KR20160138737A - The wind turbine apparatus using flatable blade depend on wind speed - Google Patents

The wind turbine apparatus using flatable blade depend on wind speed Download PDF

Info

Publication number
KR20160138737A
KR20160138737A KR1020150072963A KR20150072963A KR20160138737A KR 20160138737 A KR20160138737 A KR 20160138737A KR 1020150072963 A KR1020150072963 A KR 1020150072963A KR 20150072963 A KR20150072963 A KR 20150072963A KR 20160138737 A KR20160138737 A KR 20160138737A
Authority
KR
South Korea
Prior art keywords
wing
wind
rotor
sectional area
blade
Prior art date
Application number
KR1020150072963A
Other languages
Korean (ko)
Other versions
KR101723503B1 (en
Inventor
선민수
김용경
Original Assignee
디에스엔주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 디에스엔주식회사 filed Critical 디에스엔주식회사
Priority to KR1020150072963A priority Critical patent/KR101723503B1/en
Publication of KR20160138737A publication Critical patent/KR20160138737A/en
Application granted granted Critical
Publication of KR101723503B1 publication Critical patent/KR101723503B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/0608Rotors characterised by their aerodynamic shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0244Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor for braking
    • F03D7/0252Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor for braking with aerodynamic drag devices on the blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0276Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling rotor speed, e.g. variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/21Rotors for wind turbines
    • F05B2240/221Rotors for wind turbines with horizontal axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/21Rotors for wind turbines
    • F05B2240/231Rotors for wind turbines driven by aerodynamic lift effects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05B2240/31Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor of changeable form or shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/90Braking
    • F05B2260/901Braking using aerodynamic forces, i.e. lift or drag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/32Wind speeds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • Y02E10/721

Abstract

The present invention relates to a wind power generator, having a variable rotor (wing). More specifically, the present invention has the multi-layer rotor (wing) increasing a cross-sectional area of the wing to be equal to or larger than 90% of the overall cross-sectional area when the wind speed is equal to or less than 3 m/sec and has the variable wing reducing the cross-sectional area of the rotor (wing) to be equal to or less than 5% when the wind speed is equal to or less than 25 m/sec. The present invention relates to the wind power generator, having a wing conversion device preventing damage to devices such as the wing and a transmission.

Description

날개의 단면적이 변경되는 가변형 풍력발전기 {The wind turbine apparatus using flatable blade depend on wind speed}BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to a wind turbine,

본 발명은 풍력발전장치에 관한 것으로서, 더욱 상세하게는 터빈의 회전 단면적이 바람의 속도에 의해서 변경되는 날개로 구비되어, 바람의 속도가 변하더라도 일정한 속도를 낼 수 있도록 날개의 단면적이 변경되는 풍력발전 장치에 관한 것이다.
[0001] The present invention relates to a wind power generator, and more particularly, to a wind power generator having a turbine with a rotating cross-sectional area that changes according to a wind speed, Generating device.

일반적으로 사용되는 풍력발전기는 에너지의 특성에 따라서 다양한 형태로 제작하여 사용한다. 패도르형, 사보니우스형, 루프윙형, 다리우스형, 3익형, 2익형 등의 다양한 형태를 보이는 풍력발전용 날개들은 각 지역별 바람의 특성에 맞게 설계되어서 사용된다.Generally used wind power generators are manufactured in various forms according to the characteristics of energy. Wind turbine blades with various shapes such as Pador, Sabonius, Loopwing, Darius, 3, and 2 are used according to the characteristics of each region.

풍력에너지는 회전자(날개)의 회전면적에 비례하고 풍속의 세제곱에 반비례한다. 따라서, 회전자(날개)의 설계는 풍력발전장치의 효율을 결정하는 가장 기본적인 요소이다. Wind energy is proportional to the rotating area of the rotor (wing) and inversely proportional to the cube of wind speed. Therefore, the design of the rotor (blade) is the most basic factor that determines the efficiency of the wind power generator.

그중에서도, 회전수를 일정하게 유지하기 위하여 주로 회전자(날개)의 각도(피치)를 변경하는 방식으로 설계하고, 3~5미터/초에서 시동되고 25미터/초에서 멈추는 방식으로 설계제작 후 이용되는 3익형의 풍력발전기가 널리 사용된다.Among them, it is designed to change the angle (pitch) of rotor (wing) mainly to keep the number of revolutions constant, to start at 3 ~ 5 meters / second and to stop at 25 meters / second A three-bladed wind turbine generator is widely used.

