여 대사 산물을 생산하는 방법을 제공한다.The present invention also provides a method for producing a metabolite using a composition for capturing or fixing carbon dioxide according to the present invention as a catalyst in C4 metabolism using bicarbonate or carbon dioxide or lipid metabolism.

상기 대사 산물은 C4 대사 또는 지질 대사 산물로서, C4 대사에서, PEP(phosphoenol pyruvate)에 CO2를 붙여서 옥살로아세테이트(Oxaloacetate)로 진행하는 PEP 카복실레이즈(carboxylase) 반응에서 탄산무수화효소가 촉매(또는 보조 효소)로 연동하여 C4 화합물을 효과적으로 합성할 수 있는 특징이 있다.The metabolite may be a C4 metabolite or a lipid metabolite. In the C4 metabolism, in the PEP carboxylase reaction proceeding to oxaloacetate by attaching CO2 to PEP (phosphoenol pyruvate), the carbonic anhydrase reacts with the catalyst Coenzymes) to synthesize C4 compounds effectively.

또한, 지질 대사에서, 아세틸 코에이(Acetyl CoA)에서 바이카보네이트(HCO3 -)를 붙여서 말로닐 코에이(Malonyl CoA)로 진행하는 아세틸 코에이 카복실레이즈(Acetyl CoA carboxylase) 반응에서 탄산무수화효소가 촉매(또는 보조 효소)로 연동하여 말로닐 코에이를 효과적으로 합성할 수 있는 특징이 있다.In addition, in the lipid metabolism, in the Acetyl CoA carboxylase reaction proceeding to malonyl CoA by attaching bicarbonate (HCO 3 - ) in acetyl CoA, (Or coenzyme) and can effectively synthesize it on malonylcohols.

따라서, 본 발명은 유용 대사 산물 합성에 유용한 시스템을 제공한다.
Thus, the present invention provides a system useful for the synthesis of useful metabolites.

이하, 본 발명에 따르는 실시예를 통하여 본 발명을 보다 상세히 설명하나, 본 발명의 범위가 하기 제시된 실시예에 의해 제한되는 것은 아니다.
Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the scope of the present invention is not limited by the following examples.

[[ 실시예Example ]]

1. 균주, 플라스미드, 시약 준비1. Strain, plasmid, reagent preparation

GenBank AAC49378.1 성숙단백질 아미노산 서열이 일치하는 두날리엘라 살리나(Dunaliella Salina)를 사용하였다.GenBank AAC49378.1 Dunaliella Salina, matched with the mature protein amino acid sequence, was used.

발현 균주로 E.coli BL21(DE3)를 사용하였다. E. coli BL21 (DE3) was used as an expression strain.

발현 벡터로는 Novagen 사의 pET42b를 사용하였다. As the expression vector, Novagen pET42b was used.

Sigma-aldrich 회사에서 항생제와 IPTG (isopropyl β-D-1-thiogalactopyranoside), p-NPA(p-nitrophenolacetate), PMSF(phenylmethylsulfonyl fluoride), lysozyme, DNase를 구매했다.Sigma-aldrich purchased antibiotics, IPTG (isopropyl β-D-1-thiogalactopyranoside), p-NPA ( p- nitrophenolacetate), PMSF (phenylmethylsulfonyl fluoride), lysozyme and DNase.

EDTA-free protease inhibitor와 protein assay reagent는 Thermo Fisher scientific 회사에서 구매했다. EDTA-free protease inhibitors and protein assay reagents were purchased from Thermo Fisher scientific company.

실험에서 사용한 모든 시약은 analytical grade이며, deionized distilled water로 모든 수용액을 준비하였다.
All reagents used in the experiments were analytical grade and all aqueous solutions were prepared with deionized distilled water.

2. 2. 키메릭Chimeric DspDsp -- nCAnCA -c의 제조Manufacture of -c

Dsp-CA (서열번호 1)로부터 얻은 cDNA 서열 (서열번호 7)를 가진 유전자는 본 발명팀이 보유하고 있는 벡터 pET-Dsp-CA에서 얻었다. The gene with the cDNA sequence (SEQ ID NO: 7) obtained from Dsp-CA (SEQ ID NO: 1) was obtained from the vector pET-Dsp-CA which the team of the present invention has.

Dsp-CA-c (서열번호 3)를 암호화하는 cDNA 서열 (서열번호 9)의 상보서열로 유전자 증폭을 위한 프라이머를 제작하였으며, 융합 유전자는 overlap extension PCR로 증폭시켰다. 3개의 정“‡항 프라이머(Forward primer)와 1개의 역방향 프라이머(reverse primer)를 사용하였다. A primer for gene amplification was prepared with the complementary sequence of the cDNA sequence (SEQ ID NO: 9) encoding Dsp-CA-c (SEQ ID NO: 3) and the fusion gene was amplified by overlap extension PCR. Three forward primers and one reverse primer were used.

F1: CATATGGTTTCTGAACCGCACGACTACAAC (서열번호 12)F1: CATATGGTTTCTGAACCGCACGACTACAAC (SEQ ID NO: 12)

F2: CGCACGACTACAACTACGAAAAACACGGT (서열번호 13)F2: CGCACGACTACAACTACGAAAAACACGGT (SEQ ID NO: 13)

F3: CTACGAAAAACACGGTTTCGACTGGCGT (서열번호 14)F3: CTACGAAAAACACGGTTTCGACTGGCGT (SEQ ID NO: 14)

R1: AAGCTTAGCAGCAGCACCGTTGTAACCGTA (서열번호 15). R1: AAGCTTAGCAGCAGCACCGTTGTAACCGTA (SEQ ID NO: 15).

첫 번째 PCR 반응은 F3와 R1 프라이머를 한 쌍으로 사용하여 실시했으며 주형으로는 Dsp-CA-c 유전자 (서열번호 9)가 들어있는 플라스미드를 사용하였다. 두 번째 반응에서는 첫 번째 반응의 PCR 생산물을 주형으로 하여 F2와 R1을 이용하여 증폭시켰으며, 마지막으로는 두 번째 반응의 PCR 생성물을 주형으로 F1과 R1을 이용하여 PCR을 진행하여 최종 융합 유전자를 획득했다. The first PCR reaction was carried out using a pair of F3 and R1 primers, and a plasmid containing the Dsp-CA-c gene (SEQ ID NO: 9) was used as a template. In the second reaction, the PCR product of the first reaction was amplified using F2 and R1 as a template. Finally, the PCR product of the second reaction was used as a template and PCR was performed using F1 and R1 to obtain the final fusion gene I got it.

PCR 방법은 94 ℃ 3분 1회, 94 ℃ 30초-64 ℃ 1분-72 ℃ 1분을 30회 반복, 72 ℃ 6분 1회이다. 정제된 PCR 생산물은 pGEM-T Easy 벡터[Promega co. USA]에 삽입하였다. 유전자 서열 분석으로 합성한 DNA (서열번호 10)를 확인하였다. 제한효소 NdeⅠ / HindⅢ 를 이용하여 복제한 T 벡터로부터 825 bp의 DNA 단편 (서열번호 10)을 분리시켰으며 같은 제한효소 쌍으로 처리한 pET42b 벡터에 상기 유전자 단편을 삽입하고 T4 ligase를 이용하여 연결시킨 후 E.coli XL1-blue에 형질전환시켜 클로닝 벡터를 생산하는 균주를 확보하고 다시 유전자 서열 분석으로 확인하여 발현벡터 pET-Dsp-nCA-c 를 완성시켰다. 유전자 서열을 분석하던 중에 아미노산 서열 263번째의 글라이신이 세린으로 바뀐 변형체[Dsp-nCA-c(G263S)](서열번호 11)도 발견되어 이들 유전자를 발현하는 벡터 pET-Dsp-nCA-c(G263S)를 각각 확보하였다.
The PCR method was repeated 30 times at 94 ° C for 3 minutes, at 94 ° C for 30 seconds, at -64 ° C for 1 minute, and at 72 ° C for 1 minute, and at 72 ° C for 6 minutes once. The purified PCR product was pGEM-T Easy vector [Promega co. USA). DNA (SEQ ID NO: 10) synthesized by gene sequence analysis was confirmed. A DNA fragment of 825 bp (SEQ ID NO: 10) was isolated from the T vector cloned using the restriction enzyme Nde I / Hind III, and the gene fragment was inserted into the pET42b vector treated with the same pair of restriction enzymes. Using the T4 ligase After cloning, E. coli XL1-blue was transformed to obtain a cloning vector, which was again confirmed by gene sequencing to complete the expression vector pET-Dsp-nCA-c. (G263S)] (SEQ ID NO: 11) in which the glycine of amino acid sequence 263 was changed to serine while analyzing the gene sequence was also found and the vector pET-Dsp-nCA-c (G263S Respectively.

3. 재조합 3. Recombination DspDsp -- nCAnCA -c의 발현과 정제-c expression and purification

Dsp-nCA-c (서열번호 4)와 Dsp-nCA-c(G263S)(서열번호 5)를 E.coli BL21에서 발현시켰으며 Thermo사의 His-tag 결합 코발트 레진을 이용하여 정제하였다. 이전에 복제한 Dsp-CA (서열번호 1), Dsp-CA-n (서열번호 2), Dsp-CA-c (서열번호 3) 또한 변형 단백질의 생화학적 특징의 비교를 위해서 사용하였다. 단백질을 SDS-PAGE로 분석했고 Bradford assay로 농도를 정량하였다.
Dsp-nCA-c (SEQ ID NO: 4) and Dsp-nCA-c (G263S) (SEQ ID NO: 5) were expressed in E. coli BL21 and purified using Hiso-tagged cobalt resin from Thermo. The Dsp-CA (SEQ ID NO: 1), Dsp-CA-n (SEQ ID NO: 2) and Dsp-CA-c (SEQ ID NO: 3) previously cloned were also used for comparison of the biochemical characteristics of the modified protein. Protein was analyzed by SDS-PAGE and its concentration was quantified by Bradford assay.

4. 4. 에스터레이즈Esther Reyes (( esteraseesterase ) 활성 측정) Active measurement

Verpoorte 등의 방법[Verpoorte JA et al., J Biol Chem. 1967; 242(18):4221-9]을 약간 변형하여 CA esterase 활성을 p-NPA(para-nitrophenly acetate)를 이용하여 348 nm에서 분광광학적으로 분석하였다. Verpoorte et al., J Biol Chem. 1967; 242 (18): 4221-9], CA esterase activity was analyzed spectrophotometrically at 348 nm using p-NPA (para-nitrophenylacetate).

반응은 CA가 있는 20mM Tris-SO4 200㎕ 또는 없는 상태에 바로 제조한 3mM p-NPA 100㎕를 첨가해서 시작하였다. 이 반응은 multiplate reader를 이용해서 30분 동안 5분 간격으로 계속 확인하였다. 활성은 p-NPA에서 p-NP가 방출되는 양을 계산하였다. 그리고 효소 1 unit은 1분당 1nmol p-NP를 생산하는 효소의 양으로 정의하였다.
The reaction was initiated by the addition of 100 μl of 3 mM p-NPA prepared directly to 200 μl of 20 mM Tris-SO 4 with or without CA. The reaction was continuously monitored at 5 minute intervals for 30 minutes using a multiplate reader. Activity was calculated as the amount of p-NP released in p-NPA. One unit of enzyme was defined as the amount of enzyme producing 1 nmol p-NP per minute.

5. 이산화탄소 수화 능력5. Carbon dioxide hydration ability

각 CA의 CO2 수화 활성은 pH 8.3 완충용액에 녹아 있는 CO2가 이들 단백질에 의한 촉매 작용으로 수화되어 바이카보네이트(bicarbonate)로 전환되면서 pH가 7.0으로 감소되는 데 소용되는 시간 T 로 계산하고 촉매 반응이 없이 자연적으로 수화되는 데 필요한 시간을 T0로 계산하여 다음 수학식 1에 따라 효소활성 WAU(Wilbur-Anderson unit)로 표현하고 이 값을 반응에 사용한 단백질 양으로 나눈 값으로 활성도(수학식 2)를 계산하였다. The CO 2 hydration activity of each CA was calculated as the time T spent in the pH decrease to 7.0 as the CO 2 dissolved in the pH 8.3 buffer solution was converted to bicarbonate by the catalytic action of these proteins, The time required to hydrate naturally without reaction is calculated as T 0 and expressed as the enzyme activity WAU (Wilbur-Anderson unit) according to the following equation (1) and divided by the amount of protein used in the reaction: 2) were calculated.

[수학식 1][Equation 1]

WAU=(T0-T)/T WAU = (T0 - T) / T

[수학식 2]&Quot; (2) "

활성도=WAU/mg protein
Activity = WAU / mg protein

6. 6. COCO 22 광물화Mineralization

CaCl2가 존재 하에서 CA에 의한 이산화탄소의 CaCO3의 전환은 이전 본 발명자에 의해 출간한 논문[Mi-Ran Ki et al., Process Biochem. 2012; 47(9):1423-27]에 기재된 방법에 따라 실행하였다. 4 ℃에서 1시간 동안 miliQ-grade를 통해 얻은 순수한 dDW (deionized distilled water)에 CO2가 충분히 용해시켜 고무마개로 막고 아이스에 보관하였다. CA 효소 100 ㎍을 포함한 1 ml의 Tris-SO4 buffer(1M, pH 8.3)에 차가운 CO2 용액 10ml을 섞고 15분간 보관 후 다른 병에 들어있는 10ml의 CaCl2 용액을 넣어 최종 농도가 10 mM이 되도록 하고, 즉시 1M pH 9.5인 1M Tris-SO4 buffer 2 ml을 첨가하고 섞어주었다. 혼합물 반응은 35 ℃에서 5분, 45 ℃에서 5분간 반응시켰다. 침전된 CaCO3를 걸러내고 60 ℃에서 건조시켰다. 건조 중량을 통해 CaCO3에 존재하는 CO2의 양을 계산하였다. 대조구로는 효소가 없는 상태에서 CO2의 미네랄화를 실시하였다. The conversion of CaCO 3 to carbon dioxide by CA in the presence of CaCl 2 is described in the paper by Mi-Ran Ki et al., Process Biochem. 2012; 47 (9): 1423-27). CO 2 was sufficiently dissolved in pure dDW (deionized distilled water) obtained through miliQ-grade at 4 ° C for 1 hour, and the mixture was stored in ice for 30 minutes. 10 ml of cold CO 2 solution was added to 1 ml of Tris-SO 4 buffer (1M, pH 8.3) containing 100 μg of CA enzyme and kept for 15 minutes. 10 ml of CaCl 2 solution in another bottle was added to the solution to give a final concentration of 10 mM , And 2 ml of 1 M Tris-SO 4 buffer (pH 9.5) was immediately added thereto and mixed. The mixture reaction was carried out at 35 ° C for 5 minutes and at 45 ° C for 5 minutes. The precipitated CaCO 3 was filtered off and dried at 60 ° C. The amount of CO 2 present in CaCO 3 was calculated through the dry weight. As a control, mineralization of CO 2 was carried out in the absence of enzyme.

CaCO3 결과는 SEM 이미지와 D/MAX-2500/PC에서 Cu Ka radiation(λ=0.154nm)로 측정한 XRD로 분석하였다. 회절 패턴의 2 θ 범위는 20°~ 70°이며, 각 단계별 크기의 2 θ값은 0.02°이다. 획득한 XRD 결과는 JCPDS(Joint Committee on Powder Diffraction Standards)의 자료와 비교하였다.
The CaCO 3 results were analyzed by SEM image and XRD measured with Cu Ka radiation (λ = 0.154 nm) on D / MAX-2500 / PC. The 2? Range of the diffraction pattern is 20 ° to 70 °, and the 2θ value of each step size is 0.02 °. The obtained XRD results were compared with those of the Joint Committee on Powder Diffraction Standards (JCPDS).

