KR20160133380A - Targeted genome editing based on CRISPR/Cas9 system using short linearized double-stranded DNA - Google Patents

Targeted genome editing based on CRISPR/Cas9 system using short linearized double-stranded DNA Download PDF

Info

Publication number
KR20160133380A
KR20160133380A KR1020160058214A KR20160058214A KR20160133380A KR 20160133380 A KR20160133380 A KR 20160133380A KR 1020160058214 A KR1020160058214 A KR 1020160058214A KR 20160058214 A KR20160058214 A KR 20160058214A KR 20160133380 A KR20160133380 A KR 20160133380A
Authority
KR
South Korea
Prior art keywords
dna
primer
artificial sequence
rev
donor
Prior art date
Application number
KR1020160058214A
Other languages
Korean (ko)
Other versions
KR101785847B1 (en
Inventor
방두희
이지현
임현섭
전소영
Original Assignee
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 연세대학교 산학협력단 filed Critical 연세대학교 산학협력단
Publication of KR20160133380A publication Critical patent/KR20160133380A/en
Application granted granted Critical
Publication of KR101785847B1 publication Critical patent/KR101785847B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses

Abstract

The present invention relates to a target genome editing using a CRISPR-Cas9 system using linear double-stranded DNA. More specifically, the linear double-stranded DNA in which guide RNA and donor DNA are bonded together is used in CRISPR-Cas9-based genome editing, thereby inducing substitution mutation in eukaryotic or procaryotic cells with high efficiency.

Description

선형 이중가닥 DNA를 활용한 CRISPR/Cas9 시스템을 이용한 표적 유전체 교정{Targeted genome editing based on CRISPR/Cas9 system using short linearized double-stranded DNA}{Targeted genome editing based on CRISPR / Cas9 system using short linearized double-stranded DNA}

본 발명은 가이드 RNA 및 도너 DNA를 발현하는 선형 이중가닥 DNA를 활용한 CRISPR/Cas9 시스템을 이용한 표적 유전체 교정에 관한 것이다.The present invention relates to a target genetic correction using a CRISPR / Cas9 system utilizing linear double stranded DNA expressing guide RNA and donor DNA.

차세대 시퀀싱(next-generation sequencing, NGS) 및 마이크로어레이에 기반을 둔 유전자 연구들로부터 유전병(Mendelian diseases)에 연관된 많은 잠재적 원인 변이(causal variant) 및 암에 관련된 체세포 변이(somatic variant)와 더불어 수백 개의 인간 형질에 관련된 수천 개의 유전자 위치들(loci)이 동정되었다.There are many potential causal variants associated with Mendelian diseases and somatic variants associated with cancer from next-generation sequencing (NGS) and microarray-based gene studies, Thousands of gene loci related to human traits have been identified.

최근에 개발된 RNA 유전자가위(RNA-guided CRISPR)(clustered regularly interspaced short palindrome repeats)-연관된 뉴클레아제 Cas9에 기반된 유전체 교정(genome editing)은 표적 넉-아웃, 전사 활성화 및 single guide RNA(sgRNA)(즉, crRNA-tracrRNA 융합 전사체)를 이용한 억제에 대한 획기적인 기술을 제공하며, 이 기술은 수많은 유전자 위치를 표적 함으로써 확장성을 입증하였다. 그러나, 넉-아웃 또는 전사 조절과는 달리, CRISPR-기반 SNV(single nucleotide variation) 발생은 주로 단일 유전체 위치(single genomic locus)에 제한된다. 최근에 대장균 공학으로 널리 알려진 전략인 올리고뉴클레오티드-매개 상동 재조합(homologous recombination, HR) 방법이 인간 세포에서 다중 치환 돌연변이를 도입하기 위해 제시되고 있으나, 유전체-수식 사건의 희박한 발생(105~107 세포 중 하나) 및 낮은 수율로 인해 여전히 어려움이 있다. Genome editing based on the recently developed RNA-guided CRISPR (clustered regularly interspaced short palindrome repeats) -related nuclease Cas9 has been used for target knock-out, transcriptional activation and single guide RNA (sgRNA ) (I. E., A crRNA-tracrRNA fusion transcript), which demonstrates extensibility by targeting a number of gene locations. However, unlike knock-out or transcriptional regulation, the occurrence of CRISPR-based single nucleotide variation (SNV) is largely limited to a single genomic locus. Recently, an oligonucleotide-mediated homologous recombination (HR) strategy, a widely known strategy for E. coli engineering, has been proposed to introduce multisubstitution mutations in human cells, but the rare occurrence of genome-mathematical events (10 5 to 10 7 One of the cells) and low yields.

M. Jinek et al. Science 2012, 337, 816-821 M. Jinek et al. Science 2012, 337, 816-821 O. Shalem et al. Science 2014, 343, 84-87 O. Shalem et al. Science 2014, 343, 84-87 T. Wang et al. Science 2014, 343, 80-84 T. Wang et al. Science 2014, 343, 80-84 L. A. Gilbert et al. Cell 2014, 159, 647-661 L. A. Gilbert et al. Cells 2014, 159, 647-661 S. Konermann et al. Nature 2015, 517, 583-588 S. Konermann et al. Nature 2015, 517, 583-588 L. Cong et al. Science 2013, 339, 819-823 L. Cong et al. Science 2013, 339, 819-823 P. Mali et al. Science (New York, N.Y.) 2013, 339, 823-826 P. Mali et al. Science (New York, N.Y.) 2013, 339, 823-826 D. Yu et al. Proceedings of the National Academy of Sciences of the United States of America 2000, 97, 5978-5983 D. Yu et al. Proceedings of the National Academy of Sciences of the United States of America 2000, 97, 5978-5983 H. H. Wang et al. Nature 2009, 460, 894-898 H. H. Wang et al. Nature 2009, 460, 894-898

본 발명의 목적은 CRISPR-Cas9 기반 유전체 교정 시스템에서 가이드 RNA와 도너 DNA가 결합된 형태를 세포에 전달함으로써 고-효율로 치환 돌연변이를 유도하는 선형 이중가닥 DNA를 제공하는 것이다. It is an object of the present invention to provide a linear double-stranded DNA which induces a substitution mutation in a highly efficient manner by transferring a form in which a guide RNA and a donor DNA are coupled to a cell in a CRISPR-Cas9-based dielectric correction system.

본 발명의 다른 목적은 상기 선형 이중가닥 DNA의 CRISPR-Cas9 기반 유전체 교정 용도를 제공하는 것이다.It is another object of the present invention to provide a CRISPR-Cas9-based dielectric calibration use of said linear double-stranded DNA.

상기 목적을 달성하기 위하여, 본 발명은 가이드 RNA를 발현하기 위한 프로모터; 가이드 RNA를 코딩하는 DNA; 터미네이터; 및 도너 DNA(donor DNA)를 포함하는 선형 이중가닥 DNA를 제공한다.In order to accomplish the above object, the present invention provides a promoter for expressing a guide RNA; DNA encoding guide RNA; Terminator; And donor DNA. ≪ Desc / Clms Page number 2 >

본 발명은 또한 상기 선형 이중가닥 DNA; 및 Cas9 단백질 또는 Cas9 단백질을 발현하는 벡터를 포함하는 CRISPR-Cas9 기반 유전체 교정용 조성물을 제공한다.The present invention also relates to said linear double stranded DNA; And a vector expressing the Cas9 protein or the Cas9 protein. The present invention provides a CRISPR-Cas9-based dielectric correcting composition.

본 발명은 가이드 RNA와 도너 DNA가 결합된 선형 이중가닥 DNA를 CRISPR-Cas9 기반 유전체 교정에 사용함으로써 진핵 세포 또는 원핵 세포에서 고-효율로 치환 돌연변이를 유도할 수 있는 효과를 제공한다.The present invention provides the effect of inducing high-efficiency substitution mutations in eukaryotic cells or prokaryotic cells by using linear double-stranded DNA in which guide RNA and donor DNA are combined for CRISPR-Cas9-based genome correction.

도 1은 본 발명의 sgRNA와 도너 DNA 결합을 통한 전달 시스템의 필요성을 나타낸 도면이다.
도 2는 기존 전달 방법과 비교하여 본 발명의 sgR-DNA를 통한 전달 방법의 유용성을 나타낸 것이다.
도 3은 본 발명의 sgR-DNA 컨스트럭트를 나타낸 것이다.
도 4는 대장균에 전달하기 위한 본 발명의 sgR-DNA 컨스트럭트를 합성하는 과정을 나타낸 것이다.
도 5는 인간 세포에 전달하기 위한 본 발명의 sgR-DNA 컨스트럭트를 합성하는 과정을 나타낸 것이다.
도 6은 대장균에 전달하기 위해 합성된 본 발명의 sgR-DNA 컨스트럭트와 galK 유전자를 교정하기 위한 실험 과정을 나타낸 것이다.
도 7은 대장균에 전달하기 위해, sgRNA를 발현하는 선형 이중가닥 DNA를 합성하는 과정을 나타낸 것이다.
도 8은 대장균 galK 위치에서의 상동 재조합 효율을 도너 길이(63 nt, 93 nt, 123 nt)에 따라 나타낸 것이다.
도 9는 대장균 galK 위치에서, sgRNA 및 ssODN과 sgR-DNA를 사용했을 때의 상동 재조합 효율을 나타낸 것이다.
도 10은 대장균의 다중 위치 유전체 교정 확인을 위해 표적으로 한 유전체 전체에 걸쳐 분포된 11개의 aro 유전자와 이를 표적으로 하는 sgR-DNA 라이브러리를 이용하여 실험한 것을 나타낸 것이다.
도 11은 대장균의 다중 위치 유전체 교정 효율을 나타낸 것이다.
도 12는 인간 세포에 전달하기 위해 합성된 본 발명의 sgR-DNA 컨스트럭트를 나타낸 것이다.
도 13은 EGFR 표적에 대해 4개의 미스매치 서열을 갖는 도너 DNA를 나타낸 것이다.
도 14는 인간 세포에 전달하기 위해, sgRNA를 발현하는 선형 이중가닥 DNA를 합성하는 과정을 나타낸 것이다.
도 15는 인간 세포 EGFR 위치에서의 상동 재조합 효율을 나타낸 것이다.
도 16은 인간 세포 EGFR 위치에서의 삽입-결손 효율을 나타낸 것이다.
도 17은 Sanger 시퀀싱을 통해 단일 클론에서 표적 유전자 위치의 유전자형을 확인한 것이다.
도 18은 오프 표적 위치에서의 삽입-결손 효율이 EGFR 표적 위치보다 낮음을 나타낸 그래프이다.
도 19는 오프 표적 위치에서 각각의 염기 위치에 대한 삽입-결손 발생의 비율 분포를 나타낸 것이다.
도 20은 오프 표적 위치에서 삽입-결손 크기의 분포를 나타낸 것이다.
도 21은 BRAF 위치에서의 치환 효율을 나타낸 것이다.
도 22는 KRAS 위치에서의 치환 효율을 나타낸 것이다.
도 23은 인간 세포의 다중 위치 유전체 교정 확인을 위해 표적으로 한, 유전체 전체에 걸쳐 분포된 10개의 유전자와 이를 표적으로 하는 sgR-DNA 라이브러리를 이용하여 실험한 것을 나타낸 것이다.
도 24는 인간 세포의 다중 위치 유전체 교정 효율을 나타낸 것이다.
도 25는 프로그램이 가능한 마이크로어레이로부터 절단된 올리고뉴클레오티드 풀을 이용하여 sgR-DNA 라이브러리 구축하는 과정을 나타낸 것이다.
Figure 1 is a diagram illustrating the need for a delivery system via donor DNA binding with the sgRNA of the present invention.
Figure 2 shows the usefulness of the sgR-DNA delivery method of the present invention compared to the conventional delivery method.
Figure 3 shows the sgR-DNA construct of the present invention.
FIG. 4 shows a process of synthesizing the sgR-DNA construct of the present invention for delivery to E. coli.
FIG. 5 shows a process of synthesizing the sgR-DNA construct of the present invention for delivery to human cells.
FIG. 6 shows an experimental procedure for calibrating the sgR-DNA construct of the present invention and galK gene synthesized for delivery to E. coli.
FIG. 7 shows a process for synthesizing linear double-stranded DNA expressing sgRNA for delivery to E. coli.
8 shows the homologous recombination efficiency at the position of E. coli galK according to the donor length (63 nt, 93 nt, 123 nt).
Fig. 9 shows the homologous recombination efficiency when sgRNA and ssODN and sgR-DNA were used at the position of E. coli galK.
FIG. 10 shows the results of experiments using eleven aro genes distributed throughout the target dielectric and an sgR-DNA library targeting the same for confirmation of the multi-position dielectric correction of E. coli.
Figure 11 shows the multi-site dielectric correcting efficiency of E. coli.
Figure 12 shows the sgR-DNA construct of the present invention synthesized for delivery to human cells.
Figure 13 shows donor DNA with four mismatched sequences for the EGFR target.
Fig. 14 shows a process for synthesizing linear double-stranded DNA expressing sgRNA for delivery to human cells.
Fig. 15 shows homologous recombination efficiency at the human cell EGFR site.
Figure 16 shows the insertion-deletion efficiency at the human cell EGFR position.
Figure 17 shows the genotype of the target gene position in a single clone through Sanger sequencing.
Figure 18 is a graph showing that the insert-deficiency efficiency at the off-target position is lower than the EGFR target position.
Figure 19 shows the ratio distribution of insertion-defect occurrences for each base position at the off-target position.
Figure 20 shows the distribution of insertion-deficit sizes at off-target locations.
21 shows the substitution efficiency at the BRAF position.
22 shows the substitution efficiency at the KRAS position.
FIG. 23 shows experiments using 10 genes distributed throughout the genome and the sgR-DNA library targeted thereto for confirmation of the multi-positional genetic correction of human cells.
Figure 24 shows the multimode dielectric calibration efficiency of human cells.
25 shows a process of constructing an sgR-DNA library using a cleaved oligonucleotide pool from a programmable microarray.

CRISPR/Cas9-기반 유전체 교정에 있어서, 본 발명자들은 고-효율의 치환 돌연변이 발생 기술의 부족이 적당한 전달 시스템의 부재에서 기인할 수 있다는 가설을 세웠다. 단일 표적-특이 성분으로서, sgRNA 벡터를 이용한 넉-아웃 수식과는 달리, 치환 수식은 계획된 돌연변이를 포함하는 부가적인 도너 DNA를 필요로 하므로, 표적 부위에 sgRNA 및 매칭되는 도너 DNA를 위치시키기 위해서는 결합을 통한 전달 시스템이 필요하다(도 1). 이 가설에 근거하여, 본 발명자들은 다중 위치 교정 방식에서 CRISPR/Cas9-기반 치환 교정을 촉진하기 위해 선행 전달 방법보다 쉽게 제조될 수 있는 sgRNA 전사체를 인코딩하는 DNA 및 도너 DNA의 조립을 통해 sgR-DNA(즉, matched sgRNA-donor DNA pair)를 개발하였다(도 2). 본 발명의 CRISPR/Cas9-기반 시스템의 능력을 확인하기 위해, 대장균 공학에 이 시스템을 적용하고 나서, 포유동물 세포 공학으로 확장하였다. 그리고 나서, sgR-DNAs 풀(pool)이 대장균(11-plex) 및 인간 유전체(10-plex) 둘 다에서 치환 돌연변이의 다중 발생에 이용될 수 있는 지를 관찰함으로써 본 발명을 완성하였다.In CRISPR / Cas9-based dielectric calibrations, we hypothesize that the lack of high-efficiency replacement mutagenesis techniques may result from the absence of a suitable delivery system. Unlike the knock-out formula using a sgRNA vector as a single target-specific component, the substitution formula requires an additional donor DNA comprising the designed mutation, so to position the sgRNA at the target site and the matching donor DNA, (Fig. 1). Based on this hypothesis, the present inventors have found that by assembling DNA and donor DNA encoding an sgRNA transcript which can be prepared more easily than prior transcription methods to facilitate CRISPR / Cas9-based displacement correction in a multiple position calibration scheme, DNA (i.e., matched sgRNA-donor DNA pair) was developed (Fig. 2). To verify the capabilities of the CRISPR / Cas9-based system of the present invention, this system was applied to E. coli engineering and then expanded to mammalian cell engineering. The present invention was then completed by observing whether the sgR-DNAs pool could be used for multiple generation of substitutional mutations in both E. coli (11-plex) and the human genome (10-plex).

따라서, 본 발명은 가이드 RNA를 발현하기 위한 프로모터; 가이드 RNA를 코딩하는 DNA; 터미네이터; 및 도너 DNA(donor DNA)를 포함하는 선형 이중가닥 DNA를 제공한다.Thus, the invention provides a promoter for expressing a guide RNA; DNA encoding guide RNA; Terminator; And donor DNA. ≪ Desc / Clms Page number 2 >

본 발명은 또한 상기 선형 이중가닥 DNA; 및 Cas9 단백질 또는 Cas9 단백질을 발현하는 벡터를 포함하는 CRISPR-Cas9 기반 유전체 교정용 조성물을 제공한다.The present invention also relates to said linear double stranded DNA; And a vector expressing the Cas9 protein or the Cas9 protein. The present invention provides a CRISPR-Cas9-based dielectric correcting composition.

본 발명의 선형 이중가닥 DNA은 CRISPR-Cas9 시스템에서 표적 유전자를 인식하는 가이드 RNA를 발현할 수 있는 구조물로서, 가이드 RNA를 코딩하는 DNA 및 도너 DNA가 결합된 구조로 되어 있어 가이드 RNA와 매칭된 도너 DNA 쌍이 동시에 세포 내로 전달되고, Cas9 단백질에 의한 표적 DNA의 절단 시 도너 DNA의 상동 재조합을 통해 표적 DNA 대신 미스매치 코돈을 포함하는 도너 DNA가 유전체 내에 포함되어 표적 DNA의 치환 돌연변이 효율을 높일 수 있는 것을 특징으로 한다.The linear double-stranded DNA of the present invention is a structure capable of expressing a guide RNA that recognizes a target gene in a CRISPR-Cas9 system, and has a structure in which a DNA encoding a guide RNA and a donor DNA are combined, The DNA pair is simultaneously transferred into the cell, and when the target DNA is cleaved by the Cas9 protein, the donor DNA including the mismatch codon is included in the genome in place of the target DNA through the homologous recombination of the donor DNA to increase the substitution mutation efficiency of the target DNA .

본 명세서에서, 용도 "절단"은 뉴클레오티드 분자의 공유결합 백본의 파손(breakage)을 의미한다.As used herein, the term "truncation" means the breakage of the covalent backbone of a nucleotide molecule.

바람직하게는, 본 발명의 선형 이중가닥 DNA는 가이드 RNA를 발현하기 위한 프로모터; 가이드 RNA를 코딩하는 DNA; 터미네이터; 및 도너 DNA가 순차적으로 연결된 구조일 수 있다. 따라서, 세포 내로 전달된 선형 이중가닥 DNA는 프로모터에 의해 가이드 RNA로 전사되고, 터미네이터를 통해 전사가 종결되므로, 도너 DNA의 전사는 일어나지 않게 된다. 상기 도너 DNA는 표적 DNA의 절단 후 상동 재조합에 참여하여 표적 DNA의 치환 돌연변이를 유도하게 된다.Preferably, the linear double-stranded DNA of the present invention comprises a promoter for expressing the guide RNA; DNA encoding guide RNA; Terminator; And the donor DNA may be sequentially connected. Therefore, the linear double-stranded DNA transferred into the cell is transcribed by the promoter into the guide RNA, and the transcription is terminated through the terminator, so that the transcription of the donor DNA does not occur. The donor DNA participates in homologous recombination after cleavage of the target DNA to induce substitution mutations of the target DNA.

상기 표적 DNA는 내재적 DNA(endogenous DNA) 또는 인위적인 DNA(artificial DNA)일 수 있으나, 바람직하게는, 내재적 DNA이다.The target DNA may be an endogenous DNA or an artificial DNA, but is preferably an intrinsic DNA.

상기 선형 이중가닥 DNA는 마이크로어레이에서 쉽게 제조할 수 있어 벡터를 사용하는 선행기술 대비 생산 공정이 간단하고, 비용이 절감되며, 원핵 세포 또는 진핵 세포의 유전체 교정에 사용할 수 있어 확장성을 가지고 있는 것을 특징으로 한다.Since the linear double-stranded DNA can be easily produced in a microarray, the production process is simple compared to the prior art using a vector, the cost is reduced, and the DNA can be used for the genetic correction of prokaryotic or eukaryotic cells, .

상기 프로모터는 표적 DNA에 특이적인 가이드 RNA를 세포 내에서 발현하기 위한 프로모터로서, 세포의 종류에 따라 당업자 수준에서 적절히 채택하여 사용할 수 있어 특별히 제한하지는 않으며, 예컨대, T7 프로모터, SP6 프로모터, rpr-1 프로모터, rrk 프로모터, 또는 U6 프로모터등 교정하고자 하는 생물의 유전체에서 작동하는 프로모터를 사용할 수 있다.The promoter is a promoter for expressing a guide RNA specific for a target DNA in a cell, and can be appropriately adopted at the level of those skilled in the art depending on the kind of cell, and is not particularly limited. For example, T7 promoter, SP6 promoter, rpr-1 Promoters, rrk promoters, or promoters that operate on the genome of the organism to be corrected, such as the U6 promoter, can be used.

상기 가이드 RNA는 표적 DNA에 특이적인 RNA로, 세포 내로 전달된 선형 이중가닥 DNA의 전사를 통해 발현되어 표적 유전자를 인식하고 Cas9 단백질과 복합체를 형성할 수 있고 Cas9 단백질을 표적 DNA에 가져오는 RNA이다. 따라서, 상기 가이드 RNA는 표적 DNA를 인식할 수 있는 스페이서; 및 표적과 무관한 불변 서열(non-variable sequence)로 이루어진 가이드 RNA 스캐폴드를 포함한다.The guide RNA is RNA specific to the target DNA, which is expressed through transcription of linear double-stranded DNA transferred into the cell, recognizes the target gene, forms a complex with the Cas9 protein, and brings the Cas9 protein into the target DNA . Thus, the guide RNA may comprise a spacer capable of recognizing the target DNA; And a guide RNA scaffold consisting of a non-variable sequence that is independent of the target.

상기 스페이서는 가이드 RNA가 표적 DNA를 인식할 수 있게 하는 서열을 의미하며, 표적 DNA 위치의 근처에 있는 protospacer adjacent motifs(PAMs) 서열의 일부 또는 전체를 포함할 수 있다. 바람직하게는, 상기 PAMs에 인접한 서열을 사용할 수 있다. 또한, 상기 스페이서는 표적 세포의 종류에 따라 적당한 변형이 가해질 수 있다. 본 발명의 일 구체예에 따르면, 인간 세포에 도입하기 위해 PAM에 인접한 서열에 엑스트라 5'G를 결합시켜 스페이서를 제조할 수 있다. The spacer refers to a sequence that allows the guide RNA to recognize the target DNA, and may include some or all of the protospacer adjacent motifs (PAMs) sequences near the target DNA location. Preferably, sequences adjacent to the PAMs can be used. In addition, the spacer may be suitably modified depending on the type of the target cell. According to one embodiment of the present invention, a spacer can be prepared by joining Extra 5'G to a sequence adjacent to PAM for introduction into human cells.

상기 가이드 RNA 스캐폴드는 두 개의 RNA, 즉, CRISPR RNA(crRNA) 및 트랜스활성화 crRNA(transactivating crRNA, tracrRNA)로 이루어져 있는 것일 수 있으며, 또는 crRNA 및 tracrRNA의 필수적 부분의 융합에 의해 생성된 단일 사슬 RNA (single-chain guide RNA, sgRNA)일 수 있다. 상기 가이드 RNA는 crRNA 및 tracrRNA를 포함하는 이중 RNA (dual RNA)일 수 있다. 만약 상기 가이드 RNA 스캐폴드가 crRNA 및 tracrRNA의 필수적인 부분 및 표적과 상보적인 부분을 포함한다면, 어떠한 가이드 RNA 스캐폴드라도 본 발명에 사용될 수 있다. 상기 crRNA는 표적 DNA와 혼성화될 수 있다.The guide RNA scaffold may consist of two RNAs, namely, CRISPR RNA (crRNA) and transactivating crRNA (tracrRNA), or may be a single chain RNA produced by fusion of an essential part of crRNA and tracrRNA (single-chain guide RNA, sgRNA). The guide RNA may be a dual RNA including crRNA and tracrRNA. Any guide RNA scaffold can be used in the present invention, provided that the guide RNA scaffold comprises an essential portion of the crRNA and the tracrRNA and a portion complementary to the target. The crRNA may be hybridized with the target DNA.