이러한 풍력발전기는 이른바 베츠한계점이라는 특성을 가지는데, 이는 풍력발전기의 날개가 가지는 출력의 효율이 59.3% 이하이며, 종래에 사용되는 풍력발전기는 날개와 변속기, 발전기 등의 파손 및 고장 등의 위험요소들을 고려하여 설계함으로, 풍력에너지의 효율이 30% 이하로 형성되는 풍력발전 장치를 사용한다.Such a wind turbine has the characteristic of a so-called Betz limit. This is because the output efficiency of the wing of the wind turbine is less than 59.3%, and the conventionally used wind turbine has the risk of damages and breakdown of the wing, the transmission, It is necessary to use a wind turbine generator having a wind energy efficiency of 30% or less.

상기와 같이, 종래에 사용하는 풍력발전기들은 에너지 변환 효율이 낮고 유지보수비용이 평균 25~30%를 차지하여, 경제적 손실이 크다는 문제점이 있었다.
As described above, conventionally used wind power generators have low energy conversion efficiency and average maintenance cost of 25 ~ 30%, which causes a large economic loss.

대한민국 등록특허 10-0966523 가변형날개를 구비하는 풍력발전기용 풍차Wind power generator wind turbine with adjustable wings 대한민국 공개특허 10-1409391 회전익 가변형 풍력발전장치Korean Patent Laid-Open Publication No. 10-1409391 대한민국 등록특허 10-0971231 가변풍량 조절장치Korea Patent Registration No. 10-0971231 Variable Air Flow Regulator 대한민국 공개특허 10-2005-0052723 풍량에 따라 가변 작동되게 한 풍력발전용 풍차의풍량조절방법 및 그 풍력발전용 풍차의 결합구조Korean Patent Laid-Open No. 10-2005-0052723 A method of adjusting the air flow rate of a wind power generator for variable operation according to the amount of wind and a combination structure of the wind power wind turbine

본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위하여 발명된 것으로, 종래의 풍력발전장치에는 날개 단면적이 10% 이하인 날개 와,SUMMARY OF THE INVENTION Accordingly, the present invention has been made keeping in mind the above problems occurring in the prior art, and an object of the present invention is to provide a wind power generator,

발전기에 일정한 회전력을 전달하기 위한 변속기 와,A transmission for transmitting a constant rotational force to the generator,

풍속이 높은 경우에는 작동되지 않도록 하는 브레이크와,A brake for preventing operation when the wind speed is high,

날개의 각도를 조절하는 피치조절기 와,A pitch adjuster for adjusting the angle of the wing,

바람의 방향을 맞춰서 발전기부 전체를 조정하는 요 조절기와,A yaw conditioner for adjusting the entire power generation base by adjusting the wind direction,

전력을 생산하는 발전기 등으로 구성되어 있다.And a generator that generates electricity.

이러한 구조를 가지는 종래의 풍력발전장치는 25미터/초 이상의 빠른 풍속에서 변속기의 고장, 날개의 부러짐, 발전기의 과열 등 과 같은 현상 때문에 고장을 일으켜서 풍속의 변화에 따른 최적의 설계를 하지 못하고 있어서, 자연에서 얻을 수 있는 매우 큰 풍력자원을 에너지로 바꿀 수 있는 기계적 장치들을 가지지 못하는 문제가 있다.Conventional wind power generation apparatuses having such a structure fail due to phenomena such as transmission failure, breakage of wings, overheating of a generator, etc. at a high wind speed of 25 meters / second or more, There is a problem of not having mechanical devices that can turn very large wind resources into natural energy.

이에 대한 해결점을 제공하기 위하여, 4미터/초 이하의 낮은 풍속일 때는 날개의 단면적을 90% 이상으로 높게 하고(도1), 25미터/초 이하의 빠른 풍속일 때는 날개의 단면적을 5% 이하로 낮추는(도2) 가변형 날개를 구비하고,In order to solve this problem, the cross sectional area of the wing is increased to 90% or more at a low wind speed of 4 m / sec or less (Fig. 1), the cross sectional area of the wing is 5% (Fig. 2) having a variable wing,

날개 및 변속기 등의 장치의 손상을 방지할 수 있도록 하는 날개변환장치를 구비하여, 일정한 속도로 풍력에너지를 전달하는 가변형 풍력발전장치를 제공하는 것을 목적으로 한다.
The present invention has an object to provide a variable-type wind power generator which is provided with a blade changing device that can prevent damage to devices such as a blade, a transmission, and the like, and transmits wind energy at a constant speed.

