KR20160131952A - An essential gene MNN14 for mannosylphosphorylation in Saccharomyces cerevisiae and a method for producing recombinant glycoprotein using a MNN14-defected microorganism - Google Patents

An essential gene MNN14 for mannosylphosphorylation in Saccharomyces cerevisiae and a method for producing recombinant glycoprotein using a MNN14-defected microorganism Download PDF

Info

Publication number
KR20160131952A
KR20160131952A KR1020160055677A KR20160055677A KR20160131952A KR 20160131952 A KR20160131952 A KR 20160131952A KR 1020160055677 A KR1020160055677 A KR 1020160055677A KR 20160055677 A KR20160055677 A KR 20160055677A KR 20160131952 A KR20160131952 A KR 20160131952A
Authority
KR
South Korea
Prior art keywords
leu
protein
lys
glu
mnn4
Prior art date
Application number
KR1020160055677A
Other languages
Korean (ko)
Other versions
KR101782938B1 (en
Inventor
오두병
권오석
강지연
김영훈
Original Assignee
한국생명공학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생명공학연구원 filed Critical 한국생명공학연구원
Publication of KR20160131952A publication Critical patent/KR20160131952A/en
Application granted granted Critical
Publication of KR101782938B1 publication Critical patent/KR101782938B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/37Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi
    • C07K14/39Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi from yeasts
    • C07K14/395Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi from yeasts from Saccharomyces
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/79Transferrins, e.g. lactoferrins, ovotransferrins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/005Glycopeptides, glycoproteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
    • C12R1/865
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/645Fungi ; Processes using fungi
    • C12R2001/85Saccharomyces
    • C12R2001/865Saccharomyces cerevisiae

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Mycology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Toxicology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present invention relates to a recombinant yeast strain in which the activity of Mnn4 protein and protein represented by SEQ ID NO : 1 is weaker than the intrinsic activity, and a method for producing a recombinant glycoprotein having humanized oligosaccharide using the same.

Description

사카로마이세스 세레비지애 효모의 만노스 인산화 활성에 핵심적인 유전자 MNN14 및 그 결손 변이주를 활용한 재조합 당단백질 생산 방법 {An essential gene MNN14 for mannosylphosphorylation in Saccharomyces cerevisiae and a method for producing recombinant glycoprotein using a MNN14-defected microorganism}[0001] The present invention relates to a recombinant glycoprotein producing method using MNN14 gene and a deletion mutant thereof, which is a key gene for mannose phosphorylation activity of Saccharomyces cerevisiae yeast, and a recombinant glycoprotein using a MNN14- defected microorganism}

본 발명은 Mnn4 단백질 및 Mnn14 단백질의 활성이 모두 내재적 활성에 비하여 약화된, 재조합 효모 균주 및 이를 이용하여 인간화된 당사슬이 부착된 재조합 당단백질을 제조하는 방법에 관한 것이다.The present invention relates to a recombinant yeast strain in which the activity of Mnn4 protein and Mnn14 protein is weaker than that of an intrinsic activity, and a method for producing a recombinant glycoprotein having a humanized sugar chain attached thereto using the same.

당질화를 통해서 당사슬이 부가되는 당단백질들은 현재 전세계 재조합 단백질 의약품 시장의 60% 이상을 차지하며 시장을 주도하고 있다. 특히, 당사슬은 당단백질 의약품의 치료 효능, 체내 지속성, 타겟팅 및 면역반응 등에서 중요한 역할을 하기에 의약품의 품질을 결정하는 주요 인자로 부각되고 있다. 당사슬이 부가되는 반응은 크게 N-결합 또는 O-결합 당질화(N-linked or O-linked glycosylation)의 두 가지 형태가 있으며, 이 중 N-결합 당질화를 통해서 부가되는 당사슬을 N-당사슬(N-glycan)이라 부르며 소포체에서 시작된다. 먼저 소포체 막에 존재하는 돌리콜 피로인산(dolichol pyrophosphate, PP-Dol)에 연결된 형태의 당사슬인 Glc3Man9GlcNAc2-PP-Dol을 형성한다. 그리고 올리고당 전이효소(oligosaccharyltransferase)가 이를 co-translational translocation 기작으로 리보좀에서 소포체로 번역되어 나오는 단백질 중에서 N-X-S/T 서열의 N-당질화 시퀀(sequon)에 전달한다. 소포체 안에 존재하는 당단백질 폴딩의 품질 제어를 담당하는 기작의 글루코시다아제(glucosidase)와 만노시다제(mannosidase)에 의해서 말단에 존재하는 포도당과 특정 만노스(mannose)가 제거되어 Man8GlcNAc2 구조를 갖는 고-만노스 형(high-mannose type) 당사슬을 부착한 상태로 골지체에 옮겨지게 된다. Glycoproteins, which are glycosylated through glycosylation, are now leading the market, accounting for more than 60% of the global recombinant protein drug market. In particular, oligosaccharides play an important role in the therapeutic efficacy of glycoprotein drugs, persistence in the body, targeting, and immune response, and thus are becoming important factors in determining drug quality. The addition reaction in which sugar chain is largely N - O bond or a - combination glycosylation and two types of (N -linked or O -linked glycosylation) , the of the N - a sugar chain which is added via the binding glycosylation N - oligosaccharide ( N- glycan) and begins in the endoplasmic reticulum. First, Glc 3 Man 9 GlcNAc 2 -PP-Dol, a glycoconjugate in the form linked to dolichol pyrophosphate (PP-Dol) present in the membrane of the endoplasmic reticulum, is formed. Oligosaccharyltransferase then transfers it to the N -glycosylation sequence of the NXS / T sequence among the proteins that are translated into ribosomal to endoplasmic reticulum by a co-translational translocation mechanism. Glucosidase and mannosidase eliminate the glucose and mannose at the end by the mechanisms responsible for the quality control of the glycoprotein folding in the endoplasmic reticulum, resulting in a Man 8 GlcNAc 2 structure (High-mannose type) oligosaccharide having a sugar chain attached thereto is transferred to the Golgi body.

상기에서 소개한 소포체에서 이루어지는 N-당사슬의 초기 생합성 과정은 진핵 미생물인 효모에서 고등동물인 포유류에 이르기까지 거의 동일한 과정으로 보존되어 있다. 그러나, 골지체로 넘어간 당사슬은 각 종에 특이적으로 다양한 당사슬 수식 과정을 거치게 되며, 그 결과로 효모, 곤충, 식물 및 동물 등에서 완전히 다른 형태의 당사슬들이 만들어지게 된다. 고등 동물에서는 골지체로 들어온 당단백질의 당사슬들은 만노시다제들에 의해서 Man5GlcNAc2 형태로 다듬어진다. 그리고 여기에 N-acetylglucosaminyltransferase (GNT) I이 작용해서 GlcNAc이 하나 부가된 후, 만노시다제 Ⅱ가 작용해서 반대편 가지에 부가되어 있던 만노스 2개를 더 제거하여 trimannosyl core (Man3GlcNAc2) 당사슬에 GlcNAc이 하나 부가되어 있는 혼합형 구조가 만들어진다. 이후 만노스가 제거된 가지에 GNT Ⅱ가 작용해서 GlcNAc이 하나 더 부가되면서 두 개의 안테나 구조를 갖는 당사슬이 생성된다. 이후에 GNT Ⅳ와 Ⅴ 등이 작용해서 네 개의 안테나 구조가 만들어지기도 하며, 일부에서는 GNT Ⅵ, Ⅸ 또는 VB 등이 작용해서 6개의 안테나 구조까지 만들어지는 경우도 있다. GlcNAc이 부가되어 안테나의 골격이 만들어진 후에 골지체에 존재하는 베타-갈락토실트랜스퍼라아제와 알파-시알산트랜스퍼라아제(alpha-sialyltrasnferase) 등이 작용해서 GlcNAc 위에 갈락토즈와 시알산이 부가된 복합형 당사슬 구조가 만들어진다. The initial biosynthetic process of the N - glycoprotein in the above - described ER is preserved in almost the same process from the eukaryotic microorganism yeast to the mammal, the higher animal. However, the oligosaccharide transferred to the Golgi is subjected to a variety of oligosaccharide modification processes specifically for each species, and as a result, completely different types of oligosaccharides are produced in yeast, insects, plants and animals. In higher animals, oligosaccharides of the glycoprotein that enter the Golgi are polished to the Man 5 GlcNAc 2 form by mannosidase. After N- acetylglucosaminyltransferase (GNT) I was added, GlcNAc was added, Mannosidase II was added to remove two mannos added to the opposite branch, and trimannosyl core (Man 3 GlcNAc 2 ) A mixed structure in which GlcNAc is added is made. Then GNT Ⅱ acts on the branch from which mannose is removed, and GlcNAc is added to produce an oligosaccharide having two antenna structures. After that, GNT Ⅳ and Ⅴ act to create four antenna structures, and in some cases GNT Ⅵ, Ⅸ or VB acts to form 6 antenna structures. Galactosyltransferase and alpha-sialyltransferase, which are present in Golgi after action of GlcNAc is added to make the framework of the antenna, The sugar chain structure is made.