바람직하게는, 단일-사슬 가이드 RNA일 수 있다.Preferably, it may be a single-chain guide RNA.

상기 터미네이터는 가이드 RNA를 코딩하는 DNA의 전사를 종결하기 위해 가이드 RNA를 코딩하는 DNA 말단에 연결되는 것으로, 프로모터에 맞게 당업자의 적정 선택 수준에서 채택하여 사용할 수 있어 특별히 제한하지는 않으며, 예컨대, RNA Polymerase III terminator 또는 -TTTTTT- 서열일 수 있다.The terminator is connected to the DNA terminus coding for the guide RNA to terminate the transcription of the DNA encoding the guide RNA. The terminator is not particularly limited and can be used at a suitable selection level by those skilled in the art according to the promoter. For example, RNA polymerase III terminator or -TTTTTT- sequence.

상기 도너 DNA는 PAM 서열을 포함하고, 표적 DNA에 대해 1 내지 3개의 뉴클레오티드의 미스매치를 갖는 변이 코돈을 포함하는 상동 서열로 이루어진 것일 수 있다.The donor DNA may comprise a PAM sequence and consist of a homologous sequence comprising a mutated codon having a mismatch of 1 to 3 nucleotides with respect to the target DNA.

또한, 상기 도너 DNA는 치환 후 같은 코돈을 갖는 PAM을 포함하도록 설계하여 염기 변이가 발생한 후 PAM 서열의 추가적인 인지가 일어나지 않도록 도너 DNA 서열 내에 PAM 서열을 포함하도록 할 수 있다.In addition, the donor DNA may be designed to include PAM having the same codon after substitution so that the PAM sequence is included in the donor DNA sequence so that no further recognition of the PAM sequence occurs after the base mutation occurs.

상기 Cas9 단백질은 CRISPR/Cas9 시스템에서 필수적인 단백질 요소를 의미하고, CRISPR RNA(crRNA) 및 트랜스-활성화 crRNA(trans-activating crRNA, tracrRNA)로 불리는 두 RNA와 복합체를 형성할 때, 활성 엔도뉴클레아제를 형성한다. Cas9 유전자 및 단백질의 정보는 국립생명공학정보센터(national center for biotechnology information, NCBI)의 GenBank에서 구할 수 있으나, 이에 제한되지 않는다.The Cas9 protein means an essential protein element in the CRISPR / Cas9 system and when complexed with two RNAs called CRISPR RNA (crRNA) and trans-activating crRNA (tracrRNA), the active endonuclease . Information on Cas9 genes and proteins is available from, but is not limited to, GenBank in the National Center for Biotechnology Information (NCBI).

상기 Cas9 단백질이 세포 내로 전달될 경우, 단백질 전달 도메인(protein transduction domain)과 연결될 수 있다. 상기 단백질 전달 도메인은 폴리-아르기닌(poly-arginine) 도메인 또는 HIV로부터 유래한 TAT 단백질일 수 있지만, 이에 한정되는 것은 아니다.When the Cas9 protein is delivered into a cell, it may be linked to a protein transduction domain. The protein transfer domain may be a poly-arginine domain or a TAT protein derived from HIV, but is not limited thereto.

상기 Cas9 단백질은 Cas9 단백질을 발현하는 벡터, 즉, Cas9 단백질 코딩 핵산을 포함하는 벡터의 형태로 형질주입을 통해 전달될 수 있다. 상기 Cas9 단백질 코딩 핵산은 CMV 또는 CAG와 같은 프로모터 하에서 Cas9 코딩 서열을 포함하는 플라스미드 같은 벡터의 형태일 수 있다.The Cas9 protein may be delivered via transfection in the form of a vector containing Cas9 protein, that is, a vector comprising Cas9 protein coding nucleic acid. The Cas9 protein coding nucleic acid may be in the form of a vector, such as a plasmid, containing a Cas9 coding sequence under a promoter such as CMV or CAG.

상기 선형 이중가닥 DNA 및 Cas9 단백질 또는 Cas9 단백질을 발현하는 벡터의 전달은 미세주입법(microinjection), 전기천공법(electroporation), DEAE-덱스트란 처리(DEAE-dextran treatment), 리포펙션(lipofection), 나노파티클-매개 형질주입, 단백질 전달 도메인 매개 도입, 바이러스-매개 유전자 전달, 및 원생동물에서 PEG-매개 형질주입 등과 같은 당업계의 다양한 방법에 의해 세포로 전달될 수 있으나, 이에 제한되는 것은 아니다.The delivery of the linear double-stranded DNA and the Cas9 protein or a vector expressing the Cas9 protein can be performed by microinjection, electroporation, DEAE-dextran treatment, lipofection, But are not limited to, particle-mediated transfection, protein transfer domain mediated introduction, virus-mediated gene delivery, and PEG-mediated transfection in protozoa.

바람직하게는, 상기 선형 이중가닥 DNA 및 Cas9 단백질 또는 Cas9 단백질을 발현하는 벡터는 원핵 세포 또는 진핵 세포에 공동-형질주입(co-transfection) 또는 단계적 형질주입(serial-transfection)을 통해 전달될 수 있다.Preferably, the vector expressing the linear double-stranded DNA and Cas9 protein or Cas9 protein can be delivered to prokaryotic or eukaryotic cells via co-transfection or serial-transfection .

상기 단계적 형질주입은 Cas9 단백질 또는 Cas9 단백질을 발현하는 벡터를 원핵 세포 또는 진핵 세포에 형질주입한 후 선형 이중가닥 DNA를 형질주입하는 것일 수 있다.The stepwise transfection may be performed by transfecting a prokaryotic or eukaryotic cell with a vector expressing Cas9 protein or Cas9 protein, and then transfecting linear double stranded DNA.

본 발명의 선형 이중가닥 DNA 및 Cas9 단백질로 이루어진 CRISPR-Cas9 시스템은 원핵 세포 또는 진핵 세포에서 단일 위치 또는 다중 위치 유전자의 표적화된 돌연변이를 유도하는데 유용하게 사용될 수 있다. The CRISPR-Cas9 system consisting of the linear double-stranded DNA of the present invention and the Cas9 protein can be useful for inducing targeted mutations of a single site or multiple locus genes in prokaryotic or eukaryotic cells.

상기 진핵 세포 또는 원핵 세포는 대장균, 효모, 곰팡이, 식물, 곤충, 양서류, 포유동물 등의 세포일 수 있고, 예를 들어, 당업계에서 일반적으로 사용되는 인 비트로에서 배양된 세포, 이식된 세포, 일차 세포 배양, 인 비보 세포, 인간을 포함하는 포유동물의 세포일 수 있으나, 이에 제한되지는 않는다.The eukaryotic cell or the prokaryotic cell may be a cell such as Escherichia coli, yeast, fungus, plant, insect, amphibian, mammal and the like, and may be, for example, a cell cultured in in vitro commonly used in the art, But are not limited to, primary cell cultures, in vivo cells, and cells of mammals including humans.

이하, 본 발명을 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to examples. However, the following examples are illustrative of the present invention, and the present invention is not limited to the following examples.

<< 실시예Example 1> 선형  1> Linear 이중가닥Double strand sgRsgR -DNA 디자인-DNA design

(T7 중합효소, (T7 polymerase, Cas9Cas9 , , sgRNAsgRNA  And ssODNs를ssODNs 발현하는 플라스미드) Expressing plasmid)

T7 중합효소를 인코딩하는 플라스미드 N249는 George Church(Harvard medical school)로부터 얻었고, Cas9를 인코딩하는 pET-Cas9는 pMJ806(Addgene plasmid 39312)로부터 Cas9 서열을 pET-28a에 클로닝하여 만들었다. GFP-연결된 인간 코돈 최적화된 Cas9 뉴클레아제를 발현하는 플라스미드(Addgene plasmid 44719) 및 전사를 위해 U6 프로모터의 조절하에 있는 gRNA(Addgene plasmid 41824)는 Addgene (USA)에서 구입하였다. 표적 부위를 포함하는 이중가닥 DNA는 AflII-digested gRNA 클로닝 벡터에 클로닝하였다. 표적 유전자 위치를 위한 ssODNs는 IDT(USA)에서 합성하였다. 대장균 및 인간 세포를 위한 single-stranded oligodeoxynucleotide(ssODNs) 서열은 표 1에 나타내었다.Plasmid N249 encoding T7 polymerase was obtained from George Church (Harvard Medical School) and pET-Cas9 encoding Cas9 was constructed by cloning Cas9 sequence from pMJ806 (Addgene plasmid 39312) into pET-28a. Plasmid (Addgene plasmid 44719) expressing the GFP-linked human codon-optimized Cas9 nuclease and gRNA (Addgene plasmid 41824) under the control of the U6 promoter for transcription were purchased from Addgene (USA). Double stranded DNA containing the target site was cloned into an AflII-digested gRNA cloning vector. The ssODNs for the target gene positions were synthesized in IDT (USA). Single-stranded oligodeoxynucleotide (ssODNs) sequences for E. coli and human cells are shown in Table 1.

(sgR -DNA 라이브러리 디자인) ( sgR- DNA library design)

sgR-DNA 컨스트럭트는 T7 프로모터(24 bp) 또는 U6 프로모터(264 bp), sgRNA를 코딩하는 DNA(97 bp), 종결 서열(6 Ts) 및 도너 DNA(63 bp, 93 bp, 또는 123 bp)로 구성된다(도 3).The sgR-DNA construct contains the T7 promoter (24 bp) or the U6 promoter (264 bp), the DNA encoding the sgRNA (97 bp), the terminator sequence (6 Ts) and the donor DNA (63 bp, 93 bp, (Fig. 3).

첫째, sgRNA 디자인을 위해, 표적 유전자 위치 근처에 있는 protospacer adjacent motifs(PAMs)를 선별하고, 선별된 PAM에 근접한 서열을 sgRNA의 스페이서로 결정하였다(SEQ ID NO. 1-12). 인간 세포를 위한 sgR-DNA에서, PAM에 근접한 19-bp 서열에 엑스트라 5'G를 붙여 sgRNA의 스페이서를 만들었다. 20-bp 스페이서를 77-bp 스캐폴드에 융합시켜 sgRNA를 인코딩하는 DNA를 만들었다(SEQ ID NO. 13-25).First, for sgRNA design, protospacer adjacent motifs (PAMs) near the target gene location were selected, and a sequence close to the selected PAM was determined as a spacer of the sgRNA (SEQ ID NO. 1-12). In sgR-DNA for human cells, a spacer of sgRNA was made by attaching an extra 5'G to the 19-bp sequence close to PAM. A 20-bp spacer was fused to the 77-bp scaffold to make a DNA encoding sgRNA (SEQ ID NO. 13-25).

도너 DNA는 3-nt 변이 코돈 및 30-nt, 45-nt 또는 60-nt 호몰로그 암(homology arms)을 포함하도록 구축하였다(SEQ ID NO. 26-52). 또한, 표적 코돈과 함께 적어도 2-nt 미스매치를 갖는 변이 코돈을 도입하도록 설계하여 NGS 에러로부터 구별될 수 있게 하였다. 추가로, 도너 DNA는 치환 후 같은 코돈을 갖는 PAM을 포함하도록 설계하여 SNV 발생 사건 후 PAM 서열의 추가적인 인지가 일어나지 않도록 하였다. 그 후에, sgR-DNA는 sgRNA를 인코딩하는 DNA 및 도너 DNA의 조립을 통해 구축되었다.Donor DNA was constructed to include the 3-nt mutation codon and 30-nt, 45-nt or 60-nt homology arms (SEQ ID NO. 26-52). It was also designed to introduce mutated codons with at least 2-nt mismatches along with the target codon, allowing them to be distinguished from NGS errors. In addition, the donor DNA was designed to include PAM with the same codon after substitution so that no further recognition of the PAM sequence occurred after the SNV event. Subsequently, sgR-DNA was constructed through assembly of DNA and donor DNA encoding the sgRNA.

(대장균에 전달하기 위한 (For delivery to E. coli sgRsgR -DNA 라이브러리 -DNA library 컨스트럭트Construct ))

sgR-DNA 컨스트럭트(각각 30-nt, 45-nt 또는 60-nt의 호몰로그 암을 포함하는 190 bp, 220 bp 또는 250 bp)은 다음과 같은 세 부분으로 합성하였다:The sgR-DNA constructs (190 bp, 220 bp or 250 bp containing 30-nt, 45-nt or 60-nt homologous arms, respectively) were synthesized in three parts:

i) T7 프로모터(20 nt)의 오른쪽 부분, 스페이서(20 nt) 및 sgRNA 스캐폴드에 상응하는 영역을 인코딩하는 서열(20 nt);i) a sequence (20 nt) encoding the right portion of the T7 promoter (20 nt), the spacer (20 nt) and the region corresponding to the sgRNA scaffold;

ii) sgRNA 스캐폴드를 인코딩하는 서열(77 nt), 종결 서열(6Ts); 및ii) sequence (77 nt) encoding the sgRNA scaffold, terminator sequence (6Ts); And

iii) 도너 DNA(63 nt, 93 nt, 또는 123 nt)(도 4). iii) Donor DNA (63 nt, 93 nt, or 123 nt) (Figure 4).

각 부분은 고체-상 올리고뉴클레오티드 합성(IDT, USA)에 의해 독립적으로 합성하였다.Each part was independently synthesized by solid-state oligonucleotide synthesis (IDT, USA).

i), ii) 및 iii) 부분을 T7 포워드 프라이머, 표적 특이 middle 올리고(서열은 표 1에 도시됨)를 사용하여 조립하였다. i), ii) and iii) were assembled using T7 forward primer, target specific middle oligo (sequence shown in Table 1).

단일 위치 교정을 위해, 올리고뉴클레오티드로부터 sgR-DNA를 합성하기 위한 조성은 다음과 같다: 10μM T7_fwd_primer(SEQ ID NO. 53) 1㎕, 1μM galK_gRNA (SEQ ID NO. 54) 1㎕, 1μM gRNA_rev(SEQ ID NO. 55) 1㎕, 1μM galK_middle(SEQ ID NO. 56) 1㎕, 10μM galK_63_donor_rev 또는 galK_93_donor_rev 또는 galK_123_donor_rev 중 1개(SEQ ID NO. 26-28) 1㎕, 2×Pfu polymerase master mix(intron) 10㎕, 증류수 5㎕. 대장균 유전체의 11개 위치 (유전자 aroA, aroB, aroC, aroD, aroE, aroF, aroG, aroK, aroL, aroM, aroP)를 교정하기 위해, 올리고뉴클레오티드로부터 sgR-DNA를 합성하기 위한 조성은 다음과 같다:For single position correction, the composition for the synthesis of sgR-DNA from oligonucleotides is as follows: 1 [mu] M T7_fwd_primer (SEQ ID NO. 53) 1 [mu] M galK_gRNA (SEQ ID NO. 54) 1 μl of 1 μM galK_middle (SEQ ID NO: 56), 1 μl of 10 μM galK_63_donor_rev or galK_93_donor_rev or galK_123_donor_rev (SEQ ID NO: 26-28) 10 mu l, distilled water 5 mu l. To correct for the 11 position of the E. coli genome (gene aroA, aroB, aroC, aroD, aroE, aroF, aroG, aroK, aroL, aroM, aroP), oligonucleotide compositions for synthesizing sgR-DNA from nucleotides are as follows: :

10 μM T7_fwd_primer(SEQ ID NO. 53) 1㎕, 1μM aroX_gRNA(SEQ ID NO. 57-67) 1㎕, 1 μM gRNA_rev(SEQ ID NO. 55) 1㎕, 1μM aroX_middle(SEQ ID NO. 68-78) 1㎕, 10μM aroX_donor_rev(SEQ ID NO. 29-39) 1㎕, 2× Pfu polymerase master mix(intron) 10㎕, 증류수 5㎕1 μM aroX_gRNA (SEQ ID NO: 57-67), 1 μM gRNA_rev (SEQ ID NO: 55) 1 μl, 1 μM aroX_middle (SEQ ID NO: 68-78 1 μl, 10 μM aroX_donor_rev (SEQ ID NO. 29-39) 1 μl, 2 μl Pfu polymerase master mix (intron) 10 μl, distilled water 5 μl

i-pfu 2×PCR Master Mix Solution(Intron, Korea)으로 PCR을 수행하여 sgR-DNA 컨스트럭트를 만들고, PCR 사이클링은 다음과 같이 수행하였다: 95℃에서 5분간 초기 변성; 이어서, 95℃에서 30초간 변성, 50℃에서 30초간 어닐링, 72℃에서 30초간 연장을 20 사이클; 및 72℃에서 5분간 최종 연장. PCR was performed with i-pfu 2 x PCR Master Mix Solution (Intron, Korea) to make sgR-DNA construct, and PCR cycling was performed as follows: initial denaturation at 95 ° C for 5 minutes; Subsequently, 20 cycles of denaturation at 95 DEG C for 30 seconds, annealing at 50 DEG C for 30 seconds, and extension at 72 DEG C for 30 seconds; And final extension at 72 ° C for 5 minutes.

조립된 컨스트럭트는 2% 아가로스 젤에서 분리하고 나서, MinElute Gel Extraction Kit(Qiagen, Germany)에서 정제하였다.The assembled construct was separated from 2% agarose gel and purified on a MinElute Gel Extraction Kit (Qiagen, Germany).

(인간 세포로 전달하기 위한 (For delivery to human cells) sgRsgR -DNA 라이브러리 -DNA library 컨스트럭트Construct ))

sgR-DNA 컨스트럭트(490 bp)은 다음과 같은 세 부분으로 합성하였다:The sgR-DNA construct (490 bp) was synthesized in three parts:

i) U6 프로모터(264 bp);i) the U6 promoter (264 bp);

ii) U6 프로모터에 상응하는 영역을 인코딩하는 서열(19 nt), 스페이서(20 nt), sgRNA 스캐폴드를 인코딩하는 서열(77 nt), 종결 서열(6Ts) 및 도너 DNA에 상응하는 영역(18-35 nt); 및ii) a sequence (19 nt) encoding the region corresponding to the U6 promoter, a spacer (20 nt), a sequence encoding 77 nt of the sgRNA scaffold, a terminator sequence (6Ts) 35 nt); And

iii) 도너 DNA(123 nt)(도 5). iii) Donor DNA (123 nt) (Figure 5).

각 부분은 독립적으로 합성하였다. i) 부분은 인간 세포 적용을 위해 프로모터를 U6 fwd 프라이머(SEQ ID NO. 79) 및 rev 프라이머(SEQ ID NO. 80)를 이용하여 gRNA 클로닝 벡터로부터 증폭하여 이중가닥 U6 프로모터(SEQ ID NO. 81)를 얻었고(표 1에 서열이 기재됨), ii)(SEQ ID NO. 82-94) 및 iii)(SEQ ID NO. 40-52) 부분은 고체-상 올리고뉴클레오티드 합성(IDT, USA) 에 의해 합성하였으며(표 1), 이들 부분들은 PCR을 이용하여 조립하였다. Each part was synthesized independently. The i) portion was amplified from the gRNA cloning vector using the U6 fwd primer (SEQ ID NO. 79) and the rev primer (SEQ ID NO. 80) for human cell application to generate the double stranded U6 promoter (SEQ ID NO. 81 ) (SEQ ID NOs: 82-94) and iii) (SEQ ID NOs: 40-52) were obtained in solid-phase oligonucleotide synthesis (IDT, USA) (Table 1), and these portions were assembled using PCR.

i-pfu 2x PCR Master Mix Solution(Intron, Korea)로 PCR하여 sgR-DNA 컨스트럭트를 만들었다. 이중가닥 U6 프로모터와 올리고뉴클레오티드로부터 각각의 sgR-DNA를 합성하기 위한 조성은 다음과 같다: 10μM U6_fwd_primer(SEQ ID NO. 79) 1㎕, 1μM 이중가닥 U6 프로모터 1㎕(SEQ ID NO. 80), 1μM gene_gRNA(SEQ ID NO. 82-94) 1㎕, 10μM gene_donor_rev(SEQ ID NO. 40-52) 1㎕, 2×Pfu polymerase master mix(intron) 10㎕, 증류수 6㎕. 해당 조성의 혼합물을 다음의 PCR 반응을 통하여 각각 증폭하였다: 95℃에서 5분간 초기 변성; 이어서, 95℃에서 30초간 변성, 58℃에서 30초간 어닐링, 72℃에서 30초간 연장을 20 사이클; 및 72℃에서 5분간 최종 연장. The sgR-DNA construct was constructed by PCR with i-pfu 2x PCR Master Mix Solution (Intron, Korea). The composition for the synthesis of the respective sgR-DNA from the double-stranded U6 promoter and the oligonucleotide is as follows: 1 [mu] M U6_fwd_primer (SEQ ID NO: 79), 1 [mu] M double- stranded U6 promoter 1 [ 1 [mu] M gene_gRNA (SEQ ID NO: 82-94), 1 [mu] M gene_donor_rev (SEQ ID NO: 40-52), 10 [mu] Pfu polymerase master mix (intron) The mixture of the composition was amplified through the following PCR reactions: initial denaturation at 95 ° C for 5 minutes; Subsequently, 20 cycles of denaturation at 95 DEG C for 30 seconds, annealing at 58 DEG C for 30 seconds, and extension at 72 DEG C for 30 seconds; And final extension at 72 ° C for 5 minutes.

조립된 컨스트럭트는 2% 아가로스 젤에서 분리하고, MinElute Gel Extraction Kit(Qiagen, Germany)에서 정제하였다. The assembled construct was separated from 2% agarose gel and purified on a MinElute Gel Extraction Kit (Qiagen, Germany).

(대장균 세포 배양 및 전기천공)(E. coli cell culture and electroporation)

대장균 균주 EcHB3(EcNR2 derivative; inactivation of cat, bla, galK, malK by MAGE, the sequences of targeting oligonucleotides are from Wang et al.)는 HB Kim으로부터 얻고, 적당한 항생물질(Kanamycin, 30 ㎍/mL; 및 spectinomycin, 100 ㎍/mL)이 첨가된 LB 또는 LB 아가 플레이트에서 30℃에서 배양하였다. 1mM의 IPTG를 사용하여 lac 프로모터를 유도하였다. E. coli strain EcHB3 (EcNR2 derivative;. Inactivation of cat, bla, galK, malK by MAGE, the sequences of targeting oligonucleotides are from Wang et al) obtains from HB Kim, appropriate antibiotics (Kanamycin, 30 ㎍ / mL; and spectinomycin , 100 [mu] g / mL) was added at 30 [deg.] C in LB or LB agar plates. The lac promoter was induced using 1 mM IPTG.

전기천공은 Bio-Rad Gene Pulser를 사용하여 수행하였다. pN249 또는 pET-Cas9 플라스미드를 전기천공할 때, 세포는 OD600=~0.8될 때까지 30℃에서 배양하였다. 15000 rpm으로 1분 동안 원심분리하여 1mL의 세포를 수확하였다. 1mL의 냉장 ddH2O로 펠렛을 2회 세척하고, 50㎕의 적당한 플라스미드와 함께 재현탁하였다. 1-mm 갭 큐벳에서 세포 상등액에 1.8kV의 펄스를 주어 전기천공하고, 항생물질이 없는 LB 배지에 첨가하고, 3시간 동안 회복시킨 후 적당한 항생물질이 첨가된 LB로 옮겼다. Electroporation was performed using a Bio-Rad Gene Pulser. When pN249 or pET-Cas9 plasmids were electroporated, cells were incubated at 30 ° C until OD 600 = ~ 0.8. 1 mL of cells were harvested by centrifugation at 15000 rpm for 1 minute. The pellet was washed twice with 1 mL of cold ddH 2 O and resuspended with 50 μl of the appropriate plasmid. In a 1-mm gap cuvette, the cell supernatant was electroporated with a pulse of 1.8 kV, added to LB medium without antibiotics, restored for 3 hours and transferred to LB supplemented with appropriate antibiotics.

sgR-DNA 또는 선형 DNA 단편의 전기천공을 위해, IPTG 유도성 프로모터(pT7lacO promoter)에 의해 조절된 Cas9 또는 T7 중합효소를 발현하도록 세포를 1mM의 IPTG의 존재에서 키웠다. 지수기 중간(OD600=~0.8)에 42℃에서 15분 동안 세포에 열-쇼크를 가해 열 유도성 프로모터(pL promoter)에 의해 조절되는 λ-red 재조합 시스템이 발현되도록 하였다. 그리고 나서, 1mL의 세포를 수확하고, ddH2O로 2회 세척하고 나서, 0.1μM 또는 1μM의 선형 DNA 단편을 펄스하였다. 조작 효율을 확인하기 위해 표적 영역 증폭을 위해 전기천공을 수행한 후 세포를 오버나이트 동안 배양하였다. For electroporation of sgR-DNA or linear DNA fragments, cells were grown in the presence of 1 mM IPTG to express Cas9 or T7 polymerase modulated by the IPTG inducible promoter (pT7lacO promoter). The cells were heat-shocked at mid-exponential (OD 600 = ~ 0.8) for 15 min at 42 ° C to allow expression of the λ-red recombination system regulated by a heat-inducible promoter (pL promoter). Then, 1 mL of cells were harvested, washed twice with ddH 2 O, and then pulsed with 0.1 μM or 1 μM of linear DNA fragments. To confirm the manipulation efficiency, electroporation was performed to amplify the target region, and the cells were incubated overnight.