상기와 같은 목적을 달성하기 위하여 본 발명은, 태극문양의 날개형태를 취하고 단차를 가지는 원판(1)을 위 판 의 아래쪽(도3) 과 아래 판의 위쪽(도4)을 맞닿게 결합하고, 복층으로 겹쳐서 결합하는 날개들(도5)로 구성되는 것을 특징으로 한다. 이러한 원판을 여러 층으로 겹치면 펼쳐진 모습(도1) 과 접혀진 모습(도2)으로 나타낼 수 있다.In order to achieve the above object, according to the present invention, an original plate (1) having a stepped shape of a wedge pattern is engaged with the lower side of the upper plate (FIG. 3) and the upper side of the lower plate And wings (FIG. 5) for overlapping and overlapping in a multi-layer structure. When these discs are stacked in several layers, they can be expressed as an expanded state (FIG. 1) and a folded state (FIG. 2).

풍속이 낮은 경우에 시동효율을 높이기 위해서 단면적이 큰 펼친 날개(도1) 를 구비하고, 25미터/초 이상의 초고속인 경우에는 접혀진 날개(도2)를 구비하여 풍력발전 장치가 스스로 멈추게 한다.(FIG. 1) having a large cross-sectional area in order to increase the starting efficiency when the wind speed is low, and a folded wing (FIG. 2) in the case of a super high speed of 25 meters / second or more to stop the wind power generator by itself.

또한, 25미터/초 이상의 초고속의 풍속에서는 최소한의 날개를 펼쳐진 모습(도8)으로 풍력에너지를 발생하게 한다.
In addition, at a super-high speed wind speed of 25 meters / second or more, the wind power energy is generated with a minimum wing spread (FIG. 8).

이상에서와 같이 본 발명은, 초고속의 풍속에서도 에너지를 발생하여서 에너지를 상시적으로 생산하게 하며, 미풍에서도 에너지를 발생하는 장치를 구비하여 에너지발생효율을 높이는 효과가 있다. 이를 통해서, 기존의 풍력발전 장치보다 소형으로 제작하여도 더 높은 효율을 낼 수 있는 효과가 있다.As described above, according to the present invention, energy is generated even at an extremely high wind speed to produce energy at all times, and energy generating efficiency is improved by providing a device for generating energy even in a breeze. This makes it possible to achieve higher efficiency even if the wind turbine generator is made smaller than the conventional wind turbine generator.

또한, 자체 구조에 의하여 풍력발전장치를 멈추게 하는 효과가 있어서 풍력발전장치의 제작비를 낮추는 효과가 있다. 이는 접혀진 날개(도2)를 통해서 보이는 것처럼, 원판의 윗판과 아랫판 사이에 공간이 만들어 지고 이러한 공간은 풍력발전용 날개에 작용하는 양압과 음압의 균형을 맞추게 하여서 회전력이 발생하지 않도록 함으로써 달성하게 된다.In addition, there is an effect of stopping the wind power generation device by its own structure, thereby reducing the production cost of the wind power generation device. This is accomplished by creating a space between the upper plate and the lower plate of the disk as shown through the folded wings (FIG. 2) and balancing the positive pressure and the negative pressure acting on the wing of the wind power generator so that no torque is generated .