효모는 진핵 미생물로서 유전자 조작이 용이하여 다루기 쉽고 저렴한 비용으로 대량의 단백질을 생산할 수 있어서 경제성이 높을 뿐만 아니라, 인간을 감염시키는 바이러스와 프라이온 등에 오염이 될 가능성이 없는 등 안전성 또한 매우 높다는 많은 장점들을 가지고 있다. 그러나, 효모에서 합성된 당사슬 구조는 인간의 것과 매우 상이하여 인체 주입 시 면역 반응을 일으키는 문제점이 있다. 효모는 소포체까지는 고등동물과 동일한 당사슬 생합성 과정을 가지고 있으나, 골지체(Golgi)로 이동한 후에는 만노스가 추가로 부가되는 효모 특이적인 당사슬 수식 경로를 갖는다. 즉, OCH1 유전자 산물에 의해서 소포체에서 넘어온 Man8GlcNAc2 당사슬에 α(1,6)-결합으로 만노스가 부가되는 당사슬 외쇄(glycan outer chain) 개시 반응이 일어나며, 이를 시작으로 α(1,6)-결합 및 α(1,2)-결합으로 만노스가 연속적으로 부가되어 당사슬 외쇄가 합성된다. 전통효모인 사카로마이세스 세레비지애(Saccharomyces cerevisiae)의 경우에는 핵심 당사슬에 50-200개의 만노스가 연속적으로 부가되는 과당화 반응이 일어나기도 하며, 인체에서 항원으로 인지될 수 있는 α(1,3)-만노스가 MNN1 유전자 산물에 의해서 부가된다. 또한, 당사슬에 만노스-1-인산이 추가로 부가되는 만노스인산화(mannosylphosphorylation)를 통해서 "만노스-1-인산-6-O-만노스(mannose-1-phosphate-6-O-mannose)" 형태의 산성 당사슬이 생성된다는 사실도 알려졌다. 이는 주로 MNN6 유전자가 발현하는 효소에 의해서 만노스인산화 반응에 의해서 일어나며, 이를 제어하는 단백질을 발현하는 유전자로 MNN4가 제시된 바 있다(Odani et al., Glycobiol., 6:805, 1996; Odani et al., FEBS Lett., 420:1860, 1997). Yeast is a eukaryotic microorganism that is easy to manipulate because it is eukaryotic microorganism. It is easy to handle and can produce large amount of proteins at low cost, which not only makes it economical, but also has many advantages such that there is no possibility of contamination with viruses and plasters that infect humans. . However, the oligosaccharide structure synthesized in yeast is very different from that of human, which causes an immune response upon human body injection. Yeast has the same sugar chain biosynthetic process as the higher animal to the endoplasmic reticulum but has a yeast-specific oligosaccharide modification pathway in which mannose is further added after migration to Golgi. That is, a glycan outer chain initiation reaction occurs in which mannose is added to the Man 8 GlcNAc 2 oligosaccharide transferred from the endoplasmic reticulum by the OCH1 gene product through α (1,6) -binding, and α (1,6) -Bonded and? (1,2) -bonded mannose is continuously added to synthesize a sugar chain outer chain. In the case of Saccharomyces cerevisiae , a conventional yeast, 50 to 200 mannose are continuously added to the core sugar chain, and a pharmacological reaction occurs. In the case of α (1, 3) - Mannose is added by the MNN1 gene product. Also, mannose-1-phosphate to a sugar chain is added by the mannose phosphorylation (mannosylphosphorylation) is added to "mannose-1-phosphate -6- O - mannose (mannose-1-phosphate-6- O -mannose)" in the form of acid It is also known that oligosaccharides are produced. This is mainly caused by mannose phosphorylation by an enzyme expressing the MNN6 gene, and MNN4 has been proposed as a gene expressing the protein that regulates it (Odani et al., Glycobiol., 6: 805, 1996; Odani et al. , FEBS Lett., 420: 1860,1997).

상기에서 기술한 바와 같이 효모에서 생산한 당단백질에 부착된 당사슬은 인간의 것과 구조가 달라서 인체 주입 시 면역 반응을 일으키기 때문에 의약용으로 사용할 수 없으므로, 이러한 문제를 해결하기 위해서 효모 특이적인 당사슬을 부가하는 당전이효소 유전자들을 파쇄하는 방법들이 제시되었다. 특히 S. cerevisiae 효모에서는 당사슬 외쇄 연장 반응을 개시하는 OCH1 유전자와 α(1,3)-만노스를 부가하는 MNN1 유전자 등을 파쇄하여 효모 특이적인 당사슬의 부가를 막는 방법들이 제시되었다(Nakayama et al., EMBO J, 11:2511, 1992; Nakanishi-Shindo et al., J Biol Chem, 268:26338, 1993).As described above, the oligosaccharide attached to the glycoprotein produced by the yeast is different from that of the human, so that the oligosaccharide can not be used for medicinal purposes because it causes an immune reaction upon injection of the human body. Therefore, Methods for disrupting the glycosyltransferase genes have been proposed. In S. cerevisiae yeast, in particular, OCH1 gene and α (1,3) - to break through the MNN1 gene, such as for adding mannose presented are methods to prevent the addition of yeast-specific sugar chain (Nakayama et al, EMBO J, 11: 2511, 1992; Nakanishi-Shindo. et al., J Biol Chem, 268: 26338, 1993).

또한, 상기에서 언급한 MNN4MNN6에 의해서 만노스인산이 부가되어 생기는 "만노스-1-인산-6-O-만노스" 형태의 당사슬 가지도 인체 주입 시 면역 반응을 일으킬 수 있으므로, 대부분의 의약용 당단백질 생산을 위해서는 이를 제거해 주어야 한다. 따라서 S. cerevisiae 효모에서 효모 특이적인 당사슬의 생합성을 막기 위해서 보통 OCH1MNN1 유전자와 함께 만노스인산의 부가를 제어한다고 알려진 MNN4 유전자도 함께 결손 한다(Chiba et al., J Biol Chem 273:26298, 1998). 그러나 MNN4 유전자의 결손이 만노스인산의 부가 활성을 완전히 제거하지 못한다(Odani et al., Glycobiol 6:805, 1996). 따라서 만노스인산의 부가 활성을 지니는 다른 유전자가 있다고 추정되었으나 어떤 유전자가 이러한 활성을 담당하는지는 아직까지 보고되지 않았다. Also, since the oligosaccharide of the form of "mannose-1-phosphate-6- O -mannose" produced by addition of mannose phosphoric acid by MNN4 and MNN6 mentioned above may cause an immune response upon human injection, Protein production must be removed. Therefore, even with defects MNN4 gene known to control the addition of mannose phosphate with normal OCH1 gene and MNN1 to prevent yeast-specific sugar chain biosynthesis in S. cerevisiae yeast (Chiba et al, J Biol Chem 273:. 26298, 1998 ). However, the deletion of the MNN4 gene does not completely eliminate the addition activity of mannose phosphate (Odani et al ., Glycobiol 6: 805, 1996). Therefore, it is presumed that there is another gene having the addition activity of mannosylphosphate, but it has not yet been reported which gene is responsible for this activity.