(인간 세포 배양 및 (Human cell culture and 트랜스펙션Transfection ))

10% 열에 의해 불활성화된 우태아혈청(Gibco/Life Technologies) 및 1% 페니실린/스트렙토마이신(Gibco/Life Technologies)이 첨가된 Dulbecco's modified Eagle medium(Gibco/Life Technologies, USA)에서 37℃, 5% CO2의 가습 조건에서 HEK 293T 세포를 배양하였다. 트랜스펙션 전날에, 세포를 6-웰 플레이트 또는 100-mm 배양접시에서 플레이팅하였다. (5%) in Dulbecco's modified Eagle medium (Gibco / Life Technologies, USA) supplemented with 10% heat-inactivated fetal bovine serum (Gibco / Life Technologies) and 1% penicillin / streptomycin HEK 293T cells were cultured under the humidifying condition of CO 2 . On the day before transfection, cells were plated in 6-well plates or 100-mm culture dishes.

단일 위치 교정 실험을 위해, 제조업체의 설명서에 따라 Lipofectamine 3000(Invitrogen, USA)를 사용하여 1.6㎍의 sgR-DNA 및/또는 0.8㎍의 pCas9-GFP를 세포에 트랜스펙션 시켰다. For single-site calibration experiments, 1.6 μg of sgR-DNA and / or 0.8 μg of pCas9-GFP were transfected into cells using Lipofectamine 3000 (Invitrogen, USA) according to the manufacturer's instructions.

다중 위치 교정 실험을 위해, 10㎍의 sgR-DNA 및 5㎍의 pCas9-GFP를 세포에 트랜스펙션 시켰다. For multi-site calibration experiments, 10 ug of sgR-DNA and 5 ug of pCas9-GFP were transfected into the cells.

(( 플로우Flow 사이토메트리Saitometry 분석) analysis)

pCas9-GFP and sgR-DNA library로 트랜스펙션 후 48시간에 BD-FACS Aria II or III instrument(BD Biosciences, USA)를 이용하여 HEK 293T 세포를 선별하였다. 간단히 말해, 배양된 세포를 트립신 처리하고, 원심분리하여 펠렛을 얻고 PBS로 세척하였다. 펠렛은 소팅 버퍼(2mM EDTA, 25mM HEPES, 및 1% 소혈청 알부민을 포함하는 PBS)로 재현탁하여, 최종 밀도가 3-4×106 cells/mL이 되도록 하였다. 마지막으로, 세포 스트레이너를 통해 세포를 여과하여 단일-세포 현탁액을 제조하였다. HEK 293T cells were selected using BD-FACS Aria II or III instrument (BD Biosciences, USA) 48 hours after transfection with pCas9-GFP and sgR-DNA library. Briefly, cultured cells were trypsinized and centrifuged to obtain pellets and washed with PBS. The pellet is resuspended to a (PBS containing 2mM EDTA, 25mM HEPES, and 1% bovine serum albumin) sorting buffer, and the final density to be 3-4 × 10 6 cells / mL. Finally, cells were filtered through a cell strainer to prepare a single-cell suspension.

(클론 증식 및 유전자형 분석)(Clonal proliferation and genotype analysis)

정의된 돌연변이를 가진 클론 세포 주를 만들기 위해, 트랜스펙션 후 48시간에 pCas9-GFP 및 sgR-DNA로 트랜스펙션된 GFP-양성 세포를 완전 배지를 포함하는 96-웰 플레이트의 웰에 단일 세포 플레이팅 하였다. 세포를 2-3주간 키우고 나서, 클론 세포 주로부터 유전체 DNA를 추출하였다. 표적 영역은 PCR에 의해 증폭하고, Sanger 시퀀싱을 이용하여 유전자형을 분석하였다. GFP-positive cells transfected with pCas9-GFP and sgR-DNA at 48 hours post-transfection were seeded into wells of a 96-well plate containing complete medium to form clones with defined mutations Plated. Cells were grown for 2-3 weeks and then genomic DNA was extracted from the clonal cell line. The target region was amplified by PCR and genotyped using Sanger sequencing.

(유전체 DNA 분리)(Separation of genomic DNA)

유전체 DNA는 트랜스펙션 후 또는 DNeasy Blood and Tissue Kit (Qiagen, Germany)를 이용한 FACS 분석 후 48시간에 분리하였다. 세포를 수확하고, 세포 펠렛을 200㎕의 PBS로 재현탁하고, proteinase K로 용해시켰다. 세포 용해물을 스핀 컬럼에 로딩하고, 2회 세척하고, 뉴클레아제-프리 워터로 용출하였다. 분리된 유전체 DNA는 Qubit dsDNA BR Assay Kit(Life Technologies, USA)를 이용하여 정량하였다.Genomic DNA was isolated after transfection or 48 hours after FACS analysis using DNeasy Blood and Tissue Kit (Qiagen, Germany). The cells were harvested, the cell pellet resuspended in 200 [mu] l of PBS and lysed with proteinase K. [ The cell lysate was loaded onto a spin column, washed twice and eluted with nuclease-free water. The isolated genomic DNA was quantitated using Qubit dsDNA BR Assay Kit (Life Technologies, USA).

(대장균 실험에서 시퀀싱에 의한 표적 수식의 확인)(Confirmation of target expression by sequencing in E. coli experiment)

PCR 프라이머는 PCR 산물의 크기가 대량 200bp가 되는 표적 영역을 증폭하도록 디자인하였다(표 1). 도너 DNA의 포획을 막기 위해, 프라이머는 수식을 위해 만들어진 코돈에서 충분히 떨어진 유전체 영역을 포획하도록 디자인하였다. The PCR primers were designed to amplify the target region where the size of the PCR product was 200bp in mass (Table 1). To prevent capture of the donor DNA, the primer was designed to capture a dielectric region sufficiently far away from the codon made for the modification.

대장균 유전체에서 galK 유전자 부분만 PCR 증폭하기 위한 PCR 조성은 다음과 같다: 대장균 5㎕, 10μM galK_fwd_primer(SEQ ID NO. 95) 1㎕, 10μM galK_rev_primer(SEQ ID NO. 96) 1㎕, 2×KAPA HiFi HotStart ReadyMix 10㎕, 증류수 3㎕The PCR composition for PCR amplification of the galK gene in the E. coli genome was as follows: 1 μl of E. coli, 1 μl of 10 μM galK_fwd_primer (SEQ ID NO. 95), 1 μl of 10 μM galK_rev_primer (SEQ ID NO. 96), 2 × KAPA HiFi 10 μl of HotStart ReadyMix, 3 μl of distilled water

다중 위치 교정 확인을 위해서는 대장균 유전체에서 11개 위치에 대한 각각의 aroX_fwd_primer, aroX_rev_primer 쌍(SEQ ID NO. 41-62)을 이용하여 PCR 증폭하였고 PCR 조성은 다음과 같다: 대장균 5㎕, 10μM aroX_fwd_primer(SEQ ID NO. 97-107) 1㎕, 10μM aroX_rev_primer(SEQ ID NO. 108-118) 1㎕, 2×KAPA HiFi HotStart ReadyMix 10㎕, 증류수 3㎕PCR was amplified using the respective aroX_fwd_primer and aroX_rev_primer pairs (SEQ ID NO: 41-62) for 11 positions in the E. coli genome. The PCR composition was as follows: Escherichia coli 5 μl, 10 μM aroX_fwd_primer (SEQ 1 μl, 10 μM aroX_rev_primer (SEQ ID NO: 108-118) 1 μl, 2 × KAPA HiFi HotStart ReadyMix 10 μl, distilled water 3 μl

표적 영역은 다음의 사이클링 조건하에서 Kapa HiFi HotStart ReadyMix(Kapa Biosystems, USA)를 이용하여 증폭되었다: 95℃에서 3분간 초기 변성; 이어서, 95℃에서 20초간 변성, 60℃에서 15초간 어닐링, 72℃에서 15초간 연장을 27 사이클; 및 72℃에서 1분간 최종 연장. The target region was amplified using Kapa HiFi HotStart ReadyMix (Kapa Biosystems, USA) under the following cycling conditions: initial denaturation at 95 ° C for 3 minutes; Subsequently, denaturation at 95 DEG C for 20 seconds, annealing at 60 DEG C for 15 seconds, and extension at 72 DEG C for 15 seconds were 27 cycles; And final extension at 72 ° C for 1 minute.

PCR 산물을 모으고 SPARK DNA Sample Prep Kit(Enzymatics, USA)로 준비하고 나서 마지막으로 HiSeq 2500 system(Illumina, USA)를 사용하여 차세대 시퀀싱을 하여 11개 위치에 대한 유전자 서열 정보를 얻었다.PCR products were collected and prepared with SPARK DNA Sample Prep Kit (Enzymatics, USA). Finally, genome sequence information was obtained for 11 sites by next sequencing using HiSeq 2500 system (Illumina, USA).

(인간 세포 실험에서 시퀀싱에 의한 표적 수식의 확인)(Confirmation of target expression by sequencing in human cell experiments)

단일 위치 교정 실험에서, PCR 산물의 크기가 대략 400bp가 되는 표적 영역을 증폭하도록 PCR 프라이머를 디자인 하였다(표 1). In a single position calibration experiment, a PCR primer was designed to amplify a target region of approximately 400 bp in size of the PCR product (Table 1).

다중 위치 교정 실험에서, 포획 영역은 치환 위치의 100-134 bp 업스트림에서 시작하여 100-129 bp 다운스트림에 이른다(표 1). 도너 DNA의 포획을 막기 위해, 프라이머는 수식을 위해 만들어진 코돈에서 충분히 떨어진 유전체 영역을 포획하도록 디자인하였다. In a multiple position calibration experiment, the capture region starts at 100-134 bp upstream of the substitution site and reaches 100-129 bp downstream (Table 1). To prevent capture of the donor DNA, the primer was designed to capture a dielectric region sufficiently far away from the codon made for the modification.

단일 위치 교정 확인을 위해 변이가 도입된 해당 유전자 부분만 각각의 프라이머 쌍(SEQ ID NO. 119-124)를 이용하여 PCR 증폭을 수행하였으며 PCR 조성은 다음과 같다: 200ng의 유전체 DNA 1㎕, 10μM gene_fwd_primer(SEQ ID NO. 119-121) 1㎕, 10μM gene_rev_primer(SEQ ID NO. 122-124) 1㎕, 2×KAPA HiFi HotStart ReadyMix 10㎕, 증류수 3㎕PCR amplification was carried out using the respective primer pairs (SEQ ID NO. 119-124) only for the corresponding gene part in which the mutation was introduced for single position calibration confirmation. The PCR composition was as follows: 1 μl of 200 ng of genomic DNA, 10 μM 1 [mu] l of 10 [mu] M gene_rev_primer (SEQ ID NO: 122-124), 2 [mu] KAPA HiFi HotStart ReadyMix 10 [mu] l, distilled water 3 [

다중 위치 교정 확인을 위해 변이가 도입된 10개 위치에 해당하는 각각의 프라이머 쌍(SEQ ID NO. 125-144)을 이용하여 PCR 증폭을 수행하였으며 PCR 조성은 다음과 같다: 200ng의 유전체 DNA 1㎕, 10μM gene_fwd_primer(SEQ ID NO. 125-134) 1㎕, 10μM gene_rev_primer(SEQ ID NO. 135-144) 1㎕, 2×KAPA HiFi HotStart ReadyMix 10㎕, 증류수 3㎕PCR amplification was performed using the respective primer pairs (SEQ ID NO: 125-144) corresponding to the 10 positions at which the mutations were introduced for confirmation of the multiple position. The PCR composition was as follows: 1 μl of 200 ng of genomic DNA , 1 μl of 10 μM gene_fwd_primer (SEQ ID NO. 125-134), 10 μM gene_rev_primer (SEQ ID NO: 135-144), 2 μl KAPA HiFi HotStart ReadyMix 10 μl, distilled water 3 μl

표적 영역은 다음의 사이클링 조건하에서 Kapa HiFi HotStart ReadyMix(Kapa Biosystems, USA)를 이용하여 증폭되었다: 95℃에서 3분간 초기 변성; 이어서, 95℃에서 20초간 변성, 60℃에서 15초간 어닐링, 72℃에서 15초간 연장을 27 사이클; 및 72℃에서 1분간 최종 연장.The target region was amplified using Kapa HiFi HotStart ReadyMix (Kapa Biosystems, USA) under the following cycling conditions: initial denaturation at 95 ° C for 3 minutes; Subsequently, denaturation at 95 DEG C for 20 seconds, annealing at 60 DEG C for 15 seconds, and extension at 72 DEG C for 15 seconds were 27 cycles; And final extension at 72 ° C for 1 minute.

PCR 산물을 모으고 SPARK DNA Sample Prep Kit(Enzymatics, USA)로 준비하고 나서 마지막으로 HiSeq 2500 system(Illumina, USA)를 사용하여 차세대 시퀀싱을 하여 단일 위치나 10개 위치에 대한 유전자 서열 정보를 얻었다.PCR products were collected and prepared with SPARK DNA Sample Prep Kit (Enzymatics, USA). Finally, sequencing was performed using a HiSeq 2500 system (Illumina, USA) to obtain gene sequence information for single site or 10 sites.

(( 오프off -표적 효과 분석)- Target effect analysis)

MIT CRISPR Design Tool(http://crispr.mit.edu/) 및 E-CRISP software(http://www.e-crisp.org/E-CRISP/)를 사용하여 EGFR 표적 서열에 대해 8개의 잠재적 오프-표적 절단 부위를 선별하였다.Using the MIT CRISPR Design Tool (http://crispr.mit.edu/) and E-CRISP software (http://www.e-crisp.org/E-CRISP/), eight potential Off-target cleavage sites were selected.

MIT CRISPR Design Tool로부터, 121개의 잠재적 오프-표적을 얻었고, 스코어(OT-1, 2, 3, 및 4)에 근거하여 4개의 최상위 오프-표적을 선별하였다.From the MIT CRISPR Design Tool, 121 potential off-targets were obtained, and four top off-targets were selected based on the scores (OT-1, 2, 3, and 4).

E-CRISP 소프트웨어를 이용하였을 때, 3에서 인풋 "Tolerated edit distance to the target sequence" parameter를 설정하였다. 17개의 잠재적 오프-표적을 얻었고, Efficacy-Score(E-Score)에 근거하여 4개의 최상위 오프-표적을 선별하였다(OT-5, 6, 7 및 8). 선별된 오프-표적 부위는 표 2에 도시하였다. PCR 프라이머는 PCR 산물의 크기가 155-199 bp이 되도록 오프-표적 부위를 증폭하도록 디자인 하였다(표 1, SEQ NO. 145-160). 오프-표적 영역은 Kapa HiFi HotStart ReadyMix를 이용하여 증폭하였고, 다음의 사이클링 조건에서 수행하였다: 95℃에서 3분간 초기 변성; 이어서, 95℃에서 20초간 변성, 60℃에서 15초간 어닐링, 72℃에서 15초간 연장을 27 사이클; 및 72℃에서 1분간 최종 연장. When using E-CRISP software, we set the parameter "Tolerated edit distance to the target sequence" parameter in 3. Seventeen potential off-targets were obtained and four top off-targets were selected based on Efficacy-Score (E-Score) (OT-5, 6, 7, and 8). Selected off-target sites are shown in Table 2. The PCR primers were designed to amplify the off-target region so that the size of the PCR product was 155-199 bp (Table 1, SEQ IDs 145-160). The off-target area was amplified using Kapa HiFi HotStart ReadyMix and performed under the following cycling conditions: initial denaturation at 95 ° C for 3 minutes; Subsequently, denaturation at 95 DEG C for 20 seconds, annealing at 60 DEG C for 15 seconds, and extension at 72 DEG C for 15 seconds were 27 cycles; And final extension at 72 ° C for 1 minute.

앰플리콘을 모으고, SPARK™ DNA Sample Prep Kit (Enzymatics, USA)로 준비하고 나서 마지막으로 HiSeq 2500 system(Illumina, USA)를 사용하여 시퀀싱하였다.Amplicons were collected and prepared using the SPARK ™ DNA Sample Prep Kit (Enzymatics, USA) and finally sequenced using the HiSeq 2500 system (Illumina, USA).

(데이터 가공 및 분석)(Data processing and analysis)

샘플은 Illumina HiSeq 2500 system에서 시퀀싱하였다. 저급 말단(phred quality score < 25)을 잘라내고, 평균 phred quality < 20를 갖는 판독물을 제거하였다. 대장균 실험에서 재조합 효율을 동정하기 위해, 계획된 수식을 갖는 판독물을 계수하였다. 인간 세포 실험에서, Novoalign V2.07.18(Novocraft Technologies, Malaysia)를 사용하여 참조 인간 유전체 서열(hg19)에 판독물을 배열하고, 예상 절단 부위(즉, PAM 서열의 3bp 업스트림)의 ±10 bp 이내 삽입 또는 결손을 갖는 판독물을 계수하였다. 치환 효율을 분석하기 위해, 수식 서열을 포함하는 판독물을 계수하였다. Samples were sequenced on an Illumina HiSeq 2500 system. The low end (phred quality score <25) was cut out and the readings with an average phred quality <20 were removed. To identify the recombination efficiency in the E. coli experiment, the readings with the planned formula were counted. In human cell experiments, the readouts were arranged in the reference human genomic sequence (hg19) using Novoalign V2.07.18 (Novocraft Technologies, Malaysia) and inserted within ± 10 bp of the predicted cleavage site (ie, 3 bp upstream of the PAM sequence) Or missing readings were counted. To analyze the substitution efficiency, the readings containing the formula sequences were counted.

<< 실시예Example 2>  2> sgRsgR -DNA를 통한 대장균의 단일 위치 유전체 교정의 확인Identification of a single-site dielectric correction of E. coli via DNA

실시예 1에서 제조된 sgR-DNA가 유전체를 조작할 수 있는지 입증하기 위해, NHEJ 경로가 없는 대장균에서 sgR-DNA를 시험하였다. 본 발명자들은 galK OFF EcNR2 균주에서 야생형 서열로 돌아가기 위해 galK gene의 성숙전 종결 코돈(I239*)을 표적으로 삼았다. 이를 위해, T7 프로모터의 조절 하에서 발현되는 sgRNA-DNA, 표적 유전체 위치에 상보적인 20 nt의 sgRNA 스페이서, 및 야생형 서열(TAA에서 TAT로)을 포함하는 63 nt 또는 93 nt 또는 123 nt의 도너 DNA; 및 교정 후 다시-절단되는 것을 억제하기 위한 PAM 수식을 디자인하였다(도 6). 그리고 나서, 디자인된 sgR-DNA를 PCR 조립을 통해 구축하였다(도 4). To demonstrate that the sgR-DNA prepared in Example 1 can manipulate the genome, sgR-DNA was tested in E. coli without the NHEJ pathway. We targeted the pre-maturation codon (I239 *) of the galK gene to return to the wild-type sequence in the galK OFF EcNR2 strain. For this, donor DNA of 63 nt or 93 nt or 123 nt containing the sgRNA-DNA expressed under the control of the T7 promoter, 20 nt of the sgRNA spacer complementary to the target dielectric site, and the wild-type sequence (TAA to TAT); And a PAM equation was designed to inhibit re-breaking after calibration (Fig. 6). The designed sgR-DNA was then constructed by PCR assembly (Figure 4).

sgR-DNA 기반 조작 시스템을 작동시키기 위해, galK OFF 세포에 T7 중합효소 발현 벡터(pN249) 및 Cas9 발현 벡터(pET-Cas9)를 전기천공시키고 나서, 전기천공을 통해 sgR-DNA를 도입하였다(도 6). To operate the sgR-DNA based manipulation system, galK OFF cells were electroporated with T7 polymerase expression vector (pN249) and Cas9 expression vector (pET-Cas9) and then electroporation to introduce sgR-DNA 6).

한편, sgRNA(여기서, "선형 sgRNA"라 함) 및 ssODN을 발현하는 선형 이중가닥 DNA를 이용하는 다른 전달 방법의 효율을 시험하였다(도 7). On the other hand, the efficiency of other delivery methods using ssRNA (referred to herein as "linear sgRNA") and linear double stranded DNA expressing ssODN was tested (Fig. 7).

HR로 인한 유전자 교정의 빈도는 도너의 길이에 따라 증가하였다(도 8). 또한, 123 nt의 도너를 사용했을 때, sgR-DNA를 이용한 실험에서 11%의 효율(세 차례 실험의 평균)이 관찰되나, ssODN과 함께 선형 sgRNA를 이용하였을 때는 낮은 교정 효율(4%, 세 차례 실험의 평균)이 관찰되었다(도 9). 이들 결과는 본 발명의 선형 컨스트럭트가 대장균에서 유전체를 수식하는데 이용될 수 있음을 입증하는 것이다. The frequency of genetic corrections due to HR increased with donor length (Fig. 8). In addition, when 123 nt donor was used, 11% efficiency (average of three experiments) was observed in sgR-DNA experiments, but when using linear sgRNA with ssODN, low calibration efficiency (4% Average of the turn experiments) was observed (Figure 9). These results demonstrate that the linear construct of the present invention can be used to modify dielectrics in E. coli.

<< 실시예Example 3>  3> sgRsgR -DNA를 통한 대장균의 다중 위치 유전체 교정의 확인- Identification of multi-site genetic corrections of E. coli through DNA

다음으로, sgR-DNA 컨스트럭트가 다중 위치 유전체 교정을 향상시키는데 적용될 수 있는지를 분석하였다. 방향족 아미노산의 생합성을 유도하는 유전체 전체에 걸쳐 분포된 11개의 aro 유전자(aroA, aroB, aroC, aroD, aroE, aroF, aroG, aroK, aroL, aroM, 및 aroP)를 표적으로 선별하고, 123 nt의 도너 DNA를 디자인하고 구축하였다. 그리고 나서, 11개의 aro 유전자를 표적으로 하는 sgR-DNA 라이브러리의 풀을 세포에 전달하고, 단일 조작과 같은 과정에 따라 효율을 조사하였다(도 10). 대조군으로, sgR-DNA에서 sgRNA 및 도너 DNA를 결합한 효과를 조사하기 위해 ssODN과 함께 선형 sgRNA로 구성된 라이브러리의 풀을 시험하였다. Next, we analyzed whether the sgR-DNA construct can be applied to improve multi-site dielectric calibration. Screening with a 11 aro gene targeting (aroA, aroB, aroC, aroD , aroE, aroF, aroG, aroK, aroL, aroM, and aroP) distributed all over the dielectric entire leading to the biosynthesis of aromatic amino acids, 123 nt Donor DNA was designed and constructed. Then, the pool of the sgR-DNA library targeting 11 aro genes was transferred to the cells, and the efficiency was examined according to the same procedure as the single operation (Fig. 10). As a control, pools of libraries composed of linear sgRNAs with ssODN were examined to examine the effect of combining sgRNA and donor DNA in sgR-DNA.