도 1은 본 발명의 일실시예에 의한 단면적을 높게 하는 날개의 결합모습을 나타내는 사시도.
도 2는 본 발명의 일실시예에 의한 단면적을 낮게 하는 날개의 결합모습을 나타내는 사시도.
도 3는 본 발명의 일실시예에 의한 단차를 가지는 태극형 원판(1) 중 윗판 날개의 아래 면 모습을 나타내는 사시도.
도 4는 본 발명의 일실시예에 의한 태극형 원판 중 아랫판 날개의 윗면 모습을 나타내는 사시도.
도 5는 본 발명의 일실시예에 의한 태극형 원판 윗판 날개의 아래면과 아랫판 날개의 위면을 결합한 모습을 나타내는 사시도.
도 6은 본 발명의 일실시예에 의한 단면적 25%의 날개 모습을 나타내는 사시도.
도 7은 본 발명의 일실시예에 의한 도6과 동일한 에너지 변환효율을 가지는 날개의 펼쳐진 모습을 나타내는 사시도.
도 8은 본 발명의 일실시예에 의한 최소한의 에너지 변환효율을 나타내는 날개의 모습을 나타내는 사시도.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view showing a combined state of wings for increasing a cross-sectional area according to an embodiment of the present invention; FIG.
FIG. 2 is a perspective view showing a combination of wings for reducing the cross-sectional area according to an embodiment of the present invention; FIG.
3 is a perspective view showing a bottom surface of a top plate of a Taeguk-type original plate 1 having a step according to an embodiment of the present invention.
4 is a perspective view showing a top surface of a lower plate of a Taeguk-type original plate according to an embodiment of the present invention.
5 is a perspective view showing a state in which a lower surface of a top plate type wing plate upper plate and a lower surface of a lower plate wing are combined with each other according to an embodiment of the present invention.
6 is a perspective view showing a wing with a cross-sectional area of 25% according to an embodiment of the present invention;
FIG. 7 is a perspective view showing an unfolded wing having the same energy conversion efficiency as FIG. 6 according to an embodiment of the present invention; FIG.
FIG. 8 is a perspective view showing a wing showing a minimum energy conversion efficiency according to an embodiment of the present invention; FIG.

이하, 본 발명에 의한 실시예를 첨부된 도면을 참조하여 상세하게 설명하면 다음과 같다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

먼저, 첨부된 도 3 및 도 4를 참조하여 태극문양의 단차를 가지는 원형 날개의 복층구조에 대해 살피면 아래와 같다.First, referring to FIGS. 3 and 4, a multi-layered structure of a circular wing having a stepped portion of a Taigyeong pattern is shown below.

본 발명에 의하여 제조된 가변형 날개를 구비하는 풍력발전장치는 풍력에너지의 속도변화에 연동하여 변경되는 가변형 날개 와,A wind turbine generator having a variable blade according to the present invention includes a variable blade that is changed in conjunction with a speed change of wind energy,

날개에서 전달되는 에너지를 일정한 속도로 유지하여 주는 변속장치와Transmission unit that maintains the energy delivered from the wing at a constant speed.

일정한 속도에 맞게 전력을 발생하는 발전장치와Power generators that generate power at a constant speed

일정한 전력을 저장하는 축전장치와A power storage device for storing a constant power

일정한 전력파장을 유지하여 주는 안정기 등의 장치로 구성된다.And a ballast that maintains a constant power wavelength.

이때, 변속장치와 발전장치와 축전장치와 안정기 등은 이미 당 산업이 속하고 있는 분야의 기술을 사용하는 것이 용이하다.At this time, it is easy for the transmission, the power generation device, the power storage device, and the ballast to use the technology of the field to which the present industry belongs.

당 개발기술은 다양하게 변화하는 풍력에너지를 일정한 속도로 변경하는 가변형 날개를 제공하는 효과가 있다.Our development technology has the effect of providing a variable wing that changes variously changing wind energy at a constant speed.

또한, 상기 기술을 통해서, 기존의 풍력발전장치에서는 기능할 수 없던 저속의 풍량에서도 에너지를 얻을 수 있는 날개를 구비하는 것과 초고속의 풍량에서도 상시적으로 에너지를 얻을 수 있는 날개를 구비하는 것을 특징으로 한다.In addition, through the above-described technology, the present invention is characterized in that it has a blade capable of obtaining energy even at a low air volume, which can not function in a conventional wind power generation apparatus, and a blade capable of constantly obtaining energy even at an extremely high air volume do.

또한, 상기 가변형 날개는 태극문양의 원형 구조에 단차를 가지는 원판을 기본 날개로 구성된다. 또한 날개의 재료는 G-FRP 또는 C-FRP로 제작할 수 있으며, 고강도 우레탄 폼으로 제작할 수 도 있다.In addition, the variable wing is constituted by a basic blade having an original plate having a step in the circular structure of the pattern. In addition, the wing material can be made of G-FRP or C-FRP, or it can be made of high-strength urethane foam.