이에, 본 발명에서는 효모, 특히 S. cerevisiae에서 만노스 인산을 당사슬에 부가하는 활성을 완전히 제거하기 위한 기술을 개발하고자 예의 노력한 결과, S. cerevisiae 균주에서 Mnn14 유전자가 만노스 인산화에 관여하며, MNN4 유전자와 MNN14 유전자의 이중 결손 시에 만노스 인산의 부가가 제거되는 것을 규명하여, 본 발명을 완성하였다. Therefore, in the present invention, in order to completely develop a technique for completely removing the activity of adding mannose phosphate to the oligosaccharide in yeast, particularly S. cerevisiae , the Mnn14 gene is involved in mannose phosphorylation in S. cerevisiae strain, and MNN4 And that the addition of mannose phosphate is eliminated in the case of a double deletion of the gene and the MNN14 gene, thereby completing the present invention.

본 발명의 하나의 목적은 만노스 인산의 부가가 제어된, 재조합 효모 균주를 제공하는 것이다.It is an object of the present invention to provide a recombinant yeast strain in which the addition of mannose phosphoric acid is controlled.

본 발명의 다른 목적은 상기 재조합 효모 균주를 이용하여 재조합 당단백질을 제조하는 방법을 제공하는 것이다.Another object of the present invention is to provide a method for producing a recombinant glycoprotein using the recombinant yeast strain.

본 발명의 또 다른 목적은 만노스 인산이 부가되지 않은 재조합 당단백질의 제조에 사용하기 위한 상기 재조합 효모 균주의 용도를 제공하는 것이다. It is yet another object of the present invention to provide a use of the recombinant yeast strain for use in the production of recombinant glycoproteins without addition of mannose phosphoric acid.

본 발명의 또 다른 목적은 당단백질에서 만노스 인산의 부가를 제어하는 것에 사용하기 위한, 서열번호 1로 표시되는 단백질의 용도를 제공하는 것이다. Yet another object of the present invention is to provide the use of the protein of SEQ ID NO: 1 for use in controlling the addition of mannose phosphate in a glycoprotein.

본 발명의 또 다른 목적은 만노스인산화에 사용하기 위한, 서열번호 1로 표시되는 단백질의 용도를 제공하는 것이다. Another object of the present invention is to provide the use of the protein of SEQ ID NO: 1 for use in mannose phosphorylation.

이를 구체적으로 설명하면 다음과 같다. 한편, 본 발명에서 개시된 각각의 설명 및 실시형태는 각각의 다른 설명 및 실시 형태에도 적용될 수 있다. 즉, 본 발명에서 개시된 다양한 요소들의 모든 조합이 본 발명의 범주에 속한다. 또한, 하기 기술된 구체적인 서술에 의하여 본 발명의 범주가 제한된다고 볼 수 없다.This will be described in detail as follows. On the other hand, each description and embodiment disclosed in the present invention can be applied to each other description and embodiment. That is, all combinations of various elements disclosed in the present invention fall within the scope of the present invention. Further, the scope of the present invention is not limited by the detailed description described below.

본 발명은 하나의 양태로서, 만노스 인산의 부가가 제어된, 재조합 효모 균주를 제공한다. 구체적으로, 상기 효모 균주는 비자연적으로 발생된 것일 수 있으나, 이에 제한되는 것은 아니다.In one aspect, the present invention provides a recombinant yeast strain in which the addition of mannose phosphoric acid is controlled. Specifically, the yeast strain may be generated naturally, but is not limited thereto.

구체적으로, 본 발명은 Mnn4 단백질 및 Mnn14 단백질의 활성이 모두 내재적 활성에 비하여 약화된, 재조합 효모 균주를 제공한다. Specifically, the present invention provides a recombinant yeast strain in which the activity of both the Mnn4 protein and the Mnn14 protein is weaker than the intrinsic activity.

본 발명에서 용어, “Mnn4 단백질”은 당사슬(올리고당[oligosaccharide]이라고도 함)의 만노스인산화에 관여하는 단백질이다. 상기 Mnn4 단백질은 만노스인산 전이효소(mannosylphosphate transferase)의 추정상의 양성 조절자(putative positive regulator)로 알려져 있다. 또한, 상기 Mnn4 단백질은 YKL200C, YKL201C로도 명명된다. 상기 Mnn4 단백질 및 이를 코딩하는 유전자 정보는 미국 국립 보건원 GenBank와 같은 데이터베이스를 통하여 얻을 수 있으며, 그 예로 상기 Mnn4 단백질은 서열번호 3으로 표시되는 아미노산 서열 (서열번호 4의 염기 서열)을 가질 수 있으나, 이에 제한되지 않는다.In the present invention, the term " Mnn4 protein " is a protein involved in mannose phosphorylation of an oligosaccharide (oligosaccharide). The Mnn4 protein is known to be a putative positive regulator of mannosylphosphate transferase. The Mnn4 protein is also named YKL200C and YKL201C. The Mnn4 protein and the gene encoding the Mnn4 protein can be obtained through a database such as the US National Institutes of Health GenBank. For example, the Mnn4 protein may have the amino acid sequence of SEQ ID NO: 3 (the nucleotide sequence of SEQ ID NO: 4) But is not limited thereto.

또한, 상기 Mnn4 단백질은 서열번호 3으로 표시되는 아미노산 서열을 가지는 단백질뿐만 아니라, 서열번호 3과 80% 이상, 구체적으로는 90% 이상, 보다 구체적으로는 95% 이상, 보다 더욱 구체적으로는 99% 이상의 상동성을 가지는 단백질로서, 실질적으로 Mnn4 단백질과 동일하거나 상응하는 생물학적 활성을 가지는 아미노산 서열이라면, 일부 서열이 결실, 변형, 치환 또는 부가되는 아미노산 서열을 갖는 경우도 본 발명의 범주에 포함하며, 이는 당업자에게 자명하다. In addition, the Mnn4 protein has not only a protein having an amino acid sequence represented by SEQ ID NO: 3 but also a protein having an amino acid sequence of 80% or more, specifically 90% or more, more specifically 95% or more, more specifically 99% A protein having amino acid sequence substantially identical to or corresponding to the Mnn4 protein and having a biological activity is included in the scope of the present invention when the amino acid sequence in which some of the sequences are deleted, This is obvious to those skilled in the art.

본 발명에서 사용된 용어, “상동성”은 두 개의 폴리뉴클레오티드 또는 폴리펩타이드 모이티 사이의 동일성의 퍼센트를 말한다. 하나의 모이티로부터 다른 하나의 모이티까지의 서열 간 상동성은 알려진 당해 기술에 의해 결정될 수 있다. 예를 들면, 상동성을 서열정보를 정렬하고 용이하게 입수 가능한 컴퓨터 프로그램을 이용하여 두 개의 폴리뉴클레오티드 분자 또는 두 개의 폴리펩타이드 분자 간의 서열 정보를 직접 정렬하여 결정될 수 있다. 상기 컴퓨터 프로그램은 BLAST(NCBI), CLC Main Workbench(CLC bio), MegAlignTM(DNASTAR Inc) 등일 수 있다. 또한, 폴리뉴클레오티드 간 상동성은 상동 영역 간의 안정된 이중가닥을 이루는 조건 하에서 폴리뉴클레오티드의 혼성화한 후, 단일-가닥-특이적 뉴클레아제로 분해시켜 분해된 단편의 크기를 결정함으로써 결정할 수 있다.As used herein, the term " homology " refers to the percentage of identity between two polynucleotide or polypeptide mimetics. The homology between sequences from one moiety to another can be determined by known techniques. For example, homology can be determined by aligning the sequence information and directly aligning the sequence information between two polynucleotide molecules or two polypeptide molecules using a computer program that is readily available. The computer program may be BLAST (NCBI), CLC Main Workbench (CLC bio), MegAlign (DNASTAR Inc), and the like. In addition, homology between polynucleotides can be determined by hybridizing the polynucleotides under conditions that result in a stable double strand between homologous regions, then resolving the single-strand-specific nucleases to determine the size of the resolved fragment.

