KR20160138042A - 스파이킹 뉴럴 네트워크들을 사용하는 이미지들의 불변의 객체 표현 - Google Patents
스파이킹 뉴럴 네트워크들을 사용하는 이미지들의 불변의 객체 표현 Download PDFInfo
- Publication number
- KR20160138042A KR20160138042A KR1020167026214A KR20167026214A KR20160138042A KR 20160138042 A KR20160138042 A KR 20160138042A KR 1020167026214 A KR1020167026214 A KR 1020167026214A KR 20167026214 A KR20167026214 A KR 20167026214A KR 20160138042 A KR20160138042 A KR 20160138042A
- Authority
- KR
- South Korea
- Prior art keywords
- reference feature
- neuron
- neural network
- neurons
- representation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/042—Knowledge-based neural networks; Logical representations of neural networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/049—Temporal neural networks, e.g. delay elements, oscillating neurons or pulsed inputs
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
- G06F18/2413—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on distances to training or reference patterns
- G06F18/24133—Distances to prototypes
- G06F18/24137—Distances to cluster centroïds
- G06F18/2414—Smoothing the distance, e.g. radial basis function networks [RBFN]
-
- G06K9/4623—
-
- G06K9/4647—
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G06N3/0454—
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/10—Interfaces, programming languages or software development kits, e.g. for simulating neural networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/44—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
- G06V10/443—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components by matching or filtering
- G06V10/449—Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters
- G06V10/451—Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters with interaction between the filter responses, e.g. cortical complex cells
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/50—Extraction of image or video features by performing operations within image blocks; by using histograms, e.g. histogram of oriented gradients [HoG]; by summing image-intensity values; Projection analysis
- G06V10/507—Summing image-intensity values; Histogram projection analysis
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/764—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using classification, e.g. of video objects
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/82—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Software Systems (AREA)
- Computing Systems (AREA)
- Evolutionary Computation (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- Health & Medical Sciences (AREA)
- Data Mining & Analysis (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- General Engineering & Computer Science (AREA)
- Biophysics (AREA)
- Mathematical Physics (AREA)
- Computational Linguistics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Multimedia (AREA)
- Databases & Information Systems (AREA)
- Medical Informatics (AREA)
- Biodiversity & Conservation Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Image Analysis (AREA)
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US14/228,065 | 2014-03-27 | ||
| US14/228,065 US20150278641A1 (en) | 2014-03-27 | 2014-03-27 | Invariant object representation of images using spiking neural networks |
| PCT/US2015/021991 WO2015148369A2 (en) | 2014-03-27 | 2015-03-23 | Invariant object representation of images using spiking neural networks |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| KR20160138042A true KR20160138042A (ko) | 2016-12-02 |
Family
ID=52829347
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| KR1020167026214A Withdrawn KR20160138042A (ko) | 2014-03-27 | 2015-03-23 | 스파이킹 뉴럴 네트워크들을 사용하는 이미지들의 불변의 객체 표현 |
Country Status (6)
| Country | Link |
|---|---|
| US (1) | US20150278641A1 (OSRAM) |
| EP (1) | EP3123403A2 (OSRAM) |
| JP (1) | JP2017514215A (OSRAM) |
| KR (1) | KR20160138042A (OSRAM) |
| CN (1) | CN106133755A (OSRAM) |
| WO (1) | WO2015148369A2 (OSRAM) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR20200005361A (ko) * | 2018-07-06 | 2020-01-15 | 포항공과대학교 산학협력단 | 뉴로모픽 시스템 및 그것의 동작 방법 |
| KR20210096447A (ko) | 2020-01-28 | 2021-08-05 | 인하대학교 산학협력단 | 영상 영역 분할 방법, 영상 영역 분할 장치 및 영상 영역 분할 프로그램 |
| KR20220105879A (ko) * | 2021-01-21 | 2022-07-28 | 한국과학기술연구원 | 시간 임베디드 부동 소수점 산술을 이용한 개선된 뉴런 코어 |
Families Citing this family (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9195903B2 (en) * | 2014-04-29 | 2015-11-24 | International Business Machines Corporation | Extracting salient features from video using a neurosynaptic system |
| US9373058B2 (en) | 2014-05-29 | 2016-06-21 | International Business Machines Corporation | Scene understanding using a neurosynaptic system |
| US10115054B2 (en) | 2014-07-02 | 2018-10-30 | International Business Machines Corporation | Classifying features using a neurosynaptic system |
| US9798972B2 (en) | 2014-07-02 | 2017-10-24 | International Business Machines Corporation | Feature extraction using a neurosynaptic system for object classification |
| KR102565273B1 (ko) * | 2016-01-26 | 2023-08-09 | 삼성전자주식회사 | 뉴럴 네트워크에 기초한 인식 장치 및 뉴럴 네트워크의 학습 방법 |
| US11157798B2 (en) | 2016-02-12 | 2021-10-26 | Brainchip, Inc. | Intelligent autonomous feature extraction system using two hardware spiking neutral networks with spike timing dependent plasticity |