이러한 날개는 도3과 같이 윗판의 아래에는 멈춤용 돌기(10)를 구비하고, As shown in Fig. 3, these wings are provided with stopping protrusions 10 below the upper plate,

도4와 같이 아랫판의 위쪽에 결합되는 위치에 삽임용 홈(20)을 구비하여서 날개의 움직이는 범위를 제한하여서 결합한 상태(도5)로 제작한다.As shown in FIG. 4, the insertion groove 20 is provided at a position to be coupled to the upper side of the lower plate so that the moving range of the blades is limited (FIG. 5).

단차의 크기 및 각도에 따라서 단면적을 최대화하기 위한 원판의 수는 달라지는데, 일 실시예로 9개의 원판에 대하여 작동방법을 기술하였다.The number of discs for maximizing the cross-sectional area varies depending on the size and angle of the stepped portions. In one embodiment, an operation method is described for nine discs.

날개에 단차를 두고 복층으로 결합하는 구조는 골프공의 요철과 같은 구조를 만들어 내며, 이는 날개의 마찰력을 줄이는 추가의 효과가 있다. A structure in which the wings are stepped and joined together in a multi-layer structure produces the same structure as the unevenness of the golf ball, which has the additional effect of reducing the frictional force of the wing.

풍속의 변화에 따라서 날개의 단면적을 변경하는 방법은 기계적 구조를 이해하는 통상의 당업자라면 구현이 가능한 일반적인 것으로 공압식, 유압식, 전자공압식 작동방식 등이 사용되고 있다.A method of changing the cross-sectional area of the blade according to the change of the wind speed is a pneumatic type, a hydraulic type, an electro-pneumatic type, and the like which are generally available to those skilled in the art who understand the mechanical structure.

여기에서는 일실시예로, 단면적이 높은 상태를 도1에 적용하여 설명한다. 이때, 날개의 원판 수는 9개 이다. 각각의 원판에는 위판과 아래판이 펼쳐지거나 겹쳐지게 하는 장치를 구비한다. (단순 구조에 의한 방식, 전자석 방식 등을 활용) 도1에서 풍속이 높아지면 날개의 분당회전수(rpm)가 높아진다. 이때, 회전수 측정용 센서가 감지하여 일정한 회전수 이상으로 높아지면, 날개의 단면적이 낮아지도록 윗판과 아랫판이 겹쳐지게 한다. 도1에 표시된 원판 중에서 9번 원판과 8번 원판이 겹쳐진다. 단면적은 99%에서 88%로 변경된다. 풍속이 낮아지면 9번 원판과 8번 원판은 다시 펼쳐진다. 풍속이 빨라져서 정해진 회전수 이상으로 높아지면, 다시 펼쳐진 원판을 겹쳐지게 하여 회전수를 조절한다. 이와 같은 방식으로 반복적으로 작용하게 되면, 3미터/초 이하의 미풍에서부터 25미터/초 이상의 고속풍속에서도 에너지를 얻게된다. 발전기의 규격에 따라서, 750rpm용 을 적용하여도 되며, 1,200 rpm 용으로 적용하여도 된다. 1,000 rpm용, 2,000 rpm용, 3,000 rpm용 등의 다양한 적용방식을 사용할 수 있다.Here, as an embodiment, a state in which the sectional area is high will be described with reference to FIG. At this time, the number of wing plates is nine. Each disk has a device that causes the top and bottom plates to unfold or overlap. (Using a simple structure, an electromagnetism method, etc.) In FIG. 1, as the wind speed increases, the number of revolutions per minute (rpm) of the wing increases. At this time, when the sensor for measuring the number of rotations senses and becomes higher than a certain number of revolutions, the upper plate and the lower plate are overlapped so that the sectional area of the wing becomes lower. In the original plate shown in Fig. 1, the ninth plate and the eighth plate overlap. The cross-sectional area is changed from 99% to 88%. When the wind speed decreases, the 9th disc and the 8th disc reopen. When the wind speed increases and reaches a predetermined number of revolutions or more, the number of revolutions is adjusted by overlapping the unfolded discs again. If it works repeatedly in this way, energy will be obtained even from a breeze of less than 3 meters / second to a wind speed of more than 25 meters / second. Depending on the specifications of the generator, 750 rpm or 1,200 rpm may be applied. Various applications such as 1,000 rpm, 2,000 rpm, and 3,000 rpm can be used.