실험 결과, 모든 표적 위치에서 HR 사건이 관찰되었고(도 11, sgR-DNA의 경우 평균 2.5% 효율을 나타낸 반면, 선형 sgRNA 및 ssODN을 이용한 경우 극히 낮은 교정-효율(0.19%)이 관찰되었다. 이러한 효율 감소는 알로스테릭 억제와 유사하게 설명할 수 있을 것이다. 비록 한 개의 유전자 위치가 교정되나, 세포는 다른 유전자(알로스테릭 유전자 위치)를 표적으로 하는 남아있는 sgRNA에 의해 죽을 수 있다. 본 발명자들은 선형 sgRNA 및 ssODN을 이용한 교정 방법이 훨씬 민감하게 영향을 받는 것으로 추측하였다. 왜냐하면, 효율이 낮고 짝이 없는 sgRNA 및 ssODN이 우세한 반면, sgR-DNA는 항상 sgRNA 및 매칭된 도너 DNA를 수행하기 때문이다. Experimental results showed that HR events were observed at all target sites (Fig. 11, sgR-DNA showed an average 2.5% efficiency whereas linear sgRNA and ssODN showed very low correction-efficiency (0.19%). The reduction in efficiency may be explained by similarity to allosteric inhibition, although one gene position is corrected, but the cell can be killed by the remaining sgRNA targeting the other gene (allosteric gene location). The inventors hypothesized that the calibration method using linear sgRNA and ssODN would be much more sensitive because the sgRNA and ssODN were dominant with low efficiency and unpaired sgR-DNA always perform sgRNA and matched donor DNA Because.

<< 실시예Example 4>  4> sgRsgR -DNA를 통한 인간 세포의 단일 위치 유전체 교정의 확인Identification of a single-site dielectric correction of human cells via DNA

포유동물 세포에서 의도된 SNV 발생을 위한 sgR-DNA를 확립하기 위해, 폐암에서 발암 변이(driver mutation)인, 야생형 Leu858의 Arg858으로의 아미노산 변화에 해당하는 EGFR의 염기 치환을 표적으로 하였다. 이를 위해, 인간 전사 프로모터에 의해 조절되는 sgR-DNA로 바꾸고(도 12), 3개는 계획된 아미노산 변화(즉, p.L858R)를 도입하고, 다른 하나는 대장균 조작과 유사한 PAM 수식을 도입하기 위한 4개의 미스매치 서열을 포함하는 도너 DNA를 디자인하였다(도 13). 그리고 나서, PCR 조립을 통해 sgR-DNA를 구축하고(도 5, HEK293T 세포에 전달하고, NGS를 통해 효율을 조사하였다. 대조군으로, sgRNA 및 ssODN을 발현하는 선형 이중가닥 DNA를 이용하는 전달 방법의 효율을 시험하였다(도 14). 그 외에, GFP를 이용하여 강화된 Cas9이 도입된 세포에 대해 FACS 시스템을 이용하였다. To establish sgR-DNA for the intended SNV generation in mammalian cells, the base substitution of EGFR corresponding to the amino acid change of wild type Leu858 to Arg858, a driver mutation in lung cancer, was targeted. To this end, we transformed into sgR-DNA regulated by the human transcriptional promoter (Figure 12), three introduced a planned amino acid change (i.e., p.L858R) and the other introduced a PAM formula similar to E. coli manipulation Donor DNA containing four mismatched sequences was designed (Figure 13). Then, sgR-DNA was constructed by PCR assembly (Fig. 5, transferred to HEK293T cells, and the efficiency was examined by NGS. As a control group, efficiency of the transfer method using linear double-stranded DNA expressing sgRNA and ssODN (Fig. 14). In addition, a FACS system was used for cells transfected with Cas9 using GFP.

NGS 결과, sgR-DNA에 의한 HR-매개된 치환은 0.6%의 수율을 나타내어 sgR-DNA가 포유동물 세포에서 HR 반응을 매개함을 입증하였다(도 15). 대장균 교정의 경우와는 달리, NHEJ에 의한 삽입-결손(indels)이 우세하여 23.9% 정도로 높은 효율을 가지고 있었다(도 16). FACS에 의해 강화된 Cas9-도입된 세포에서, 선별되지 않은 세포와 비교하여 sgR-DNA에 의해 교정된 세포의 증가된 비율(치환: 2.0%)이 관찰되었다. 유사하게, 삽입-결손 효율 역시 증가하였다. As a result of NGS, HR-mediated substitution by sgR-DNA showed a yield of 0.6%, demonstrating that sgR-DNA mediates the HR response in mammalian cells (Fig. 15). Unlike the case of Escherichia coli correction, NHEJ-induced indels were predominant and had a high efficiency of 23.9% (FIG. 16). In the Cas9-introduced cells enhanced by FACS, an increased ratio of cells calibrated by sgR-DNA (substitution: 2.0%) was observed compared to the non-selected cells. Similarly, insertion-defect efficiency was also increased.

추가로, Sanger 시퀀싱을 통해 FACS-분리된 단일 클론에서 표적 유전자 위치의 유전자형을 확인하였다(도 17). 선별된 43개의 클론 중에서, 2개의 클론이 이질 대립유전자(hetero allele)에서 미스매치 돌연변이를 가지고 있었다(SNV 발생율의 2.3%); 돌연변이 클론 #1(p.L858R 변경된 대립유전자 및 야생형 대립유전자를 전달) 및 돌연변이 클론 #2(p.L858R 변경된 대립유전자 및 12-bp 결손이 있는 대립유전자를 전달).In addition, genotyping of the target gene position was confirmed in a FACS-isolated monoclone through Sanger sequencing (Figure 17). Of the 43 clones selected, two clones had a mismatch mutation in the heterozygote allele (2.3% of the SNV incidence); Mutant clone # 1 (p.L858R delivers altered alleles and wild-type alleles) and mutant clone # 2 (p.L858R delivers alleles with altered alleles and 12-bp deletions).

<< 실시예Example 5>  5> 오프off -표적 절단 효율 시험- Target cutting efficiency test

2개의 오프-표적 예측 툴에서 선별된 sgRNA의 8개의 잠재적인 오프-표적 부위(OT)에 대해 NGS를 통해 확인하였다. The eight potential off-target sites (OTs) of sgRNAs screened in two off-target prediction tools were identified through NGS.

NGS 데이터에서, 각각의 염기 위치에서 삽입-결손의 발생 및 삽입-결손 크기의 분포를 플로팅하여 측정된 시퀀싱 에러로 표시된 단지 삽입-결손의 basal rate(<0.04%)이 관찰되었다(도 18, 19 및 20). 삽입-결손은 오프-표적(off-target) 부위의 주변 내에 무작위로 분포해 있으나, 삽입-결손은 표적 부위의 예상 절단 부위(즉, PAM 서열의 3bp 업스트림)에서 빈번하게 일어난다. 더욱이, 오프-표적 부위에서 대다수의 삽입-결손은 길이가 1bp이나, 표적 부위에서 삽입-결손의 크기는 길이가 수십 bp 이상이었다. In the NGS data, basal rate (<0.04%) of insertion-deletion as indicated by the measured sequencing error was observed by plotting the occurrence of insert-defect and the size of insert-defect size at each base position And 20). Insertion-defects are randomly distributed within the periphery of the off-target site, but insertion-defects frequently occur in the expected site of cleavage at the target site (i. E., 3 bp upstream of the PAM sequence). Furthermore, the majority of insert-defects in the off-target region were 1 bp in length, but the size of the insert-defect in the target region was more than tens of bp in length.

sgR-DNA 기반 방법의 효율에서 변이를 시험하기 위해, 추가로 각각 아미노산 돌연변이 p.V600E 및 p.G12C에 해당하는 BRAF 유전자 또는 KRAS 유전자의 염기 치환을 표적으로 하여 시험하였다. In order to test mutations in the efficiency of the sgR-DNA-based method, further, base substitutions of the BRAF gene or the KRAS gene corresponding to the respective amino acid mutations p.V600E and p.G12C were tested.

실험 결과, 각 유전자 위치에서 치환 효율은 0.19% 및 0.34%이었다(도 21 및 22). 이 결과를 근거로 하여, 임의의 치환 돌연변이가 sgR-DNA에 의해 도입될 수 있음을 확인하였다. As a result, substitution efficiencies at the respective gene positions were 0.19% and 0.34% (FIGS. 21 and 22). Based on these results, it was confirmed that any substitution mutations could be introduced by sgR-DNA.

<< 실시예Example 6>  6> sgRsgR -DNA를 통한 인간 세포의 다중 위치 유전체 교정의 확인- Verification of multi-site genetic correction of human cells via DNA

실시예 4에서 제조된 sgR-DNA가 포유동물 세포의 다중 위치 교정으로 확장할 수 있는지를 시험하였다. sgR-DNA 기반 방법을 암 체세포 변이 데이터베이스(COSMIC)에서 높은 빈도에 근거하여 선별된 10개의 유전자 위치로 확장하였다. 다양한 암 종류와 연관된 선별된 10개의 돌연변이는 CTNNB1 p.T41A, DNMT3A p.R882H, GNAQ p.Q209P, GNAS p.R201C, HRAS p.Q61L, IDH2 p.R140Q, NOTCH1 p.R1598P, NRAS p.G12D, PIK3CA p.E545K 및 TP53 p.R273H(도 23)이었다. 본 발명자들은 개별의 sgR-DNA를 구축하고, sgR-DNA 라이브러리를 생산하기 위해 수집하였다. 또한, sgR-DNA 기반 유전체 교정, 몇 가지 대조군 실험을 수행하고, NGS를 통해 유전자 위치를 분석하였다.It was tested whether the sgR-DNA prepared in Example 4 could be extended to multi-site calibration of mammalian cells. The sgR-DNA-based method was extended to 10 selected gene loci based on high frequencies in the cancer somatic mutation database (COSMIC). Ten selected mutations associated with various cancer types are CTNNB1 p.T41A, DNMT3A p.R882H, GNAQ p.Q209P, GNAS p.R201C, HRAS p.Q61L, IDH2 p.R140Q, NOTCH1 p.R1598P, NRAS p.G12D , PIK3CA p.E545K and TP53 p.R273H (Fig. 23). We constructed individual sgR-DNA and collected to produce the sgR-DNA library. In addition, sgR-DNA-based genome corrections and several control experiments were performed and gene location was analyzed via NGS.

NGS 결과, sgR-DNA 기반 방법으로부터 총 0.28%의 치환이 나타났고, FACS-선별된 세포 집단에서 더 높은 치환 효율(0.97%)을 나타냈다(도 24). 다중 실험 결과는 비록 sgRNA 및 ssODN을 이용한 방법의 효율이 여전히 sgR-DNA 보다는 더 높으나, sgR-DNA가 다중 위치 교정을 위해 이용될 수 있음을 시사한다. 교정되도록 설계된 유전자 위치의 수가 증가할 때 여전히 sgR-DNA가 유리할 것으로 예상된다. 왜냐하면, ssODN의 상대 농도의 감소가 sgRNA 및 ssODNs를 이용할 때 효율 감소를 유발할 것이기 때문이다.NGS resulted in a total of 0.28% displacement from the sgR-DNA based method and a higher substitution efficiency (0.97%) in the FACS-sorted cell population (Fig. 24). Multiple experimental results suggest that sgR-DNA can be used for multiple location correction, although the efficiency of the method using sgRNA and ssODN is still higher than that of sgR-DNA. SgR-DNA is still expected to be advantageous when the number of gene positions designed to be corrected increases. This is because a decrease in the relative concentration of ssODN will cause a decrease in efficiency when using sgRNA and ssODNs.

요약하면, 본 발명은 sgR-DNA 기반 접근이 sgRNA 및 도너 DNA를 인코딩하는 선형 이중가닥 DNA의 전달을 위한 새로운 방법이고, 다중 HR-매개된 유전체 수식을 수행할 수 있음을 입증하였다. 본 발명은 대장균에서 유전체 수식뿐만 아니라 인간 유전체 수식에도 이용될 수 있다. 본 발명의 시스템은 진핵생물 및 원핵생물 둘 다를 교정하기 위한 다재다능한 도구임을 암시한다. 또한, sgR-DNA의 구축은 매우 직접적이고, 작은 선형 DNA 단편을 생산하는 PCR만이 관련된다. 그리고, 단지 2개의 올리고뉴클레오타이드가 필수적인 226nt의 가변 영역을 포괄하기 위한 컨스트럭트로 이용되나, 선행 방법에서는 플라스미드를 위한 2개의 올리고 및 ssODN을 위한 1개의 올리고가 필요하다. 이는 sgRNA 생성 및 도너 DNA 제조를 위한 벡터 클로닝 같은 실험 과정이 필요 없고, 비용을 절감시킨다. 그리고, sgR-DNA 라이브러리의 구축을 위한 프로그램이 가능한 마이크로어레이로부터 절단된 올리고뉴클레오티드 풀을 이용할 수 있을 것으로 예상된다(도 25). In summary, the present invention demonstrates that the sgR-DNA based approach is a new method for the delivery of linear double-stranded DNA encoding sgRNA and donor DNA and is capable of performing multiple HR-mediated genomic modification. The present invention can be used not only in E. coli but also in human genome modification. The system of the present invention is a versatile tool for calibrating both eukaryotes and prokaryotes. In addition, the construction of sgR-DNA is very direct and involves only PCR producing small linear DNA fragments. And although only two oligonucleotides are used as constructs to cover the variable region of 226 nt, which is essential, two oligo for the plasmid and one oligos for the ssODN are required in the preceding method. This eliminates the need for experimental procedures such as sgRNA production and vector cloning for donor DNA production, and reduces costs. It is anticipated that a cleaved oligonucleotide pool can be used from a microarray capable of programming for construction of the sgR-DNA library (Fig. 25).