7. 7. 키메라chimera 단백질 제작 Protein production

두날리엘라 살리나의 이중 α-type CA가 대장균 시스템에서 발현이 가능하지만 생산물의 양은 실질적 응용을 하기엔 충분하지 않았다. Dsp-CA의 각 도메인을 따로 클로닝하여 발현시킬 경우 배양 상태에 따라 아미노말단 도메인인 Dsp-CA-n (서열번호 2)은 카르복실말단 도메인인 Dsp-CA-c (서열번호 3)에 비해 발현양은 3배 내지 10배에 해당하나 효소 활성이 매우 적거나 거의 없다. 활성형인 Dsp-CA-c 가용성 발현율을 높이기 위해 Pymol 을 이용한 단백질 3차 구조 분석을 통해 전체 Dsp-CA-c 구조에 영향을 주지 않는 범위에서 Dsp-CA (서열번호 1)의 275~536번의 residue와 아미노말단의 처음 12개의 아미노산으로 구성된 키메라 단백질인 Dsp-nCA-c (서열번호 4)를 설계하였다(도 1). 상기 키메라 단백질을 생산하는 유전자는 도 1에 표시한 대로 overlap PCR로 얻었다. Dsp-CA-c (서열번호 3)의 아미노말단 10개의 아미노산을 Dsp-CA-n(서열번호 2)의 아미노말단 12개 아미노산으로 치환한 새로운 Dsp-nCA-c (서열번호 4)키메라 단백질을 생산하였다. Clustal W2 프로그램을 통해서 Dsp-CA-n(서열번호 2), Dsp-CA-c(서열번호 3), D. salina(PDB ID:1y7w)(서열번호 6) α-type CA들과 신규 키메라 단백질의 274개의 아미노산 서열을 비교하였다 (도 2).
Although the dual α-type CA of Dnalariella salina can be expressed in the E. coli system, the amount of product is not sufficient for practical application. When the respective domains of Dsp-CA are separately cloned and expressed, the amino terminal domain, Dsp-CA-n (SEQ ID NO: 2) differs from the carboxyl terminal domain Dsp-CA-c (SEQ ID NO: 3) The amount is between 3 and 10 times, but little or no enzyme activity. In order to increase the expression rate of the active form of Dsp-CA-c, the protein tertiary structure analysis using Pymol revealed that residues 275 to 536 of Dsp-CA (SEQ ID NO: 1) And a chimeric protein Dsp-nCA-c (SEQ ID NO: 4) consisting of the first 12 amino acids of the amino terminal (Fig. 1). The chimeric protein-producing gene was obtained by overlap PCR as shown in Fig. A new Dsp-nCA-c (SEQ ID NO: 4) chimeric protein was prepared by replacing the amino terminal 10 amino acids of Dsp-CA-c (SEQ ID NO: 3) with the amino terminal 12 amino acids of Dsp- CA-n Respectively. (SEQ ID NO: 2), Dsp-CA-c (SEQ ID NO: 3), D. salina (PDB ID: 1y7w) (SEQ ID NO: 6), α-type CAs and novel chimeric proteins Were compared (Figure 2).

8. 8. 키메라chimera 단백질 생산 Protein production

신규 키메라 Dsp-nCA-c 및 융합단백질 제조 과정 중에 생긴 변이 단백질인 Dsp-nCA-c(G263S)의 발현 양을 기존 Dsp-CA-c와 비교 시 2.1~2.4배 발현 증가를 나타내었다(도 3, 표 1). The expression level of Dsp-nCA-c (G263S), a mutant protein produced during the process of preparing new chimeric Dsp-nCA-c and fusion protein, was 2.1 to 2.4 fold higher than that of existing Dsp-CA-c , Table 1).

발현 수득율은 affinity chromatography 후에 얻은 fraction 중 가장 높은 단백질 농도를 보인 fraction을 이용해서 비교하였다. Dsp-CA-n의 N-말단 잔기가 융합된 Dsp-CA-c가용성 발현 증가에 영향을 미쳤음을 확인할 수 있었다. Expression yields were compared using the highest protein concentration obtained after affinity chromatography. It was confirmed that the N-terminal residue of Dsp-CA-n influenced the increase in soluble expression of the fused Dsp-CA-c.

단백질 생산량 비교Comparison of Protein Production
α-CA sourceα-CA source
Dsp-CA-nDsp-CA-n Dsp-CA-cDsp-CA-c Dsp-nCA-cDsp-nca-c Dsp-nCA-c (G263S)Dsp-nCA-c (G263S) 단백질 생산량Protein yield mg/Lmg / L 83.3 ±1.583.3 ± 1.5 10.2 ±1.110.2 ± 1.1 21.7 ±2.721.7 ± 2.7 24.3 ±0.824.3 ± 0.8

9. 9. 키메라chimera 단백질의 에스테르 분해 활성 및  The esterolytic activity of the protein and COCO 22 수화 활성 Hydration activity

Dsp-nCA-c 단백질의 에스터레이즈(esterase) 활성은 290.9 U/mg으로 같은 양의 Dsp-CA-c의 약 80% 정도의 활성을 가졌으며, Dsp-nCA-c(G263S)의 경우 Dsp-CA-c의 1.5배나 높은 활성을 보여주었다(도 4A).The esterase activity of the Dsp-nCA-c protein was 290.9 U / mg, which was about 80% of that of the same amount of Dsp-CA-c. In the case of Dsp-nCA-c (G263S) CA-c < / RTI > (Figure 4A).

CO2 수화 활성의 경우, 기대한 대로 Dsp-nCA-c와 Dsp-nCA-c(G263S)는 mg당 2766WAU와 3305WAU의 활성을 보여주었으며, 같은 양의 Dsp-CA-c의 2배에 해당되는 활성이었다(도 4B). In the case of CO 2 hydration activity, Dsp-nCA-c and Dsp-nCA-c (G263S) showed 2766WAU and 3305WAU activity per mg, respectively, which was twice the amount of Dsp-CA-c (Fig. 4B).

흥미롭게도 두 융합단백질은 수용성 단백질의 수득율 뿐만 아니라 CO2 수화 활성도 증가한 것으로 나타났다. 이러한 결과들은 대체된 Dsp-CA-n의 아미노 말단의 아미노산들이 중요한 역할을 한다는 것을 설명해 주는데 이러한 서열들이 카르복실 말단 도메인 반의 효소 활성에도 긍정적인 영향을 준다는 것을 나타낸다. 1L 배양으로 얻은 효소활성의 총량을 계산했을 때 Dsp-nCA-c와 세린 돌연변이에 의한 에스터레이즈 활성이 Dsp-CA-c의 2~4배였고 CO2 수화활성은 4~5배였다. 아미노말단 도메인 반은 체내의 이중 Dsp-Cas에서 활성이 없는 반면에 구조를 안정화시키고 수용성 발현을 향상시키는 기능을 할 것으로 예상된다. 두 개의 도메인이 서열의 일부분과 상호결합하여 안정화를 이룬다고 가정할 때 Dsp-CA-c 단독보다는 Dsp-nCA-c가 본래 이중단백질 구조와 유사할 것으로 사료된다. Dsp-CA-c와 Dsp-nCA-c사이 N-말단 서열의 주된 차이점은 Dsp-CA-c는 발린(V10)과 글루타민(Q11)이고 Dsp-nCA-c는 글루타메이트(E11)와 리신(K12)이다. 1y7w A를 주형으로 하여 SWISS-MODEL을 이용해서 얻은 3차 구조에서 보면 이 두 서열은 Dsp-nCA-c의 표면에 존재한다(data not shown). 글루타메이트와 리신은 이온결합이 가능한 수용성 아미노산이다. 이들 서열이 이 Dsp-nCA-c의 수용성을 증가시켰을 것으로 예상된다. 돌연변이 단백질인 Dsp-nCA-c(G263S)는 263번 글리신(무극성에 소수성 아미노산)이 point mutation에 의해서 비극성에 수용성 아미노산인 세린으로 대체된 것이다. 세린 잔기의 위치는 활성을 갖는 촉매 부위나 Dsp-nCA-c의 N-말단 서열과 멀리 떨어져 있다. 그러나 263번 아미노산 또한 단백질의 표면에 드러나 있다. 그러므로 Dsp-nCA-c(G263S)의 세린 잔기 역시 Dsp-nCA-c의 수용성 증가에 기여했을 것으로 예상되며 전하를 갖고 극성 표면을 갖는 아미노산은 이온성 잔기들과 이온결합이 가능하고 이러한 결합이 수용액 상태에서 단백질에 안정화에 도움이 될 수 있을 것으로 예상된다. 이것은 Dsp-nCA-c와 세린 돌연변이의 발현 증가 및 효소활성 증가에 어느 정도 영향을 미쳤을 것으로 사료된다.
Interestingly, both fusion proteins showed increased CO 2 hydration as well as yield of water-soluble proteins. These results demonstrate that the amino-terminal amino acids of the substituted Dsp-CA-n play an important role, indicating that these sequences also have a positive effect on the enzyme activity of the carboxyl terminal domain. When the total amount of enzyme activity obtained by 1 L culture was calculated, the ester-raising activity by Dsp-nCA-c and serine mutation was 2 to 4 times that of Dsp-CA-c and the activity of CO 2 hydration was 4 to 5 times. The amino-terminal domain half is expected to function to stabilize the structure and improve the water-soluble expression while not being active in the body's double Dsp-Cas. Assuming that the two domains are stabilized by mutual binding with a portion of the sequence, Dsp-nCA-c may be similar to the original double protein structure rather than Dsp-CA-c alone. The major difference between the N-terminal sequence between Dsp-CA-c and Dsp-nCA-c is that Dsp-CA-c is valine (V10) and glutamine (Q11) )to be. In the tertiary structure obtained using SWISS-MODEL with 1y7w A as template, these two sequences are present on the surface of Dsp-nCA-c (data not shown). Glutamate and lysine are water-soluble amino acids capable of ionic bonding. These sequences are expected to increase the acceptability of this Dsp-nCA-c. The mutant protein Dsp-nCA-c (G263S) is a 263-mer glycine (a non-polar, hydrophobic amino acid) that has been replaced by a point mutation in a nonpolar, soluble amino acid, serine. The position of the serine residue is remote from the active catalytic site or the N-terminal sequence of Dsp-nCA-c. However, amino acid 263 is also found on the surface of the protein. Therefore, the serine residue of Dsp-nCA-c (G263S) is also expected to contribute to the increased solubility of Dsp-nCA-c. Amino acids with a charged and polar surface are capable of ionic bonding with ionic residues, It is anticipated that it will help stabilize the protein in the state. This may have had some effect on the expression of Dsp-nCA-c and serine mutants and the increase in enzyme activity.

10. 10. COCO 22 광물화Mineralization

CA는 CO2 광물화 촉매로 CO2 제거에 사용될 수 있다. CA는 수용액 상에서 CO2를 HCO3 -로 전환시키고 Ca2 +가 존재하면 CaCO3를 형성할 수 있다. CaCO3는 rhombic calcite, needle aragonite, spherical vaterite 3종류의 크리스탈 형태를 갖는다. 같은 양의 Dsp-CA-n, Dsp-CA-c, Dsp-nCA-c, Dsp-nCA-c(G263S)로 형성된 건조한 CaCO3의 무게는 거의 8, 21, 17, 20mg 이였다. Dsp-CA-c, Dsp-nCA-c, Dsp-nCA-c(G263S)는 거의 4mg CO2/mg 단백질을 제거한다는 것을 알 수 있었다. 이들 CA에 의해 형성된 CaCO3를 XRD로 분석하고 도 5와 하기 표 2에 calcite와 vaterite 비율을 나타내었다. Dsp-CA는 CaCO3 중 96%를 calcite로 형성한다. 비슷하게 키메라단백질에 의한 CaCO3도 주로 86%와 92% 비율로 calcite를 주로 형성하였다. 효소 활성이 거의 없는 Dsp-CA-n은 37%, Dsp-CA-c는 67% 였다. 각 Dsp-CA-c와 Dsp-CA-n을 섞은 경우도 calcite의 비율이 79%로 증가하였다. 도 6의 형성된 CaCO3에 SEM 이미지를 또한 서로 다른 CA에 따른 형성된 CaCO3 구조의 차이점들을 보여준다. CaCO3는 무결정 단계를 시작으로 vaterite를 지나서 calcite 단계로 바뀌게 된다. 단백질의 효소 활성 및 종류에 따라 이 두 CaCO3 비율에 차이를 나타내었다. 촉매가 없을 때 형성된 CaCO3 총량은 기능을 가진 CA를 사용해서 형성했을 때의 거의 1/5 정도이나 calcite 비율은 85% 정도가 된다. 이것은 CA가 CO2 광물화 촉매뿐만 아니라 특별한 구조를 갖는 CaCO3 크리스탈의 형성을 조절한다는 것을 예상케 한다.CA can be used for CO 2 removal as a CO 2 mineralization catalyst. CA can convert CO 2 to HCO 3 - in aqueous solution and CaCO 3 in the presence of Ca 2 + . CaCO 3 has three types of crystals: rhombic calcite, needle aragonite, and spherical vaterite. The weight of dry CaCO 3 formed with the same amount of Dsp-CA-n, Dsp-CA-c, Dsp-nCA-c and Dsp-nCA-c (G263S) was almost 8, 21, 17 and 20 mg. It was found that Dsp-CA-c, Dsp-nCA-c and Dsp-nCA-c (G263S) remove almost 4 mg CO 2 / mg protein. The CaCO 3 formed by these CAs was analyzed by XRD and the calcite and vaterite ratios were shown in FIG. 5 and Table 2 below. Dsp-CA forms 96% of CaCO 3 with calcite. Similarly, CaCO 3 by chimeric protein mainly formed calcite at a ratio of 86% and 92%. Dsp-CA-n and Dsp-CA-c, which had little enzyme activity, accounted for 37% and 67%, respectively. The ratio of calcite to Dsp-CA-c and Dsp-CA-n was increased to 79%. SEM images of the formed CaCO 3 of FIG. 6 also show the differences in the CaCO 3 structure formed according to different CA's. CaCO 3 is converted to a calcite phase after vaterite, beginning with a non-crystalline phase. These two CaCO 3 ratios differed depending on the enzyme activity and type of protein. The total amount of CaCO 3 formed in the absence of catalyst is about 1/5 of that formed using functional CA, but the calcite ratio is about 85%. This suggests that CA regulates the formation of CaCO 3 crystals with special structures as well as CO 2 mineralization catalysts.