본 발명에서 용어, “Mnn14 단백질”은 S. cerevisiae에서 MNN4 유전자와 파라로그인 유전자에 의하여 인코딩되는 단백질을 의미한다. 상기 Mnn14는 YJR061W로도 명명된다. 또한, 본 발명에서는 상기 Mnn14를 Mnn4pa로도 명명하였으며, 본 명세서에서 상기 용어들은 서로 혼용되어 사용될 수 있다. 상기 Mnn14 단백질의 정보는 미국 국립 보건원 GenBank와 같은 공지된 데이터베이스를 통하여 얻을 수 있으며, 그 예로 NP_012595인 단백질(서열번호 1)일 수 있으나, 이에 제한되지 않는다. In the present invention, the term " Mnn14 protein " means a protein encoded by the MNN4 gene and the paranlog gene in S. cerevisiae . Mnn14 is also named YJR061W. In the present invention, Mnn14 is also referred to as Mnn4pa, and the terms may be used in combination with each other in this specification. The information of the Mnn14 protein can be obtained through a known database such as the US National Institutes of Health GenBank, for example, but is not limited to, a protein of NP_012595 (SEQ ID NO: 1).

또한, 본 발명에서 상기 서열번호 1로 표시되는 Mnn14 단백질의 범주에는 서열번호 1의 아미노산 서열뿐만 아니라, 서열번호 1과 80% 이상, 구체적으로는 90% 이상, 보다 구체적으로는 95% 이상, 보다 더욱 구체적으로는 99% 이상의 상동성을 가지는 단백질로서, 실질적으로 서열번호 1의 아미노산 서열을 가지는 단백질과 동일하거나 상응하는 생물학적 활성을 가지는 아미노산 서열이라면, 일부 서열이 결실, 변형, 치환 또는 부가되는 아미노산 서열을 갖는 경우도 본 발명의 범주에 포함하며, 이는 당업자에게 자명하다.In addition, in the present invention, the category of the Mnn14 protein represented by SEQ ID NO: 1 includes not only the amino acid sequence of SEQ ID NO: 1, but also the amino acid sequence of SEQ ID NO: 1 of not less than 80%, specifically not less than 90%, more specifically not less than 95% More specifically, a protein having a homology of 99% or more, which is substantially the amino acid sequence having the same or corresponding biological activity as the protein having the amino acid sequence of SEQ ID NO: 1, may be an amino acid sequence in which some of the sequences are deleted, Sequences are also included in the scope of the present invention, and these will be apparent to those skilled in the art.

상기 서열번호 1의 아미노산 서열을 가지는 단백질은 서열번호 2로 표시되는 염기서열로 인코딩되는 것일 수 있으나, 이에 제한되지 않으며, 코돈의 축퇴성(codon degeneracy)으로 인하여 상기 단백질을 코딩하는 염기 서열이 다양할 수 있음은 당업자에게 자명하다. The protein having the amino acid sequence of SEQ ID NO: 1 may be encoded by the nucleotide sequence of SEQ ID NO: 2, but the present invention is not limited thereto. Because of the codon degeneracy of the codon, It will be apparent to those skilled in the art.

본 발명에서 용어, “내재적 활성에 비하여 약화된”은 상기 미생물이 천연의 상태에서 가지고 있는 단백질의 활성과 비교하였을 때, 그 활성이 감소되거나, 활성이 없는 것을 모두 포함하는 개념이다. In the present invention, the term " attenuated relative to intrinsic activity " is a concept that includes both the activity of the microorganism when the microorganism is compared with the activity of the protein in its natural state, or its activity is reduced.

상기 약화는 단백질의 활성이 약화되도록 변이된 것일 수 있고, 상기 변이는 비자연적으로 발생된 것일 수 있으나, 이에 제한되는 것은 아니다. 구체적으로, 본 발명에서 단백질의 활성을 약화시키는 것은 상기 단백질을 암호화하는 염색체상의 유전자의 전체 또는 일부를 결실시키는 방법; 상기 단백질의 활성이 감소되도록 돌연변이된 유전자로, 염색체상의 상기 단백질을 암호화하는 유전자를 대체하는 방법; 상기 단백질을 암호화하는 염색체상의 유전자의 발현 조절 서열에 변이를 도입하는 방법; 상기 단백질을 암호화하는 유전자의 발현 조절 서열을 활성이 약하거나 없는 서열로 교체하는 방법; 상기 염색체상의 유전자의 전사체에 상보적으로 결합하여 상기 mRNA로부터 단백질로의 번역을 저해하는 안티센스 올리고뉴클레오티드를 도입하는 방법; 상기 단백질을 암호화하는 유전자의 SD 서열 앞단에 SD 서열과 상보적인 서열을 인위적으로 부가하여 2차 구조물을 형성시켜 리보솜(ribosome)의 부착이 불가능하게 만드는 법 및 해당 서열의 ORF(open reading frame)의 3' 말단에 역전사되도록 프로모터를 부가하는 RTE(Reverse transcription engineering) 방법으로 이루어지는 군에서 선택되는 방법으로 수행될 수 있으나, 이에 제한되지 않으며, 단백질 활성을 약화시키는 방법이라면 어떠한 것이라도 적용될 수 있음은 당업자에게 자명하다. The weakening may be mutated to weaken the activity of the protein, and the mutation may be generated naturally, but is not limited thereto. Specifically, in order to attenuate the activity of a protein in the present invention, a method of deleting all or a part of a gene on a chromosome encoding the protein is deleted; A method of replacing a gene mutated to reduce the activity of the protein and a gene encoding the protein on a chromosome; A method of introducing a mutation into an expression control sequence of a gene on a chromosome encoding said protein; A method of replacing the expression control sequence of the gene encoding the protein with a weak or absent sequence; Introducing an antisense oligonucleotide complementary to a transcript of the gene on the chromosome and inhibiting translation of the mRNA to a protein; A method of artificially adding a sequence complementary to the SD sequence to the front of the SD sequence of the gene encoding the protein to form a secondary structure to render the attachment of the ribosome impossible and the use of an ORF (open reading frame) And reverse transcription engineering (RTE) method in which a promoter is added at the 3 'end to reverse transcription. However, the present invention is not limited thereto, and any method that weakens the protein activity can be applied. To be clear to.

또한, 상기 재조합 효모 균주는 Mnn1 단백질, Och1 단백질, 또는 둘 다의 활성이 내재적 활성에 비하여 약화된 것일 수 있다.In addition, the recombinant yeast strain may be such that the activity of the Mnn1 protein, the Och1 protein, or both is weakened as compared with the intrinsic activity.

상기 Mnn1 단백질은 알파-1,3-만노스전이효소(alpha-1,3-mannosyltransferase) 활성을 가진다. 상기 단백질은 인체에서 항원으로 인지될 수 있는 α(1,3)-만노스를 당단백질에 부가할 수 있으므로, 상기 단백질의 활성을 내재적 활성에 비하여 약화시킴으로써 재조합 당단백질에 효모 특이적 당사슬의 부가를 제어하는데 도움을 줄 수 있다. The Mnn1 protein has an alpha-1,3-mannosyltransferase activity. Since the protein can add α (1,3) -mannos which can be recognized as an antigen in the human body to the glycoprotein, the activity of the protein is attenuated as compared with the intrinsic activity, so that the addition of the yeast-specific oligosaccharide to the recombinant glycoprotein It can help to control.

또한, Och1 단백질은 cis-골지체에서 만노스 전이효소로 작용하며, 당단백질의 N-연결된 당사슬의 폴리만노스 당 체인 연장(polymannose outer chain elongation)을 매개한다. 따라서, 상기 단백질의 활성을 내재적 활성에 비하여 약화시킴으로써 재조합 당단백질에 효모 특이적 당사슬의 부가를 제어하는데 도움을 줄 수 있다.In addition, the Och1 protein acts as a mannose-transferase in cis-Golgi and mediates polymannose outer chain elongation of the N -linked oligosaccharide of the glycoprotein. Thus, by weakening the activity of the protein relative to the intrinsic activity, it can help control the addition of the yeast-specific oligosaccharide to the recombinant glycoprotein.

상기 기술된 Mnn1 단백질, Och1 단백질에 대한 정보는 상기 기술된 바와 같이 미국 국립 보건원 GenBank와 같은 당업자에게 공지된 데이터 베이스를 통하여 얻을 수 있다. Information on the Mnn1 protein and Och1 protein described above can be obtained through databases known to those skilled in the art, such as GenBank of the National Institutes of Health as described above.