SEQ ID NO.SEQ ID NO. 명칭designation 서열(5’→ 3’)The sequence (5 '- &gt; 3') 1One galK_spacergalK_spacer GCAGCTTTAACATCTGCCGCGCAGCTTTAACATCTGCCGC 22 aroA_spaceraroA_spacer ATTATTTCGAGCAGCTGGCGATTATTTCGAGCAGCTGGCG 33 aroB_spaceraroB_spacer CGCTGATTGACAATCGGCAACGCTGATTGACAATCGGCAA 44 aroC_spaceraroC_spacer TTTTAATGGATCACCTGTTATTTTAATGGATCACCTGTTA 55 aroD_spaceraroD_spacer GAAATATTATTGCTTATGCCGAAATATTATTGCTTATGCC 66 aroE_spaceraroE_spacer ACTGGATGGCCTGATTCACGACTGGATGGCCTGATTCACG 77 aroF_spaceraroF_spacer GGATCTGAACGGGCAGCTGAGGATCTGAACGGGCAGCTGA 88 aroG_spaceraroG_spacer CAGTTGACGTAACAGAGCATCAGTTGACGTAACAGAGCAT 99 aroK_spaceraroK_spacer TTTCCAGCATGTGAATAATCTTTCCAGCATGTGAATAATC 1010 aroL_spaceraroL_spacer ACAATTGATCGTCTGTGCCAACAATTGATCGTCTGTGCCA 1111 aroM_spaceraroM_spacer ATTGATTGCACGGCTGGCTGATTGATTGCACGGCTGGCTG 1212 aroP_spaceraroP_spacer ATGCGCTTTTACGGCTTTGGATGCGCTTTTACGGCTTTGG 1313 EGFR_spacerEGFR_spacer GTCTTCCGCACCCAGCAGTTGTCTTCCGCACCCAGCAGTT 1414 BRAF_spacerBRAF_spacer GGACAACTGTTCAAACTGATGGACAACTGTTCAAACTGAT 1515 KRAS_spacerKRAS_spacer GATGACTGAATATAAACTTGGATGACTGAATATAAACTTG 1616 CTNNB1_spacerCTNNB1_spacer GAGAGAAGGAGCTGTGGTAGGAGAGAAGGAGCTGTGGTAG 1717 DNMT3A_spacerDNMT3A_spacer GGTCTCCAACATGAGCCGCTGGTCTCCAACATGAGCCGCT 1818 GNAQ_spacerGNAQ_spacer GGGTCGATGTAGGGGGCCAAGGGTCGATGTAGGGGGCCAA 1919 GNAS_spacerGNAS_spacer GCTCAAAGATTCCAGAAGTCGCTCAAAGATTCCAGAAGTC 2020 HRAS_spacerHRAS_spacer GCTGGATACCGCCGGCCAGGGCTGGATACCGCCGGCCAGG 2121 IDH2_spacerIDH2_spacer GCCGGAAGACAGTCCCCCCCGCCGGAAGACAGTCCCCCCC 2222 NOTCH1_spacerNOTCH1_spacer GTCACGCTTGAAGACCACGTGTCACGCTTGAAGACCACT 2323 NRAS_spacerNRAS_spacer GACTGAGTACAAACTGGTGGGACTGAGTACAAACTGGTGG 2424 PIK3CA_spacerPIK3CA_spacer GGCTCAGTGATTTCAGAGAGGGCTCAGTGATTTCAGAGAG 2525 TP53_spacerTP53_spacer GCTGGGACGGAACAGCTTTGGCTGGGACGGAACAGCTTTG 2626 galK_63_donor_revgalK_63_donor_rev CGCGATTTGTGCGCCGTCGAGCGGCAGATGATAAAGCTGCTGCAATACGGTTCCGACCGCGACCGCGATTTGTGCGCCGTCGAGCGGCAGATGATAAAGCTGCTGCAATACGGTTCCGACCGCGAC 2727 galK_93_donor_revgalK_93_donor_rev TCCGCTTCACTGGAAGTCGCGGTCGGAACCGTATTGCAGCAGCTTTATCATCTGCCGCTCGACGGCGCACAAATCGCGCTTAACGGTCAGGAATCCGCTTCACTGGAAGTCGCGGTCGGAACCGTATTGCAGCAGCTTTATCATCTGCCGCTCGACGGCGCACAAATCGCGCTTAACGGTCAGGAA 2828 galK_123_donor_revgalK_123_donor_rev GCCGGGTTAAGTTCTTCCGCTTCACTGGAAGTCGCGGTCGGAACCGTATTGCAGCAGCTTTATCATCTGCCGCTCGACGGCGCACAAATCGCGCTTAACGGTCAGGAAGCAGAAAACCAGTTT&Lt; 2929 aroA_donor_revaroA_donor_rev AAAGAAAGATTTGGCTATTTATTGCCCGTTGTTCATTCAGGCTGCCTGGCTAATACGCGCGATCTGCTCGAAATAATCCGGAAATGTTTTGGCCGTGCATTTGGGATCAAGAATCGTCACTGGAAAGAAAGATTTGGCTATTTATTGCCCGTTGTTCATTCAGGCTGCCTGGCTAATACGCGCGATCTGCTCGAAATAATCCGGAAATGTTTTGGCCGTGCATTTGGGATCAAGAATCGTCACTGG 3030 aroB_donor_revaroB_donor_rev GCTTGATAAGCGGCCTGACCTTTCTTGTTGTTACGCTGATTGACAATCGGCAATCGCGTTGATAACAAGCTCGTGCGAAACGCCGCTGCGAACTTCACTCTTACCAATTGCCAACGGAAGAATGt 3131 aroC_donor_revaroC_donor_rev ATTCATTTTTTACCAGCGTGGAATATCAGTCTTCACATCGGCATTTTGCGCCCGTTGACGAATCAGGTGATCCATTAAAACGATCGCCAGCATCGCTTCTGCGATCGGCACTGCGCGGATCCC&Lt; tb & 3232 aroD_donor_revaroD_donor_rev AAAAAAGCGTCTGCGCCAGGGCAAATCTCGGTAAATGATTTGCGCACGGTATTAACTATTATTCATCAGGCATAAGCAATAATATTTCGGCGGGAACACCCTCCCCGCCGAACTAAAAAATATAAAAAAGCGTCTGCGCCAGGGCAAATCTCGGTAAATGATTTGCGCACGGTATTAACTATTATTCATCAGGCATAAGCAATAATATTTCGGCGGGAACACCCTCCCCGCCGAACTAAAAAATAT 3333 aroE_donor_revaroE_donor_rev ATTTTTTATTCTCGTCCCACTCTTCCCTGTCCGGAAACTGGATGGCCTGATTCACGCCGAGATTTCCTCCTGCAATTGCTTTATAACTGGTTCTACGTCAGGCAGAACACCGTGCCAGAGAAGATTTTTTATTCTCGTCCCACTCTTCCCTGTCCGGAAACTGGATGGCCTGATTCACGCCGAGATTTCCTCCTGCAATTGCTTTATAACTGGTTCTACGTCAGGCAGAACACCGTGCCAGAGAAG 3434 aroF_donor_revaroF_donor_rev TGATCGCGTAATGCGGTCAATTCAGCAACCATAATAAACCTCTTAAGCCACGCGAGCGGTGATCTGCCCGTTCAGATCCTGATGAATTTCACGCAGCAAGGCATCGGTCATTTCCCAGCTAATTGATCGCGTAATGCGGTCAATTCAGCAACCATAATAAACCTCTTAAGCCACGCGAGCGGTGATCTGCCCGTTCAGATCCTGATGAATTTCACGCAGCAAGGCATCGGTCATTTCCCAGCTAAT 3535 aroG_donor_revaroG_donor_rev CACTCTGACGGCGCATCCGACAATTAAACCTTACCCGCGACGCGCTTTTACTGCATTCGCGATTTGACGTAACAGAGCATCCGTATCTTCCCAGCCGATGCAGGCATCGGTGATGCTCTTACCCACTCTGACGGCGCATCCGACAATTAAACCTTACCCGCGACGCGCTTTTACTGCATTCGCGATTTGACGTAACAGAGCATCCGTATCTTCCCAGCCGATGCAGGCATCGGTGATGCTCTTACC 3636 aroK_donor_revaroK_donor_rev ATCCACCTTAATTACTGTACCCGCAGACGAGTGTATATAAAGCCAGAATTAGTTGCTTTCGATCATGTGAATAATCTGATTTGCAACCACTTTAGCGCTTTGATCATCAGTACGAATGGTCACATCCACCTTAATTACTGTACCCGCAGACGAGTGTATATAAAGCCAGAATTAGTTGCTTTCGATCATGTGAATAATCTGATTTGCAACCACTTTAGCGCTTTGATCATCAGTACGAATGGTCAC 3737 aroL_donor_revaroL_donor_rev TATTTCACGGGATGAACGTTAAGTATAGGCGCTCGAAAATCAACAATTGATCGTCTGTGCGATCGCGCTGCGAATTTCAGAAATCACCTGGCTGGGTTCGTTTGTTGCGTCGATGATAATATGTATTTCACGGGATGAACGTTAAGTATAGGCGCTCGAAAATCAACAATTGATCGTCTGTGCGATCGCGCTGCGAATTTCAGAAATCACCTGGCTGGGTTCGTTTGTTGCGTCGATGATAATATG 3838 aroM_donor_revaroM_donor_rev TAGTTGAACATCTACTTCACTATAGGGGCCAGAGGCGCTGGCTGTCACGCAAAATTACACGATTAATTCGGCAGCCAGCCGTGCAATCAATACGTTAGACAGCAAGACAGGAACATCGAGCTGTAGTTGAACATCTACTTCACTATAGGGGCCAGAGGCGCTGGCTGTCACGCAAAATTACACGATTAATTCGGCAGCCAGCCGTGCAATCAATACGTTAGACAGCAAGACAGGAACATCGAGCTG 3939 aroP_donor_revaroP_donor_rev GGAATGGCGATTTCGGTATACCTGATCCCGGTATGGCTGATCGTGTTAGGTATCGGCTATATCTTTAAAGAGAAAACGGCCAAAGCCGTAAAAGCGCATTAATCTCTCTACGCCCTCACCCGTGt 4040 EGFR_donor_revEGFR_donor_rev CCTCCTTACTTTGCCTCCTTCTGCATGGTATTCTTTCTCTTCCGCACCCAGCAGTTTAGCTCTCCCAAAATCTGTGATCTTGACATGCTGCGGTGTTTTCACCAGTACGTTCCTGGCTGCCAG&Lt; RTI ID = 4141 BRAF_donor_revBRAF_donor_rev CATCCACAAAATGGATCCAGACAACTGTTCAAACTGATGAGACCCACTCCATCGAGATTTTTCTGTAGCTAGACCAAAATCACCTATTTTTACTGTGAGGTCTTCATGAAGAAATATATCTGA&Lt; 4242 KRAS_donor_revKRAS_donor_rev ATATTCGTCCACAAAATGATTCTGAATTAGCTGTATCGTCAAGGCACTCTTGCCTACGCCGCAAGCTCCAACTACCGACAGTTTATATTCAGTCATTTTCAGCAGGCCTTATAATAAAAATAAATATTCGTCCACAAAATGATTCTGAATTAGCTGTATCGTCAAGGCACTCTTGCCTACGCCGCAAGCTCCAACTACCGACAGTTTATATTCAGTCATTTTCAGCAGGCCTTATAATAAAAATAA 4343 CTNNB1_donor_revCTNNB1_donor_rev TTGGGAGGTATCCACATCCTCTTCCTCAGGATTGCCTTTACCACTCAGAGAAGGAGCTGTAGCAGTAGCACCAGAATGGATTCCAGAGTCCAGGTAAGACTGTTGCTGCCAGTGACTAACAGC&Lt; 4444 DNMT3A_donor_revDNMT3A_donor_rev GAAGAGGTGGCGGATGACTGGCACGCTCCATGACCGGCCCAGCAGTCTCTGCCTCGCGAAATGGCTCATGTTGGAGACGTCAGTATAGTGGACTGGGAAACCAAATACCCTGGGGGAGAAAAGGAAGAGGTGGCGGATGACTGGCACGCTCCATGACCGGCCCAGCAGTCTCTGCCTCGCGAAATGGCTCATGTTGGAGACGTCAGTATAGTGGACTGGGAAACCAAATACCCTGGGGGAGAAAAG 4545 GNAQ_donor_revGNAQ_donor_rev TAGAAACATGATAGAGGTGACATTTTCAAAGCAGTGTATCCATTTTCTTCTCTCTGATCTAGGGCCCCCTACATCGACCATTCTGCAAGGTTAACAATACTCATATTAATAACATATAAAGTATAGAAACATGATAGAGGTGACATTTTCAAAGCAGTGTATCCATTTTCTTCTCTCTGATCTAGGGCCCCCTACATCGACCATTCTGCAAGGTTAACAATACTCATATTAATAACATATAAAGTA 4646 GNAS_donor_revGNAS_donor_rev TTACTGGAAGTTGACTTTGTCCACCTGGAACTTGGTCTCAAAGATTCCAGAAGTCAGCACGCAGCAGCGAAGCAGGTCCTGAAACAAAATTGAGGTCAATGGATCTCACCAAAGCCAACCGAATTACTGGAAGTTGACTTTGTCCACCTGGAACTTGGTCTCAAAGATTCCAGAAGTCAGCACGCAGCAGCGAAGCAGGTCCTGAAACAAAATTGAGGTCAATGGATCTCACCAAAGCCAACCGAA 4747 HRAS_donor_revHRAS_donor_rev CACACACAGGAAGCCCTCCCCGGTGCGCATGTACTGGTCCCGCATGGCGCTGTACTCTTCTAAGCCGGCGGTATCCAGGATGTCCAACAGGCACGTCTCCCCATCAATGACCACCTGCTTCCGCACACACAGGAAGCCCTCCCCGGTGCGCATGTACTGGTCCCGCATGGCGCTGTACTCTTCTAAGCCGGCGGTATCCAGGATGTCCAACAGGCACGTCTCCCCATCAATGACCACCTGCTTCCG 4848 IDH2_donor_revIDH2_donor_rev TAGGCGTGGGATGTTTTTGCAGATGATGGGCTCCCGGAAGACAGTCCCCCCCAGAATGTTTTGGATAGTTCCATTGGGACTTTTCCACATCTTCTTCAGCTTGAACTCTGTGAGGACAGAGATTAGGCGTGGGATGTTTTTGCAGATGATGGGCTCCCGGAAGACAGTCCCCCCCAGAATGTTTTGGATAGTTCCATTGGGACTTTTCCACATCTTCTTCAGCTTGAACTCTGTGAGGACAGAGAT 4949 NOTCH1_donor_revNOTCH1_donor_rev GGGGAAGATCATCTGCTGGCCGTGTGCGTCACGCTTGAAGACCACGTTTGTGTGCAGCACAGGGCTGAGCTCCCGCAGGAAGTGGAAGGAGCTGTTGCGCAGCTGCTCCGGCGGCATCAGCACC 5050 NRAS_donor_revNRAS_donor_rev ATATTCATCTACAAAGTGGTTCTGGATTAGCTGGATTGTCAGTGCGCTTTTCCCAACACCGTCTGCTCCAACCGACACCAGTTTGTACTCAGTCATTTCACACCAGCAAGAACCTGTTGGAAAATATTCATCTACAAAGTGGTTCTGGTTAGCTGGATTGTCAGTGCGCTTTTCCCAACACCGTCTGCTCCAACCGACACCAGTTTGTACTCAGTCATTTCACACCAGCAAGAACCTGTTGGAAA 5151 PIK3CA_donor_revPIK3CA_donor_rev GCACTTACCTGTGACTCCATAGAAAATCTTTCTCCTGCTCAGTGATTTCAGAGAGAGAATTTTGTGTAGAAATTGCTTTGAGCTGTTCTTTGTCATTTTCCCTTAATTCATTGTCTCTAGCTAGCACTTACTT 5252 TP53_donor_revTP53_donor_rev CCCTTTCTTGCGGAGATTCTCTTCCTCTGTGCGCCGGTCTCTCCCAGGACAGGCACAAACGTGCACCTTCAAGCTGTTCCGTCCCAGTAGATTACCACTACTCAGGATAGGAAAAGAGAAGCA&Lt; RTI ID = 0.0 &gt; 5353 T7_fwd_primerT7_fwd_primer GAAATTAATACGACTCACTATAGGGAAATTAATACGACTCACTATAGG 5454 galK_gRNAgalK_gRNA GAAATTAATACGACTCACTATAGGGCAGCTTTAACATCTGCCGCGTTTTAGAGCTAGAAATAGCGAAATTAATACGACTCACTATAGGGCAGCTTTAACATCTGCCGCGTTTTAGAGCTAGAAATAGC 5555 gRNA_revgRNA_rev AAAAAAAGCACCGACTCGGTGCCACTTTTTCAAGTTGATAACGGACTAGCCTTATTTTAACTTGCTATTTCTAGCTCTAAAACAAAAAAAGCACCGACTCGGTGCCACTTTTTCAAGTTGATAACGGACTAGCCTTATTTTAACTTGCTATTTCTAGCTCTAAAAC 5656 galK_middlegalK_middle CGGAAGAACTTAACCCGGCAAAAAAAGCACCGACTCGGCGGAAGAACTTAACCCGGCAAAAAAAGCACCGACTCGG 5757 aroA_gRNAaroA_gRNA GAAATTAATACGACTCACTATAGGATTATTTCGAGCAGCTGGCGGTTTTAGAGCTAGAAATAGCGAAATTAATACGACTCACTATAGGATTATTTCGAGCAGCTGGCGGTTTTAGAGCTAGAAATAGC 5858 aroB_gRNAaroB_gRNA GAAATTAATACGACTCACTATAGGCGCTGATTGACAATCGGCAAGTTTTAGAGCTAGAAATAGCGAAATTAATACGACTCACTATAGGCGCTGATTGACAATCGGCAAGTTTTAGAGCTAGAAATAGC 5959 aroC_gRNAaroC_gRNA GAAATTAATACGACTCACTATAGGTTTTAATGGATCACCTGTTAGTTTTAGAGCTAGAAATAGCGAAATTAATACGACTCACTATAGGTTTTAATGGATCACCTGTTAGTTTTAGAGCTAGAAATAGC 6060 aroD_gRNAaroD_gRNA GAAATTAATACGACTCACTATAGGGAAATATTATTGCTTATGCCGTTTTAGAGCTAGAAATAGCGAAATTAATACGACTCACTATAGGGAAATATTATTGCTTATGCCGTTTTAGAGCTAGAAATAGC 6161 aroE_gRNAaroE_gRNA GAAATTAATACGACTCACTATAGGACTGGATGGCCTGATTCACGGTTTTAGAGCTAGAAATAGCGAAATTAATACGACTCACTATAGGACTGGATGGCCTGATTCACGGTTTTAGAGCTAGAAATAGC 6262 aroF_gRNAaroF_gRNA GAAATTAATACGACTCACTATAGGGGATCTGAACGGGCAGCTGAGTTTTAGAGCTAGAAATAGCGAAATTAATACGACTCACTATAGGGGATCTGAACGGGCAGCTGAGTTTTAGAGCTAGAAATAGC 6363 aroG_gRNAaroG_gRNA GAAATTAATACGACTCACTATAGGCAGTTGACGTAACAGAGCATGTTTTAGAGCTAGAAATAGCGAAATTAATACGACTCACTATAGGCAGTTGACGTAACAGAGCATGTTTTAGAGCTAGAAATAGC 6464 aroK_gRNAaroK_gRNA GAAATTAATACGACTCACTATAGGTTTCCAGCATGTGAATAATCGTTTTAGAGCTAGAAATAGCGAAATTAATACGACTCACTATAGGTTTCCAGCATGTGAATAATCGTTTTAGAGCTAGAAATAGC 6565 aroL_gRNAaroL_gRNA GAAATTAATACGACTCACTATAGGACAATTGATCGTCTGTGCCAGTTTTAGAGCTAGAAATAGCGAAATTAATACGACTCACTATAGGACAATTGATCGTCTGTGCCAGTTTTAGAGCTAGAAATAGC 6666 aroM_gRNAaroM_gRNA GAAATTAATACGACTCACTATAGGATTGATTGCACGGCTGGCTGGTTTTAGAGCTAGAAATAGCGAAATTAATACGACTCACTATAGGATTGATTGCACGGCTGGCTGGTTTTAGAGCTAGAAATAGC 6767 aroP_gRNAaroP_gRNA GAAATTAATACGACTCACTATAGGATGCGCTTTTACGGCTTTGGGTTTTAGAGCTAGAAATAGCGAAATTAATACGACTCACTATAGGATGCGCTTTTACGGCTTTGGGTTTTAGAGCTAGAAATAGC 6868 aroA_middlearoA_middle GATCAAGAATCGTCACTGGAAAAAAAGCACCGACTCGGATCAAGAATCGTCACTGGAAAAAAAGCACCGACTCG 6969 aroB_middlearoB_middle AATTGCCAACGGAAGAATAAAAAAAGCACCGACTCGAATTGCCAACGGAAGAATAAAAAAAGCACCGACTCG 7070 aroC_middlearoC_middle CACTGCGCGGATCCCAAAAAAAGCACCGACTCGCACTGCGCGGATCCCAAAAAAAGCACCGACTCG 7171 aroD_middlearoD_middle CCCGCCGAACTAAAAAATATAAAAAAAGCACCGACTCGCCCGCCGAACTAAAAAATATAAAAAAAGCACCGACTCG 7272 aroE_middlearoE_middle ACCGTGCCAGAGAAGAAAAAAAGCACCGACTCGACCGTGCCAGAGAAGAAAAAAAGCACCGACTCG 7373 aroF_middlearoF_middle CGGTCATTTCCCAGCTAATAAAAAAAGCACCGACTCGCGGTCATTTCCCAGCTAATAAAAAAAGCACCGACTCG 7474 aroG_middlearoG_middle TCGGTGATGCTCTTACCAAAAAAAGCACCGACTCGTCGGTGATGCTCTTACCAAAAAAAGCACCGACTCG 7575 aroK_middlearoK_middle CATCAGTACGAATGGTCACAAAAAAAGCACCGACTCGCATCAGTACGAATGGTCACAAAAAAAAGCACCGACTCG 7676 aroL_middlearoL_middle GTTGCGTCGATGATAATATGAAAAAAAGCACCGACTCGGTTGCGTCGATGATAATATGAAAAAAAGCACCGACTCG 7777 aroM_middlearoM_middle ACAGGAACATCGAGCTGAAAAAAAGCACCGACTCGACAGGAACATCGAGCTGAAAAAAAAGCACCGACTCG 7878 aroP_middlearoP_middle TACGCCCTCACCCGTAAAAAAAGCACCGACTCGTACGCCCTCACCCGTAAAAAAAGCACCGACTCG 7979 U6_fwd_primerU6_fwd_primer AAGGTCGGGCAGGAAGAAAGGTCGGGCAGGAAGA 8080 U6_rev_primerU6_rev_primer CGGTGTTTCGTCCTTTCCACGGTGTTTCGTCCTTTCCA 8181 double-stranded U6 promoterdouble-stranded U6 promoter AAGGTCGGGCAGGAAGAGGGCCTATTTCCCATGATTCCTTCATATTTGCATATACGATACAAGGCTGTTAGAGAGATAATTAGAATTAATTTGACTGTAAACACAAAGATATTAGTACAAAATACGTGACGTAGAAAGTAATAATTTCTTGGGTAGTTTGCAGTTTTAAAATTATGTTTTAAAATGGACTATCATATGCTTACCGTAACTTGAAAGTATTTCGATTTCTTGGCTTTATATATCTTGTGGAAAGGACGAAACACCGAAGGTCGGGCAGGAAGAGGGCCTATTTCCCATGATTCCTTCATATTTGCATATACGATACAAGGCTGTTAGAGAGATAATTAGAATTAATTTGACTGTAAACACAAAGATATTAGTACAAAATACGTGACGTAGAAAGTAATAATTTCTTGGGTAGTTTGCAGTTTTAAAATTATGTTTTAAAATGGACTATCATATGCTTACCGTAACTTGAAAGTATTTCGATTTCTTGGCTTTATATATCTTGTGGAAAGGACGAAACACCG 8282 EGFR_gRNAEGFR_gRNA GTGGAAAGGACGAAACACCGTCTTCCGCACCCAGCAGTTGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTTTTTTCTGGCAGCCAGGAACGTAGt; 8383 BRAF_gRNABRAF_gRNA GTGGAAAGGACGAAACACCGGACAACTGTTCAAACTGATGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTTTTTTTCAGATATATTTCTTCATGAAGACCTGt; 8484 KRAS_gRNAKRAS_gRNA GTGGAAAGGACGAAACACCGATGACTGAATATAAACTTGGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTTTTTTTTATTTTTATTATAAGGCCTGCTGAAAGt; 8585 CTNNB1_gRNACTNNB1_gRNA GTGGAAAGGACGAAACACCGAGAGAAGGAGCTGTGGTAGGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTTTTTTGCTGTTAGTCACTGGCAGGt; 8686 DNMT3A_gRNADNMT3A_gRNA GTGGAAAGGACGAAACACCGGTCTCCAACATGAGCCGCTGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTTTTTTCTTTTCTCCCCCAGGGTAGt; 8787 GNAQ_gRNAGNAQ_gRNA GTGGAAAGGACGAAACACCGGGTCGATGTAGGGGGCCAAGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTTTTTTTACTTTATATGTTATTAATATGAGTATTGTTAACCGt; 8888 GNAS_gRNAGNAS_gRNA GTGGAAAGGACGAAACACCGCTCAAAGATTCCAGAAGTCGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTTTTTTTTCGGTTGGCTTTGGTGAGt; 8989 HRAS_gRNAHRAS_gRNA GTGGAAAGGACGAAACACCGCTGGATACCGCCGGCCAGGGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTTTTTTCGGAAGCAGGTGGTCATTGt; 9090 IDH2_gRNAIDH2_gRNA GTGGAAAGGACGAAACACCGCCGGAAGACAGTCCCCCCCGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTTTTTTATCTCTGTCCTCACAGAGTTGt; 9191 NOTCH1_gRNANOTCH1_gRNA GTGGAAAGGACGAAACACCGTCACGCTTGAAGACCACGTGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTTTTTTGTGCTGATGCCGCCGGAGGt; 9292 NRAS_gRNANRAS_gRNA GTGGAAAGGACGAAACACCGACTGAGTACAAACTGGTGGGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTTTTTTTTTCCAACAGGTTCTTGCTGGt; 9393 PIK3CA_gRNAPIK3CA_gRNA GTGGAAAGGACGAAACACCGGCTCAGTGATTTCAGAGAGGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTTTTTTTAGCTAGAGACAATGAATTAAGGGGt; 9494 TP53_gRNATP53_gRNA GTGGAAAGGACGAAACACCGCTGGGACGGAACAGCTTTGGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTTTTTTTGCTTCTCTTTTCCTATCCTGAGt; 9595 galK_fwd_primergalK_fwd_primer ATCCATGATCCCGCAGTTACATCCATGATCCCGCAGTTAC 9696 galK_rev_primergalK_rev_primer GGACATGGTGATCAGCGGGGACATGGTGATCAGCGG 9797 aroA_fwd_primeraroA_fwd_primer CGCGACATACAATGATCACCCGCGACATACAATGATCACC 9898 aroB_fwd_primeraroB_fwd_primer TGCTGCGTGACAAGAAAGTCTGCTGCGTGACAAGAAAGTC 9999 aroC_fwd_primeraroC_fwd_primer GATCACCAAAGGCCGTCACGATCACCAAAGGCCGTCAC 100100 aroD_fwd_primeraroD_fwd_primer AATTTCTCGTCTGGCTGGTGAATTTCTCGTCTGGCTGGTG 101101 aroE_fwd_primeraroE_fwd_primer CAAAGCGTAATGCTGATGGTTCAAAGCGTAATGCTGATGGTT 102102 aroF_fwd_primeraroF_fwd_primer GCGCAGTGAAATGAAATACGGCGCAGTGAAATGAAATACG 103103 aroG_fwd_primeraroG_fwd_primer ATCTGGTGGAAGGCAATCAGATCTGGTGGAAGGCAATCAG 104104 aroK_fwd_primeraroK_fwd_primer ATGAACGCAATCCGCTGTATATGAACGCAATCCGCTGTAT 105105 aroL_fwd_primeraroL_fwd_primer ATGCGCTATATCGCGAAGTTATGCGCTATATCGCGAAGTT 106106 aroM_fwd_primeraroM_fwd_primer GTCATCGCGATTTACTGCAAGTCATCGCGATTTACTGCAA 107107 aroP_fwd_primeraroP_fwd_primer GGCGGTACTGGTGATTATGCGGCGGTACTGGTGATTATGC 108108 aroA_rev_primeraroA_rev_primer TGACTCACAAGGTCCGAAAATGACTCACAAGGTCCGAAAA 109109 aroB_rev_primeraroB_rev_primer TTCATCCATTTAACACCCCATTCATCCATTTAACACCCCA 110110 aroC_rev_primeraroC_rev_primer GCTACTGGCAAGCAGAGCCGCTACTGGCAAGCAGAGCC 111111 aroD_rev_primeraroD_rev_primer CCAAATGGAGAATTAGCGCACCAAATGGAGAATTAGCGCA 112112 aroE_rev_primeraroE_rev_primer AGAGATCGCGCATGTCAGTTAGAGATCGCGCATGTCAGTT 113113 aroF_rev_primeraroF_rev_primer GTTCCAGACGCTTCGCTAATGTTCCAGACGCTTCGCTAAT 114114 aroG_rev_primeraroG_rev_primer TTATCAGGCCTGTGGTGATTCTTATCAGGCCTGTGGTGATTC 115115 aroK_rev_primeraroK_rev_primer GTTCCCCGAGAGTAACGACAGTTCCCCGAGAGTAACGACA 116116 aroL_rev_primeraroL_rev_primer TTACCGTCTGTCCTGGCTTTTTACCGTCTGTCCTGGCTTT 117117 aroM_rev_primeraroM_rev_primer TGGAAAAGCCGATTGATTTCTGGAAAAGCCGATTGATTTC 118118 aroP_rev_primeraroP_rev_primer GTCATCGCGATTTACTGCAAGTCATCGCGATTTACTGCAA 119119 EGFR_fwd_primerEGFR_fwd_primer GCAGCGGGTTACATCTTCTTTCGCAGCGGGTTACATCTTCTTTC 120120 BRAF_fwd_primerBRAF_fwd_primer GCCAAAAATTTAATCAGTGGAAAAAGCCAAAAATTTAATCAGTGGAAAAAA 121121 KRAS_fwd_primerKRAS_fwd_primer CTGCACCAGTAATATGCATATTAAACTGCACCAGTAATATGCATATTAAA 122122 EGFR_rev_primerEGFR_rev_primer CAATACAGCTAGTGGGAAGGCACAATACAGCTAGTGGGAAGGCA 123123 BRAF_rev_primerBRAF_rev_primer ACACATTTCAAGCCCCAAAAACACATTTCAAGCCCCAAAAA 124124 KRAS_rev_primerKRAS_rev_primer TAAGCGTCGATGGAGGAGTTTAAGCGTCGATGGAGGAGTT 125125 CTNNB1_fwd_primerCTNNB1_fwd_primer GCTGATTTGATGGAGTTGGACGCTGATTTGATGGAGTTGGAC 126126 DNMT3A_fwd_primerDNMT3A_fwd_primer CCATGTCCCTTACACACACGCCATGTCCCTTACACACACG 127127 GNAQ_fwd_primerGNAQ_fwd_primer CTGACTCCACGAGAACTTGCTGACTCCACGAGAACTTG 128128 GNAS_fwd_primerGNAS_fwd_primer CTACTCCAGACCTTTGCTTTAGCTACTCCAGACCTTTGCTTTAG 129129 HRAS_fwd_primerHRAS_fwd_primer GTCTTTTGAGGACATCCACCGTCTTTTGAGGACATCCACC 130130 IDH2_fwd_primerIDH2_fwd_primer CGTGCCTGCCAATGGTGACGTGCCTGCCAATGGTGA 131131 NOTCH1_fwd_primerNOTCH1_fwd_primer TTGATGGGGTGCTTGCGCTTGATGGGGTGCTTGCGC 132132 NRAS_fwd_primerNRAS_fwd_primer TGATCCGACAAGTGAGAGACATGATCCGACAAGTGAGAGACA 133133 PIK3CA_fwd_primerPIK3CA_fwd_primer CTGTGAATCCAGAGGGGAAACTGTGAATCCAGAGGGGAAA 134134 TP53_fwd_primerTP53_fwd_primer TGCTTACCTCGCTTAGTGCTCTGCTTACCTCGCTTAGTGCTC 135135 CTNNB1_rev_primerCTNNB1_rev_primer TGAAGGACTGAGAAAATCCCTTGAAGGACTGAGAAAATCCCT 136136 DNMT3A_rev_primerDNMT3A_rev_primer GCTGTGTGGTTAGACGGCTTGCTGTGTGGTTAGACGGCTT 137137 GNAQ_rev_primerGNAQ_rev_primer CCCTAAGTTTGTAAGTAGTGCTCCCTAAGTTTGTAAGTAGTGCT 138138 GNAS_rev_primerGNAS_rev_primer TCAAGAAACCATGATCTCTGTTTCAAGAAACCATGATCTCTGTT 139139 HRAS_rev_primerHRAS_rev_primer GAAGGTCCTGAGGGGGTCGAAGGTCCTGAGGGGGTC 140140 IDH2_rev_primerIDH2_rev_primer ATTCTGGTTGAAAGATGGCGATTCTGGTTGAAAGATGGCG 141141 NOTCH1_rev_primerNOTCH1_rev_primer GGACTGTGCGGAGCATGTAGGACTGTGCGGAGCATGTA 142142 NRAS_rev_primerNRAS_rev_primer AGCTTTAAAGTACTGTAGATGTGGCAGCTTTAAAGTACTGTAGATGTGGC 143143 PIK3CA_rev_primerPIK3CA_rev_primer TGCTGAGATCAGCCAAATTCTGCTGAGATCAGCCAAATTC 144144 TP53_rev_primerTP53_rev_primer TTAAATGGGACAGGTAGGACCTTAAATGGGACAGGTAGGACC 145145 OT-1_fwd_primerOT-1_fwd_primer ACTGACAGAAGAAAAACCCGAGACACTGACAGAAGAAAAACCCGAGAC 146146 OT-2_fwd_primerOT-2_fwd_primer AGCAATGTGGTGGAAGCAATAGCAATGTGGTGGAAGCAAT 147147 OT-3_fwd_primerOT-3_fwd_primer CACCAATTGAAAAACCAGCTTTACACCAATTGAAAAACCAGCTTTA 148148 OT-4_fwd_primerOT-4_fwd_primer GAGAATCTCATTTCTTTCAAAATGCGAGAATCTCATTTCTTTCAAAATGC 149149 OT-5_fwd_primerOT-5_fwd_primer GAAAATAAGCCATTGTTTTGACCGAAAATAAGCCATTGTTTTGACC 150150 OT-6_fwd_primerOT-6_fwd_primer GAGGGTTCATTATCATCCTAGTCAGAGGGTTCATTATCATCCTAGTCA 151151 OT-7_fwd_primerOT-7_fwd_primer GGCCACAGAGGTGAGAAGAGGGCCACAGAGGTGAGAAGAG 152152 OT-8_fwd_primerOT-8_fwd_primer CCACCCTTGCTTCTACCCTTCCACCCTTGCTTCTACCCTT 153153 OT-1_rev_primerOT-1_rev_primer GCTCCCTAGCCTGGGTAACTGCTCCCTAGCCTGGGTAACT 154154 OT-2_rev_primerOT-2_rev_primer CAGCCAGGTAGAGGGAAAAAGCAGCCAGGTAGAGGGAAAAAG 155155 OT-3_rev_primerOT-3_rev_primer GGGAAAAACCAAACACCAAGTAGGGAAAAACCAAACACCAAGTA 156156 OT-4_rev_primerOT-4_rev_primer CAGAGCATTTTGGCAAATCACAGAGCATTTTGGCAAATCA 157157 OT-5_rev_primerOT-5_rev_primer TGGCCTCCTGCTCTAGCAGTTGGCCTCCTGCTCTAGCAGT 158158 OT-6_rev_primerOT-6_rev_primer CCAAAGTACAAACATGAAGCTGCCAAAGTACAAACATGAAGCTG 159159 OT-7_rev_primerOT-7_rev_primer TGGATATTCACTGTGGCAGGTGGATATTCACTGTGGCAGG 160160 OT-8_rev_primerOT-8_rev_primer CCTCAGCAATGAGAGTTCCCCCTCAGCAATGAGAGTTCCC