CA들에 의해 형성된 CaCO3 크리스탈의 calcite 대 vaterite 성분 비교Calcite versus vaterite composition of CaCO 3 crystals formed by CAs 구분division Calcite (%)Calcite (%) Vaterite (%)Vaterite (%) No CANoce 8585 1515 Dsp-CADsp-CA 9696 44 Dsp-CA-nDsp-CA-n 3737 6363 Dsp-CA-cDsp-CA-c 6767 3333 Dsp-CA-n+Dsp-CA-cDsp-CA-n + Dsp-CA-c 7979 2121 Dsp-nCA-cDsp-nca-c 8686 1414 Dsp-nCA-c(G263S)Dsp-nCA-c (G263S) 9292 88

서열번호 1 Dsp-CASEQ ID NO: 1 Dsp-CA

MVSEPHDYNYEKVGFDWTGGVCVNTGTSKQSPINIETDSLAEESERLGTADDTSRLALKGMVSEPHDYNYEKVGFDWTGGVCVNTGTSKQSPINIETDSLAEESERLGTADDTSRLALKG

LLSSSYQLTSEVAINLEQDMQFSFNAPDEDLPQLTIGGVVHTFKPVQIHFHHFASEHAIDLLSSSYQLTSEVAINLEQDMQFSFNAPDEDLPQLTIGGVVHTFKPVQIHFHHFASEHAID

GQLYPLEAHMVMASQNDGSDQLAVIGIMYKYGEEDPFLKRLQETAQSNGEAGDKNVELNSGQLYPLEAHMVMASQNDGSDQLAVIGIMYKYGEEDPFLKRLQETAQSNGEAGDKNVELNS

FSINVARDLLPESDLTYYGYDGSLTTPGCDERVKWHVFKEARTVSVAQLKVFSEVTLAAHFSINVARDLLPESDLTYYGYDGSLTTPGCDERVKWHVFKEARTVSVAQLKVFSEVTLAAH

PEATVTNNRVIQPLNGRKVYEYKGEPNDKYNYVQHGFDWRDNGLDSCAGDVQSPIDIVTSPEATVTNNRVIQPLNGRKVYEYKGEPNDKYNYVQHGFDWRDNGLDSCAGDVQSPIDIVTS

TLQAGSSRSDVSSVNLNDLNTDAFTLTGNTVNIGQGMQINFGDPPAGDLPVIRIGTRDVTTLQAGSSRSDVSSVNLNDLNTDAFTLTGNTVNIGQGMQINFGDPPAGDLPVIRIGTRDVT

FRPLQVHWHFFLSEHTVDGVHYPLEAHIVMKDNDNLGDSAGQLAVIGIMYKYGDADPFITFRPLQVHWHFFLSEHTVDGVHYPLEAHIVMKDNDNLGDSAGQLAVIGYYKYGDADPFIT

DMQKRVSDKIASGAITYGQSGVSLNNPDDPFNVNIKNNFLPSELGYAGYDGSLTTPPCSEDMQKRVSDKIASGAITYGQSGVSLNNPDDPFNVNIKNNFLPSELGYAGYDGSLTTPPCSE

IVKWHVFLEPRTVSVEQMEVFADVTLNSNPGATVTTNRMIQPLEGRTVYGYNGAAA
IVKWHVFLEPRTVSVEQMEVFADVTLNSNPGATVTTNRMIQPLEGRTVYGYNGAAA

서열 번호 2 Dsp-CA-nSEQ ID NO: 2 Dsp-CA-n

MVSEPHDYNYEKVGFDWTGGVCVNTGTSKQSPINIETDSLAEESERLGTADDTSRLALKGMVSEPHDYNYEKVGFDWTGGVCVNTGTSKQSPINIETDSLAEESERLGTADDTSRLALKG

LLSSSYQLTSEVAINLEQDMQFSFNAPDEDLPQLTIGGVVHTFKPVQIHFHHFASEHAIDLLSSSYQLTSEVAINLEQDMQFSFNAPDEDLPQLTIGGVVHTFKPVQIHFHHFASEHAID

GQLYPLEAHMVMASQNDGSDQLAVIGIMYKYGEEDPFLKRLQETAQSNGEAGDKNVELNSGQLYPLEAHMVMASQNDGSDQLAVIGIMYKYGEEDPFLKRLQETAQSNGEAGDKNVELNS

FSINVARDLLPESDLTYYGYDGSLTTPGCDERVKWHVFKEARTVSVAQLKVFSEVTLAAHFSINVARDLLPESDLTYYGYDGSLTTPGCDERVKWHVFKEARTVSVAQLKVFSEVTLAAH

PEATVTNNRVIQPLNGRKVYEYKG
PEATVTNNRVIQPLNGRKVYEYKG

서열번호 3 Dsp-CA-cSEQ ID NO: 3 Dsp-CA-c

MEPNDKYNYVQHGFDWRDNGLDSCAGDVQSPIDIVTSTLQAGSSRSDVSSVNLNDLNTDA≪ RTI ID = 0.0 >

FTLTGNTVNIGQGMQINFGDPPAGDLPVIRIGTRDVTFRPLQVHWHFFLSEHTVDGVHYPFTLTGNTVNIGQGMQINFGDPPAGDLPVIRIGTRDVTFRPLQVHWHFFLSEHTVDGVHYP

LEAHIVMKDNDNLGDSAGQLAVIGIMYKYGDADPFITDMQKRVSDKIASGAITYGQSGVSSEK

LNNPDDPFNVNIKNNFLPSELGYAGYDGSLTTPPCSEIVKWHVFLEPRTVSVEQMEVFADLNNPDDPFNVNIKNNFLPSELGYAGYDGSLTTPPCSEIVKWHVFLEPRTVSVEQMEVFAD

VTLNSNPGATVTTNRMIQPLEGRTVYGYNGAAA
VTLNSNPGATVTTNRMIQPLEGRTVYGYNGAAA

서열 번호 4 Dsp-nCA-cSEQ ID NO: 4 Dsp-nCA-c

MVSEPHDYNYEKHGFDWRDNGLDSCAGDVQSPIDIVTSTLQAGSSRSDVSSVNLNDLNTDMVSEPHDYNYEKHGFDWRDNGLDSCAGDVQSPIDIVTSTLQAGSSRSDVSSVNLNDLNTD

AFTLTGNTVNIGQGMQINFGDPPAGDLPVIRIGTRDVTFRPLQVHWHFFLSEHTVDGVHYAFTLTGNTVNIGQGMQINFGDPPAGDLPVIRIGTRDVTFRPLQVHWHFFLSEHTVDGVHY

PLEAHIVMKDNDNLGDSAGQLAVIGIMYKYGDADPFITDMQKRVSDKIASGAITYGQSGVPLEAHIVMKDNDNLGDSAGQLAVIGIMYKYGDADPFITDMQKRVSDKIASGAITYGQSGV

SLNNPDDPFNVNIKNNFLPSELGYAGYDGSLTTPPCSEIVKWHVFLEPRTVSVEQMEVFASLNNPDDPFNVNIKNNFLPSELGYAGYDGSLTTPPCSEIVKWHVFLEPRTVSVEQMEVFA

DVTLNSNPGATVTTNRMIQPLEGRTVYGYNGAAA
DVTLNSNPGATVTTNRMIQPLEGRTVYGYNGAAA

서열번호 5 Dsp-nCA-c(G263S)SEQ ID NO: 5 Dsp-nCA-c (G263S)

MVSEPHDYNYEKHGFDWRDNGLDSCAGDVQSPIDIVTSTLQAGSSRSDVSSVNLNDLNTDMVSEPHDYNYEKHGFDWRDNGLDSCAGDVQSPIDIVTSTLQAGSSRSDVSSVNLNDLNTD

AFTLTGNTVNIGQGMQINFGDPPAGDLPVIRIGTRDVTFRPLQVHWHFFLSEHTVDGVHYAFTLTGNTVNIGQGMQINFGDPPAGDLPVIRIGTRDVTFRPLQVHWHFFLSEHTVDGVHY

PLEAHIVMKDNDNLGDSAGQLAVIGIMYKYGDADPFITDMQKRVSDKIASGAITYGQSGVPLEAHIVMKDNDNLGDSAGQLAVIGIMYKYGDADPFITDMQKRVSDKIASGAITYGQSGV

SLNNPDDPFNVNIKNNFLPSELGYAGYDGSLTTPPCSEIVKWHVFLEPRTVSVEQMEVFASLNNPDDPFNVNIKNNFLPSELGYAGYDGSLTTPPCSEIVKWHVFLEPRTVSVEQMEVFA

DVTLNSNPGATVTTNRMIQPLESRTVYGYNGAAA
DVTLNSNPGATVTTNRMIQPLESRTVYGYNGAAA

서열번호 6SEQ ID NO: 6

1Y7W:A|PDBID|CHAIN|SEQUENCE1Y7W: A | PDBID | CHAIN | SEQUENCE

MASMTGGQQMGRGSEEPNPNDGYDYMQHGFDWPGLQEGGTTKYPACSGSNQSPIDINTNQLMEPSSRSGTSAVSLNGLNVDGAQADGITLTNAKVDLEQGMKVTFDQPAANLPTIEIGGTTKSFVPIQFHFHHFLSEHTINGIHYPLELHIVMQEQDPADVATAQLAVIGIMYKYSENGDAFLNSLQTQIEGKIGDGTASYGDTGVSIDNINVKTQLLPSSLKYAGYDGSLTTPGCDERVKWHVFTTPREVTREQMKLFVDVTMGAHAGADVVNNRMIQDLGDREVYKYNY
MASMTGGQQMGRGSEEPNPNDGYDYMQHGFDWPGLQEGGTTKYPACSGSNQSPIDINTNQLMEPSSRSGTSAVSLNGLNVDGAQADGITLTNAKVDLEQGMKVTFDQPAANLPTIEIGGTTKSFVPIQFHFHHFLSEHTINGIHYPLELHIVMQEQDPADVATAQLAVIGIMYKYSENGDAFLNSLQTQIEGKIGDGTASYGDTGVSIDNINVKTQLLPSSLKYAGYDGSLTTPGCDERVKWHVFTTPREVTREQMKLFVDVTMGAHAGADVVNNRMIQDLGDREVYKYNY

서열번호 7 Dsp-CASEQ ID NO: 7 Dsp-CA

TGACCCGCCGGCTGGTGACCTGCCGGTTATCCGTATCGGTACCCGTGACGTTACCTTCCGTCCGCTGCAGGTTCACTGGCACTTCTTCCTGTCTGAACACACCGTTGACGGTGTTCACTACCCGCTGGAAGCTCACATCGTTATGAAAGACAACGACAACCTGGGTGACTCTGCTGGTCAGCTGGCTGTTATCGGTATCATGTACAAATACGGTGACGCTGACCCGTTCATCACCGACATGCAGAAACGTGTTTCTGACAAAATCGCTTCTGGTGCTATCACCTACGGTCAGTCTGGTGTTTCTCTGAACAACCCGGACGACCCGTTCAACGTTAACATCAAAAACAACTTCCTGCCGTCTGAACTGGGTTACGCTGGTTACGACGGTTCTCTGACCACCCCGCCGTGCTCTGAAATCGTTAAATGGCACGTTTTCCTGGAACCGCGTACCGTTTCTGTTGAACAGATGGAAGTTTTCGCTGACGTTACCCTGAACTCTAACCCGGGTGCTACCGTTACCACCAACCGTATGATCCAGCCGCTGGAAGGTCGTACCGTTTACGGTTACAACGGTGCTGCTGCTTAA
TGACCCGCCGGCTGGTGACCTGCCGGTTATCCGTATCGGTACCCGTGACGTTACCTTCCGTCCGCTGCAGGTTCACTGGCACTTCTTCCTGTCTGAACACACCGTTGACGGTGTTCACTACCCGCTGGAAGCTCACATCGTTATGAAAGACAACGACAACCTGGGTGACTCTGCTGGTCAGCTGGCTGTTATCGGTATCATGTACAAATACGGTGACGCTGACCCGTTCATCACCGACATGCAGAAACGTGTTTCTGACAAAATCGCTTCTGGTGCTATCACCTACGGTCAGTCTGGTGTTTCTCTGAACAACCCGGACGACCCGTTCAACGTTAACATCAAAAACAACTTCCTGCCGTCTGAACTGGGTTACGCTGGTTACGACGGTTCTCTGACCACCCCGCCGTGCTCTGAAATCGTTAAATGGCACGTTTTCCTGGAACCGCGTACCGTTTCTGTTGAACAGATGGAAGTTTTCGCTGACGTTACCCTGAACTCTAACCCGGGTGCTACCGTTACCACCAACCGTATGATCCAGCCGCTGGAAGGTCGTACCGTTTACGGTTACAACGGTGCTGCTGCTTAA

서열번호 8 Dsp-CA-nSEQ ID NO: 8 Dsp-CA-n

ATGGTTTCTGAACCGCACGACTACAACTACGAAAAAGTTGGTTTCGACTGGACCGGTGGTGTTTGCGTTAACACCGGTACCTCTAAACAGTCTCCGATCAACATCGAAACCGACTCTCTGGCTGAAGAATCTGAACGTCTGGGTACCGCTGACGACACCTCTCGTCTGGCTCTGAAAGGTCTGCTGTCTTCTTCTTACCAGCTGACCTCTGAAGTTGCTATCAACCTGGAACAGGACATGCAGTTCTCTTTCAACGCTCCGGACGAAGACCTGCCGCAGCTGACCATCGGTGGTGTTGTTCACACCTTCAAACCGGTTCAGATCCACTTCCACCACTTCGCTTCTGAACACGCTATCGACGGTCAGCTGTACCCGCTGGAAGCTCACATGGTTATGGCTTCTCAGAACGACGGTTCTGACCAGCTGGCTGTTATCGGTATCATGTACAAATACGGTGAAGAAGACCCGTTCCTGAAACGTCTGCAGGAAACCGCTCAGTCTAACGGTGAAGCTGGTGACAAAAACGTTGAACTGAACTCTTTCTCTATCAACGTTGCTCGTGACCTGCTGCCGGAATCTGACCTGACCTACTACGGTTACGACGGTTCTCTGACCACCCCGGGTTGCGACGAACGTGTTAAATGGCACGTTTTCAAAGAAGCTCGTACCGTTTCTGTTGCTCAGCTGAAAGTTTTCTCTGAAGTTACCCTGGCTGCTCACCCGGAAGCTACCGTTACCAACAACCGTGTTATCCAGCCGCTGAACGGTCGTAAAGTTTACGAATACAAAGGTTAA
ATGGTTTCTGAACCGCACGACTACAACTACGAAAAAGTTGGTTTCGACTGGACCGGTGGTGTTTGCGTTAACACCGGTACCTCTAAACAGTCTCCGATCAACATCGAAACCGACTCTCTGGCTGAAGAATCTGAACGTCTGGGTACCGCTGACGACACCTCTCGTCTGGCTCTGAAAGGTCTGCTGTCTTCTTCTTACCAGCTGACCTCTGAAGTTGCTATCAACCTGGAACAGGACATGCAGTTCTCTTTCAACGCTCCGGACGAAGACCTGCCGCAGCTGACCATCGGTGGTGTTGTTCACACCTTCAAACCGGTTCAGATCCACTTCCACCACTTCGCTTCTGAACACGCTATCGACGGTCAGCTGTACCCGCTGGAAGCTCACATGGTTATGGCTTCTCAGAACGACGGTTCTGACCAGCTGGCTGTTATCGGTATCATGTACAAATACGGTGAAGAAGACCCGTTCCTGAAACGTCTGCAGGAAACCGCTCAGTCTAACGGTGAAGCTGGTGACAAAAACGTTGAACTGAACTCTTTCTCTATCAACGTTGCTCGTGACCTGCTGCCGGAATCTGACCTGACCTACTACGGTTACGACGGTTCTCTGACCACCCCGGGTTGCGACGAACGTGTTAAATGGCACGTTTTCAAAGAAGCTCGTACCGTTTCTGTTGCTCAGCTGAAAGTTTTCTCTGAAGTTACCCTGGCTGCTCACCCGGAAGCTACCGTTACCAACAACCGTGTTATCCAGCCGCTGAACGGTCGTAAAGTTTACGAATACAAAGGTTAA