또한, 상기 단백질의 활성 약화에 대해서도 앞서 설명한 내용이 적용된다. In addition, the above-mentioned contents also apply to the activity weakening of the protein.

또한, 상기 효모는 사카로마이세스 세레비지애 (saccharomycens cerevisiae)일 수 있으나, 이에 제한되지 않으며, Mnn4 및 Mnn14 단백질의 활성 약화로 효모 특이적 당사슬 제어를 달성할 수 있는 효모라면 본 발명의 범주에 포함될 수 있다. In addition, the yeast may be saccharomycycles cerevisiae), but it may be, not limited to this, if the yeast capable of achieving a yeast-specific sugar chain controlled by the active and Mnn4 weakening of Mnn14 protein may be included in the scope of the invention.

상기 기술된 Mnn1, Och1, Mnn4 및 Mnn14 단백질들의 활성이 약화된, 효모 특이적 당사슬 생합성 경로가 약화된 효모가 발현하는 당단백질들에 부착된 N-당사슬들은 대부분이 Man8GlcNAc2 구조를 가질 수 있다. 당사슬 수식 효소 활성을 갖는 하나 이상의 단백질을 발현시킬 수 있는 발현 벡터로 상기한 변이주를 형질전환시키는 경우 더욱 효과적으로 인간의 당사슬과 유사한 구조를 갖는 형태로 전환시킬 수 있다. 이러한 당사슬 수식 효소로는 알파1,2-만노시다제, 만노시다제 A, 만노시다제 ⅠB, 만노시다제 ⅠC, 만노시다제Ⅱ, N-아세틸글루코자미닐트랜스퍼라제 Ⅰ, N-아세틸글루코자미닐트랜스퍼라제 Ⅱ, 갈락토실트랜스퍼라제, 사이알릴트랜스퍼라제, 퓨코실트랜스퍼라제 등이 포함되나, 반드시 이들로만 한정되는 것은 아니고, 만노스 잔기의 감소 및 변형에 일조할 수 있는 다양한 유전자를 사용할 수 있다. The above described Mnn1, Och1, Mnn4 and Mnn14 the N attached to the glycoproteins of the activity of the protein of weakening, the yeast-specific sugar chain biosynthesis pathway is attenuated yeast expression-linked sugar chains are mostly have a GlcNAc 2 structure Man 8 have. When the above-mentioned mutant strain is transformed with an expression vector capable of expressing one or more proteins having sugar chain-modifying enzyme activity, it can be more effectively converted into a form having a structure similar to human oligosaccharide. Examples of such sugar chain modifying enzymes include alpha 1, 2-mannosidase, mannosidase A, mannosidase IB, mannosidase IC, mannosidase II, N-acetylglucosaminyltransferase I, N-acetylglucosamine Neal transferase II, galactosyltransferase, sialyltransferase, fucosyltransferase, and the like, but not limited thereto, and various genes capable of contributing to reduction and modification of mannose residues can be used .

따라서, 또 다른 양태로서, 본 발명은 당사슬 수식 효소의 발현 벡터를 추가로 포함하는 효모 변이주를 제공한다. 바람직하게는 당사슬 수식 효소는 알파 1, 2-만노시다제, 만노시다제 ⅠA, 만노시다제 ⅠB, 만노시다제 ⅠC, 만노시다제Ⅱ, N-아세틸글루코자미닐트랜스퍼라제 Ⅰ, N-아세틸글루코자미닐트랜스퍼라제 Ⅱ, 갈락토실트랜스퍼라제, 사이알릴트랜스퍼라제, 퓨코실트랜스퍼라제 등로 이루어진 그룹 중에서 선택될 수 있다.Accordingly, in another aspect, the present invention provides a yeast mutant strain further comprising an expression vector of an oligosaccharide modifying enzyme. Preferably, the sugar chain modifying enzyme is selected from the group consisting of alpha 1, 2-mannosidase, Mannosidase I, Mannosidase IB, Mannosidase I, Mannosidase II, N-acetylglucosaminyltransferase I, N-acetylglucose Fucosyltransferase, and the like can be selected from the group consisting of the following: < RTI ID = 0.0 > lysine < / RTI >

또한, 상기 재조합 효모 균주는 당단백질을 코딩하는 유전자를 추가로 포함할 수 있다. In addition, the recombinant yeast strain may further include a gene encoding a glycoprotein.

이를 위하여 상기 당단백질을 코딩하는 유전자를 포함하는 재조합 벡터가 상기 효모 균주에 도입된 것일 수 있다. For this purpose, a recombinant vector containing the gene encoding the glycoprotein may be introduced into the yeast strain.

상기 “재조합 벡터”는 적합한 숙주 내에서 목적 단백질을 발현시킬 수 있도록 적합한 조절 서열에 작동 가능하게 연결된 상기 목적 단백질을 암호화하는 폴리뉴클레오티드의 염기서열을 함유하는 DNA 생산물을 의미하며, 특히 작동 가능하도록 연결된 목적 단백질을 코딩하는 유전자의 발현을 지시할 수 있는데, 이러한 벡터를 발현 벡터라고 한다.The term " recombinant vector " means a DNA product containing a nucleotide sequence of a polynucleotide encoding the desired protein operably linked to a suitable regulatory sequence so as to be capable of expressing the protein of interest in a suitable host, Expression of a gene encoding a target protein can be indicated, and this vector is referred to as an expression vector.

상기 발현 벡터에는, 목적 유전자의 발현의 억제 또는 증폭, 또는 유도를 위한 각종의 기능을 가진 발현 억제용의 단편이나, 형질전환체의 선택을 위한 마커나 항생물질에 대한 내성 유전자, 균체 밖으로의 분비를 목적으로 한 시그널을 코딩하는 유전자, 난발현성 단백질에 적합한 맞춤형 융합인자 등을 추가로 포함할 수 있다.The expression vector may be a fragment for suppressing expression, having various functions for suppressing, amplifying, or inducing expression of a target gene, a marker for selecting a transformant, a gene resistant to antibiotics, A gene encoding a signal for the purpose of expression, and a custom-made fusion factor suitable for a hung-off protein.

목적하는 당단백질을 코딩하는 유전자를 포함하는 본 발명에 따른 상기 효모 균주를, 상기 목적하는 당단백질을 발현하는데 적합한 배양 조건 및 배지에서 배양하여 당단백질을 생산하는 경우, 천연형 효모 균주를 이용하여 목적하는 당단백질을 생산하는 경우에 비하여 만노스인산의 부가가 감소 또는 완전히 제어되어 인체에 대한 면역반응을 유발할 가능성이 낮은 재조합 당단백질을 제조할 수 있는 이점을 가진다. When the yeast strain according to the present invention comprising a gene encoding a desired glycoprotein is cultured in a culture medium and a medium suitable for expressing the desired glycoprotein to produce a glycoprotein, There is an advantage that a recombinant glycoprotein having a reduced possibility of causing an immune response to the human body can be produced by decreasing or completely controlling the addition of mannose phosphoric acid as compared with the case of producing the desired glycoprotein.