염색체chromosome 가닥piece 위치location 서열order EGFR 표적 서열과 해당 서열간의 미스매치 수The number of mismatches between the EGFR target sequence and the corresponding sequence 1919 -- 3891608638916086 TTCCTCCCCACCCAGCAGTTTAGTTCCTCCCCACCCAGCAGTTTAG 33 2020 ++ 4817763448177634 TTGTTCCACACCCAGCAGTTCAGTTGTTCCACACCCAGCAGTTCAG 33 1717 -- 4072368040723680 GTCTCCCGGGCCCAGCAGTTCAGGTCTCCCGGGCCCAGCAGTTCAG 33 55 ++ 4351489443514894 GTCTTCCACTCACAGCAGTTCGGGTCTTCCACTCACAGCAGTTCGG 33 44 -- 7294231872942318 TTCTTCCACACACAGCAGTTTGGTTCTTCCACACACAGCAGTTTGG 33 1616 -- 6086949160869491 ATCTTCCTCACCCTGCAGTTAAGATCTTCCTCACCCTGCAGTTAAG 33 1One -- 4838292148382921 GACTTCAGCACCCAGCATTTCAGGACTTCAGCACCCAGCATTTCAG 33 1717 -- 7276654572766545 GGCTTCCCCACCCAGCAGGTGAGGGCTTCCCCACCCAGCAGGTGAG 33