서열번호 9 Dsp-CA-cSEQ ID NO: 9 Dsp-CA-c

ATGGAACCGAACGACAAATACAACTACGTTCAGCACGGTTTCGACTGGCGTGACAACGGTCTGGACTCTTGCGCTGGTGACGTTCAGTCTCCGATCGACATCGTTACCTCTACCCTGCAGGCTGGTTCTTCTCGTTCTGACGTTTCTTCTGTTAACCTGAACGACCTGAACACCGACGCTTTCACCCTGACCGGTAACACCGTTAACATCGGTCAGGGTATGCAGATCAACTTCGGTGACCCGCCGGCTGGTGACCTGCCGGTTATCCGTATCGGTACCCGTGACGTTACCTTCCGTCCGCTGCAGGTTCACTGGCACTTCTTCCTGTCTGAACACACCGTTGACGGTGTTCACTACCCGCTGGAAGCTCACATCGTTATGAAAGACAACGACAACCTGGGTGACTCTGCTGGTCAGCTGGCTGTTATCGGTATCATGTACAAATACGGTGACGCTGACCCGTTCATCACCGACATGCAGAAACGTGTTTCTGACAAAATCGCTTCTGGTGCTATCACCTACGGTCAGTCTGGTGTTTCTCTGAACAACCCGGACGACCCGTTCAACGTTAACATCAAAAACAACTTCCTGCCGTCTGAACTGGGTTACGCTGGTTACGACGGTTCTCTGACCACCCCGCCGTGCTCTGAAATCGTTAAATGGCACGTTTTCCTGGAACCGCGTACCGTTTCTGTTGAACAGATGGAAGTTTTCGCTGACGTTACCCTGAACTCTAACCCGGGTGCTACCGTTACCACCAACCGTATGATCCAGCCGCTGGAAGGTCGTACCGTTTACGGTTACAACGGTGCTGCTGCTTAA
ATGGAACCGAACGACAAATACAACTACGTTCAGCACGGTTTCGACTGGCGTGACAACGGTCTGGACTCTTGCGCTGGTGACGTTCAGTCTCCGATCGACATCGTTACCTCTACCCTGCAGGCTGGTTCTTCTCGTTCTGACGTTTCTTCTGTTAACCTGAACGACCTGAACACCGACGCTTTCACCCTGACCGGTAACACCGTTAACATCGGTCAGGGTATGCAGATCAACTTCGGTGACCCGCCGGCTGGTGACCTGCCGGTTATCCGTATCGGTACCCGTGACGTTACCTTCCGTCCGCTGCAGGTTCACTGGCACTTCTTCCTGTCTGAACACACCGTTGACGGTGTTCACTACCCGCTGGAAGCTCACATCGTTATGAAAGACAACGACAACCTGGGTGACTCTGCTGGTCAGCTGGCTGTTATCGGTATCATGTACAAATACGGTGACGCTGACCCGTTCATCACCGACATGCAGAAACGTGTTTCTGACAAAATCGCTTCTGGTGCTATCACCTACGGTCAGTCTGGTGTTTCTCTGAACAACCCGGACGACCCGTTCAACGTTAACATCAAAAACAACTTCCTGCCGTCTGAACTGGGTTACGCTGGTTACGACGGTTCTCTGACCACCCCGCCGTGCTCTGAAATCGTTAAATGGCACGTTTTCCTGGAACCGCGTACCGTTTCTGTTGAACAGATGGAAGTTTTCGCTGACGTTACCCTGAACTCTAACCCGGGTGCTACCGTTACCACCAACCGTATGATCCAGCCGCTGGAAGGTCGTACCGTTTACGGTTACAACGGTGCTGCTGCTTAA

서열번호 10 Dsp-nCA-cSEQ ID NO: 10 Dsp-nCA-c

ATGGTTTCTGAACCGCACGACTACAACTACGAAAAACACGGTTTCGACTGGCGTGACAACGGTCTGGACTCTTGCGCTGGTGACGTTCAGTCTCCGATCGACATCGTTACCTCTACCCTGCAGGCTGGTTCTTCTCGTTCTGACGTTTCTTCTGTTAACCTGAACGACCTGAACACCGACGCTTTCACCCTGACCGGTAACACCGTTAACATCGGTCAGGGTATGCAGATCAACTTCGGTGACCCGCCGGCTGGTGACCTGCCGGTTATCCGTATCGGTACCCGTGACGTTACCTTCCGTCCGCTGCAGGTTCACTGGCACTTCTTCCTGTCTGAACACACCGTTGACGGTGTTCACTACCCGCTGGAAGCTCACATCGTTATGAAAGACAACGACAACCTGGGTGACTCTGCTGGTCAGCTGGCTGTTATCGGTATCATGTACAAATACGGTGACGCTGACCCGTTCATCACCGACATGCAGAAACGTGTTTCTGACAAAATCGCTTCTGGTGCTATCACCTACGGTCAGTCTGGTGTTTCTCTGAACAACCCGGACGACCCGTTCAACGTTAACATCAAAAACAACTTCCTGCCGTCTGAACTGGGTTACGCTGGTTACGACGGTTCTCTGACCACCCCGCCGTGCTCTGAAATCGTTAAATGGCACGTTTTCCTGGAACCGCGTACCGTTTCTGTTGAACAGATGGAAGTTTTCGCTGACGTTACCCTGAACTCTAACCCGGGTGCTACCGTTACCACCAACCGTATGATCCAGCCGCTGGAAGGTCGTACCGTTTACGGTTACAACGGTGCTGCTGCTTAA
ATGGTTTCTGAACCGCACGACTACAACTACGAAAAACACGGTTTCGACTGGCGTGACAACGGTCTGGACTCTTGCGCTGGTGACGTTCAGTCTCCGATCGACATCGTTACCTCTACCCTGCAGGCTGGTTCTTCTCGTTCTGACGTTTCTTCTGTTAACCTGAACGACCTGAACACCGACGCTTTCACCCTGACCGGTAACACCGTTAACATCGGTCAGGGTATGCAGATCAACTTCGGTGACCCGCCGGCTGGTGACCTGCCGGTTATCCGTATCGGTACCCGTGACGTTACCTTCCGTCCGCTGCAGGTTCACTGGCACTTCTTCCTGTCTGAACACACCGTTGACGGTGTTCACTACCCGCTGGAAGCTCACATCGTTATGAAAGACAACGACAACCTGGGTGACTCTGCTGGTCAGCTGGCTGTTATCGGTATCATGTACAAATACGGTGACGCTGACCCGTTCATCACCGACATGCAGAAACGTGTTTCTGACAAAATCGCTTCTGGTGCTATCACCTACGGTCAGTCTGGTGTTTCTCTGAACAACCCGGACGACCCGTTCAACGTTAACATCAAAAACAACTTCCTGCCGTCTGAACTGGGTTACGCTGGTTACGACGGTTCTCTGACCACCCCGCCGTGCTCTGAAATCGTTAAATGGCACGTTTTCCTGGAACCGCGTACCGTTTCTGTTGAACAGATGGAAGTTTTCGCTGACGTTACCCTGAACTCTAACCCGGGTGCTACCGTTACCACCAACCGTATGATCCAGCCGCTGGAAGGTCGTACCGTTTACGGTTACAACGGTGCTGCTGCTTAA

서열번호 11 Dsp-nCA-c(G263S)SEQ ID NO: 11 Dsp-nCA-c (G263S)

ATGGTTTCTGAACCGCACGACTACAACTACGAAAAACACGGTTTCGACTGGCGTGACAACGGTCTGGACTCTTGCGCTGGTGACGTTCAGTCTCCGATCGACATCGTTACCTCTACCCTGCAGGCTGGTTCTTCTCGTTCTGACGTTTCTTCTGTTAACCTGAACGACCTGAACACCGACGCTTTCACCCTGACCGGTAACACCGTTAACATCGGTCAGGGTATGCAGATCAACTTCGGTGACCCGCCGGCTGGTGACCTGCCGGTTATCCGTATCGGTACCCGTGACGTTACCTTCCGTCCGCTGCAGGTTCACTGGCACTTCTTCCTGTCTGAACACACCGTTGACGGTGTTCACTACCCGCTGGAAGCTCACATCGTTATGAAAGACAACGACAACCTGGGTGACTCTGCTGGTCAGCTGGCTGTTATCGGTATCATGTACAAATACGGTGACGCTGACCCGTTCATCACCGACATGCAGAAACGTGTTTCTGACAAAATCGCTTCTGGTGCTATCACCTACGGTCAGTCTGGTGTTTCTCTGAACAACCCGGACGACCCGTTCAACGTTAACATCAAAAACAACTTCCTGCCGTCTGAACTGGGTTACGCTGGTTACGACGGTTCTCTGACCACCCCGCCGTGCTCTGAAATCGTTAAATGGCACGTTTTCCTGGAACCGCGTACCGTTTCTGTTGAACAGATGGAAGTTTTCGCTGACGTTACCCTGAACTCTAACCCGGGTGCTACCGTTACCACCAACCGTATGATCCAGCCGCTGGAATCTCGTACCGTTTACGGTTACAACGGTGCTGCTGCTTAAATGGTTTCTGAACCGCACGACTACAACTACGAAAAACACGGTTTCGACTGGCGTGACAACGGTCTGGACTCTTGCGCTGGTGACGTTCAGTCTCCGATCGACATCGTTACCTCTACCCTGCAGGCTGGTTCTTCTCGTTCTGACGTTTCTTCTGTTAACCTGAACGACCTGAACACCGACGCTTTCACCCTGACCGGTAACACCGTTAACATCGGTCAGGGTATGCAGATCAACTTCGGTGACCCGCCGGCTGGTGACCTGCCGGTTATCCGTATCGGTACCCGTGACGTTACCTTCCGTCCGCTGCAGGTTCACTGGCACTTCTTCCTGTCTGAACACACCGTTGACGGTGTTCACTACCCGCTGGAAGCTCACATCGTTATGAAAGACAACGACAACCTGGGTGACTCTGCTGGTCAGCTGGCTGTTATCGGTATCATGTACAAATACGGTGACGCTGACCCGTTCATCACCGACATGCAGAAACGTGTTTCTGACAAAATCGCTTCTGGTGCTATCACCTACGGTCAGTCTGGTGTTTCTCTGAACAACCCGGACGACCCGTTCAACGTTAACATCAAAAACAACTTCCTGCCGTCTGAACTGGGTTACGCTGGTTACGACGGTTCTCTGACCACCCCGCCGTGCTCTGAAATCGTTAAATGGCACGTTTTCCTGGAACCGCGTACCGTTTCTGTTGAACAGATGGAAGTTTTCGCTGACGTTACCCTGAACTCTAACCCGGGTGCTACCGTTACCACCAACCGTATGATCCAGCCGCTGGAATCTCGTACCGTTTACGGTTACAACGGTGCTGCTGCTTAA