상기 목적하는 당단백질은 상기 효모 균주에서 발현시키고자 하는 당단백질이라면 특별히 그 종류는 제한되지 않으며, 병원체 단백질(pathogen protein), 성장 인자(growth factor), 사이토카인(cytokine, 예: 인터페론-α, 인터페론-β, 인터페론-γ, G-CSF 등), 케모카인(chemokine), 응집인자(예: VⅢ 인자, Ⅸ 인자, 인간 단백질 C), 내피성장인자, 성장호르몬 방출인자, HIV 외피 단백질(HIV envelope protein), 인플루엔자 바이러스 A 헤마글루티닌(influenza virus A haemagglutinin), 인플루엔자 뉴라미니다제(influenza neuraminidase), 소의 엔테로카이네이즈(enterokinase) 활성인자, 소의 포진 바이러스 타입-1 당단백질 D(Bovine herpes virus type-1 glycoprotein D), 인간 안지오스타틴(human angiostatin), 인간 B7-1, B7-2및 B-7 수용체 CTLA-4, 인간 조직 인자(human tissue factor), 성장 인자(예: 혈소판-유래 성장 인자), 인간 α-앤티트립신(human α-antitrypsin), 인간 에리트로포이에틴, 조직플라즈미노겐 활성화인자(tissue plasminogen activator), 플라즈미노겐 활성화인자 억제인자-1(plasminogen activator inhibitor-1), 우로키나제(urokinase), 플라즈미노겐, 트롬빈, 항체 또는 이의 항원-결합 단편(antigen binding fragment), 또는 융합 단백질(fusion protein) 등 제조하고자 하는 단백질이라면 어떠한 종류라도 사용할 수 있다. 또한, 상기 목적하는 당단백질의 예로서, Gas1 (beta-1,3-glucanosyltransferase), 글루코세레브로시다제(Glucocerebrosidase, GCase), 알파-갈락토시다제(alpha-galactosidase), 알파-글루코시데이즈(alpha-glucosidase), 아이두로니데이즈(iduronidase), 아이두로네이트 설페테이즈(Iduronidase sulfatase) 및 GalNAc 설페테이즈(sulfatase) 등을 들 수 있으나, 이에 제한되지 않는다. The desired glycoprotein is not particularly limited as long as it is a glycoprotein to be expressed in the yeast strain. Examples of the glycoprotein include a pathogen protein, a growth factor, a cytokine such as interferon- Interferon-beta, interferon-γ and G-CSF), chemokines, coagulation factors (eg VIII factor, factor IX, human protein C), endothelial growth factor, growth hormone releasing factor, HIV envelope protein protein, influenza virus A haemagglutinin, influenza neuraminidase, bovine enterokinase activator, bovine herpesvirus type 1 (bovine herpesvirus type 1) -1 glycoprotein D), human angiostatin, human B7-1, B7-2 and B-7 receptor CTLA-4, human tissue factor, growth factors such as platelet- , Human < RTI ID = Human α-antitrypsin, human erythropoietin, tissue plasminogen activator, plasminogen activator inhibitor-1, urokinase, plasmids, Any kind of protein can be used as long as it is a protein to be produced, such as minigen, thrombin, an antibody or an antigen-binding fragment thereof, or a fusion protein. Examples of the desired glycoprotein include Gas1 (beta-1,3-glucanosyltransferase), Glucocerebrosidase (GCase), Alpha-galactosidase, but are not limited to, alpha-glucosidase, iduronidase, Iduronidase sulfatase, and GalNAc sulfatase.

또 하나의 양태로서, 본 발명은 상기 재조합 효모 균주를 이용하여 재조합 당단백질을 제조하는 방법을 제공한다. In another aspect, the present invention provides a method for producing a recombinant glycoprotein using the recombinant yeast strain.

구체적으로, 본 발명은 Specifically, the present invention provides

(a) 재조합 당단백질을 코딩하는 유전자를 포함하는, Mnn4 단백질 및 서열번호 1로 표시되는 Mnn14 단백질의 활성이 모두 내재적 활성에 비하여 약화된, 재조합 효모 균주를 배양하여 상기 당단백질을 생산하는 단계; 및 (a) producing the glycoprotein by culturing a recombinant yeast strain in which the activity of the Mnn4 protein and the Mnn14 protein of SEQ ID NO: 1 is weaker than the intrinsic activity, comprising the gene encoding the recombinant glycoprotein; And

(b) 상기 (a) 단계에서 생산된 당단백질을 회수하는 단계를 포함하는, 재조합 당단백질을 제조하는 방법을 제공한다. (b) recovering the glycoprotein produced in the step (a). The present invention also provides a method for producing a recombinant glycoprotein.

상기 효모 균주, 재조합 당단백질, Mnn4 단백질, Mnn14 단백질, 내재적 활성에 비하여 약화 등에 대해서는 앞서 설명한 바와 같다. The above yeast strains, recombinant glycoprotein, Mnn4 protein, Mnn14 protein, weakening as compared with the intrinsic activity, etc. are as described above.

상기 (a) 단계의 배양은 목적하는 당단백질을 생산할 수 있는 배양 조건 및 배지 조건임이 바람직하며, 이는 당업자가 적절히 조정할 수 있다. The culture in step (a) is preferably a culture condition and a culture medium condition capable of producing the desired glycoprotein, and can be appropriately adjusted by those skilled in the art.

상기 (b) 단계는 생산된 당단백질을 배양된 세포 또는 이의 상등액에서 회수하는 단계일 수 있으며, 크로마토그래피 등의 공정을 포함할 수 있으나, 이에 제한되지 않으며, 회수에 적절한 과정을 당업자가 선택할 수 있다.The step (b) may be a step of recovering the produced glycoprotein in a cultured cell or a supernatant thereof, and may include a process such as chromatography, but the method suitable for recovery may be selected by a person skilled in the art have.

또한, 상기 방법은 회수된 단백질을 분리 정제하는 과정 등이 추가로 포함될 수 있다. In addition, the above method may further include a step of separating and purifying the recovered protein.

또 하나의 양태로서, 본 발명은 만노스 인산이 부가되지 않은 재조합 당단백질의 제조에 사용하기 위한 상기 재조합 효모 균주의 용도를 제공한다. In another aspect, the present invention provides the use of the recombinant yeast strain for use in the production of a recombinant glycoprotein without the addition of mannose phosphoric acid.

상기 당단백질, 효모 균주 등에 대해서는 앞서 설명한 바와 같다. The glycoprotein, yeast strain and the like are as described above.

또 하나의 양태로서, 본 발명은 당단백질에서 만노스 인산의 부가를 제어하는 것에 사용하기 위한, 서열번호 1로 표시되는 단백질의 용도를 제공한다.In another aspect, the present invention provides the use of the protein of SEQ ID NO: 1 for use in controlling the addition of mannose phosphate in a glycoprotein.

상기 서열번호 1로 표시되는 단백질에 대해서는 앞서 설명한 바와 같다. The protein represented by SEQ ID NO: 1 is as described above.

또 하나의 양태로서, 본 발명은 만노스인산화에 사용하기 위한, 서열번호 1로 표시되는 단백질의 용도를 제공한다.In another aspect, the present invention provides the use of the protein of SEQ ID NO: 1 for use in mannose phosphorylation.

상기 서열번호 1로 표시되는 단백질에 대해서는 앞서 설명한 바와 같다. The protein represented by SEQ ID NO: 1 is as described above.

재조합 당단백질의 제조 시 본 발명에 따른 재조합 효모 균주를 이용하면 효모 특이적인 만노스인산의 부가를 제거 함으로서 인체 주입 시 면역 반응을 유발하지 않는 보다 인간화된 당사슬이 부착된 당단백질을 제조할 수 있다. By using the recombinant yeast strain according to the present invention in the production of the recombinant glycoprotein, it is possible to produce a more humanized sugar chain-attached glycoprotein which does not cause an immune response upon human injection by eliminating the addition of yeast-specific mannose phosphate.