<110> University-Industry Foundation, Yonsei University <120> Targeted genome editing based on CRISPR/Cas9 system using short linearized double-stranded DNA <130> P16U16C0909 <150> 2015-0066054 <151> 2015-05-12 <160> 160 <170> KopatentIn 2.0 <210> 1 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> galK_spacer <400> 1 gcagctttaa catctgccgc 20 <210> 2 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> aroA_spacer <400> 2 attatttcga gcagctggcg 20 <210> 3 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> aroB_spacer <400> 3 cgctgattga caatcggcaa 20 <210> 4 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> aroC_spacer <400> 4 ttttaatgga tcacctgtta 20 <210> 5 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> aroD_spacer <400> 5 gaaatattat tgcttatgcc 20 <210> 6 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> aroE_spacer <400> 6 actggatggc ctgattcacg 20 <210> 7 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> aroF_spacer <400> 7 ggatctgaac gggcagctga 20 <210> 8 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> aroG_spacer <400> 8 cagttgacgt aacagagcat 20 <210> 9 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> aroK_spacer <400> 9 tttccagcat gtgaataatc 20 <210> 10 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> aroL_spacer <400> 10 acaattgatc gtctgtgcca 20 <210> 11 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> aroM_spacer <400> 11 attgattgca cggctggctg 20 <210> 12 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> aroP_spacer <400> 12 atgcgctttt acggctttgg 20 <210> 13 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> EGFR_spacer <400> 13 gtcttccgca cccagcagtt 20 <210> 14 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> BRAF_spacer <400> 14 ggacaactgt tcaaactgat 20 <210> 15 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KRAS_spacer <400> 15 gatgactgaa tataaacttg 20 <210> 16 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> CTNNB1_spacer <400> 16 gagagaagga gctgtggtag 20 <210> 17 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> DNMT3A_spacer <400> 17 ggtctccaac atgagccgct 20 <210> 18 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> GNAQ_spacer <400> 18 gggtcgatgt agggggccaa 20 <210> 19 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> GNAS_spacer <400> 19 gctcaaagat tccagaagtc 20 <210> 20 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> HRAS_spacer <400> 20 gctggatacc gccggccagg 20 <210> 21 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> IDH2_spacer <400> 21 gccggaagac agtccccccc 20 <210> 22 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> NOTCH1_spacer <400> 22 gtcacgcttg aagaccacgt 20 <210> 23 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> NRAS_spacer <400> 23 gactgagtac aaactggtgg 20 <210> 24 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> PIK3CA_spacer <400> 24 ggctcagtga tttcagagag 20 <210> 25 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> TP53_spacer <400> 25 gctgggacgg aacagctttg 20 <210> 26 <211> 63 <212> DNA <213> Artificial Sequence <220> <223> galK_63_donor_rev <400> 26 cgcgatttgt gcgccgtcga gcggcagatg ataaagctgc tgcaatacgg ttccgaccgc 60 gac 63 <210> 27 <211> 93 <212> DNA <213> Artificial Sequence <220> <223> galK_93_donor_rev <400> 27 tccgcttcac tggaagtcgc ggtcggaacc gtattgcagc agctttatca tctgccgctc 60 gacggcgcac aaatcgcgct taacggtcag gaa 93 <210> 28 <211> 123 <212> DNA <213> Artificial Sequence <220> <223> galK_123_donor_rev <400> 28 gccgggttaa gttcttccgc ttcactggaa gtcgcggtcg gaaccgtatt gcagcagctt 60 tatcatctgc cgctcgacgg cgcacaaatc gcgcttaacg gtcaggaagc agaaaaccag 120 ttt 123 <210> 29 <211> 123 <212> DNA <213> Artificial Sequence <220> <223> aroA_donor_rev <400> 29 aaagaaagat ttggctattt attgcccgtt gttcattcag gctgcctggc taatacgcgc 60 gatctgctcg aaataatccg gaaatgtttt ggccgtgcat ttgggatcaa gaatcgtcac 120 tgg 123 <210> 30 <211> 123 <212> DNA <213> Artificial Sequence <220> <223> aroB_donor_rev <400> 30 gcttgataag cggcctgacc tttcttgttg ttacgctgat tgacaatcgg caatcgcgtt 60 gataacaagc tcgtgcgaaa cgccgctgcg aacttcactc ttaccaattg ccaacggaag 120 aat 123 <210> 31 <211> 123 <212> DNA <213> Artificial Sequence <220> <223> aroC_donor_rev <400> 31 attcattttt taccagcgtg gaatatcagt cttcacatcg gcattttgcg cccgttgacg 60 aatcaggtga tccattaaaa cgatcgccag catcgcttct gcgatcggca ctgcgcggat 120 ccc 123 <210> 32 <211> 123 <212> DNA <213> Artificial Sequence <220> <223> aroD_donor_rev <400> 32 aaaaaagcgt ctgcgccagg gcaaatctcg gtaaatgatt tgcgcacggt attaactatt 60 attcatcagg cataagcaat aatatttcgg cgggaacacc ctccccgccg aactaaaaaa 120 tat 123 <210> 33 <211> 123 <212> DNA <213> Artificial Sequence <220> <223> aroE_donor_rev <400> 33 attttttatt ctcgtcccac tcttccctgt ccggaaactg gatggcctga ttcacgccga 60 gatttcctcc tgcaattgct ttataactgg ttctacgtca ggcagaacac cgtgccagag 120 aag 123 <210> 34 <211> 123 <212> DNA <213> Artificial Sequence <220> <223> aroF_donor_rev <400> 34 tgatcgcgta atgcggtcaa ttcagcaacc ataataaacc tcttaagcca cgcgagcggt 60 gatctgcccg ttcagatcct gatgaatttc acgcagcaag gcatcggtca tttcccagct 120 aat 123 <210> 35 <211> 123 <212> DNA <213> Artificial Sequence <220> <223> aroG_donor_rev <400> 35 cactctgacg gcgcatccga caattaaacc ttacccgcga cgcgctttta ctgcattcgc 60 gatttgacgt aacagagcat ccgtatcttc ccagccgatg caggcatcgg tgatgctctt 120 acc 123 <210> 36 <211> 123 <212> DNA <213> Artificial Sequence <220> <223> aroK_donor_rev <400> 36 atccacctta attactgtac ccgcagacga gtgtatataa agccagaatt agttgctttc 60 gatcatgtga ataatctgat ttgcaaccac tttagcgctt tgatcatcag tacgaatggt 120 cac 123 <210> 37 <211> 123 <212> DNA <213> Artificial Sequence <220> <223> aroL_donor_rev <400> 37 tatttcacgg gatgaacgtt aagtataggc gctcgaaaat caacaattga tcgtctgtgc 60 gatcgcgctg cgaatttcag aaatcacctg gctgggttcg tttgttgcgt cgatgataat 120 atg 123 <210> 38 <211> 123 <212> DNA <213> Artificial Sequence <220> <223> aroM_donor_rev <400> 38 tagttgaaca tctacttcac tataggggcc agaggcgctg gctgtcacgc aaaattacac 60 gattaattcg gcagccagcc gtgcaatcaa tacgttagac agcaagacag gaacatcgag 120 ctg 123 <210> 39 <211> 123 <212> DNA <213> Artificial Sequence <220> <223> aroP_donor_rev <400> 39 ggaatggcga tttcggtata cctgatcccg gtatggctga tcgtgttagg tatcggctat 60 atctttaaag agaaaacggc caaagccgta aaagcgcatt aatctctcta cgccctcacc 120 cgt 123 <210> 40 <211> 123 <212> DNA <213> Artificial Sequence <220> <223> EGFR_donor_rev <400> 40 cctccttact ttgcctcctt ctgcatggta ttctttctct tccgcaccca gcagtttagc 60 tctcccaaaa tctgtgatct tgacatgctg cggtgttttc accagtacgt tcctggctgc 120 cag 123 <210> 41 <211> 123 <212> DNA <213> Artificial Sequence <220> <223> BRAF_donor_rev <400> 41 catccacaaa atggatccag acaactgttc aaactgatga gacccactcc atcgagattt 60 ttctgtagct agaccaaaat cacctatttt tactgtgagg tcttcatgaa gaaatatatc 120 tga 123 <210> 42 <211> 123 <212> DNA <213> Artificial Sequence <220> <223> KRAS_donor_rev <400> 42 atattcgtcc acaaaatgat tctgaattag ctgtatcgtc aaggcactct tgcctacgcc 60 gcaagctcca actaccgaca gtttatattc agtcattttc agcaggcctt ataataaaaa 120 taa 123 <210> 43 <211> 123 <212> DNA <213> Artificial Sequence <220> <223> CTNNB1_donor_rev <400> 43 ttgggaggta tccacatcct cttcctcagg attgccttta ccactcagag aaggagctgt 60 agcagtagca ccagaatgga ttccagagtc caggtaagac tgttgctgcc agtgactaac 120 agc 123 <210> 44 <211> 123 <212> DNA <213> Artificial Sequence <220> <223> DNMT3A_donor_rev <400> 44 gaagaggtgg cggatgactg gcacgctcca tgaccggccc agcagtctct gcctcgcgaa 60 atggctcatg ttggagacgt cagtatagtg gactgggaaa ccaaataccc tgggggagaa 120 aag 123 <210> 45 <211> 123 <212> DNA <213> Artificial Sequence <220> <223> GNAQ_donor_rev <400> 45 tagaaacatg atagaggtga cattttcaaa gcagtgtatc cattttcttc tctctgatct 60 agggccccct acatcgacca ttctgcaagg ttaacaatac tcatattaat aacatataaa 120 gta 123 <210> 46 <211> 123 <212> DNA <213> Artificial Sequence <220> <223> GNAS_donor_rev <400> 46 ttactggaag ttgactttgt ccacctggaa cttggtctca aagattccag aagtcagcac 60 gcagcagcga agcaggtcct gaaacaaaat tgaggtcaat ggatctcacc aaagccaacc 120 gaa 123 <210> 47 <211> 123 <212> DNA <213> Artificial Sequence <220> <223> HRAS_donor_rev <400> 47 cacacacagg aagccctccc cggtgcgcat gtactggtcc cgcatggcgc tgtactcttc 60 taagccggcg gtatccagga tgtccaacag gcacgtctcc ccatcaatga ccacctgctt 120 ccg 123 <210> 48 <211> 123 <212> DNA <213> Artificial Sequence <220> <223> IDH2_donor_rev <400> 48 taggcgtggg atgtttttgc agatgatggg ctcccggaag acagtccccc ccagaatgtt 60 ttggatagtt ccattgggac ttttccacat cttcttcagc ttgaactctg tgaggacaga 120 gat 123 <210> 49 <211> 123 <212> DNA <213> Artificial Sequence <220> <223> NOTCH1_donor_rev <400> 49 ggggaagatc atctgctggc cgtgtgcgtc acgcttgaag accacgtttg tgtgcagcac 60 agggctgagc tcccgcagga agtggaagga gctgttgcgc agctgctccg gcggcatcag 120 cac 123 <210> 50 <211> 123 <212> DNA <213> Artificial Sequence <220> <223> NRAS_donor_rev <400> 50 atattcatct acaaagtggt tctggattag ctggattgtc agtgcgcttt tcccaacacc 60 gtctgctcca accgacacca gtttgtactc agtcatttca caccagcaag aacctgttgg 120 aaa 123 <210> 51 <211> 123 <212> DNA <213> Artificial Sequence <220> <223> PIK3CA_donor_rev <400> 51 gcacttacct gtgactccat agaaaatctt tctcctgctc agtgatttca gagagagaat 60 tttgtgtaga aattgctttg agctgttctt tgtcattttc ccttaattca ttgtctctag 120 cta 123 <210> 52 <211> 123 <212> DNA <213> Artificial Sequence <220> <223> TP53_donor_rev <400> 52 ccctttcttg cggagattct cttcctctgt gcgccggtct ctcccaggac aggcacaaac 60 gtgcaccttc aagctgttcc gtcccagtag attaccacta ctcaggatag gaaaagagaa 120 gca 123 <210> 53 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> T7_fwd_primer <400> 53 gaaattaata cgactcacta tagg 24 <210> 54 <211> 64 <212> DNA <213> Artificial Sequence <220> <223> galK_gRNA <400> 54 gaaattaata cgactcacta tagggcagct ttaacatctg ccgcgtttta gagctagaaa 60 tagc 64 <210> 55 <211> 83 <212> DNA <213> Artificial Sequence <220> <223> gRNA_rev <400> 55 aaaaaaagca ccgactcggt gccacttttt caagttgata acggactagc cttattttaa 60 cttgctattt ctagctctaa aac 83 <210> 56 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> galK_middle <400> 56 cggaagaact taacccggca aaaaaagcac cgactcgg 38 <210> 57 <211> 64 <212> DNA <213> Artificial Sequence <220> <223> aroA_gRNA <400> 57 gaaattaata cgactcacta taggattatt tcgagcagct ggcggtttta gagctagaaa 60 tagc 64 <210> 58 <211> 64 <212> DNA <213> Artificial Sequence <220> <223> aroB_gRNA <400> 58 gaaattaata cgactcacta taggcgctga ttgacaatcg gcaagtttta gagctagaaa 60 tagc 64 <210> 59 <211> 64 <212> DNA <213> Artificial Sequence <220> <223> aroC_gRNA <400> 59 gaaattaata cgactcacta taggttttaa tggatcacct gttagtttta gagctagaaa 60 tagc 64 <210> 60 <211> 64 <212> DNA <213> Artificial Sequence <220> <223> aroD_gRNA <400> 60 gaaattaata cgactcacta tagggaaata ttattgctta tgccgtttta gagctagaaa 60 tagc 64 <210> 61 <211> 64 <212> DNA <213> Artificial Sequence <220> <223> aroE_gRNA <400> 61 gaaattaata cgactcacta taggactgga tggcctgatt cacggtttta gagctagaaa 60 tagc 64 <210> 62 <211> 64 <212> DNA <213> Artificial Sequence <220> <223> aroF_gRNA <400> 62 gaaattaata cgactcacta taggggatct gaacgggcag ctgagtttta gagctagaaa 60 tagc 64 <210> 63 <211> 64 <212> DNA <213> Artificial Sequence <220> <223> aroG_gRNA <400> 63 gaaattaata cgactcacta taggcagttg acgtaacaga gcatgtttta gagctagaaa 60 tagc 64 <210> 64 <211> 64 <212> DNA <213> Artificial Sequence <220> <223> aroK_gRNA <400> 64 gaaattaata cgactcacta taggtttcca gcatgtgaat aatcgtttta gagctagaaa 60 tagc 64 <210> 65 <211> 64 <212> DNA <213> Artificial Sequence <220> <223> aroL_gRNA <400> 65 gaaattaata cgactcacta taggacaatt gatcgtctgt gccagtttta gagctagaaa 60 tagc 64 <210> 66 <211> 64 <212> DNA <213> Artificial Sequence <220> <223> aroM_gRNA <400> 66 gaaattaata cgactcacta taggattgat tgcacggctg gctggtttta gagctagaaa 60 tagc 64 <210> 67 <211> 64 <212> DNA <213> Artificial Sequence <220> <223> aroP_gRNA <400> 67 gaaattaata cgactcacta taggatgcgc ttttacggct ttgggtttta gagctagaaa 60 tagc 64 <210> 68 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> aroA_middle <400> 68 gatcaagaat cgtcactgga aaaaaagcac cgactcg 37 <210> 69 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> aroB_middle <400> 69 aattgccaac ggaagaataa aaaaagcacc gactcg 36 <210> 70 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> aroC_middle <400> 70 cactgcgcgg atcccaaaaa aagcaccgac tcg 33 <210> 71 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> aroD_middle <400> 71 cccgccgaac taaaaaatat aaaaaaagca ccgactcg 38 <210> 72 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> aroE_middle <400> 72 accgtgccag agaagaaaaa aagcaccgac tcg 33 <210> 73 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> aroF_middle <400> 73 cggtcatttc ccagctaata aaaaaagcac cgactcg 37 <210> 74 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> aroG_middle <400> 74 tcggtgatgc tcttaccaaa aaaagcaccg actcg 35 <210> 75 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> aroK_middle <400> 75 catcagtacg aatggtcaca aaaaaagcac cgactcg 37 <210> 76 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> aroL_middle <400> 76 gttgcgtcga tgataatatg aaaaaaagca ccgactcg 38 <210> 77 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> aroM_middle <400> 77 acaggaacat cgagctgaaa aaaagcaccg actcg 35 <210> 78 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> aroP_middle <400> 78 tacgccctca cccgtaaaaa aagcaccgac tcg 33 <210> 79 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> U6_fwd_primer <400> 79 aaggtcgggc aggaaga 17 <210> 80 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> U6_rev_primer <400> 80 cggtgtttcg tcctttcca 19 <210> 81 <211> 265 <212> DNA <213> Artificial Sequence <220> <223> double-stranded U6 promoter <400> 81 aaggtcgggc aggaagaggg cctatttccc atgattcctt catatttgca tatacgatac 60 aaggctgtta gagagataat tagaattaat ttgactgtaa acacaaagat attagtacaa 120 aatacgtgac gtagaaagta ataatttctt gggtagtttg cagttttaaa attatgtttt 180 aaaatggact atcatatgct taccgtaact tgaaagtatt tcgatttctt ggctttatat 240 atcttgtgga aaggacgaaa caccg 265 <210> 82 <211> 140 <212> DNA <213> Artificial Sequence <220> <223> EGFR_gRNA <400> 82 gtggaaagga cgaaacaccg tcttccgcac ccagcagttg ttttagagct agaaatagca 60 agttaaaata aggctagtcc gttatcaact tgaaaaagtg gcaccgagtc ggtgcttttt 120 ttctggcagc caggaacgta 140 <210> 83 <211> 148 <212> DNA <213> Artificial Sequence <220> <223> BRAF_gRNA <400> 83 gtggaaagga cgaaacaccg gacaactgtt caaactgatg ttttagagct agaaatagca 60 agttaaaata aggctagtcc gttatcaact tgaaaaagtg gcaccgagtc ggtgcttttt 120 tttcagatat atttcttcat gaagacct 148 <210> 84 <211> 149 <212> DNA <213> Artificial Sequence <220> <223> KRAS_gRNA <400> 84 gtggaaagga cgaaacaccg atgactgaat ataaacttgg ttttagagct agaaatagca 60 agttaaaata aggctagtcc gttatcaact tgaaaaagtg gcaccgagtc ggtgcttttt 120 ttttattttt attataaggc ctgctgaaa 149 <210> 85 <211> 140 <212> DNA <213> Artificial Sequence <220> <223> CTNNB1_gRNA <400> 85 gtggaaagga cgaaacaccg agagaaggag ctgtggtagg ttttagagct agaaatagca 60 agttaaaata aggctagtcc gttatcaact tgaaaaagtg gcaccgagtc ggtgcttttt 120 ttgctgttag tcactggcag 140 <210> 86 <211> 140 <212> DNA <213> Artificial Sequence <220> <223> DNMT3A_gRNA <400> 86 gtggaaagga cgaaacaccg gtctccaaca tgagccgctg ttttagagct agaaatagca 60 agttaaaata aggctagtcc gttatcaact tgaaaaagtg gcaccgagtc ggtgcttttt 120 ttcttttctc ccccagggta 140 <210> 87 <211> 157 <212> DNA <213> Artificial Sequence <220> <223> GNAQ_gRNA <400> 87 gtggaaagga cgaaacaccg ggtcgatgta gggggccaag ttttagagct agaaatagca 60 agttaaaata aggctagtcc gttatcaact tgaaaaagtg gcaccgagtc ggtgcttttt 120 tttactttat atgttattaa tatgagtatt gttaacc 157 <210> 88 <211> 140 <212> DNA <213> Artificial Sequence <220> <223> GNAS_gRNA <400> 88 gtggaaagga cgaaacaccg ctcaaagatt ccagaagtcg ttttagagct agaaatagca 60 agttaaaata aggctagtcc gttatcaact tgaaaaagtg gcaccgagtc ggtgcttttt 120 ttttcggttg gctttggtga 140 <210> 89 <211> 140 <212> DNA <213> Artificial Sequence <220> <223> HRAS_gRNA <400> 89 gtggaaagga cgaaacaccg ctggataccg ccggccaggg ttttagagct agaaatagca 60 agttaaaata aggctagtcc gttatcaact tgaaaaagtg gcaccgagtc ggtgcttttt 120 ttcggaagca ggtggtcatt 140 <210> 90 <211> 142 <212> DNA <213> Artificial Sequence <220> <223> IDH2_gRNA <400> 90 gtggaaagga cgaaacaccg ccggaagaca gtcccccccg ttttagagct agaaatagca 60 agttaaaata aggctagtcc gttatcaact tgaaaaagtg gcaccgagtc ggtgcttttt 120 ttatctctgt cctcacagag tt 142 <210> 91 <211> 140 <212> DNA <213> Artificial Sequence <220> <223> NOTCH1_gRNA <400> 91 gtggaaagga cgaaacaccg tcacgcttga agaccacgtg ttttagagct agaaatagca 60 agttaaaata aggctagtcc gttatcaact tgaaaaagtg gcaccgagtc ggtgcttttt 120 ttgtgctgat gccgccggag 140 <210> 92 <211> 142 <212> DNA <213> Artificial Sequence <220> <223> NRAS_gRNA <400> 92 gtggaaagga cgaaacaccg actgagtaca aactggtggg ttttagagct agaaatagca 60 agttaaaata aggctagtcc gttatcaact tgaaaaagtg gcaccgagtc ggtgcttttt 120 tttttccaac aggttcttgc tg 142 <210> 93 <211> 146 <212> DNA <213> Artificial Sequence <220> <223> PIK3CA_gRNA <400> 93 gtggaaagga cgaaacaccg gctcagtgat ttcagagagg ttttagagct agaaatagca 60 agttaaaata aggctagtcc gttatcaact tgaaaaagtg gcaccgagtc ggtgcttttt 120 tttagctaga gacaatgaat taaggg 146 <210> 94 <211> 144 <212> DNA <213> Artificial Sequence <220> <223> TP53_gRNA <400> 94 gtggaaagga cgaaacaccg ctgggacgga acagctttgg ttttagagct agaaatagca 60 agttaaaata aggctagtcc gttatcaact tgaaaaagtg gcaccgagtc ggtgcttttt 120 tttgcttctc ttttcctatc ctga 144 <210> 95 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> galK_fwd_primer <400> 95 atccatgatc ccgcagttac 20 <210> 96 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> galK_rev_primer <400> 96 ggacatggtg atcagcgg 18 <210> 97 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> aroA_fwd_primer <400> 97 cgcgacatac aatgatcacc 20 <210> 98 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> aroB_fwd_primer <400> 98 tgctgcgtga caagaaagtc 20 <210> 99 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> aroC_fwd_primer <400> 99 gatcaccaaa ggccgtcac 19 <210> 100 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> aroD_fwd_primer <400> 100 aatttctcgt ctggctggtg 20 <210> 101 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> aroE_fwd_primer <400> 101 caaagcgtaa tgctgatggt t 21 <210> 102 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> aroF_fwd_primer <400> 102 gcgcagtgaa atgaaatacg 20 <210> 103 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> aroG_fwd_primer <400> 103 atctggtgga aggcaatcag 20 <210> 104 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> aroK_fwd_primer <400> 104 atgaacgcaa tccgctgtat 20 <210> 105 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> aroL_fwd_primer <400> 105 atgcgctata tcgcgaagtt 20 <210> 106 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> aroM_fwd_primer <400> 106 gtcatcgcga tttactgcaa 20 <210> 107 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> aroP_fwd_primer <400> 107 ggcggtactg gtgattatgc 20 <210> 108 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> aroA_rev_primer <400> 108 tgactcacaa ggtccgaaaa 20 <210> 109 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> aroB_rev_primer <400> 109 ttcatccatt taacacccca 20 <210> 110 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> aroC_rev_primer <400> 110 gctactggca agcagagcc 19 <210> 111 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> aroD_rev_primer <400> 111 ccaaatggag aattagcgca 20 <210> 112 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> aroE_rev_primer <400> 112 agagatcgcg catgtcagtt 20 <210> 113 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> aroF_rev_primer <400> 113 gttccagacg cttcgctaat 20 <210> 114 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> aroG_rev_primer <400> 114 ttatcaggcc tgtggtgatt c 21 <210> 115 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> aroK_rev_primer <400> 115 gttccccgag agtaacgaca 20 <210> 116 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> aroL_rev_primer <400> 116 ttaccgtctg tcctggcttt 20 <210> 117 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> aroM_rev_primer <400> 117 tggaaaagcc gattgatttc 20 <210> 118 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> aroP_rev_primer <400> 118 gtcatcgcga tttactgcaa 20 <210> 119 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> EGFR_fwd_primer <400> 119 gcagcgggtt acatcttctt tc 22 <210> 120 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> BRAF_fwd_primer <400> 120 gccaaaaatt taatcagtgg aaaaa 25 <210> 121 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> KRAS_fwd_primer <400> 121 ctgcaccagt aatatgcata ttaaa 25 <210> 122 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> EGFR_rev_primer <400> 122 caatacagct agtgggaagg ca 22 <210> 123 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> BRAF_rev_primer <400> 123 acacatttca agccccaaaa 20 <210> 124 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KRAS_rev_primer <400> 124 taagcgtcga tggaggagtt 20 <210> 125 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> CTNNB1_fwd_primer <400> 125 gctgatttga tggagttgga c 21 <210> 126 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> DNMT3A_fwd_primer <400> 126 ccatgtccct tacacacacg 20 <210> 127 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> GNAQ_fwd_primer <400> 127 ctgactccac gagaacttg 19 <210> 128 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> GNAS_fwd_primer <400> 128 ctactccaga cctttgcttt ag 22 <210> 129 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> HRAS_fwd_primer <400> 129 gtcttttgag gacatccacc 20 <210> 130 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> IDH2_fwd_primer <400> 130 cgtgcctgcc aatggtga 18 <210> 131 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> NOTCH1_fwd_primer <400> 131 ttgatggggt gcttgcgc 18 <210> 132 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> NRAS_fwd_primer <400> 132 tgatccgaca agtgagagac a 21 <210> 133 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> PIK3CA_fwd_primer <400> 133 ctgtgaatcc agaggggaaa 20 <210> 134 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> TP53_fwd_primer <400> 134 tgcttacctc gcttagtgct c 21 <210> 135 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> CTNNB1_rev_primer <400> 135 tgaaggactg agaaaatccc t 21 <210> 136 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> DNMT3A_rev_primer <400> 136 gctgtgtggt tagacggctt 20 <210> 137 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> GNAQ_rev_primer <400> 137 ccctaagttt gtaagtagtg ct 22 <210> 138 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> GNAS_rev_primer <400> 138 tcaagaaacc atgatctctg tt 22 <210> 139 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> HRAS_rev_primer <400> 139 gaaggtcctg agggggtc 18 <210> 140 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> IDH2_rev_primer <400> 140 attctggttg aaagatggcg 20 <210> 141 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> NOTCH1_rev_primer <400> 141 ggactgtgcg gagcatgta 19 <210> 142 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> NRAS_rev_primer <400> 142 agctttaaag tactgtagat gtggc 25 <210> 143 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> PIK3CA_rev_primer <400> 143 tgctgagatc agccaaattc 20 <210> 144 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> TP53_rev_primer <400> 144 ttaaatggga caggtaggac c 21 <210> 145 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> OT-1_fwd_primer <400> 145 actgacagaa gaaaaacccg agac 24 <210> 146 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> OT-2_fwd_primer <400> 146 agcaatgtgg tggaagcaat 20 <210> 147 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> OT-3_fwd_primer <400> 147 caccaattga aaaaccagct tta 23 <210> 148 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> OT-4_fwd_primer <400> 148 gagaatctca tttctttcaa aatgc 25 <210> 149 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> OT-5_fwd_primer <400> 149 gaaaataagc cattgttttg acc 23 <210> 150 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> OT-6_fwd_primer <400> 150 gagggttcat tatcatccta gtca 24 <210> 151 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> OT-7_fwd_primer <400> 151 ggccacagag gtgagaagag 20 <210> 152 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> OT-8_fwd_primer <400> 152 ccacccttgc ttctaccctt 20 <210> 153 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> OT-1_rev_primer <400> 153 gctccctagc ctgggtaact 20 <210> 154 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> OT-2_rev_primer <400> 154 cagccaggta gagggaaaaa g 21 <210> 155 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> OT-3_rev_primer <400> 155 gggaaaaacc aaacaccaag ta 22 <210> 156 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> OT-4_rev_primer <400> 156 cagagcattt tggcaaatca 20 <210> 157 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> OT-5_rev_primer <400> 157 tggcctcctg ctctagcagt 20 <210> 158 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> OT-6_rev_primer <400> 158 ccaaagtaca aacatgaagc tg 22 <210> 159 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> OT-7_rev_primer <400> 159 tggatattca ctgtggcagg 20 <210> 160 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> OT-8_rev_primer <400> 160 cctcagcaat gagagttccc 20 <110> University-Industry Foundation, Yonsei University <120> Targeted genome editing based on CRISPR / Cas9 system using short          linearized double-stranded DNA <130> P16U16C0909 <150> 2015-0066054 <151> 2015-05-12 <160> 160 <170> Kopatentin 2.0 <210> 1 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> galK_spacer <400> 1 gcagctttaa catctgccgc 20 <210> 2 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> aroA_spacer <400> 2 attatttcga gcagctggcg 20 <210> 3 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> aroB_spacer <400> 3 cgctgattga caatcggcaa 20 <210> 4 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> aroC_spacer <400> 4 ttttaatgga tcacctgtta 20 <210> 5 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> aroD_spacer <400> 5 gaaatattat tgcttatgcc 20 <210> 6 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> aroE_spacer <400> 6 actggatggc ctgattcacg 20 <210> 7 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> aroF_spacer <400> 7 ggatctgaac gggcagctga 20 <210> 8 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> aroG_spacer <400> 8 cagttgacgt aacagagcat 20 <210> 9 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> aroK_spacer <400> 9 tttccagcat gtgaataatc 20 <210> 10 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> aroL_spacer <400> 10 acaattgatc gtctgtgcca 20 <210> 11 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> aroM_spacer <400> 11 attgattgca cggctggctg 20 <210> 12 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> aroP_spacer <400> 12 atgcgctttt acggctttgg 20 <210> 13 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> EGFR_spacer <400> 13 gtcttccgca cccagcagtt 20 <210> 14 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> BRAF_spacer <400> 14 ggacaactgt tcaaactgat 20 <210> 15 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KRAS_spacer <400> 15 gatgactgaa tataaacttg 20 <210> 16 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> CTNNB1_spacer <400> 16 gagagaagga gctgtggtag 20 <210> 17 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> DNMT3A_spacer <400> 17 ggtctccaac atgagccgct 20 <210> 18 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> GNAQ_spacer <400> 18 gggtcgatgt agggggccaa 20 <210> 19 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> GNAS_spacer <400> 19 gctcaaagat tccagaagtc 20 <210> 20 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> HRAS_spacer <400> 20 gctggatacc gccggccagg 20 <210> 21 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> IDH2_spacer <400> 21 gccggaagac agtccccccc 20 <210> 22 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> NOTCH1_spacer <400> 22 gtcacgcttg aagaccacgt 20 <210> 23 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> NRAS_spacer <400> 23 gactgagtac aaactggtgg 20 <210> 24 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> PIK3CA_spacer <400> 24 ggctcagtga tttcagagag 20 <210> 25 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> TP53_spacer <400> 25 gctgggacgg aacagctttg 20 <210> 26 <211> 63 <212> DNA <213> Artificial Sequence <220> <223> galK_63_donor_rev <400> 26 cgcgatttgt gcgccgtcga gcggcagatg ataaagctgc tgcaatacgg ttccgaccgc 60 gac 63 <210> 27 <211> 93 <212> DNA <213> Artificial Sequence <220> <223> galK_93_donor_rev <400> 27 tccgcttcac tggaagtcgc ggtcggaacc gtattgcagc agctttatca tctgccgctc 60 gacggcgcac aaatcgcgct taacggtcag gaa 93 <210> 28 <211> 123 <212> DNA <213> Artificial Sequence <220> <223> galK_123_donor_rev <400> 28 gccgggttaa gttcttccgc ttcactggaa gtcgcggtcg gaaccgtatt gcagcagctt 60 tatcatctgc cgctcgacgg cgcacaaatc gcgcttaacg gtcaggaagc agaaaaccag 120 ttt 123 <210> 29 <211> 123 <212> DNA <213> Artificial Sequence <220> <223> aroA_donor_rev <400> 29 aaagaaagat ttggctattt attgcccgtt gttcattcag gctgcctggc taatacgcgc 60 gatctgctcg aaataatccg gaaatgtttt ggccgtgcat ttgggatcaa gaatcgtcac 120 tgg 123 <210> 30 <211> 123 <212> DNA <213> Artificial Sequence <220> <223> aroB_donor_rev <400> 30 gcttgataag cggcctgacc tttcttgttg ttacgctgat tgacaatcgg caatcgcgtt 60 gataacaagc tcgtgcgaaa cgccgctgcg aacttcactc ttaccaattg ccaacggaag 120 aat 123 <210> 31 <211> 123 <212> DNA <213> Artificial Sequence <220> <223> aroC_donor_rev <400> 31 attcattttt taccagcgtg gaatatcagt cttcacatcg gcattttgcg cccgttgacg 60 aatcaggtga tccattaaaa cgatcgccag catcgcttct gcgatcggca ctgcgcggat 120 ccc 123 <210> 32 <211> 123 <212> DNA <213> Artificial Sequence <220> <223> aroD_donor_rev <400> 32 aaaaaagcgt ctgcgccagg gcaaatctcg gtaaatgatt tgcgcacggt attaactatt 60 attcatcagg cataagcaat aatatttcgg cgggaacacc ctccccgccg aactaaaaaa 120 taste 123 <210> 33 <211> 123 <212> DNA <213> Artificial Sequence <220> <223> aroE_donor_rev <400> 33 attttttatt ctcgtcccac tcttccctgt ccggaaactg gatggcctga ttcacgccga 60 gatttcctcc tgcaattgct ttataactgg ttctacgtca ggcagaacac cgtgccagag 120 aag 123 <210> 34 <211> 123 <212> DNA <213> Artificial Sequence <220> <223> aroF_donor_rev <400> 34 tgatcgcgta atgcggtcaa ttcagcaacc ataataaacc tcttaagcca cgcgagcggt 60 gatctgcccg ttcagatcct gatgaatttc acgcagcaag gcatcggtca tttcccagct 120 aat 123 <210> 35 <211> 123 <212> DNA <213> Artificial Sequence <220> <223> aroG_donor_rev <400> 35 cactctgacg gcgcatccga caattaaacc ttacccgcga cgcgctttta ctgcattcgc 60 gatttgacgt aacagagcat ccgtatcttc ccagccgatg caggcatcgg tgatgctctt 120 acc 123 <210> 36 <211> 123 <212> DNA <213> Artificial Sequence <220> <223> aroK_donor_rev <400> 36 atccacctta attactgtac ccgcagacga gtgtatataa agccagaatt agttgctttc 60 gatcatgtga ataatctgat ttgcaaccac tttagcgctt tgatcatcag tacgaatggt 120 cac 123 <210> 37 <211> 123 <212> DNA <213> Artificial Sequence <220> <223> aroL_donor_rev <400> 37 tatttcacgg gatgaacgtt aagtataggc gctcgaaaat caacaattga tcgtctgtgc 60 gatcgcgctg cgaatttcag aaatcacctg gctgggttcg tttgttgcgt cgatgataat 120 atg 123 <210> 38 <211> 123 <212> DNA <213> Artificial Sequence <220> <223> aroM_donor_rev <400> 38 tagttgaaca tctacttcac tataggggcc agaggcgctg gctgtcacgc aaaattacac 60 gattaattcg gcagccagcc gtgcaatcaa tacgttagac agcaagacag gaacatcgag 120 ctg 123 <210> 39 <211> 123 <212> DNA <213> Artificial Sequence <220> <223> aroP_donor_rev <400> 39 ggaatggcga tttcggtata cctgatcccg gtatggctga tcgtgttagg tatcggctat 60 atctttaaag agaaaacggc caaagccgta aaagcgcatt aatctctcta cgccctcacc 120 cgt 123 <210> 40 <211> 123 <212> DNA <213> Artificial Sequence <220> <223> EGFR_donor_rev <400> 40 cctccttact ttgcctcctt ctgcatggta ttctttctct tccgcaccca gcagtttagc 60 tctcccaaaa tctgtgatct tgacatgctg cggtgttttc accagtacgt tcctggctgc 120 cag 123 <210> 41 <211> 123 <212> DNA <213> Artificial Sequence <220> <223> BRAF_donor_rev <400> 41 catccacaaa atggatccag acaactgttc aaactgatga gacccactcc atcgagattt 60 ttctgtagct agaccaaaat cacctatttt tactgtgagg tcttcatgaa gaaatatatc 120 tga 123 <210> 42 <211> 123 <212> DNA <213> Artificial Sequence <220> <223> KRAS_donor_rev <400> 42 atattcgtcc acaaaatgat tctgaattag ctgtatcgtc aaggcactct tgcctacgcc 60 gcaagctcca actaccgaca gtttatattc agtcattttc agcaggcctt ataataaaaa 120 taa 123 <210> 43 <211> 123 <212> DNA <213> Artificial Sequence <220> <223> CTNNB1_donor_rev <400> 43 ttgggaggta tccacatcct cttcctcagg attgccttta ccactcagag aaggagctgt 60 agcagtagca ccagaatgga ttccagagtc caggtaagac tgttgctgcc agtgactaac 120 agc 123 <210> 44 <211> 123 <212> DNA <213> Artificial Sequence <220> <223> DNMT3A_donor_rev <400> 44 gaagaggtgg cggatgactg gcacgctcca tgaccggccc agcagtctct gcctcgcgaa 60 atggctcatg ttggagacgt cagtatagtg gactgggaaa ccaaataccc tgggggagaa 120 aag 123 <210> 45 <211> 123 <212> DNA <213> Artificial Sequence <220> <223> GNAQ_donor_rev <400> 45 tagaaacatg atagaggtga cattttcaaa gcagtgtatc cattttcttc tctctgatct 60 agggccccct acatcgacca ttctgcaagg ttaacaatac tcatattaat aacatataaa 120 gta 123 <210> 46 <211> 123 <212> DNA <213> Artificial Sequence <220> <223> GNAS_donor_rev <400> 46 ttactggaag ttgactttgt ccacctggaa cttggtctca aagattccag aagtcagcac 60 gcagcagcga agcaggtcct gaaacaaaat tgaggtcaat ggatctcacc aaagccaacc 120 gaa 123 <210> 47 <211> 123 <212> DNA <213> Artificial Sequence <220> <223> HRAS_donor_rev <400> 47 cacacacagg aagccctccc cggtgcgcat gtactggtcc cgcatggcgc tgtactcttc 60 taagccggcg gtatccagga tgtccaacag gcacgtctcc ccatcaatga ccacctgctt 120 ccg 123 <210> 48 <211> 123 <212> DNA <213> Artificial Sequence <220> <223> IDH2_donor_rev <400> 48 taggcgtggg atgtttttgc agatgatggg ctcccggaag acagtccccc ccagaatgtt 60 ttggatagtt ccattgggac ttttccacat cttcttcagc ttgaactctg tgaggacaga 120 gat 123 <210> 49 <211> 123 <212> DNA <213> Artificial Sequence <220> <223> NOTCH1_donor_rev <400> 49 ggggaagatc atctgctggc cgtgtgcgtc acgcttgaag accacgtttg tgtgcagcac 60 agggctgagc tcccgcagga agtggaagga gctgttgcgc agctgctccg gcggcatcag 120 cac 123 <210> 50 <211> 123 <212> DNA <213> Artificial Sequence <220> <223> NRAS_donor_rev <400> 50 atattcatct acaaagtggt tctggattag ctggattgtc agtgcgcttt tcccaacacc 60 gtctgctcca accgacacca gtttgtactc agtcatttca caccagcaag aacctgttgg 120 aaa 123 <210> 51 <211> 123 <212> DNA <213> Artificial Sequence <220> <223> PIK3CA_donor_rev <400> 51 gcacttacct gtgactccat agaaaatctt tctcctgctc agtgatttca gagagagaat 60 tttgtgtaga aattgctttg agctgttctt tgtcattttc ccttaattca ttgtctctag 120 cta 123 <210> 52 <211> 123 <212> DNA <213> Artificial Sequence <220> <223> TP53_donor_rev <400> 52 ccctttcttg cggagattct cttcctctgt gcgccggtct ctcccaggac aggcacaaac 60 gtgcaccttc aagctgttcc gtcccagtag attaccacta ctcaggatag gaaaagagaa 120 gca 123 <210> 53 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> T7_fwd_primer <400> 53 gaaattaata cgactcacta tagg 24 <210> 54 <211> 64 <212> DNA <213> Artificial Sequence <220> <223> galK_gRNA <400> 54 gaaattaata cgactcacta tagggcagct ttaacatctg ccgcgtttta gagctagaaa 60 tagc 64 <210> 55 <211> 83 <212> DNA <213> Artificial Sequence <220> <223> gRNA_rev <400> 55 aaaaaaagca ccgactcggt gccacttttt caagttgata acggactagc cttattttaa 60 cttgctattt ctagctctaa aac 83 <210> 56 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> galK_middle <400> 56 cggaagaact taacccggca aaaaaagcac cgactcgg 38 <210> 57 <211> 64 <212> DNA <213> Artificial Sequence <220> <223> aroA_gRNA <400> 57 gaaattaata cgactcacta taggattatt tcgagcagct ggcggtttta gagctagaaa 60 tagc 64 <210> 58 <211> 64 <212> DNA <213> Artificial Sequence <220> <223> aroB_gRNA <400> 58 gaaattaata cgactcacta taggcgctga ttgacaatcg gcaagtttta gagctagaaa 60 tagc 64 <210> 59 <211> 64 <212> DNA <213> Artificial Sequence <220> <223> aroC_gRNA <400> 59 gaaattaata cgactcacta taggttttaa tggatcacct gttagtttta gagctagaaa 60 tagc 64 <210> 60 <211> 64 <212> DNA <213> Artificial Sequence <220> <223> aroD_gRNA <400> 60 gaaattaata cgactcacta tagggaaata ttattgctta tgccgtttta gagctagaaa 60 tagc 64 <210> 61 <211> 64 <212> DNA <213> Artificial Sequence <220> <223> aroE_gRNA <400> 61 gaaattaata cgactcacta taggactgga tggcctgatt cacggtttta gagctagaaa 60 tagc 64 <210> 62 <211> 64 <212> DNA <213> Artificial Sequence <220> <223> aroF_gRNA <400> 62 gaaattaata cgactcacta taggggatct gaacgggcag ctgagtttta gagctagaaa 60 tagc 64 <210> 63 <211> 64 <212> DNA <213> Artificial Sequence <220> <223> aroG_gRNA <400> 63 gaaattaata cgactcacta taggcagttg acgtaacaga gcatgtttta gagctagaaa 60 tagc 64 <210> 64 <211> 64 <212> DNA <213> Artificial Sequence <220> <223> aroK_gRNA <400> 64 gaaattaata cgactcacta taggtttcca gcatgtgaat aatcgtttta gagctagaaa 60 tagc 64 <210> 65 <211> 64 <212> DNA <213> Artificial Sequence <220> <223> aroL_gRNA <400> 65 gaaattaata cgactcacta taggacaatt gatcgtctgt gccagtttta gagctagaaa 60 tagc 64 <210> 66 <211> 64 <212> DNA <213> Artificial Sequence <220> <223> aroM_gRNA <400> 66 gaaattaata cgactcacta taggattgat tgcacggctg gctggtttta gagctagaaa 60 tagc 64 <210> 67 <211> 64 <212> DNA <213> Artificial Sequence <220> <223> aroP_gRNA <400> 67 gaaattaata cgactcacta taggatgcgc ttttacggct ttgggtttta gagctagaaa 60 tagc 64 <210> 68 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> aroA_middle <400> 68 gatcaagaat cgtcactgga aaaaaagcac cgactcg 37 <210> 69 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> aroB_middle <400> 69 aattgccaac ggaagaataa aaaaagcacc gactcg 36 <210> 70 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> aroC_middle <400> 70 cactgcgcgg atcccaaaaa aagcaccgac tcg 33 <210> 71 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> aroD_middle <400> 71 cccgccgaac taaaaaatat aaaaaaagca ccgactcg 38 <210> 72 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> aroE_middle <400> 72 accgtgccag agaagaaaaa aagcaccgac tcg 33 <210> 73 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> aroF_middle <400> 73 cggtcatttc ccagctaata aaaaaagcac cgactcg 37 <210> 74 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> aroG_middle <400> 74 tcggtgatgc tcttaccaaa aaaagcaccg actcg 35 <210> 75 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> aroK_middle <400> 75 catcagtacg aatggtcaca aaaaaagcac cgactcg 37 <210> 76 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> aroL_middle <400> 76 gttgcgtcga tgataatatg aaaaaaagca ccgactcg 38 <210> 77 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> aroM_middle <400> 77 acaggaacat cgagctgaaa aaaagcaccg actcg 35 <210> 78 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> aroP_middle <400> 78 tacgccctca cccgtaaaaa aagcaccgac tcg 33 <210> 79 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> U6_fwd_primer <400> 79 aaggtcgggc aggaaga 17 <210> 80 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> U6_rev_primer <400> 80 cggtgtttcg tcctttcca 19 <210> 81 <211> 265 <212> DNA <213> Artificial Sequence <220> <223> double-stranded U6 promoter <400> 81 aaggtcgggc aggaagaggg cctatttccc atgattcctt catatttgca tatacgatac 60 aaggctgtta gagagataat tagaattaat ttgactgtaa acacaaagat attagtacaa 120 aatacgtgac gtagaaagta ataatttctt gggtagtttg cagttttaaa attatgtttt 180 aaaatggact atcatatgct taccgtaact tgaaagtatt tcgatttctt ggctttatat 240 atcttgtgga aaggacgaaa caccg 265 <210> 82 <211> 140 <212> DNA <213> Artificial Sequence <220> <223> EGFR_gRNA <400> 82 gtggaaagga cgaaacaccg tcttccgcac ccagcagttg ttttagagct agaaatagca 60 agttaaaata aggctagtcc gttatcaact tgaaaaagtg gcaccgagtc ggtgcttttt 120 ttctggcagc caggaacgta 140 <210> 83 <211> 148 <212> DNA <213> Artificial Sequence <220> <223> BRAF_gRNA <400> 83 gtggaaagga cgaaacaccg gacaactgtt caaactgatg ttttagagct agaaatagca 60 agttaaaata aggctagtcc gttatcaact tgaaaaagtg gcaccgagtc ggtgcttttt 120 tttcagatat atttcttcat gaagacct 148 <210> 84 <211> 149 <212> DNA <213> Artificial Sequence <220> <223> KRAS_gRNA <400> 84 gtggaaagga cgaaacaccg atgactgaat ataaacttgg ttttagagct agaaatagca 60 agttaaaata aggctagtcc gttatcaact tgaaaaagtg gcaccgagtc ggtgcttttt 120 ttttattttt attataaggc ctgctgaaa 149 <210> 85 <211> 140 <212> DNA <213> Artificial Sequence <220> <223> CTNNB1_gRNA <400> 85 gtggaaagga cgaaacaccg agagaaggag ctgtggtagg ttttagagct agaaatagca 60 agttaaaata aggctagtcc gttatcaact tgaaaaagtg gcaccgagtc ggtgcttttt 120 ttgctgttag tcactggcag 140 <210> 86 <211> 140 <212> DNA <213> Artificial Sequence <220> <223> DNMT3A_gRNA <400> 86 gtggaaagga cgaaacaccg gtctccaaca tgagccgctg ttttagagct agaaatagca 60 agttaaaata aggctagtcc gttatcaact tgaaaaagtg gcaccgagtc ggtgcttttt 120 ttcttttctc ccccagggta 140 <210> 87 <211> 157 <212> DNA <213> Artificial Sequence <220> <223> GNAQ_gRNA <400> 87 gtggaaagga cgaaacaccg ggtcgatgta gggggccaag ttttagagct agaaatagca 60 agttaaaata aggctagtcc gttatcaact tgaaaaagtg gcaccgagtc ggtgcttttt 120 tttactttat atgttattaa tatgagtatt gttaacc 157 <210> 88 <211> 140 <212> DNA <213> Artificial Sequence <220> <223> GNAS_gRNA <400> 88 gtggaaagga cgaaacaccg ctcaaagatt ccagaagtcg ttttagagct agaaatagca 60 agttaaaata aggctagtcc gttatcaact tgaaaaagtg gcaccgagtc ggtgcttttt 120 ttttcggttg gctttggtga 140 <210> 89 <211> 140 <212> DNA <213> Artificial Sequence <220> <223> HRAS_gRNA <400> 89 gtggaaagga cgaaacaccg ctggataccg ccggccaggg ttttagagct agaaatagca 60 agttaaaata aggctagtcc gttatcaact tgaaaaagtg gcaccgagtc ggtgcttttt 120 ttcggaagca ggtggtcatt 140 <210> 90 <211> 142 <212> DNA <213> Artificial Sequence <220> <223> IDH2_gRNA <400> 90 gtggaaagga cgaaacaccg ccggaagaca gtcccccccg ttttagagct agaaatagca 60 agttaaaata aggctagtcc gttatcaact tgaaaaagtg gcaccgagtc ggtgcttttt 120 ttatctctgt cctcacagag tt 142 <210> 91 <211> 140 <212> DNA <213> Artificial Sequence <220> <223> NOTCH1_gRNA <400> 91 gtggaaagga cgaaacaccg tcacgcttga agaccacgtg ttttagagct agaaatagca 60 agttaaaata aggctagtcc gttatcaact tgaaaaagtg gcaccgagtc ggtgcttttt 120 ttgtgctgat gccgccggag 140 <210> 92 <211> 142 <212> DNA <213> Artificial Sequence <220> <223> NRAS_gRNA <400> 92 gtggaaagga cgaaacaccg actgagtaca aactggtggg ttttagagct agaaatagca 60 agttaaaata aggctagtcc gttatcaact tgaaaaagtg gcaccgagtc ggtgcttttt 120 tttttccaac aggttcttgc tg 142 <210> 93 <211> 146 <212> DNA <213> Artificial Sequence <220> <223> PIK3CA_gRNA <400> 93 gtggaaagga cgaaacaccg gctcagtgat ttcagagagg ttttagagct agaaatagca 60 agttaaaata aggctagtcc gttatcaact tgaaaaagtg gcaccgagtc ggtgcttttt 120 tttagctaga gacaatgaat taaggg 146 <210> 94 <211> 144 <212> DNA <213> Artificial Sequence <220> <223> TP53_gRNA <400> 94 gtggaaagga cgaaacaccg ctgggacgga acagctttgg ttttagagct agaaatagca 60 agttaaaata aggctagtcc gttatcaact tgaaaaagtg gcaccgagtc ggtgcttttt 120 tttgcttctc ttttcctatc ctga 144 <210> 95 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> galK_fwd_primer <400> 95 atccatgatc ccgcagttac 20 <210> 96 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> galK_rev_primer <400> 96 ggacatggtg atcagcgg 18 <210> 97 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> aroA_fwd_primer <400> 97 cgcgacatac aatgatcacc 20 <210> 98 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> aroB_fwd_primer <400> 98 tgctgcgtga caagaaagtc 20 <210> 99 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> aroC_fwd_primer <400> 99 gatcaccaaa ggccgtcac 19 <210> 100 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> aroD_fwd_primer <400> 100 aatttctcgt ctggctggtg 20 <210> 101 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> aroE_fwd_primer <400> 101 caaagcgtaa tgctgatggt t 21 <210> 102 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> aroF_fwd_primer <400> 102 gcgcagtgaa atgaaatacg 20 <210> 103 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> aroG_fwd_primer <400> 103 atctggtgga aggcaatcag 20 <210> 104 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> aroK_fwd_primer <400> 104 atgaacgcaa tccgctgtat 20 <210> 105 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> aroL_fwd_primer <400> 105 atgcgctata tcgcgaagtt 20 <210> 106 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> aroM_fwd_primer <400> 106 gtcatcgcga tttactgcaa 20 <210> 107 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> aroP_fwd_primer <400> 107 ggcggtactg gtgattatgc 20 <210> 108 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> aroA_rev_primer <400> 108 tgactcacaa ggtccgaaaa 20 <210> 109 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> aroB_rev_primer <400> 109 ttcatccatt taacacccca 20 <210> 110 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> aroC_rev_primer <400> 110 gctactggca agcagagcc 19 <210> 111 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> aroD_rev_primer <400> 111 ccaaatggag aattagcgca 20 <210> 112 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> aroE_rev_primer <400> 112 agagatcgcg catgtcagtt 20 <210> 113 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> aroF_rev_primer <400> 113 gttccagacg cttcgctaat 20 <210> 114 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> aroG_rev_primer <400> 114 ttatcaggcc tgtggtgatt c 21 <210> 115 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> aroK_rev_primer <400> 115 gttccccgag agtaacgaca 20 <210> 116 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> aroL_rev_primer <400> 116 ttaccgtctg tcctggcttt 20 <210> 117 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> aroM_rev_primer <400> 117 tggaaaagcc gattgatttc 20 <210> 118 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> aroP_rev_primer <400> 118 gtcatcgcga tttactgcaa 20 <210> 119 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> EGFR_fwd_primer <400> 119 gcagcgggtt acatcttctt tc 22 <210> 120 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> BRAF_fwd_primer <400> 120 gccaaaaatt taatcagtgg aaaaa 25 <210> 121 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> KRAS_fwd_primer <400> 121 ctgcaccagt aatatgcata ttaaa 25 <210> 122 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> EGFR_rev_primer <400> 122 caatacagct agtgggaagg ca 22 <210> 123 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> BRAF_rev_primer <400> 123 acacatttca agccccaaaa 20 <210> 124 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KRAS_rev_primer <400> 124 taagcgtcga tggaggagtt 20 <210> 125 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> CTNNB1_fwd_primer <400> 125 gctgatttga tggagttgga c 21 <210> 126 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> DNMT3A_fwd_primer <400> 126 ccatgtccct tacacacacg 20 <210> 127 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> GNAQ_fwd_primer <400> 127 ctgactccac gagaacttg 19 <210> 128 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> GNAS_fwd_primer <400> 128 ctactccaga cctttgcttt ag 22 <210> 129 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> HRAS_fwd_primer <400> 129 gtcttttgag gacatccacc 20 <210> 130 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> IDH2_fwd_primer <400> 130 cgtgcctgcc aatggtga 18 <210> 131 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> NOTCH1_fwd_primer <400> 131 ttgatggggt gcttgcgc 18 <210> 132 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> NRAS_fwd_primer <400> 132 tgatccgaca agtgagagac a 21 <210> 133 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> PIK3CA_fwd_primer <400> 133 ctgtgaatcc agaggggaaa 20 <210> 134 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> TP53_fwd_primer <400> 134 tgcttacctc gcttagtgct c 21 <210> 135 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> CTNNB1_rev_primer <400> 135 tgaaggactg agaaaatccc t 21 <210> 136 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> DNMT3A_rev_primer <400> 136 gctgtgtggt tagacggctt 20 <210> 137 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> GNAQ_rev_primer <400> 137 ccctaagttt gtaagtagtg ct 22 <210> 138 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> GNAS_rev_primer <400> 138 tcaagaaacc atgatctctg tt 22 <210> 139 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> HRAS_rev_primer <400> 139 gaaggtcctg agggggtc 18 <210> 140 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> IDH2_rev_primer <400> 140 attctggttg aaagatggcg 20 <210> 141 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> NOTCH1_rev_primer <400> 141 ggactgtgcg gagcatgta 19 <210> 142 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> NRAS_rev_primer <400> 142 agctttaaag tactgtagat gtggc 25 <210> 143 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> PIK3CA_rev_primer <400> 143 tgctgagatc agccaaattc 20 <210> 144 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> TP53_rev_primer <400> 144 ttaaatggga caggtaggac c 21 <210> 145 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> OT-1_fwd_primer <400> 145 actgacagaa gaaaaacccg agac 24 <210> 146 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> OT-2_fwd_primer <400> 146 agcaatgtgg tggaagcaat 20 <210> 147 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> OT-3_fwd_primer <400> 147 caccaattga aaaaccagct tta 23 <210> 148 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> OT-4_fwd_primer <400> 148 gagaatctca tttctttcaa aatgc 25 <210> 149 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> OT-5_fwd_primer <400> 149 gaaaataagc cattgttttg acc 23 <210> 150 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> OT-6_fwd_primer <400> 150 gagggttcat tatcatccta gtca 24 <210> 151 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> OT-7_fwd_primer <400> 151 ggccacagag gtgagaagag 20 <210> 152 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> OT-8_fwd_primer <400> 152 ccacccttgc ttctaccctt 20 <210> 153 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> OT-1_rev_primer <400> 153 gctccctagc ctgggtaact 20 <210> 154 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> OT-2_rev_primer <400> 154 cagccaggta gagggaaaaa g 21 <210> 155 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> OT-3_rev_primer <400> 155 gggaaaaacc aaacaccaag ta 22 <210> 156 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> OT-4_rev_primer <400> 156 cagagcattt tggcaaatca 20 <210> 157 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> OT-5_rev_primer <400> 157 tggcctcctg ctctagcagt 20 <210> 158 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> OT-6_rev_primer <400> 158 ccaaagtaca aacatgaagc tg 22 <210> 159 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> OT-7_rev_primer <400> 159 tggatattca ctgtggcagg 20 <210> 160 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> OT-8_rev_primer <400> 160 cctcagcaat gagagttccc 20