<110> KOREA UNIVERSITY RESEARCH AND BUSINESS FOUNDATION <120> Chimeric carbonic anhydrase from Dunaliella Salina and use thereof <130> P15U13C0579 <160> 15 <170> KopatentIn 2.0 <210> 1 <211> 536 <212> PRT <213> Dunaliella Salina <400> 1 Met Val Ser Glu Pro His Asp Tyr Asn Tyr Glu Lys Val Gly Phe Asp 1 5 10 15 Trp Thr Gly Gly Val Cys Val Asn Thr Gly Thr Ser Lys Gln Ser Pro 20 25 30 Ile Asn Ile Glu Thr Asp Ser Leu Ala Glu Glu Ser Glu Arg Leu Gly 35 40 45 Thr Ala Asp Asp Thr Ser Arg Leu Ala Leu Lys Gly Leu Leu Ser Ser 50 55 60 Ser Tyr Gln Leu Thr Ser Glu Val Ala Ile Asn Leu Glu Gln Asp Met 65 70 75 80 Gln Phe Ser Phe Asn Ala Pro Asp Glu Asp Leu Pro Gln Leu Thr Ile 85 90 95 Gly Gly Val Val His Thr Phe Lys Pro Val Gln Ile His Phe His His 100 105 110 Phe Ala Ser Glu His Ala Ile Asp Gly Gln Leu Tyr Pro Leu Glu Ala 115 120 125 His Met Val Met Ala Ser Gln Asn Asp Gly Ser Asp Gln Leu Ala Val 130 135 140 Ile Gly Ile Met Tyr Lys Tyr Gly Glu Glu Asp Pro Phe Leu Lys Arg 145 150 155 160 Leu Gln Glu Thr Ala Gln Ser Asn Gly Glu Ala Gly Asp Lys Asn Val 165 170 175 Glu Leu Asn Ser Phe Ser Ile Asn Val Ala Arg Asp Leu Leu Pro Glu 180 185 190 Ser Asp Leu Thr Tyr Tyr Gly Tyr Asp Gly Ser Leu Thr Thr Pro Gly 195 200 205 Cys Asp Glu Arg Val Lys Trp His Val Phe Lys Glu Ala Arg Thr Val 210 215 220 Ser Val Ala Gln Leu Lys Val Phe Ser Glu Val Thr Leu Ala Ala His 225 230 235 240 Pro Glu Ala Thr Val Thr Asn Asn Arg Val Ile Gln Pro Leu Asn Gly 245 250 255 Arg Lys Val Tyr Glu Tyr Lys Gly Glu Pro Asn Asp Lys Tyr Asn Tyr 260 265 270 Val Gln His Gly Phe Asp Trp Arg Asp Asn Gly Leu Asp Ser Cys Ala 275 280 285 Gly Asp Val Gln Ser Pro Ile Asp Ile Val Thr Ser Thr Leu Gln Ala 290 295 300 Gly Ser Ser Arg Ser Asp Val Ser Ser Val Asn Leu Asn Asp Leu Asn 305 310 315 320 Thr Asp Ala Phe Thr Leu Thr Gly Asn Thr Val Asn Ile Gly Gln Gly 325 330 335 Met Gln Ile Asn Phe Gly Asp Pro Pro Ala Gly Asp Leu Pro Val Ile 340 345 350 Arg Ile Gly Thr Arg Asp Val Thr Phe Arg Pro Leu Gln Val His Trp 355 360 365 His Phe Phe Leu Ser Glu His Thr Val Asp Gly Val His Tyr Pro Leu 370 375 380 Glu Ala His Ile Val Met Lys Asp Asn Asp Asn Leu Gly Asp Ser Ala 385 390 395 400 Gly Gln Leu Ala Val Ile Gly Ile Met Tyr Lys Tyr Gly Asp Ala Asp 405 410 415 Pro Phe Ile Thr Asp Met Gln Lys Arg Val Ser Asp Lys Ile Ala Ser 420 425 430 Gly Ala Ile Thr Tyr Gly Gln Ser Gly Val Ser Leu Asn Asn Pro Asp 435 440 445 Asp Pro Phe Asn Val Asn Ile Lys Asn Asn Phe Leu Pro Ser Glu Leu 450 455 460 Gly Tyr Ala Gly Tyr Asp Gly Ser Leu Thr Thr Pro Pro Cys Ser Glu 465 470 475 480 Ile Val Lys Trp His Val Phe Leu Glu Pro Arg Thr Val Ser Val Glu 485 490 495 Gln Met Glu Val Phe Ala Asp Val Thr Leu Asn Ser Asn Pro Gly Ala 500 505 510 Thr Val Thr Thr Asn Arg Met Ile Gln Pro Leu Glu Gly Arg Thr Val 515 520 525 Tyr Gly Tyr Asn Gly Ala Ala Ala 530 535 <210> 2 <211> 264 <212> PRT <213> Dunaliella Salina <400> 2 Met Val Ser Glu Pro His Asp Tyr Asn Tyr Glu Lys Val Gly Phe Asp 1 5 10 15 Trp Thr Gly Gly Val Cys Val Asn Thr Gly Thr Ser Lys Gln Ser Pro 20 25 30 Ile Asn Ile Glu Thr Asp Ser Leu Ala Glu Glu Ser Glu Arg Leu Gly 35 40 45 Thr Ala Asp Asp Thr Ser Arg Leu Ala Leu Lys Gly Leu Leu Ser Ser 50 55 60 Ser Tyr Gln Leu Thr Ser Glu Val Ala Ile Asn Leu Glu Gln Asp Met 65 70 75 80 Gln Phe Ser Phe Asn Ala Pro Asp Glu Asp Leu Pro Gln Leu Thr Ile 85 90 95 Gly Gly Val Val His Thr Phe Lys Pro Val Gln Ile His Phe His His 100 105 110 Phe Ala Ser Glu His Ala Ile Asp Gly Gln Leu Tyr Pro Leu Glu Ala 115 120 125 His Met Val Met Ala Ser Gln Asn Asp Gly Ser Asp Gln Leu Ala Val 130 135 140 Ile Gly Ile Met Tyr Lys Tyr Gly Glu Glu Asp Pro Phe Leu Lys Arg 145 150 155 160 Leu Gln Glu Thr Ala Gln Ser Asn Gly Glu Ala Gly Asp Lys Asn Val 165 170 175 Glu Leu Asn Ser Phe Ser Ile Asn Val Ala Arg Asp Leu Leu Pro Glu 180 185 190 Ser Asp Leu Thr Tyr Tyr Gly Tyr Asp Gly Ser Leu Thr Thr Pro Gly 195 200 205 Cys Asp Glu Arg Val Lys Trp His Val Phe Lys Glu Ala Arg Thr Val 210 215 220 Ser Val Ala Gln Leu Lys Val Phe Ser Glu Val Thr Leu Ala Ala His 225 230 235 240 Pro Glu Ala Thr Val Thr Asn Asn Arg Val Ile Gln Pro Leu Asn Gly 245 250 255 Arg Lys Val Tyr Glu Tyr Lys Gly 260 <210> 3 <211> 273 <212> PRT <213> Dunaliella Salina <400> 3 Met Glu Pro Asn Asp Lys Tyr Asn Tyr Val Gln His Gly Phe Asp Trp 1 5 10 15 Arg Asp Asn Gly Leu Asp Ser Cys Ala Gly Asp Val Gln Ser Pro Ile 20 25 30 Asp Ile Val Thr Ser Thr Leu Gln Ala Gly Ser Ser Arg Ser Asp Val 35 40 45 Ser Ser Val Asn Leu Asn Asp Leu Asn Thr Asp Ala Phe Thr Leu Thr 50 55 60 Gly Asn Thr Val Asn Ile Gly Gln Gly Met Gln Ile Asn Phe Gly Asp 65 70 75 80 Pro Pro Ala Gly Asp Leu Pro Val Ile Arg Ile Gly Thr Arg Asp Val 85 90 95 Thr Phe Arg Pro Leu Gln Val His Trp His Phe Phe Leu Ser Glu His 100 105 110 Thr Val Asp Gly Val His Tyr Pro Leu Glu Ala His Ile Val Met Lys 115 120 125 Asp Asn Asp Asn Leu Gly Asp Ser Ala Gly Gln Leu Ala Val Ile Gly 130 135 140 Ile Met Tyr Lys Tyr Gly Asp Ala Asp Pro Phe Ile Thr Asp Met Gln 145 150 155 160 Lys Arg Val Ser Asp Lys Ile Ala Ser Gly Ala Ile Thr Tyr Gly Gln 165 170 175 Ser Gly Val Ser Leu Asn Asn Pro Asp Asp Pro Phe Asn Val Asn Ile 180 185 190 Lys Asn Asn Phe Leu Pro Ser Glu Leu Gly Tyr Ala Gly Tyr Asp Gly 195 200 205 Ser Leu Thr Thr Pro Pro Cys Ser Glu Ile Val Lys Trp His Val Phe 210 215 220 Leu Glu Pro Arg Thr Val Ser Val Glu Gln Met Glu Val Phe Ala Asp 225 230 235 240 Val Thr Leu Asn Ser Asn Pro Gly Ala Thr Val Thr Thr Asn Arg Met 245 250 255 Ile Gln Pro Leu Glu Gly Arg Thr Val Tyr Gly Tyr Asn Gly Ala Ala 260 265 270 Ala <210> 4 <211> 274 <212> PRT <213> Artificial Sequence <220> <223> Dsp-nCA-c <400> 4 Met Val Ser Glu Pro His Asp Tyr Asn Tyr Glu Lys His Gly Phe Asp 1 5 10 15 Trp Arg Asp Asn Gly Leu Asp Ser Cys Ala Gly Asp Val Gln Ser Pro 20 25 30 Ile Asp Ile Val Thr Ser Thr Leu Gln Ala Gly Ser Ser Arg Ser Asp 35 40 45 Val Ser Ser Val Asn Leu Asn Asp Leu Asn Thr Asp Ala Phe Thr Leu 50 55 60 Thr Gly Asn Thr Val Asn Ile Gly Gln Gly Met Gln Ile Asn Phe Gly 65 70 75 80 Asp Pro Pro Ala Gly Asp Leu Pro Val Ile Arg Ile Gly Thr Arg Asp 85 90 95 Val Thr Phe Arg Pro Leu Gln Val His Trp His Phe Phe Leu Ser Glu 100 105 110 His Thr Val Asp Gly Val His Tyr Pro Leu Glu Ala His Ile Val Met 115 120 125 Lys Asp Asn Asp Asn Leu Gly Asp Ser Ala Gly Gln Leu Ala Val Ile 130 135 140 Gly Ile Met Tyr Lys Tyr Gly Asp Ala Asp Pro Phe Ile Thr Asp Met 145 150 155 160 Gln Lys Arg Val Ser Asp Lys Ile Ala Ser Gly Ala Ile Thr Tyr Gly 165 170 175 Gln Ser Gly Val Ser Leu Asn Asn Pro Asp Asp Pro Phe Asn Val Asn 180 185 190 Ile Lys Asn Asn Phe Leu Pro Ser Glu Leu Gly Tyr Ala Gly Tyr Asp 195 200 205 Gly Ser Leu Thr Thr Pro Pro Cys Ser Glu Ile Val Lys Trp His Val 210 215 220 Phe Leu Glu Pro Arg Thr Val Ser Val Glu Gln Met Glu Val Phe Ala 225 230 235 240 Asp Val Thr Leu Asn Ser Asn Pro Gly Ala Thr Val Thr Thr Asn Arg 245 250 255 Met Ile Gln Pro Leu Glu Gly Arg Thr Val Tyr Gly Tyr Asn Gly Ala 260 265 270 Ala Ala <210> 5 <211> 274 <212> PRT <213> Artificial Sequence <220> <223> Dsp-nCA-c(G263S) <400> 5 Met Val Ser Glu Pro His Asp Tyr Asn Tyr Glu Lys His Gly Phe Asp 1 5 10 15 Trp Arg Asp Asn Gly Leu Asp Ser Cys Ala Gly Asp Val Gln Ser Pro 20 25 30 Ile Asp Ile Val Thr Ser Thr Leu Gln Ala Gly Ser Ser Arg Ser Asp 35 40 45 Val Ser Ser Val Asn Leu Asn Asp Leu Asn Thr Asp Ala Phe Thr Leu 50 55 60 Thr Gly Asn Thr Val Asn Ile Gly Gln Gly Met Gln Ile Asn Phe Gly 65 70 75 80 Asp Pro Pro Ala Gly Asp Leu Pro Val Ile Arg Ile Gly Thr Arg Asp 85 90 95 Val Thr Phe Arg Pro Leu Gln Val His Trp His Phe Phe Leu Ser Glu 100 105 110 His Thr Val Asp Gly Val His Tyr Pro Leu Glu Ala His Ile Val Met 115 120 125 Lys Asp Asn Asp Asn Leu Gly Asp Ser Ala Gly Gln Leu Ala Val Ile 130 135 140 Gly Ile Met Tyr Lys Tyr Gly Asp Ala Asp Pro Phe Ile Thr Asp Met 145 150 155 160 Gln Lys Arg Val Ser Asp Lys Ile Ala Ser Gly Ala Ile Thr Tyr Gly 165 170 175 Gln Ser Gly Val Ser Leu Asn Asn Pro Asp Asp Pro Phe Asn Val Asn 180 185 190 Ile Lys Asn Asn Phe Leu Pro Ser Glu Leu Gly Tyr Ala Gly Tyr Asp 195 200 205 Gly Ser Leu Thr Thr Pro Pro Cys Ser Glu Ile Val Lys Trp His Val 210 215 220 Phe Leu Glu Pro Arg Thr Val Ser Val Glu Gln Met Glu Val Phe Ala 225 230 235 240 Asp Val Thr Leu Asn Ser Asn Pro Gly Ala Thr Val Thr Thr Asn Arg 245 250 255 Met Ile Gln Pro Leu Glu Ser Arg Thr Val Tyr Gly Tyr Asn Gly Ala 260 265 270 Ala Ala <210> 6 <211> 291 <212> PRT <213> Dunaliella Salina <400> 6 Met Ala Ser Met Thr Gly Gly Gln Gln Met Gly Arg Gly Ser Glu Glu 1 5 10 15 Pro Asn Pro Asn Asp Gly Tyr Asp Tyr Met Gln His Gly Phe Asp Trp 20 25 30 Pro Gly Leu Gln Glu Gly Gly Thr Thr Lys Tyr Pro Ala Cys Ser Gly 35 40 45 Ser Asn Gln Ser Pro Ile Asp Ile Asn Thr Asn Gln Leu Met Glu Pro 50 55 60 Ser Ser Arg Ser Gly Thr Ser Ala Val Ser Leu Asn Gly Leu Asn Val 65 70 75 80 Asp Gly Ala Gln Ala Asp Gly Ile Thr Leu Thr Asn Ala Lys Val Asp 85 90 95 Leu Glu Gln Gly Met Lys Val Thr Phe Asp Gln Pro Ala Ala Asn Leu 100 105 110 Pro Thr Ile Glu Ile Gly Gly Thr Thr Lys Ser Phe Val Pro Ile Gln 115 120 125 Phe His Phe His His Phe Leu Ser Glu His Thr Ile Asn Gly Ile His 130 135 140 Tyr Pro Leu Glu Leu His Ile Val Met Gln Glu Gln Asp Pro Ala Asp 145 150 155 160 Val Ala Thr Ala Gln Leu Ala Val Ile Gly Ile Met Tyr Lys Tyr Ser 165 170 175 Glu Asn Gly Asp Ala Phe Leu Asn Ser Leu Gln Thr Gln Ile Glu Gly 180 185 190 Lys Ile Gly Asp Gly Thr Ala Ser Tyr Gly Asp Thr Gly Val Ser Ile 195 200 205 Asp Asn Ile Asn Val Lys Thr Gln Leu Leu Pro Ser Ser Leu Lys Tyr 210 215 220 Ala Gly Tyr Asp Gly Ser Leu Thr Thr Pro Gly Cys Asp Glu Arg Val 225 230 235 240 Lys Trp His Val Phe Thr Thr Pro Arg Glu Val Thr Arg Glu Gln Met 245 250 255 Lys Leu Phe Val Asp Val Thr Met Gly Ala His Ala Gly Ala Asp Val 260 265 270 Val Asn Asn Arg Met Ile Gln Asp Leu Gly Asp Arg Glu Val Tyr Lys 275 280 285 Tyr Asn Tyr 290 <210> 7 <211> 1611 <212> DNA <213> Dunaliella Salina <400> 7 atggtttctg aaccgcacga ctacaactac gaaaaagttg gtttcgactg gaccggtggt 60 gtttgcgtta acaccggtac ctctaaacag tctccgatca acatcgaaac cgactctctg 120 gctgaagaat ctgaacgtct gggtaccgct gacgacacct ctcgtctggc tctgaaaggt 180 ctgctgtctt cttcttacca gctgacctct gaagttgcta tcaacctgga acaggacatg 240 cagttctctt tcaacgctcc ggacgaagac ctgccgcagc tgaccatcgg tggtgttgtt 300 cacaccttca aaccggttca gatccacttc caccacttcg cttctgaaca cgctatcgac 360 ggtcagctgt acccgctgga agctcacatg gttatggctt ctcagaacga cggttctgac 420 cagctggctg ttatcggtat catgtacaaa tacggtgaag aagacccgtt cctgaaacgt 480 ctgcaggaaa ccgctcagtc taacggtgaa gctggtgaca aaaacgttga actgaactct 540 ttctctatca acgttgctcg tgacctgctg ccggaatctg acctgaccta ctacggttac 600 gacggttctc tgaccacccc gggttgcgac gaacgtgtta aatggcacgt tttcaaagaa 660 gctcgtaccg tttctgttgc tcagctgaaa gttttctctg aagttaccct ggctgctcac 720 ccggaagcta ccgttaccaa caaccgtgtt atccagccgc tgaacggtcg taaagtttac 780 gaatacaaag gtgaaccgaa cgacaaatac aactacgttc agcacggttt cgactggcgt 840 gacaacggtc tggactcttg cgctggtgac gttcagtctc cgatcgacat cgttacctct 900 accctgcagg ctggttcttc tcgttctgac gtttcttctg ttaacctgaa cgacctgaac 960 accgacgctt tcaccctgac cggtaacacc gttaacatcg gtcagggtat gcagatcaac 1020 ttcggtgacc cgccggctgg tgacctgccg gttatccgta tcggtacccg tgacgttacc 1080 ttccgtccgc tgcaggttca ctggcacttc ttcctgtctg aacacaccgt tgacggtgtt 1140 cactacccgc tggaagctca catcgttatg aaagacaacg acaacctggg tgactctgct 1200 ggtcagctgg ctgttatcgg tatcatgtac aaatacggtg acgctgaccc gttcatcacc 1260 gacatgcaga aacgtgtttc tgacaaaatc gcttctggtg ctatcaccta cggtcagtct 1320 ggtgtttctc tgaacaaccc ggacgacccg ttcaacgtta acatcaaaaa caacttcctg 1380 ccgtctgaac tgggttacgc tggttacgac ggttctctga ccaccccgcc gtgctctgaa 1440 atcgttaaat ggcacgtttt cctggaaccg cgtaccgttt ctgttgaaca gatggaagtt 1500 ttcgctgacg ttaccctgaa ctctaacccg ggtgctaccg ttaccaccaa ccgtatgatc 1560 cagccgctgg aaggtcgtac cgtttacggt tacaacggtg ctgctgctta a 1611 <210> 8 <211> 795 <212> DNA <213> Dunaliella Salina <400> 8 atggtttctg aaccgcacga ctacaactac gaaaaagttg gtttcgactg gaccggtggt 60 gtttgcgtta acaccggtac ctctaaacag tctccgatca acatcgaaac cgactctctg 120 gctgaagaat ctgaacgtct gggtaccgct gacgacacct ctcgtctggc tctgaaaggt 180 ctgctgtctt cttcttacca gctgacctct gaagttgcta tcaacctgga acaggacatg 240 cagttctctt tcaacgctcc ggacgaagac ctgccgcagc tgaccatcgg tggtgttgtt 300 cacaccttca aaccggttca gatccacttc caccacttcg cttctgaaca cgctatcgac 360 ggtcagctgt acccgctgga agctcacatg gttatggctt ctcagaacga cggttctgac 420 cagctggctg ttatcggtat catgtacaaa tacggtgaag aagacccgtt cctgaaacgt 480 ctgcaggaaa ccgctcagtc taacggtgaa gctggtgaca aaaacgttga actgaactct 540 ttctctatca acgttgctcg tgacctgctg ccggaatctg acctgaccta ctacggttac 600 gacggttctc tgaccacccc gggttgcgac gaacgtgtta aatggcacgt tttcaaagaa 660 gctcgtaccg tttctgttgc tcagctgaaa gttttctctg aagttaccct ggctgctcac 720 ccggaagcta ccgttaccaa caaccgtgtt atccagccgc tgaacggtcg taaagtttac 780 gaatacaaag gttaa 795 <210> 9 <211> 822 <212> DNA <213> Dunaliella Salina <400> 9 atggaaccga acgacaaata caactacgtt cagcacggtt tcgactggcg tgacaacggt 60 ctggactctt gcgctggtga cgttcagtct ccgatcgaca tcgttacctc taccctgcag 120 gctggttctt ctcgttctga cgtttcttct gttaacctga acgacctgaa caccgacgct 180 ttcaccctga ccggtaacac cgttaacatc ggtcagggta tgcagatcaa cttcggtgac 240 ccgccggctg gtgacctgcc ggttatccgt atcggtaccc gtgacgttac cttccgtccg 300 ctgcaggttc actggcactt cttcctgtct gaacacaccg ttgacggtgt tcactacccg 360 ctggaagctc acatcgttat gaaagacaac gacaacctgg gtgactctgc tggtcagctg 420 gctgttatcg gtatcatgta caaatacggt gacgctgacc cgttcatcac cgacatgcag 480 aaacgtgttt ctgacaaaat cgcttctggt gctatcacct acggtcagtc tggtgtttct 540 ctgaacaacc cggacgaccc gttcaacgtt aacatcaaaa acaacttcct gccgtctgaa 600 ctgggttacg ctggttacga cggttctctg accaccccgc cgtgctctga aatcgttaaa 660 tggcacgttt tcctggaacc gcgtaccgtt tctgttgaac agatggaagt tttcgctgac 720 gttaccctga actctaaccc gggtgctacc gttaccacca accgtatgat ccagccgctg 780 gaaggtcgta ccgtttacgg ttacaacggt gctgctgctt aa 822 <210> 10 <211> 825 <212> DNA <213> Artificial Sequence <220> <223> Dsp-nCA-c <400> 10 atggtttctg aaccgcacga ctacaactac gaaaaacacg gtttcgactg gcgtgacaac 60 ggtctggact cttgcgctgg tgacgttcag tctccgatcg acatcgttac ctctaccctg 120 caggctggtt cttctcgttc tgacgtttct tctgttaacc tgaacgacct gaacaccgac 180 gctttcaccc tgaccggtaa caccgttaac atcggtcagg gtatgcagat caacttcggt 240 gacccgccgg ctggtgacct gccggttatc cgtatcggta cccgtgacgt taccttccgt 300 ccgctgcagg ttcactggca cttcttcctg tctgaacaca ccgttgacgg tgttcactac 360 ccgctggaag ctcacatcgt tatgaaagac aacgacaacc tgggtgactc tgctggtcag 420 ctggctgtta tcggtatcat gtacaaatac ggtgacgctg acccgttcat caccgacatg 480 cagaaacgtg tttctgacaa aatcgcttct ggtgctatca cctacggtca gtctggtgtt 540 tctctgaaca acccggacga cccgttcaac gttaacatca aaaacaactt cctgccgtct 600 gaactgggtt acgctggtta cgacggttct ctgaccaccc cgccgtgctc tgaaatcgtt 660 aaatggcacg ttttcctgga accgcgtacc gtttctgttg aacagatgga agttttcgct 720 gacgttaccc tgaactctaa cccgggtgct accgttacca ccaaccgtat gatccagccg 780 ctggaaggtc gtaccgttta cggttacaac ggtgctgctg cttaa 825 <210> 11 <211> 825 <212> DNA <213> Artificial Sequence <220> <223> Dsp-nCA-c(G263S) <400> 11 atggtttctg aaccgcacga ctacaactac gaaaaacacg gtttcgactg gcgtgacaac 60 ggtctggact cttgcgctgg tgacgttcag tctccgatcg acatcgttac ctctaccctg 120 caggctggtt cttctcgttc tgacgtttct tctgttaacc tgaacgacct gaacaccgac 180 gctttcaccc tgaccggtaa caccgttaac atcggtcagg gtatgcagat caacttcggt 240 gacccgccgg ctggtgacct gccggttatc cgtatcggta cccgtgacgt taccttccgt 300 ccgctgcagg ttcactggca cttcttcctg tctgaacaca ccgttgacgg tgttcactac 360 ccgctggaag ctcacatcgt tatgaaagac aacgacaacc tgggtgactc tgctggtcag 420 ctggctgtta tcggtatcat gtacaaatac ggtgacgctg acccgttcat caccgacatg 480 cagaaacgtg tttctgacaa aatcgcttct ggtgctatca cctacggtca gtctggtgtt 540 tctctgaaca acccggacga cccgttcaac gttaacatca aaaacaactt cctgccgtct 600 gaactgggtt acgctggtta cgacggttct ctgaccaccc cgccgtgctc tgaaatcgtt 660 aaatggcacg ttttcctgga accgcgtacc gtttctgttg aacagatgga agttttcgct 720 gacgttaccc tgaactctaa cccgggtgct accgttacca ccaaccgtat gatccagccg 780 ctggaatctc gtaccgttta cggttacaac ggtgctgctg cttaa 825 <210> 12 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> forward primer <400> 12 catatggttt ctgaaccgca cgactacaac 30 <210> 13 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> forward primer <400> 13 cgcacgacta caactacgaa aaacacggt 29 <210> 14 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> forward primer <400> 14 ctacgaaaaa cacggtttcg actggcgt 28 <210> 15 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> reverse primer <400> 15 aagcttagca gcagcaccgt tgtaaccgta 30 <110> KOREAN UNIVERSITY RESEARCH AND BUSINESS FOUNDATION <120> Chimeric carbonic anhydrase from Dunaliella Salina and use          the <130> P15U13C0579 <160> 15 <170> Kopatentin 2.0 <210> 1 <211> 536 <212> PRT <213> Dunaliella Salina <400> 1 Met Val Ser Glu Pro His Hisp Tyr Asn Tyr Glu Lys Val Gly Phe Asp   1 5 10 15 Trp Thr Gly Gly Val Cys Val Asn Thr Gly Thr Ser Lys Gln Ser Pro              20 25 30 Ile Asn Ile Glu Thr Asp Ser Leu Ala Glu Glu Ser Glu Arg Leu Gly          