도2와 같이 겹쳐진 상태는 날개가 회전하지 않게 되며, 초고속에서도 날개가 회전하지 않는 유체역학구조를 지닌다. 윗판과 아랫판이 겹쳐지면 결합된 구조에 의해서 일정한 홈이 발생하는데, 태극문양의 구조에 의하여 힘의 균형이 이뤄져서 날개가 회전하지 않게 된다. 풍속과 함께 풍향의 영향에 따라서는 일부 회전력이 발생할 수 있으나, 이는 풍력발전장치의 고장 및 파손에 영향을 미치지 않는 정도이다.As shown in FIG. 2, the superimposed state has no hydrodynamic structure in which the impeller does not rotate and does not rotate even at high speed. When the upper plate and the lower plate are overlapped, a certain groove is formed by the combined structure, and the balance of force is made by the structure of the Taijiquan pattern, so that the wing does not rotate. Depending on the wind speed and the wind direction, some rotational force may occur, but this does not affect the breakdown and damage of the wind power generator.

또한, 도6과 같은 날개의 구조가 도7과 같은 날개의 구조보다 에너지 변환 효율이 높아지는데, 이는 일정한 원통이 풍력에너지를 모으는 역할을 하여서, 더욱 효율적인 풍력발전용 날개의 설계를 위한 참고자료가 된다.In addition, the energy conversion efficiency of the wing structure as shown in FIG. 6 is higher than that of the wing structure as shown in FIG. 7, because a certain cylinder plays a role of collecting wind energy, and reference data for designing a more efficient wind power generation wing do.

또한, 가변형 날개의 설계 변경 만으로도, 종래의 기술에서 사용하던 제동기 등의 장치가 불필요하며, 장치의 크기를 1/10 이하로 줄이게 되어, 제작비 및 유지관리비의 절감효과가 크며, 고장 및 파손에 의한 경제적 손실을 줄이며, 사고예방 등의 효과와 함께, 작업능률이 증대되는 효과가 있다.
In addition, even if the design of the variable vane is changed, the apparatus such as the brake used in the prior art is not required, and the size of the apparatus is reduced to 1/10 or less. Thus, the manufacturing cost and the maintenance cost are effectively reduced. Reducing economic losses, preventing accidents, and improving work efficiency.

1 : 태극형 원판
10 : 멈춤용 돌기
20 : 삽입용 홈
1: Taeguk type disk
10: Stopping projection
20: groove for insertion

Claims (3)

태극문양을 가지는 원판(1) 형태의 단차를 형성하는 회전자(날개) (도3, 도4)와;
상기 회전자 원판(1)이 위판과 아래판으로 서로 적층되는 결합판(도5)과;
상기 결합판의 결합으로 회전자 단면적이 최대화되는 구조로 결합되는 단차가 형성되는 회전자(날개) 구조(도1, 도8)를 가지는 풍력발전장치.
A rotor (blade) (Figs. 3 and 4) forming a step of the shape of an original plate 1 having a pattern of a Taijiquan;
A coupling plate (FIG. 5) in which the rotor disk 1 is laminated with the upper plate and the lower plate;
And a rotor (blade) structure (Figs. 1 and 8) in which a stepped portion coupled with a structure in which a rotor cross-sectional area is maximized by engagement of the coupling plates is formed.
제1항에 있어서,
3m/초 이하의 풍속에서도 시동되기 위하여 회전자의 단면적이 커지도록 조절하고(도1) 25m/초 이상의 초고속 풍속에서는 양압과 음압의 균형이 맞아서 자동으로 회전을 멈추도록 겹쳐지는 구조(도2)로 조절하여 일정한 회전속도 범위(700 rpm ~ 1200 rpm)를 유지하는 회전자구조를 가지는 풍력발전장치.
The method according to claim 1,
(Fig. 2) in which the cross-sectional area of the rotor is adjusted so as to start at a wind speed of 3 m / sec or less (Fig. 1) To maintain a constant rotation speed range (700 rpm to 1200 rpm).
제1항에 있어서,
상기 회전자 원판 (도3, 도4)은 G-FRP, 또는 C-FRP, 또는 Urethane Foam등의 재료로 만들어지는 회전자(날개)를 가지는 풍력발전장치.
The method according to claim 1,
The rotor disk (FIGS. 3 and 4) has a rotor (blade) made of a material such as G-FRP, C-FRP, or Urethane Foam.
KR1020150072963A 2015-05-26 2015-05-26 The wind turbine apparatus using flatable blade depend on wind speed KR101723503B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150072963A KR101723503B1 (en) 2015-05-26 2015-05-26 The wind turbine apparatus using flatable blade depend on wind speed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150072963A KR101723503B1 (en) 2015-05-26 2015-05-26 The wind turbine apparatus using flatable blade depend on wind speed