| US20170236027A1 (en) * | 2016-02-16 | 2017-08-17 | Brainchip Inc. | Intelligent biomorphic system for pattern recognition with autonomous visual feature extraction |
| US11151441B2 (en) | 2017-02-08 | 2021-10-19 | Brainchip, Inc. | System and method for spontaneous machine learning and feature extraction |
| CN111417963B (zh) * | 2018-11-01 | 2021-06-22 | P·A·范德梅德 | 改进的尖峰神经网络 |
| CN109978019B (zh) * | 2019-03-07 | 2023-05-23 | 东北师范大学 | 图像模式识别模拟与数字混合忆阻设备及制备,实现stdp学习规则和图像模式识别方法 |
| JP7407353B2 (ja) | 2019-03-19 | 2024-01-04 | パナソニックIpマネジメント株式会社 | モータ制御方法、モータの制御モデルの変換方法、モータ制御システム、モータの制御モデルの変換システム、及びモータの制御モデルの変換プログラム |
| US11282221B1 (en) * | 2020-09-22 | 2022-03-22 | Varian Medical Systems, Inc. | Image contouring using spiking neural networks |
Family Cites Families (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1964036A4 (en) * | 2005-12-23 | 2010-01-13 | Univ Sherbrooke | ROOM-TIME PATTERN RECOGNITION USING A NEURONAL SPIKING NETWORK AND PROCESSING THEREOF FOR A PORTABLE AND / OR DISTRIBUTED COMPUTER |
| US7606777B2 (en) * | 2006-09-01 | 2009-10-20 | Massachusetts Institute Of Technology | High-performance vision system exploiting key features of visual cortex |
| US9405975B2 (en) * | 2010-03-26 | 2016-08-02 | Brain Corporation | Apparatus and methods for pulse-code invariant object recognition |
| US8467623B2 (en) * | 2010-03-26 | 2013-06-18 | Brain Corporation | Invariant pulse latency coding systems and methods systems and methods |
| US9122994B2 (en) * | 2010-03-26 | 2015-09-01 | Brain Corporation | Apparatus and methods for temporally proximate object recognition |
| US9412064B2 (en) * | 2011-08-17 | 2016-08-09 | Qualcomm Technologies Inc. | Event-based communication in spiking neuron networks communicating a neural activity payload with an efficacy update |
| US20130325766A1 (en) * | 2012-06-04 | 2013-12-05 | Csaba Petre | Spiking neuron network apparatus and methods |
| US9111226B2 (en) * | 2012-10-25 | 2015-08-18 | Brain Corporation | Modulated plasticity apparatus and methods for spiking neuron network |
-
2014
- 2014-03-27 US US14/228,065 patent/US20150278641A1/en not_active Abandoned
-
2015
- 2015-03-23 KR KR1020167026214A patent/KR20160138042A/ko not_active Withdrawn
- 2015-03-23 JP JP2016558790A patent/JP2017514215A/ja active Pending
- 2015-03-23 EP EP15716236.3A patent/EP3123403A2/en not_active Withdrawn
- 2015-03-23 CN CN201580016091.0A patent/CN106133755A/zh active Pending
- 2015-03-23 WO PCT/US2015/021991 patent/WO2015148369A2/en not_active Ceased
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR20200005361A (ko) * | 2018-07-06 | 2020-01-15 | 포항공과대학교 산학협력단 | 뉴로모픽 시스템 및 그것의 동작 방법 |
| KR20210096447A (ko) | 2020-01-28 | 2021-08-05 | 인하대학교 산학협력단 | 영상 영역 분할 방법, 영상 영역 분할 장치 및 영상 영역 분할 프로그램 |
| KR20220105879A (ko) * | 2021-01-21 | 2022-07-28 | 한국과학기술연구원 | 시간 임베디드 부동 소수점 산술을 이용한 개선된 뉴런 코어 |
Also Published As
| Publication number | Publication date |
|---|---|
| CN106133755A (zh) | 2016-11-16 |
| WO2015148369A3 (en) | 2015-12-10 |
| JP2017514215A (ja) | 2017-06-01 |
| WO2015148369A2 (en) | 2015-10-01 |
| EP3123403A2 (en) | 2017-02-01 |
| US20150278641A1 (en) | 2015-10-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR20160138042A (ko) | 스파이킹 뉴럴 네트워크들을 사용하는 이미지들의 불변의 객체 표현 | |
| KR101793011B1 (ko) | 스파이킹 네트워크들의 효율적인 하드웨어 구현 | |
| US10339447B2 (en) | Configuring sparse neuronal networks | |
| US9418331B2 (en) | Methods and apparatus for tagging classes using supervised learning | |
| US9558442B2 (en) | Monitoring neural networks with shadow networks | |
| US20150242745A1 (en) | Event-based inference and learning for stochastic spiking bayesian networks | |
| KR20170031695A (ko) | 신경망들에서의 콘볼루션 동작의 분해 | |
| US9959499B2 (en) | Methods and apparatus for implementation of group tags for neural models | |
| US9672464B2 (en) | Method and apparatus for efficient implementation of common neuron models | |
| WO2015112713A2 (en) | Value synchronization across neural processors | |
| WO2015167765A2 (en) | Temporal spike encoding for temporal learning | |
| CN106164940A (zh) | 在尖峰神经网络中通过全局标量值来调制可塑性 | |
| WO2015148254A2 (en) | Invariant object representation of images using spiking neural networks | |
| WO2014172025A1 (en) | Method for generating compact representations of spike timing-dependent plasticity curves | |
| WO2015073293A1 (en) | Methods and apparatus for estimating angular movement with a single two dimensional device | |
| US9342782B2 (en) | Stochastic delay plasticity | |
| WO2015088689A1 (en) | Effecting modulation by global scalar values in a spiking neural network | |
| US9418332B2 (en) | Post ghost plasticity | |
| CA2926034A1 (en) | Dynamically assigning and examining synaptic delay | |
| WO2014197175A2 (en) | Efficient implementation of neural population diversity in neural system | |
| US20150242742A1 (en) | Imbalanced cross-inhibitory mechanism for spatial target selection |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PA0105 | International application |
Patent event date: 20160922 Patent event code: PA01051R01D Comment text: International Patent Application |
|
| PG1501 | Laying open of application | ||
| PC1203 | Withdrawal of no request for examination |