35 40 45 Thr Ala Asp Asp Thr Ser Arg Leu Ala Leu Lys Gly Leu Leu Ser Ser      50 55 60 Ser Tyr Gln Leu Thr Ser Glu Val Ala Ile Asn Leu Glu Gln Asp Met  65 70 75 80 Gln Phe Ser Phe Asn Ala Pro Asp Glu Asp Leu Pro Gln Leu Thr Ile                  85 90 95 Gly Gly Val Val His Thr Phe Lys Pro Val Gln Ile His Phe His His             100 105 110 Phe Ala Ser Glu His Ala Ile Asp Gly Gln Leu Tyr Pro Leu Glu Ala         115 120 125 His Met Val Met Ala Ser Gln Asn Asp Gly Ser Asp Gln Leu Ala Val     130 135 140 Ile Gly Ile Met Tyr Lys Tyr Gly Glu Glu Asp Pro Phe Leu Lys Arg 145 150 155 160 Leu Gln Glu Thr Ala Gln Ser Asn Gly Glu Ala Gly Asp Lys Asn Val                 165 170 175 Glu Leu Asn Ser Phe Ser Ile Asn Val Ala Arg Asp Leu Leu Pro Glu             180 185 190 Ser Asp Leu Thr Tyr Tyr Gly Tyr Asp Gly Ser Leu Thr Thr Pro Gly         195 200 205 Cys Asp Glu Arg Val Lys Trp His Val Phe Lys Glu Ala Arg Thr Val     210 215 220 Ser Val Ala Gln Leu Lys Val Phe Ser Glu Val Thr Leu Ala Ala His 225 230 235 240 Pro Glu Ala Thr Val Thr Asn Asn Arg Val Ile Gln Pro Leu Asn Gly                 245 250 255 Arg Lys Val Tyr Glu Tyr Lys Gly Glu Pro Asn Asp Lys Tyr Asn Tyr             260 265 270 Val Gln His Gly Phe Asp Trp Arg Asp Asn Gly Leu Asp Ser Cys Ala         275 280 285 Gly Asp Val Gln Ser Pro Ile Asp Ile Val Thr Ser Thr Leu Gln Ala     290 295 300 Gly Ser Ser Arg Ser Ser Val Ser Ser Val Asn Leu Asn Asp Leu Asn 305 310 315 320 Thr Asp Ala Phe Thr Leu Thr Gly Asn Thr Val Asn Ile Gly Gln Gly                 325 330 335 Met Gln Ile Asn Phe Gly Asp Pro Pro Ala Gly Asp Leu Pro Val Ile             340 345 350 Arg Ile Gly Thr Arg Asp Val Thr Phe Arg Pro Leu Gln Val His Trp         355 360 365 His Phe Phe Leu Ser Glu His Thr Val Asp Gly Val His Tyr Pro Leu     370 375 380 Glu Ala His Ile Val Met Lys Asp Asn Asp Asn Leu Gly Asp Ser Ala 385 390 395 400 Gly Gln Leu Ala Val Ile Gly Ile Met Tyr Lys Tyr Gly Asp Ala Asp                 405 410 415 Pro Phe Ile Thr Asp Met Gln Lys Arg Val Val Ser Asp Lys Ile Ala Ser             420 425 430 Gly Ala Ile Thr Tyr Gly Gln Ser Gly Val Ser Leu Asn Asn Pro Asp         435 440 445 Asp Pro Phe Asn Val Asn Ile Lys Asn Asn Phe Leu Pro Ser Glu Leu     450 455 460 Gly Tyr Ala Gly Tyr Asp Gly Ser Leu Thr Thr Pro Pro Cys Ser Glu 465 470 475 480 Ile Val Lys Trp His Val Phe Leu Glu Pro Arg Thr Val Ser Val Glu                 485 490 495 Gln Met Glu Val Phe Ala Asp Val Thr Leu Asn Ser Asn Pro Gly Ala             500 505 510 Thr Val Thr Thr Asn Arg Met Ile Gln Pro Leu Glu Gly Arg Thr Val         515 520 525 Tyr Gly Tyr Asn Gly     530 535 <210> 2 <211> 264 <212> PRT <213> Dunaliella Salina <400> 2 Met Val Ser Glu Pro His Hisp Tyr Asn Tyr Glu Lys Val Gly Phe Asp   1 5 10 15 Trp Thr Gly Gly Val Cys Val Asn Thr Gly Thr Ser Lys Gln Ser Pro              20 25 30 Ile Asn Ile Glu Thr Asp Ser Leu Ala Glu Glu Ser Glu Arg Leu Gly          35 40 45 Thr Ala Asp Asp Thr Ser Arg Leu Ala Leu Lys Gly Leu Leu Ser Ser      50 55 60 Ser Tyr Gln Leu Thr Ser Glu Val Ala Ile Asn Leu Glu Gln Asp Met  65 70 75 80 Gln Phe Ser Phe Asn Ala Pro Asp Glu Asp Leu Pro Gln Leu Thr Ile                  85 90 95 Gly Gly Val Val His Thr Phe Lys Pro Val Gln Ile His Phe His His             100 105 110 Phe Ala Ser Glu His Ala Ile Asp Gly Gln Leu Tyr Pro Leu Glu Ala         115 120 125 His Met Val Met Ala Ser Gln Asn Asp Gly Ser Asp Gln Leu Ala Val     130 135 140 Ile Gly Ile Met Tyr Lys Tyr Gly Glu Glu Asp Pro Phe Leu Lys Arg 145 150 155 160 Leu Gln Glu Thr Ala Gln Ser Asn Gly Glu Ala Gly Asp Lys Asn Val                 165 170 175 Glu Leu Asn Ser Phe Ser Ile Asn Val Ala Arg Asp Leu Leu Pro Glu             180 185 190 Ser Asp Leu Thr Tyr Tyr Gly Tyr Asp Gly Ser Leu Thr Thr Pro Gly         195 200 205 Cys Asp Glu Arg Val Lys Trp His Val Phe Lys Glu Ala Arg Thr Val     210 215 220 Ser Val Ala Gln Leu Lys Val Phe Ser Glu Val Thr Leu Ala Ala His 225 230 235 240 Pro Glu Ala Thr Val Thr Asn Asn Arg Val Ile Gln Pro Leu Asn Gly                 245 250 255 Arg Lys Val Tyr Glu Tyr Lys Gly             260 <210> 3 <211> 273 <212> PRT <213> Dunaliella Salina <400> 3 Met Glu Pro Asn Asp Lys Tyr Asn Tyr Val Gln His Gly Phe Asp Trp   1 5 10 15 Arg Asp Asn Gly Leu Asp Ser Cys Ala Gly Asp Val Gln Ser Pro Ile              20 25 30 Asp Ile Val Thr Ser Thr Leu Gln Ala Gly Ser Ser Arg Ser Serp Val          35 40 45 Ser Ser Val Asn Leu Asn Asp Leu Asn Thr Asp Ala Phe Thr Leu Thr      50 55 60 Gly Asn Thr Val Asn Ile Gly Gln Gly Met Gln Ile Asn Phe Gly Asp  65 70 75 80 Pro Pro Ala Gly Asp Leu Pro Val Ile Arg Ile Gly Thr Arg Asp Val                  85 90 95 Thr Phe Arg Pro Leu Gln Val His Trp His Phe Phe Leu Ser Glu His             100 105 110 Thr Val Asp Gly Val His Tyr Pro Leu Glu Ala His Ile Val Met Lys         115 120 125 Asp Asn Asp Asn Leu Gly Asp Ser Ala Gly Gln Leu Ala Val Ile Gly     130 135 140 Ile Met Tyr Lys Tyr Gly Asp Ala Asp Pro Phe Ile Thr Asp Met Gln 145 150 155 160 Lys Arg Val Ser Asp Lys Ile Ala Ser Gly Ala Ile Thr Tyr Gly Gln                 165 170 175 Ser Gly Val Ser Leu Asn Asn Pro Asp Asp Pro Phe Asn Val Asn Ile             180 185 190 Lys Asn Phe Leu Pro Ser Glu Leu Gly Tyr Ala Gly Tyr Asp Gly         195 200 205 Ser Leu Thr Thr Pro Pro Cys Ser Glu Ile Val Lys Trp His Val Phe     210 215 220 Leu Glu Pro Arg Thr Val Ser Val Glu Gln Met Glu Val Phe Ala Asp 225 230 235 240 Val Thr Leu Asn Ser Asn Pro Gly Ala Thr Val Thr Thr Asn Arg Met                 245 250 255 Ile Gln Pro Leu Glu Gly Arg Thr Val Tyr Gly Tyr Asn Gly Ala Ala             260 265 270 Ala     <210> 4 <211> 274 <212> PRT <213> Artificial Sequence <220> <223> Dsp-nCA-c <400> 4 Met Val Ser Glu Pro His Hisp Tyr Asn Tyr Glu Lys His Gly Phe Asp   1 5 10 15 Trp Arg Asp Asn Gly Leu Asp Ser Cys Ala Gly Asp Val Gln Ser Pro              20 25 30 Ile Asp Ile Val Thr Ser Thr Leu Gln Ala Gly Ser Ser Ser Ser Serp          35 40 45 Val Ser Ser Val Asn Leu Asn Asp Leu Asn Thr Asp Ala Phe Thr Leu      50 55 60 Thr Gly Asn Thr Val Asn Ile Gly Gln Gly Met Gln Ile Asn Phe Gly  65 70 75 80 Asp Pro Pro Ala Gly Asp Leu Pro Val Ile Arg Ile Gly Thr Arg Asp                  85 90 95 Val Thr Phe Arg Pro Leu Gln Val His Trp His Phe Phe Leu Ser Glu             100 105 110 His Thr Val Asp Gly Val His Tyr Pro Leu Glu Ala His Ile Val Met         115 120 125 Lys Asp Asn Asp Asn Leu Gly Asp Ser Ala Gly Gln Leu Ala Val Ile     130 135 140 Gly Ile Met Tyr Lys Tyr Gly Asp Ala Asp Pro Phe Ile Thr Asp Met 145 150 155 160 Gln Lys Arg Val Val Ser Asp Lys Ile Ala Ser Gly Ala Ile Thr Tyr Gly                 165 170 175 Gln Ser Gly Val Ser Leu Asn Asn Pro Asp Asp Pro Phe Asn Val Asn             180 185 190 Ile Lys Asn Asn Phe Leu Pro Ser Glu Leu Gly Tyr Ala Gly Tyr Asp         195 200 205 Gly Ser Leu Thr Thr Pro Pro Cys Ser Glu Ile Val Lys Trp His Val     210 215 220 Phe Leu Glu Pro Arg Thr Val Ser Val Glu Gln Met Glu Val Phe Ala 225 230 235 240 Asp Val Thr Leu Asn Ser Asn Pro Gly Ala Thr Val Thr Thr Asn Arg                 245 250 255 Met Ile Gln Pro Leu Glu Gly Arg Thr Val Tyr Gly Tyr Asn Gly Ala             260 265 270 Ala Ala         <210> 5 <211> 274 <212> PRT <213> Artificial Sequence <220> &Lt; 223 > Dsp-nCA-c (G263S) <400> 5 Met Val Ser Glu Pro His Hisp Tyr Asn Tyr Glu Lys His Gly Phe Asp   1 5 10 15 Trp Arg Asp Asn Gly Leu Asp Ser Cys Ala Gly Asp Val Gln Ser Pro              20 25 30 Ile Asp Ile Val Thr Ser Thr Leu Gln Ala Gly Ser Ser Ser Ser Serp          35 40 45 Val Ser Ser Val Asn Leu Asn Asp Leu Asn Thr Asp Ala Phe Thr Leu      50 55 60 Thr Gly Asn Thr Val Asn Ile Gly Gln Gly Met Gln Ile Asn Phe Gly  65 70 75 80 Asp Pro Pro Ala Gly Asp Leu Pro Val Ile Arg Ile Gly Thr Arg Asp                  85 90 95 Val Thr Phe Arg Pro Leu Gln Val His Trp His Phe Phe Leu Ser Glu             100 105 110 His Thr Val Asp Gly Val His Tyr Pro Leu Glu Ala His Ile Val Met         115 120 125 Lys Asp Asn Asp Asn Leu Gly Asp Ser Ala Gly Gln Leu Ala Val Ile     130 135 140 Gly Ile Met Tyr Lys Tyr Gly Asp Ala Asp Pro Phe Ile Thr Asp Met 145 150 155 160 Gln Lys Arg Val Val Ser Asp Lys Ile Ala Ser Gly Ala Ile Thr Tyr Gly                 165 170 175 Gln Ser Gly Val Ser Leu Asn Asn Pro Asp Asp Pro Phe Asn Val Asn             180 185 190 Ile Lys Asn Asn Phe Leu Pro Ser Glu Leu Gly Tyr Ala Gly Tyr Asp         195 200 205 Gly Ser Leu Thr Thr Pro Pro Cys Ser Glu Ile Val Lys Trp His Val     210 215 220 Phe Leu Glu Pro Arg Thr Val Ser Val Glu Gln Met Glu Val Phe Ala 225 230 235 240 Asp Val Thr Leu Asn Ser Asn Pro Gly Ala Thr Val Thr Thr Asn Arg                 245 250 255 Met Ile Gln Pro Leu Glu Ser Arg Thr Val Tyr Gly Tyr Asn Gly Ala             260 265 270 Ala Ala         <210> 6 <211> 291 <212> PRT <213> Dunaliella Salina <400> 6 Met Ala Ser Met Thr Gly Gly Gln Gln Met Gly Arg Gly Ser Glu Glu   1 5 10 15 Pro Asn Pro Asn Asp Gly Tyr Asp Tyr Met Gln His Gly Phe Asp Trp              20 25 30 Pro Gly Leu Gln Glu Gly Gly Thr Thr Lys Tyr Pro Ala Cys Ser Gly          35 40 45 Ser Asn Gln Ser Pro Ile Asp Ile Asn Thr Asn Gln Leu Met Glu Pro      50 55 60 Ser Ser Arg Ser Gly Thr Ser Ala Val Ser Leu Asn Gly Leu Asn Val  65 70 75 80 Asp Gly Ala Gln Ala Asp Gly Ile Thr Leu Thr Asn Ala Lys Val Asp                  85 90 95 Leu Glu Gln Gly Met Lys Val Thr Phe Asp Gln Pro Ala Ala Asn Leu             100 105 110 Pro Thr Ile Glu Ile Gly Gly Thr Thr Lys Ser Phe Val Pro Ile Gln         115 120 125 Phe His Phe His His Phe Leu Ser Glu His Thr Ile Asn Gly Ile His     130 135 140 Tyr Pro Leu Glu Leu His Ile Val Met Gln Glu Gln Asp Pro Ala Asp 145 150 155 160 Val Ala Thr Ala Gln Leu Ala Val Ile Gly Ile Met Tyr Lys Tyr Ser                 165 170 175 Glu Asn Gly Asp Ala Phe Leu Asn Ser Leu Gln Thr Gln Ile Glu Gly             180 185 190 Lys Ile Gly Asp Gly Thr Ala Ser Tyr Gly Asp Thr Gly Val Ser Ile         195 200 205 Asp Asn Ile Asn Val Lys Thr Gln Leu Leu Pro Ser Ser Leu Lys Tyr     210 215 220 Ala Gly Tyr Asp Gly Ser Leu Thr Thr Pro Gly Cys Asp Glu Arg Val 225 230 235 240 Lys Trp His Val Phe Thr Thr Pro Arg Glu Val Thr Arg Glu Gln Met                 245 250 255 Lys Leu Phe Val Asp Val Thr Met Gly Ala His Ala Gly Ala Asp Val             260 265 270 Val Asn Asn Arg Met Ile Gln Asp Leu Gly Asp Arg Glu Val Tyr Lys         275 280 285 Tyr Asn Tyr     290 <210> 7 <211> 1611 <212> DNA <213> Dunaliella Salina <400> 7 atggtttctg aaccgcacga ctacaactac gaaaaagttg gtttcgactg gaccggtggt 60 gtttgcgtta acaccggtac ctctaaacag tctccgatca acatcgaaac cgactctctg 120 gctgaagaat ctgaacgtct gggtaccgct gacgacacct ctcgtctggc tctgaaaggt 180 ctgctgtctt cttcttacca gctgacctct gaagttgcta tcaacctgga acaggacatg 240 cagttctctt tcaacgctcc ggacgaagac ctgccgcagc tgaccatcgg tggtgttgtt 300 cacaccttca aaccggttca gatccacttc caccacttcg cttctgaaca cgctatcgac 360 ggtcagctgt acccgctgga agctcacatg gttatggctt ctcagaacga cggttctgac 420 cagctggctg ttatcggtat catgtacaaa tacggtgaag aagacccgtt cctgaaacgt 480 ctgcaggaaa ccgctcagtc taacggtgaa gctggtgaca aaaacgttga actgaactct 540 ttctctatca acgttgctcg tgacctgctg ccggaatctg acctgaccta ctacggttac 600 gacggttctc tgaccacccc gggttgcgac gaacgtgtta aatggcacgt tttcaaagaa 660 gctcgtaccg tttctgttgc tcagctgaaa gttttctctg aagttaccct ggctgctcac 720 ccggaagcta ccgttaccaa caaccgtgtt atccagccgc tgaacggtcg taaagtttac 780 gaatacaaag gtgaaccgaa cgacaaatac aactacgttc agcacggttt cgactggcgt 840 gt; accctgcagg ctggttcttc tcgttctgac gtttcttctg ttaacctgaa cgacctgaac 960 accgacgctt tcaccctgac cggtaacacc gttaacatcg gtcagggtat gcagatcaac 1020 ttcggtgacc cgccggctgg tgacctgccg gttatccgta tcggtacccg tgacgttacc 1080 ttccgtccgc tgcaggttca ctggcacttc ttcctgtctg aacacaccgt tgacggtgtt 1140 cactacccgc tggaagctca catcgttatg aaagacaacg acaacctggg tgactctgct 1200 ggtcagctgg ctgttatcgg tatcatgtac aaatacggtg acgctgaccc gttcatcacc 1260 gacatgcaga aacgtgtttc tgacaaaatc gcttctggtg ctatcaccta cggtcagtct 1320 ggtgtttctc tgaacaaccc ggacgacccg ttcaacgtta acatcaaaaa caacttcctg 1380 ccgtctgaac tgggttacgc tggttacgac ggttctctga ccaccccgcc gtgctctgaa 1440 atcgttaaat ggcacgtttt cctggaaccg cgtaccgttt ctgttgaaca gatggaagtt 1500 ttcgctgacg ttaccctgaa ctctaacccg ggtgctaccg ttaccaccaa ccgtatgatc 1560 cagccgctgg aaggtcgtac cgtttacggt tacaacggtg ctgctgctta a 1611 <210> 8 <211> 795 <212> DNA <213> Dunaliella Salina <400> 8 atggtttctg aaccgcacga ctacaactac gaaaaagttg gtttcgactg gaccggtggt 60 gtttgcgtta acaccggtac ctctaaacag tctccgatca acatcgaaac cgactctctg 120 gctgaagaat ctgaacgtct gggtaccgct gacgacacct ctcgtctggc tctgaaaggt 180 ctgctgtctt cttcttacca gctgacctct gaagttgcta tcaacctgga acaggacatg 240 cagttctctt tcaacgctcc ggacgaagac ctgccgcagc tgaccatcgg tggtgttgtt 300 cacaccttca aaccggttca gatccacttc caccacttcg cttctgaaca cgctatcgac 360 ggtcagctgt acccgctgga agctcacatg gttatggctt ctcagaacga cggttctgac 420 cagctggctg ttatcggtat catgtacaaa tacggtgaag aagacccgtt cctgaaacgt 480 ctgcaggaaa ccgctcagtc taacggtgaa gctggtgaca aaaacgttga actgaactct 540 ttctctatca acgttgctcg tgacctgctg ccggaatctg acctgaccta ctacggttac 600 gacggttctc tgaccacccc gggttgcgac gaacgtgtta aatggcacgt tttcaaagaa 660 gctcgtaccg tttctgttgc tcagctgaaa gttttctctg aagttaccct ggctgctcac 720 ccggaagcta ccgttaccaa caaccgtgtt atccagccgc tgaacggtcg taaagtttac 780 gaatacaaag gttaa 795 <210> 9 <211> 822 <212> DNA <213> Dunaliella Salina <400> 9 atggaaccga acgacaaata caactacgtt cagcacggtt tcgactggcg tgacaacggt 60 ctggactctt gcgctggtga cgttcagtct ccgatcgaca tcgttacctc taccctgcag 120 gctggttctt ctcgttctga cgtttcttct gttaacctga acgacctgaa caccgacgct 180 ttcaccctga ccggtaacac cgttaacatc ggtcagggta tgcagatcaa cttcggtgac 240 ccgccggctg gtgacctgcc ggttatccgt atcggtaccc gtgacgttac cttccgtccg 300 ctgcaggttc actggcactt cttcctgtct gaacacaccg ttgacggtgt tcactacccg 360 ctggaagctc acatcgttat gaaagacaac gacaacctgg gtgactctgc tggtcagctg 420 gctgttatcg gtatcatgta caaatacggt gacgctgacc cgttcatcac cgacatgcag 480 aaacgtgttt ctgacaaaat cgcttctggt gctatcacct acggtcagtc tggtgtttct 540 ctgaacaacc cggacgaccc gttcaacgtt aacatcaaaa acaacttcct gccgtctgaa 600 ctgggttacg ctggttacga cggttctctg accaccccgc cgtgctctga aatcgttaaa 660 tggcacgttt tcctggaacc gcgtaccgtt tctgttgaac agatggaagt tttcgctgac 720 gttaccctga actctaaccc gggtgctacc gttaccacca accgtatgat ccagccgctg 780 gaaggtcgta ccgtttacgg ttacaacggt gctgctgctt aa 822 <210> 10 <211> 825 <212> DNA <213> Artificial Sequence <220> <223> Dsp-nCA-c <400> 10 atggtttctg aaccgcacga ctacaactac gaaaaacacg gtttcgactg gcgtgacaac 60 ggtctggact cttgcgctgg tgacgttcag tctccgatcg acatcgttac ctctaccctg 120 caggctggtt cttctcgttc tgacgtttct tctgttaacc tgaacgacct gaacaccgac 180 gctttcaccc tgaccggtaa caccgttaac atcggtcagg gtatgcagat caacttcggt 240 gacccgccgg ctggtgacct gccggttatc cgtatcggta cccgtgacgt taccttccgt 300 ccgctgcagg ttcactggca cttcttcctg tctgaacaca ccgttgacgg tgttcactac 360 ccgctggaag ctcacatcgt tatgaaagac aacgacaacc tgggtgactc tgctggtcag 420 ctggctgtta tcggtatcat gtacaaatac ggtgacgctg acccgttcat caccgacatg 480 cagaaacgtg tttctgacaa aatcgcttct ggtgctatca cctacggtca gtctggtgtt 540 tctctgaaca acccggacga cccgttcaac gttaacatca aaaacaactt cctgccgtct 600 gaactgggtt acgctggtta cgacggttct ctgaccaccc cgccgtgctc tgaaatcgtt 660 aaatggcacg ttttcctgga accgcgtacc gtttctgttg aacagatgga agttttcgct 720 gacgttaccc tgaactctaa cccgggtgct accgttacca ccaaccgtat gatccagccg 780 ctggaaggtc gtaccgttta cggttacaac ggtgctgctg cttaa 825 <210> 11 <211> 825 <212> DNA <213> Artificial Sequence <220> &Lt; 223 > Dsp-nCA-c (G263S) <400> 11 atggtttctg aaccgcacga ctacaactac gaaaaacacg gtttcgactg gcgtgacaac 60 ggtctggact cttgcgctgg tgacgttcag tctccgatcg acatcgttac ctctaccctg 120 caggctggtt cttctcgttc tgacgtttct tctgttaacc tgaacgacct gaacaccgac 180 gctttcaccc tgaccggtaa caccgttaac atcggtcagg gtatgcagat caacttcggt 240 gacccgccgg ctggtgacct gccggttatc cgtatcggta cccgtgacgt taccttccgt 300 ccgctgcagg ttcactggca cttcttcctg tctgaacaca ccgttgacgg tgttcactac 360 ccgctggaag ctcacatcgt tatgaaagac aacgacaacc tgggtgactc tgctggtcag 420 ctggctgtta tcggtatcat gtacaaatac ggtgacgctg acccgttcat caccgacatg 480 cagaaacgtg tttctgacaa aatcgcttct ggtgctatca cctacggtca gtctggtgtt 540 tctctgaaca acccggacga cccgttcaac gttaacatca aaaacaactt cctgccgtct 600 gaactgggtt acgctggtta cgacggttct ctgaccaccc cgccgtgctc tgaaatcgtt 660 aaatggcacg ttttcctgga accgcgtacc gtttctgttg aacagatgga agttttcgct 720 gacgttaccc tgaactctaa cccgggtgct accgttacca ccaaccgtat gatccagccg 780 ctggaatctc gtaccgttta cggttacaac ggtgctgctg cttaa 825 <210> 12 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> forward primer <400> 12 catatggttt ctgaaccgca cgactacaac 30 <210> 13 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> forward primer <400> 13 cgcacgacta caactacgaa aaacacggt 29 <210> 14 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> forward primer <400> 14 ctacgaaaaa cacggtttcg actggcgt 28 <210> 15 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> reverse primer <400> 15 aagcttagca gcagcaccgt tgtaaccgta 30