도 1은 och1Δmnn1Δ 균주로부터 MNN4 유전자를 결손 하는 실험 결과이다. (A) Mnn4_F와 Mnn4_R 프라이머를 이용하여 pUG73으로부터 loxP - LEU2 - loxP 카세트를 중합효소 연쇄반응으로 증폭하여 2.5 kbp의 DNA 절편을 얻었다. (B) 준비된 결손 카세트를 och1Δmnn1Δ 균주에 도입하고 SC-Leu 배지에서 선별한 형질전환체들의 게노믹 DNA로부터 확인용 프라이머인 Leu2-CF와 Mnn4-CR들을 이용하여 MNN4 유전자가 LEU2 유전자로 교체된 1.8 kbp의 DNA 절편을 증폭하여 MNN4의 결손을 확인한 결과이다.
도 2는 och1Δmnn1Δmnn4Δ 균주로부터 MNN6 유전자를 결손 하는 실험 결과이다. (A) Mnn6_F와 Mnn6_R 프라이머를 이용하여 pUG72로부터 loxP - URA3 - loxP 카세트를 중합효소 연쇄반응으로 증폭하여 1.7 kbp의 DNA 절편을 얻었다. (B) 준비된 결손 카세트를 och1Δmnn1Δmnn4Δ 균주에 도입하고 SC-Ura 배지에서 선별한 형질전환체들의 게노믹 DNA로부터 확인용 프라이머인 Mnn6-CF와 Ura3-CR을 이용하여 MNN6 유전자가 URA3 유전자로 교체된 2.4 kbp의 DNA 절편을 증폭하여 MNN6의 결손을 확인한 결과이다.
도 3은 och1Δmnn1Δ 균주와 MNN4MNN6 유전자가 추가 결손 된 균주들의 CWMs로부터 얻어진 N-당사슬을 DNA 시퀀서를 이용한 분석한 결과이다. 상대적인 위치 확인을 위해서 포도당 유닛(glucose unit)을 나타내는 말토덱스트린 레퍼런스(maltodextrin reference) 프로파일을 맨 처음 패널에 보여주었다(Dex). 모든 결손 균주(och1Δmnn1Δ, och1Δmnn1Δmnn4Δ, och1Δmnn1Δmnn4Δmnn6Δ)들의 프로파일에서 (Man-P)2-Man8GlcNAc2, Man-P-Man8GlcNAc2 및 Man8GlcNAc2의 세 개의 당사슬 피크들이 주요하게 관찰되었다. 이들은 미국 Consortium for Functional Glycomics (htpp://www.functionalglycomics.org/)의 기호를 이용하여 표시하였다(청색 네모: GlcNAc, 녹색 원: 만노스, 인산: P). 그리고 동정이 되지 않은 피크들은 *로 표시하였다.
도 4는 Mnn6 단백질과 이들 단백질 사이의 동일성과 상동성 분석 결과를 나타낸 것이다.
도 5는 och1Δmnn1Δmnn4Δmnn6Δ 균주로부터 추가로 MNN4MNN6의 상동 유전자들을 결손 하는 실험 결과이다. (A) MNN14 , YUR1 , KTR2 , KTR4 , KTR5KTR7 유전자 결손 카세트 제작을 위해서 해당 유전자의 5`과 3`-UTR과 상동성 부위를 가진 프라이머들들을 이용하여 pUG72 벡터로부터 loxP - URA3 - loxP 카세트를 중합효소 연쇄반응으로 증폭하여 1.7 kbp의 DNA 절편을 얻었다. (B) 준비된 결손 카세트를 och1Δmnn1Δmnn4Δmnn6Δ 균주에 도입하고 SC-Ura 배지에서 선별한 형질전환체들의 게노믹 DNA로부터 확인용 프라이들을 이용하여 해당 유전자가 URA3 유전자로 교체된 1.2 kbp의 DNA 절편을 증폭하여 각각의 결손을 확인한 결과이다.
도 6은 최소 배지에서 배양한 och1Δmnn1Δmnn4Δmnn6Δ 균주 및 MNN4 또는 MNN6의 상동 유전자들이 추가로 결손된 균주들의 CWMs로부터 얻은 N-당사슬의 분석 결과이다. 도 3에서와 마찬가지로 상대적인 위치 확인을 위한 말토덱스트린 레퍼런스를 맨 처음 패널에 두었다(Dex). 그 다음 패널부터 차례로 och1Δmnn1Δmnn4Δ mnn6Δ, och1Δmnn1Δmnn4Δmnn6Δyur1Δ (- yur1Δ), och1Δmnn1Δmnn4Δmnn6Δ ktr2Δ (- ktr2Δ), och1Δmnn1Δmnn4Δmnn6Δktr4Δ (- ktr4Δ), och1Δmnn1Δmnn4 Δmnn6Δktr5Δ (- ktr5Δ), och1Δmnn1Δmnn4Δmnn6Δktr7Δ (- ktr7Δ) 및 och1Δ mnn1Δmnn4Δmnn6Δmnn14Δ (- mnn14Δ) 균주들의 N-당사슬 프로파일을 보여준다. 당사슬 피크들은 도 3과 동일한 방식으로 표시하였다.
도 7은 YPD 배지에서 배양한 och1Δmnn1Δmnn4Δmnn6Δ 균주 및 MNN4 또는 MNN6의 상동 유전자들이 추가로 결손 된 균주들의 CWMs로부터 얻은 N-당사슬의 분석 결과이다. 도 6과 동일한 방법으로 패널의 순서와 당사슬 피크들을 나타내었다.
도 8은 MNN14 유전자가 결손 된 균주들의 CWMs로부터 얻은 N-당사슬의 분석 결과이다. 도 3에서와 마찬가지로 상대적인 위치 확인을 위한 말토덱스트린 레퍼런스를 맨 처음 패널에 두었다(Dex). 그 다음 패널부터 차례로 och1Δmnn1Δmnn4Δ mnn6Δmnn14Δ, och1Δmnn1Δmnn4Δmnn14Δ , och1Δmnn1Δmnn14Δ 균주들의 N-당사슬 프로파일을 보여준다. 당사슬 피크들은 도 3과 동일한 방식으로 표시하였다.
도 9는 만노스인산화 능력이 제거되었던 och1Δmnn1Δmnn4Δmnn14Δ 균주에 MNN4 또는 MNN14 유전자를 발현하여 만노스인산화 능력의 회복 여부를 보는 complementation 실험 결과이다. 도 3에서와 마찬가지로 상대적인 위치 확인을 위한 말토덱스트린 레퍼런스를 맨 처음 패널에 두었다(Dex). 그 다음 패널부터 차례로 YEp352-GAP (Mock), YEp352-Mnn4 (Mnn4) 또는 YEp352-Mnn14 (Mnn14) 벡터로 형질전환한 균주들의 N-당사슬 프로파일을 보여준다. 당사슬 피크들은 도 3과 동일한 방식으로 표시하였다.
도 10은 만노스인산화 능력이 제거되었던 och1Δmnn1Δmnn4Δmnn6Δmnn14Δ 균주에 MNN4 또는 MNN14 유전자를 발현하여 만노스인산화 능력의 회복 여부를 보는 complementation 실험 결과이다. 도 9와 동일한 방법으로 패널의 순서와 당사슬 피크들을 나타내었다.
도 11은 och1Δmnn1Δmnn4Δmnn6Δ , och1Δmnn1Δmnn4Δmnn14Δ , och1Δmnn1 Δmnn4Δmnn14Δ/Mnn4och1Δmnn1Δmnn4Δmnn14Δ / Mnn14 균주에서 분비 발현한 재조합 Gas1 단백질을 정제하여 그 N-당사슬 프로파일을 분석한 실험 결과이다. 각 당사슬 피크들은 도 3과 동일한 방식으로 표시하였다.
도 12는 och1Δmnn1Δmnn4Δmnn6Δ , och1Δmnn1Δmnn4Δmnn14Δ , och1Δmnn1 Δmnn4Δmnn14Δ/Mnn4och1Δmnn1Δmnn4Δmnn14Δ / Mnn14 균주에서 분비 발현한 재조합 Gas1 단백질을 정제하여 그 등전점을 isoelectric focusing (IEF) 방법을 이용하여 분석한 결과를 보여준다.
Fig. 1 shows the results of experiments in which the MNN4 gene was deleted from the och1? Mnn1? Strain. (A) Using the Mnn4_F and Mnn4_R primers, a loxP - LEU2 - loxP cassette was amplified from pUG73 by polymerase chain reaction to obtain a 2.5 kbp DNA fragment. (B) the introduction of defects cassette prepared och1Δmnn1Δ strain and MNN4 gene by using the SC-Leu shop of the transformants selected on medium of confirmation from the genomic DNA primers Leu2-CF and Mnn4-CR is replaced with the LEU2 gene 1.8 The DNA fragment of kbp was amplified to confirm the deletion of MNN4 .
Fig. 2 shows the results of experiments in which the MNN6 gene was deleted from the och1? Mnn1? Mnn4? Strain. (A) The loxP - URA3 - loxP cassette was amplified from pUG72 using Mnn6_F and Mnn6_R primers by polymerase chain reaction to obtain a 1.7 kbp DNA fragment. (B) The prepared deletion cassette was introduced into the och1Δmnn1Δmnn4Δ strain and the MNN6 gene was replaced with the URA3 gene using genomic DNA of the transformants screened in SC-Ura medium using Mnn6-CF and Ura3-CR as confirmation primers The DNA fragment of kbp was amplified to confirm the deletion of MNN6 .
3 is obtained from the N CWMs of och1Δmnn1Δ strain and MNN4 and MNN6 gene have been added deficient strain is the result of sugar chain analysis using a DNA sequencer. For relative positioning, the maltodextrin reference profile showing the glucose unit (Dex) was shown on the first panel. Three oligosaccharide peaks of (Man-P) 2 -Man 8 GlcNAc 2 , Man-P-Man 8 GlcNAc 2 and Man 8 GlcNAc 2 were mainly observed in the profiles of all defective strains ( och1Δmnn1Δ , och1Δmnn1Δmnn4Δ , och1Δmnn1Δmnn4Δmnn6Δ ). These were expressed using the symbols of the United States Consortium for Functional Glycomics (htpp: //www.functionalglycomics.org/) (blue square: GlcNAc, green circle: mannose, phosphoric acid: P). Peaks that were not identified were marked with *.
Figure 4 shows the identity and homology analysis results between the Mnn6 protein and these proteins.
Fig. 5 shows the results of experiments in which homologous genes of MNN4 and MNN6 are additionally deleted from the och1? Mnn1? Mnn4? Mnn6? Strain. (A) For the production of MNN14 , YUR1 , KTR2 , KTR4 , KTR5 and KTR7 gene-deficient cassettes, loxP - URA3 - loxP cassette was constructed from pUG72 vector using primers having homology regions 5 'and 3'- Were amplified by polymerase chain reaction to obtain a 1.7 kbp DNA fragment. (B) The prepared defective cassette was introduced into the och1Δmnn1Δmnn4Δmnn6Δ strain and genomic DNA of the transformants selected on the SC-Ura medium was amplified with a 1.2 kbp DNA fragment in which the corresponding gene was replaced with URA3 gene using a confirmation fryer Of the population.
Figure 6 is N and one strain och1Δmnn1Δmnn4Δmnn6Δ MNN4 MNN6 or homologous gene of the culture in a minimal medium were obtained from CWMs of a strain deficient in addition - the analysis of the sugar chain results. As in FIG. 3, the maltodextrin reference for relative positioning was placed on the first panel (Dex). From the next panel, the och1 ? Mnn1 ? Mnn4 ? Mnn6 ?, Och1 ? Mnn1 ? Mnn4 ? Mnn6 ? Yur1? ( - yur1? ) , och1 ? mnn1 ? mnn4 ? mnn6 ? ktr2 ? ( - ktr2? ) , och1 ? mnn1 ? mnn4 ? mnn6 ? ktr4? ( - ktr4? ) , och1 ? mnn1 ? mnn4 ? mnn6 ? ktr5 ? ( - ktr5? ) , och1 ? mnn1 ? mnn4 ? mnn6 ? ktr7? (- ktr7Δ) and och1Δ mnn1Δmnn4Δmnn6Δmnn14Δ (- mnn14Δ) - shows the oligosaccharide profile of the strain N. The oligosaccharides peaks were displayed in the same manner as in Fig.
7 is obtained from the N CWMs of a strain deficient in addition to a strain och1Δmnn1Δmnn4Δmnn6Δ and MNN4 MNN6 or homologous gene of the culture in YPD medium - the analysis of the sugar chain. The order of the panel and the oligosaccharide peaks are shown in the same manner as in Fig.
FIG. 8 shows the results of analysis of N - oligosaccharides obtained from CWMs of MNN14 gene deficient strains. As in FIG. 3, the maltodextrin reference for relative positioning was placed on the first panel (Dex). The panel in turn from the next N of och1Δmnn1Δmnn4Δ mnn6Δmnn14Δ, och1Δmnn1Δmnn4Δmnn14Δ, och1Δmnn1Δmnn14Δ strain shows the oligosaccharide profile. The oligosaccharides peaks were displayed in the same manner as in Fig.
Figure 9 is a complementation test results to see whether or not the restoration of the ability to express the mannose phosphorylation or MNN4 MNN14 genes in och1Δmnn1Δmnn4Δmnn14Δ strain was the ability to remove the phosphorylated mannose. As in FIG. 3, the maltodextrin reference for relative positioning was placed on the first panel (Dex). Shows the oligosaccharide profile - from the next panel in turn YEp352-GAP (Mock), YEp352 -Mnn4 (Mnn4) or YEp352-N Mnn14 of transformed strains as one switch (Mnn14) vector. The oligosaccharides peaks were displayed in the same manner as in Fig.
FIG. 10 shows the result of complementation experiment to see whether the mannose phosphorylation ability is restored by expressing the MNN4 or MNN14 gene in the och1Δmnn1Δmnn4Δmnn6Δmnn14Δ strain in which the mannose phosphorylation ability was removed. The order of the panel and the oligosaccharide peaks are shown in the same manner as in Fig.
FIG. 11 shows the results of the analysis of the N -glycoprotein profile of purified recombinant Gas1 protein expressed in och1Δmnn1Δmnn4Δmnn6Δ , och1Δmnn1Δmnn4Δmnn14Δ , och1Δmnn1 Δmnn4Δmnn14Δ / Mnn4, and och1Δmnn1Δmnn4Δmnn14Δ / Mnn14 . The peaks of each oligosaccharide were expressed in the same manner as in Fig.
Fig. 12 shows the results of isoelectric focusing (IEF) analysis of purified recombinant Gas1 protein expressed in och1Δmnn1Δmnn4Δmnn6Δ , och1Δmnn1Δmnn4Δmnn14Δ , och1Δmnn1Δmnn4Δmnn14Δ / Mnn4 and och1Δmnn1Δmnn4Δmnn14Δ / Mnn14 .