Publications (2)

Publication Number Publication Date
KR20160138737A true KR20160138737A (en) 2016-12-06
KR101723503B1 KR101723503B1 (en) 2017-04-06

Family

ID=57576612

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150072963A KR101723503B1 (en) 2015-05-26 2015-05-26 The wind turbine apparatus using flatable blade depend on wind speed

Country Status (1)

Country Link
KR (1) KR101723503B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050052723A (en) 2003-12-01 2005-06-07 채찬복 Air volume control method of windmill for power generation adjustable according to air connecting structure of the windmill
KR100966523B1 (en) 2007-11-30 2010-06-29 이준열 Windmill for a wind power aerogenerator
KR100971231B1 (en) 2008-07-17 2010-07-20 백완기 Variable air volume control apparatus
KR20120034865A (en) * 2010-10-04 2012-04-13 문광호 Structure fo windmill and method of power transmission for wind power generator
KR101409391B1 (en) 2011-11-24 2014-07-01 손기태 Variable blade type wind power generation apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050052723A (en) 2003-12-01 2005-06-07 채찬복 Air volume control method of windmill for power generation adjustable according to air connecting structure of the windmill
KR100966523B1 (en) 2007-11-30 2010-06-29 이준열 Windmill for a wind power aerogenerator
KR100971231B1 (en) 2008-07-17 2010-07-20 백완기 Variable air volume control apparatus
KR20120034865A (en) * 2010-10-04 2012-04-13 문광호 Structure fo windmill and method of power transmission for wind power generator
KR101409391B1 (en) 2011-11-24 2014-07-01 손기태 Variable blade type wind power generation apparatus

Also Published As

Publication number Publication date
KR101723503B1 (en) 2017-04-06

Similar Documents

Publication Publication Date Title
US8496433B2 (en) Wind mill structure of lift-type vertical axis wind turbine
EP2757252B1 (en) Method of operating a wind turbine
US9835140B2 (en) Power generating system and hydraulic control system
WO2006071738A2 (en) Cross-flow wind turbine
WO2010141347A2 (en) Multi-rotor fluid turbine drive with speed converter
US20150110627A1 (en) Blade bucket structure for savonius turbine
US9537371B2 (en) Contra rotor wind turbine system using a hydraulic power transmission device
US20120313377A1 (en) Wind Turbine With Hydrostatic Transmission
KR101723503B1 (en) The wind turbine apparatus using flatable blade depend on wind speed
US20100135803A1 (en) Systems and methods for generating energy using wind power
US20100129219A1 (en) Systems and Methods for Generating Energy Using Wind Power
KR102493731B1 (en) Rotor blades shaped to improve wake spread
JP2011064203A (en) Wind wheel
GB2476509A (en) Turbine with reduced thrust coefficient at excessive speed
US11015580B2 (en) Crossflow axes rotary mechanical devices with dynamic increased swept area
GB2513674A (en) Vertical wind turbine with constant output speed
TWI558913B (en) The vertical axis wind turbine blades spin angular adjustment device synchronization
KR100702418B1 (en) Turbine blades structure of vertical axis wind power generation system
JP5493217B2 (en) Windmill blade and windmill
KR101165418B1 (en) Wind power generator
CN203022824U (en) Damping girdle structure of high-load short blade for industrial steam turbine
KR20130130589A (en) Power generation wind turbines
KR101076553B1 (en) Wind power generator
KR101642259B1 (en) High Efficiency Water Turbine with Variable Dual Blades
KR20140067543A (en) The structure of the blade to get energy from the flowing fluid

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
N231 Notification of change of applicant