Claims (21)

서열번호 4로 표시되는 아미노산 서열을 포함하는 탄산무수화효소(carbonic anhydrase).
A carbonic anhydrase comprising an amino acid sequence represented by SEQ ID NO: 4.
제 1 항에 있어서,
두날리엘라 살리나(Dunaliella Salina) 유래인 탄산무수화효소.
The method according to claim 1,
Carbonic anhydrase from Dunaliella Salina.
제 1 항에 있어서,
서열번호 10으로 표시되는 염기 서열로부터 코딩된 탄산무수화효소.
The method according to claim 1,
The carbonic anhydrase encoded from the nucleotide sequence shown in SEQ ID NO: 10.
서열번호 5로 표시되는 아미노산 서열을 포함하는 탄산무수화효소(carbonic anhydrase).
A carbonic anhydrase comprising an amino acid sequence represented by SEQ ID NO: 5.
제 4 항에 있어서,
두날리엘라 살리나(Dunaliella Salina) 유래인 탄산무수화효소.
5. The method of claim 4,
Carbonic anhydrase from Dunaliella Salina.
제 4 항에 있어서,
서열번호 11로 표시되는 염기 서열로부터 코딩된 탄산무수화효소.
5. The method of claim 4,
The carbonic anhydrase encoded from the nucleotide sequence shown in SEQ ID NO: 11.
제 1 항에 따른 탄산무수화효소(carbonic anhydrase)를 포함하는 이산화탄소의 포집(capture) 또는 고정(fixation)용 조성물.
A composition for the capture or fixation of carbon dioxide comprising the carbonic anhydrase according to claim 1.
제 4 항에 따른 탄산무수화효소(carbonic anhydrase)를 포함하는 이산화탄소의 포집(capture) 또는 고정(fixation)용 조성물.
A composition for the capture or fixation of carbon dioxide comprising the carbonic anhydrase according to claim 4.
제 7 항 또는 제 8 항에 따른 이산화탄소의 포집(capture) 또는 고정(fixation) 용 조성물을 포함하는 이산화탄소의 포집 및 고정 장치.
An apparatus for trapping and fixing carbon dioxide, comprising a composition for capturing or fixing carbon dioxide according to claim 7 or 8.
제 7 항 또는 제 8 항에 따른 이산화탄소의 포집(capture) 또는 고정(fixation) 용 조성물이 고정화(immobilization)된 이산화탄소의 포집 및 고정용 센서.
A sensor for capturing and fixing carbon dioxide in which a composition for capture or fixation of carbon dioxide according to claim 7 or 8 is immobilized.
이산화탄소 포화 용액과 제 7 항 또는 제 8 항에 따른 이산화탄소의 포집(capture) 또는 고정(fixation)용 조성물을 반응시키는 단계를 포함하는 이산화탄소의 포집 또는 고정 방법.
A method for trapping or fixing carbon dioxide comprising the step of reacting a saturated solution of carbon dioxide with a composition for capturing or fixing carbon dioxide according to claim 7 or 8.
제 7 항 또는 제 8 항에 따른 이산화탄소의 포집(capture) 또는 고정(fixation) 용 조성물을 포함하는 바이카보네이트 또는 카보네이트 화합물 제조용 키트.
A kit for the production of a bicarbonate or carbonate compound comprising a composition for capture or fixation of carbon dioxide according to claim 7 or 8.
제 12 항에 있어서,
바이카보네이트 화합물은 소듐 바이카보네이트(Na2HCO3), 포타슘 바이카보네이트(KHCO3), 마그네슘 바이카보네이트(Mg(HCO3)2), 칼슘 바이카보네이트(Ca(HCO3)2) 또는 암모늄 바이카보네이트((NH4)HCO3)인 바이카보네이트 또는 카보네이트 화합물 제조용 키트.
13. The method of claim 12,
The bicarbonate compound is selected from the group consisting of sodium bicarbonate (Na 2 HCO 3 ), potassium bicarbonate (KHCO 3 ), magnesium bicarbonate (Mg (HCO 3 ) 2 ), calcium bicarbonate (Ca (HCO 3 ) 2 ) or ammonium bicarbonate (NH 4) HCO 3) a bicarbonate or carbonate compound for preparing the kit.
제 12 항에 있어서,
카보네이트 화합물은 카본산(H2CO3), 리튬 카보네이트(Li2CO3), 소듐 카보네이트(Na2CO3), 포타슘 카보네이트(K2CO3), 루비듐 카보네이트(Rb2CO3), 세슘 카보네이트(Cs2CO3), 베릴륨 카보네이트(BeCO3), 마그네슘 카보네이트(MgCO3), 칼슘 카보네이트(CaCO3), 스트론튬 카보네이트(SrCO3), 바륨 카보네이트(BaCO3), 망간 카보네이트(MnCO3), 철 카보네이트(FeCO3), 코발트 카보네이트(CoCO3), 니켈 카보네이트(NiCO3), 구리 카보네이트(CuCO3), 실버 카보네이트(Ag2CO3), 징크 카보네이트(ZnCO3), 카드뮴 카보네이트(CdCO3), 알루미늄 카보네이트(Al2(CO3)3), 탈륨 카보네이트(Tl2CO3), 리드 카보네이트(PbCO3) 또는 란타늄 카보네이트(La2(CO3) 3)인 바이카보네이트 또는 카보네이트 화합물 제조용 키트.
13. The method of claim 12,
The carbonate compound may be selected from the group consisting of carbonic acid (H 2 CO 3 ), lithium carbonate (Li 2 CO 3 ), sodium carbonate (Na 2 CO 3 ), potassium carbonate (K 2 CO 3 ), rubidium carbonate (Rb 2 CO 3 ) (Cs 2 CO 3), beryllium carbonate (BeCO 3), magnesium carbonate (MgCO 3), calcium carbonate (CaCO 3), strontium carbonate (SrCO 3), barium carbonate (BaCO 3), manganese carbonate (MnCO 3), iron carbonates (FeCO 3), cobalt carbonate (CoCO 3), nickel carbonate (NiCO 3), copper carbonate (CuCO 3), silver carbonate (Ag 2 CO 3), zinc carbonate (ZnCO 3), cadmium carbonate (CdCO 3), A kit for the production of a bicarbonate or carbonate compound of aluminum carbonate (Al 2 (CO 3 ) 3 ), thallium carbonate (Tl 2 CO 3 ), lead carbonate (PbCO 3 ) or lanthanum carbonate (La 2 (CO 3 ) 3 ).
이산화탄소 포화 용액과 제 7 항 또는 제 8 항에 따른 이산화탄소의 포집(capture) 또는 고정(fixation)용 조성물을 반응시키는 단계; 및
상기에서 얻은 반응물과 알칼리 양이온염을 반응시켜 비정질의 바이카보네이트 또는 카보네이트 화합물을 제조하는 단계
를 포함하는 바이카보네이트 또는 카보네이트 화합물의 제조방법.
Reacting a carbon dioxide saturated solution with a composition for capture or fixation of carbon dioxide according to claim 7 or 8; And
Reacting the reactant obtained above with an alkali cationic salt to prepare an amorphous bicarbonate or carbonate compound
&Lt; / RTI &gt; or a carbonate compound.
제 15 항에 있어서,
알칼리 양이온염은 Mg, K, Na, NH4, Ca, Li, Rb, Cs, Be, Sr, Ba, Mn, Fe, Co, Ni, Cu, Zn, Cd, Ag, Al, Tl, Pb 또는 La의 염인 바이카보네이트 또는 카보네이트 화합물의 제조방법.
16. The method of claim 15,
The alkaline cationic salt is a salt of an alkali metal such as Mg, K, Na, NH4, Ca, Li, Rb, Cs, Be, Sr, Ba, Mn, Fe, Co, Ni, Cu, Zn, Cd, Ag, Al, Wherein the salt is a bicarbonate or a carbonate compound.
제 15 항에 있어서,
결정상의 바이카보네이트 또는 카보네이트 화합물은 칼사이트(calcite), 아라고나이트(aragonite) 또는 베터라이트(veterite)인 바이카보네이트 또는 카보네이트 화합물의 제조방법.
16. The method of claim 15,
Wherein the crystalline bicarbonate or carbonate compound is calcite, aragonite or veterite. &Lt; RTI ID = 0.0 &gt; 8. &lt; / RTI &gt;
제 7 항 또는 제 8 항에 따른 이산화탄소의 포집(capture) 또는 고정(fixation) 용 조성물을 포함하는 바이카보네이트 또는 이산화탄소를 이용한 대사 산물 생산용 키트.
A kit for the production of metabolites using bicarbonate or carbon dioxide comprising a composition for capture or fixation of carbon dioxide according to claim 7 or 8.
제 18 항에 있어서,
대사 산물은 C4 대사 또는 지질 대사 산물인 바이카보네이트 또는 이산화탄소를 이용한 대사 산물 생산용 키트.
19. The method of claim 18,
Metabolites include C4 metabolism or a kit for the production of metabolites using bicarbonate or carbon dioxide, which is a lipid metabolite.
바이카보네이트 또는 이산화탄소를 이용한 C4 대사 또는 지질 대사에서 촉매로 제 7 항 또는 제 8 항에 따른 이산화탄소의 포집(capture) 또는 고정(fixation) 용 조성물을 사용하여 대사 산물을 생산하는 방법.
A method for producing a metabolite using a composition for capturing or fixing carbon dioxide according to claim 7 or 8 from a C4 metabolism using bicarbonate or carbon dioxide or a lipid metabolism as a catalyst.
서열번호 10 또는 11로 기재된 염기 서열로 표시되는 탄산무수화효소의 코딩 서열을 포함하는 재조합 벡터를 제조하는 단계를 포함하는 탄산무수화효소의 대량 생산 방법.Comprising the step of preparing a recombinant vector comprising the coding sequence of a carbonic anhydrase represented by the nucleotide sequence set forth in SEQ ID NO: 10 or 11.
KR1020150075641A 2015-05-29 2015-05-29 Chimeric carbonic anhydrase from Dunaliella Salina and use thereof KR101716398B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150075641A KR101716398B1 (en) 2015-05-29 2015-05-29 Chimeric carbonic anhydrase from Dunaliella Salina and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150075641A KR101716398B1 (en) 2015-05-29 2015-05-29 Chimeric carbonic anhydrase from Dunaliella Salina and use thereof