Claims (14)

가이드 RNA를 발현하기 위한 프로모터;
가이드 RNA를 코딩하는 DNA;
터미네이터; 및
도너 DNA(donor DNA)를 포함하는 선형 이중가닥 DNA.
A promoter for expressing the guide RNA;
DNA encoding guide RNA;
Terminator; And
Linear double stranded DNA containing donor DNA.
제1항에 있어서,
선형 이중가닥 DNA는 가이드 RNA를 발현하기 위한 프로모터; 가이드 RNA를 코딩하는 DNA; 터미네이터; 및 도너 DNA가 순차적으로 연결된 구조인, 선형 이중가닥 DNA.
The method according to claim 1,
Linear double stranded DNA comprises a promoter for expressing the guide RNA; DNA encoding guide RNA; Terminator; And donor DNA are sequentially linked.
제1항에 있어서,
프로모터는 T7 프로모터, SP6 프로모터, rpr-1 프로모터, rrk 프로모터 또는 U6 프로모터 중 어느 하나를 포함하는, 선형 이중가닥 DNA.
The method according to claim 1,
Wherein the promoter comprises any one of T7 promoter, SP6 promoter, rpr-1 promoter, rrk promoter or U6 promoter.
제1항에 있어서,
가이드 RNA는 표적 DNA를 인식하는 스페이서; 및 가이드 RNA 스캐폴드를 포함하는 것인, 선형 이중가닥 DNA.
The method according to claim 1,
The guide RNA comprises a spacer recognizing the target DNA; And a guide RNA scaffold.
제4항에 있어서,
표적 DNA는 내재적 표적 DNA인, 선형 이중가닥 DNA.
5. The method of claim 4,
The target DNA is an intrinsic target DNA, linear double stranded DNA.
제4항에 있어서,
스페이서는 protospacer adjacent motifs(PAMs) 서열의 일부 또는 전체를 포함하는, 선형 이중가닥 DNA.
5. The method of claim 4,
The spacer comprises a portion or all of the sequence of the protospacer adjacent motifs (PAMs).
제4항에 있어서,
가이드 RNA 스캐폴드는 단일-사슬 가이드 RNA인, 선형 이중가닥 DNA.
5. The method of claim 4,
The guide RNA scaffold is a single-chain guide RNA, linear double stranded DNA.
제7항에 있어서,
단일-사슬 가이드 RNA는 crRNA 및 tracrRNA의 부분을 포함하는, 선형 이중가닥 DNA.
8. The method of claim 7,
Single-stranded guide RNA contains a portion of the crRNA and tracrRNA, linear double-stranded DNA.
제1항에 있어서,
터미네이터는 RNA Polymerase III terminator 또는 -TTTTTT- 서열 중 어느 하나인, 선형 이중가닥 DNA.
The method according to claim 1,
The terminator is either the RNA Polymerase III terminator or the -TTTTTT-sequence, linear double stranded DNA.
제1항에 있어서,
도너 DNA는 PAM 서열을 포함하고, 표적 DNA에 대해 1 내지 3개의 뉴클레오티드의 미스매치를 갖는 변이 코돈을 포함하는 상동 서열로 이루어진 것인, 선형 이중가닥 DNA.
The method according to claim 1,
Wherein the donor DNA comprises a PAM sequence and consists of a homologous sequence comprising a mutation codon having a mismatch of 1 to 3 nucleotides with respect to the target DNA.
제1항의 선형 이중가닥 DNA; 및
Cas9 단백질 또는 Cas9 단백질을 발현하는 벡터를 포함하는 CRISPR-Cas9 기반 유전체 교정용 조성물.
A linear double stranded DNA of claim 1; And
A composition for CRISPR-Cas9-based genetic correction comprising a Cas9 protein or a vector expressing Cas9 protein.
제11항에 있어서,
선형 이중가닥 DNA 및 Cas9 단백질 또는 Cas9 단백질을 발현하는 벡터는 원핵 세포 또는 진핵 세포에 공동-형질주입(co-transfection) 또는 단계적 형질주입(serial-transfection)을 통해 전달되는, CRISPR-Cas9 기반 유전체 교정용 조성물.
12. The method of claim 11,
Linear double-stranded DNA and a vector expressing Cas9 protein or Cas9 protein are delivered via co-transfection or serial-transfection to prokaryotic or eukaryotic cells, a CRISPR-Cas9 based genetic correction / RTI &gt;
제12항에 있어서,
단계적 형질주입은 Cas9 단백질 또는 Cas9 단백질을 발현하는 벡터를 원핵 세포 또는 진핵 세포에 형질주입한 후 선형 이중가닥 DNA를 형질주입하는 것인, CRISPR-Cas9 기반 유전체 교정용 조성물.
13. The method of claim 12,
Wherein stepwise transfection comprises transfecting a prokaryotic or eukaryotic cell with a vector expressing Cas9 protein or Cas9 protein, followed by transfection of linear double stranded DNA.
제11항에 있어서,
조성물은 원핵 세포 또는 진핵 세포에서 단일 위치 또는 다중 위치 유전자의 표적화된 돌연변이를 유도하는 것인, CRISPR-Cas9 기반 유전체 교정용 조성물.
12. The method of claim 11,
Wherein the composition induces a targeted mutation of a single site or multiple location gene in prokaryotic or eukaryotic cells.
KR1020160058214A 2015-05-12 2016-05-12 Targeted genome editing based on CRISPR/Cas9 system using short linearized double-stranded DNA KR101785847B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20150066054 2015-05-12
KR1020150066054 2015-05-12

Publications (2)

Publication Number Publication Date
KR20160133380A true KR20160133380A (en) 2016-11-22
KR101785847B1 KR101785847B1 (en) 2017-10-17

Family

ID=57540037

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160058214A KR101785847B1 (en) 2015-05-12 2016-05-12 Targeted genome editing based on CRISPR/Cas9 system using short linearized double-stranded DNA

Country Status (1)

Country Link
KR (1) KR101785847B1 (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9999671B2 (en) 2013-09-06 2018-06-19 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
US10077453B2 (en) 2014-07-30 2018-09-18 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US10113163B2 (en) 2016-08-03 2018-10-30 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US10167457B2 (en) 2015-10-23 2019-01-01 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US10323236B2 (en) 2011-07-22 2019-06-18 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
WO2019147014A1 (en) * 2018-01-23 2019-08-01 기초과학연구원 Extended single guide rna and use thereof
US10465176B2 (en) 2013-12-12 2019-11-05 President And Fellows Of Harvard College Cas variants for gene editing
US10508298B2 (en) 2013-08-09 2019-12-17 President And Fellows Of Harvard College Methods for identifying a target site of a CAS9 nuclease
US10597679B2 (en) 2013-09-06 2020-03-24 President And Fellows Of Harvard College Switchable Cas9 nucleases and uses thereof
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
US10858639B2 (en) 2013-09-06 2020-12-08 President And Fellows Of Harvard College CAS9 variants and uses thereof
US11046948B2 (en) 2013-08-22 2021-06-29 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
CN116262927A (en) * 2021-12-13 2023-06-16 中国科学院微生物研究所 Method for regulating gene expression based on CRISPR/Cas system and application thereof
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence
CN116262927B (en) * 2021-12-13 2024-04-26 中国科学院微生物研究所 Method for regulating gene expression based on CRISPR/Cas system and application thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101656237B1 (en) 2012-10-23 2016-09-12 주식회사 툴젠 Composition for cleaving a target DNA comprising a guide RNA specific for the target DNA and Cas protein-encoding nucleic acid or Cas protein, and use thereof
US20140310830A1 (en) * 2012-12-12 2014-10-16 Feng Zhang CRISPR-Cas Nickase Systems, Methods And Compositions For Sequence Manipulation in Eukaryotes

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
D. Yu et al. Proceedings of the National Academy of Sciences of the United States of America 2000, 97, 5978-5983
H. H. Wang et al. Nature 2009, 460, 894-898
L. A. Gilbert et al. Cell 2014, 159, 647-661
L. Cong et al. Science 2013, 339, 819-823
M. Jinek et al. Science 2012, 337, 816-821
O. Shalem et al. Science 2014, 343, 84-87
P. Mali et al. Science (New York, N.Y.) 2013, 339, 823-826
S. Konermann et al. Nature 2015, 517, 583-588
T. Wang et al. Science 2014, 343, 80-84

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10323236B2 (en) 2011-07-22 2019-06-18 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US10954548B2 (en) 2013-08-09 2021-03-23 President And Fellows Of Harvard College Nuclease profiling system
US11920181B2 (en) 2013-08-09 2024-03-05 President And Fellows Of Harvard College Nuclease profiling system
US10508298B2 (en) 2013-08-09 2019-12-17 President And Fellows Of Harvard College Methods for identifying a target site of a CAS9 nuclease
US11046948B2 (en) 2013-08-22 2021-06-29 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US10597679B2 (en) 2013-09-06 2020-03-24 President And Fellows Of Harvard College Switchable Cas9 nucleases and uses thereof
US10858639B2 (en) 2013-09-06 2020-12-08 President And Fellows Of Harvard College CAS9 variants and uses thereof
US9999671B2 (en) 2013-09-06 2018-06-19 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
US10912833B2 (en) 2013-09-06 2021-02-09 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
US11299755B2 (en) 2013-09-06 2022-04-12 President And Fellows Of Harvard College Switchable CAS9 nucleases and uses thereof
US10682410B2 (en) 2013-09-06 2020-06-16 President And Fellows Of Harvard College Delivery system for functional nucleases
US11124782B2 (en) 2013-12-12 2021-09-21 President And Fellows Of Harvard College Cas variants for gene editing
US11053481B2 (en) 2013-12-12 2021-07-06 President And Fellows Of Harvard College Fusions of Cas9 domains and nucleic acid-editing domains
US10465176B2 (en) 2013-12-12 2019-11-05 President And Fellows Of Harvard College Cas variants for gene editing
US11578343B2 (en) 2014-07-30 2023-02-14 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US10704062B2 (en) 2014-07-30 2020-07-07 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US10077453B2 (en) 2014-07-30 2018-09-18 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US10167457B2 (en) 2015-10-23 2019-01-01 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US11214780B2 (en) 2015-10-23 2022-01-04 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US11702651B2 (en) 2016-08-03 2023-07-18 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US10947530B2 (en) 2016-08-03 2021-03-16 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US10113163B2 (en) 2016-08-03 2018-10-30 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
US11820969B2 (en) 2016-12-23 2023-11-21 President And Fellows Of Harvard College Editing of CCR2 receptor gene to protect against HIV infection
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11932884B2 (en) 2017-08-30 2024-03-19 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
WO2019147014A1 (en) * 2018-01-23 2019-08-01 기초과학연구원 Extended single guide rna and use thereof
US11795452B2 (en) 2019-03-19 2023-10-24 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11643652B2 (en) 2019-03-19 2023-05-09 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence
CN116262927A (en) * 2021-12-13 2023-06-16 中国科学院微生物研究所 Method for regulating gene expression based on CRISPR/Cas system and application thereof
CN116262927B (en) * 2021-12-13 2024-04-26 中国科学院微生物研究所 Method for regulating gene expression based on CRISPR/Cas system and application thereof

Also Published As

Publication number Publication date
KR101785847B1 (en) 2017-10-17

Similar Documents

Publication Publication Date Title
KR101785847B1 (en) Targeted genome editing based on CRISPR/Cas9 system using short linearized double-stranded DNA
US11535871B2 (en) Optimized gene editing utilizing a recombinant endonuclease system
Lee et al. Highly efficient CRISPR/Cas9-mediated TAR cloning of genes and chromosomal loci from complex genomes in yeast
Fuster-García et al. USH2A gene editing using the CRISPR system
AU2014338910B2 (en) Design of rare-cutting endonucleases for efficient and specific targeting DNA sequences comprising highly repetitive motives
EP3613854A1 (en) Genomic sequence modification method for specifically converting nucleic acid bases of targeted dna sequence, and molecular complex for use in same
EP3715461A2 (en) Genome editing composition using crispr/cpf1 system and use thereof
WO2017215648A1 (en) Gene knockout method
CN113939591A (en) Methods and compositions for editing RNA
CN115216459A (en) Novel CRISPR-associated transposase and use thereof
JP2018503386A (en) CRISPR hybrid DNA / RNA polynucleotides and methods of use
JP2002514442A (en) Heteroduplex mutant vectors and their use in bacteria
KR102151065B1 (en) Composition and method for base editing in animal embryos
US20220169984A1 (en) Improved process for dna integration using rna-guided endonucleases
US20220145333A1 (en) Improved process for integration of dna constructs using rna-guided endonucleases
EP3676378A1 (en) Methods and compositions comprising crispr-cpf1 and paired guide crispr rnas for programmable genomic deletions
CN110551761B (en) CRISPR/Sa-SepCas9 gene editing system and application thereof
JP2022511508A (en) Gene silencing by genome editing
Bayat et al. The CRISPR growth spurt: from bench to clinic on versatile small RNAs
CN110577971B (en) CRISPR/Sa-SauriCas9 gene editing system and application thereof
CN110551762B (en) CRISPR/ShaCas9 gene editing system and application thereof
Liu et al. Lb2Cas12a and its engineered variants mediate genome editing in human cells
CN110551763B (en) CRISPR/SlutCas9 gene editing system and application thereof
CN110577970B (en) CRISPR/Sa-SlutCas9 gene editing system and application thereof
CN110551760B (en) CRISPR/Sa-SeqCas9 gene editing system and application thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right