Publications (2)

Publication Number Publication Date
KR20160139842A true KR20160139842A (en) 2016-12-07
KR101716398B1 KR101716398B1 (en) 2017-03-14

Family

ID=57573264

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150075641A KR101716398B1 (en) 2015-05-29 2015-05-29 Chimeric carbonic anhydrase from Dunaliella Salina and use thereof

Country Status (1)

Country Link
KR (1) KR101716398B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180093391A (en) * 2017-02-13 2018-08-22 고려대학교 세종산학협력단 A Novel Peptide capable of improving protein expression and solubility, and use thereof
KR101963159B1 (en) * 2017-10-26 2019-03-28 주식회사 바이오컴 A new carbonic anhydrase having high thermostability and high hydration activity of carbon dioxide and use thereof

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
Gaudry, A., Lorber, B., Neuenfeldt, A., Sauter, C., Florentz, C., Sissler, M., (2012). Re-designed N-terminus enhances expression, solubility and crystallizability of mitochondrial protein. Protein Engineering Design and Selection 25, 473-481.
Kanth, B.K., Min, K., Kumari, S., Jeon, H., Jin, E.S., Lee, J., Pack, S.P., (2012). Expression and characterization of codon-optimized carbonic anhydrase from Dunaliella species for CO2 sequestration application. Applied biochemistry and biotechnology 167, 2341-2356.
Ki, M.R., Kanth, B.K., Min, K.H., Lee, J., Pack, S.P., (2012). Increased expression level and catalytic activity of internally-duplicated carbonic anhydrase from Dunaliella species by reconstitution of two separate domains. Process Biochem 47, 1423-1427.
Kim, C.W., Han, K.S., Ryu, K.S., Kim, B.H., Kim, K.H., Choi, S.I., Seong, B.L., (2007). N-terminal domains of native multidomain proteins have the potential to assist de novo folding of their downstream domains in vivo by acting as solubility enhancers. Protein science : a publication of the Protein Society 16, 635-643.
Protein Expression and Purification, Volume 28, Issue 1, March 2003, Pages 151-157 *
Varshavsky, A., (1997). The N-end rule pathway of protein degradation. Genes to cells: devoted to molecular &amp; cellular mechanisms 2, 13-28.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180093391A (en) * 2017-02-13 2018-08-22 고려대학교 세종산학협력단 A Novel Peptide capable of improving protein expression and solubility, and use thereof
KR101963159B1 (en) * 2017-10-26 2019-03-28 주식회사 바이오컴 A new carbonic anhydrase having high thermostability and high hydration activity of carbon dioxide and use thereof

Also Published As

Publication number Publication date
KR101716398B1 (en) 2017-03-14

Similar Documents

Publication Publication Date Title
Jo et al. Biomineralization-based conversion of carbon dioxide to calcium carbonate using recombinant carbonic anhydrase
US11773386B2 (en) Heat-stable metagenomic carbonic anhydrases and their use
KR101424605B1 (en) Method for converting and producing carbonate minerals from carbon dioxide using recombinant biocatalyst
KR101716398B1 (en) Chimeric carbonic anhydrase from Dunaliella Salina and use thereof
KR102005983B1 (en) CO2 capture or fixation using recombinant carbonic anhydrase
DK2780451T3 (en) MUTANTS OF HYDANTOINASE
KR101835164B1 (en) Modified Ornithine Decarboxylase protein with an improved producing capability for Putrescine and a Use thereof
KR101430302B1 (en) Novel Carbonic Anhydrase and method of CO2 Conversion or Fixation using the same
KR101519200B1 (en) Novel carbonic anhydrase from Persephonella marina EX-H1 and use thereof
CN107384891A (en) A kind of new Saline alkali tolerance esterase in deep-sea bacterium source and application
KR101591992B1 (en) Carbonic Anhydrase 1 from Dunaliella Salina
KR102021348B1 (en) A Novel Peptide capable of improving protein expression and solubility, and use thereof
CN110055297A (en) A kind of application of esterase in fractionation (R, S) -5- caprolactone
Jeon et al. Facile covalent bio-conjugation of hydroxyapatite
KR101963159B1 (en) A new carbonic anhydrase having high thermostability and high hydration activity of carbon dioxide and use thereof
CN109652470B (en) Application of lipase in resolution of (R, S) -methyl mandelate
CN110004125A (en) A kind of marine bacteria source development of new type alkali-resistant fibre organic solvent-resistant esterase and application
KR102388401B1 (en) Mutant of carbonic anhydrase from Thermosulfurimonas dismutans with enhanced protein expression and uses thereof
KR20150133497A (en) Novel carbonic anhydrase from Caminibacter mediatlanticus and use thereof
KR101965210B1 (en) Novel isoprene synthase, and method for preparing isoprene using the same
Gao et al. Site-directed mutagenesis of Flaveria trinervia phosphoenolpyruvate carboxylase: Arg450 and Arg767 are essential for catalytic activity and Lys829 affects substrate binding
KR102535897B1 (en) A new carbonic anhydrase with enhanced thermostability, salt resistance and alkaline resistance through mutagenesis, Recombinant Vector Containing Gene of the Enzyme, and Transformant Transformed by the Vector
KR101524926B1 (en) Recombinant expression vectors, host cells that containing the same and their use
KR20240072302A (en) Carbonic anhydrase variant from Thermovibrio ammonificans with enhanced thermostability and uses thereof
KR102118898B1 (en) Novel D-stereospecific amino acid amidase and mutants thereof, and method for preparing D-amino acid using the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20200106

Year of fee payment: 4