이하 본 발명을 하기 예에 의해 상세히 설명한다. 다만, 하기 예는 본 발명을 예시하기 위한 것일 뿐, 하기 예에 의하여 본 발명의 범위가 제한되는 것은 아니다. Hereinafter, the present invention will be described in detail with reference to the following examples. However, the following examples are intended to illustrate the present invention, but the scope of the present invention is not limited by the following examples.

실시예Example 1.  One. S. S. cerevisiaecerevisiae och1Δmnn1Δoch1? mnn1? 균주에서  In the strain MNN4MNN4  And MNN6MNN6 유전자의 결손 Gene deficiency

1-1: S. cerevisiae och1Δmnn1Δ 균주의 제조1-1: S. cerevisiae Preparation of och1? mnn1? strain

S. cerevisiae och1Δmnn1Δ 균주는 L3262 균주로부터 Cre/loxP 시스템을 이용한 다중 유전자 결손 방법(U. Gueldener et al, 2002, Nucleic Acids Res 30: e23; J.H. Hegemann, S.B. Heick, 2011, Methods Mol Biol 765: 189-206)을 이용하여 제작하였다. 우선, ScOCH1 유전자를 결손하기 위한 loxP - URA3 - loxP 결손 카세트를 Och1_pUG72_F와 Och1_pUG72_R 프라이머를 이용하여 pUG72 벡터로부터 증폭하여 제작하였다. 1 M 소르비톨(sorbitol)이 첨가된 SC-Ura 배지에서 형질전환된 균주들을 선별한 후, Och1_CF과 Och1_CR 프라이머들을 이용한 염색체 DNA를 주형으로 한 중합효소 연쇄반응을 이용하여 ScOCH1 유전자 결손을 확인하였다. 이어서 ScMNN1 유전자 결손을 위한 loxP - kanMX - loxP 카세트를 pUG6를 주형으로 하고, Mnn1_pUG6_F와 Mnn1_pUG6_R 프라이머들을 이용하여 제작하였으며, 상기 제작된 och1Δ 균주에 형질전환하였다. 1 M 소르비톨(sorbitol)과 200 mg/L G418이 첨가된 YPD 배지에서 형질전환된 균주를 선별하였으며, ScMNN1 유전자 결손의 확인은 염색체 DNA를 주형으로 한, Mnn1_CF와 Mnn1_CR 프라이머들을 이용한 중합효소 연쇄반응을 이용하여 확인하였다. 그리고, 유전자들의 결손을 위해서 들어간 선별용 마커들은 상기의 논문들에 보고된 바와 같이, pSH68 벡터를 형질전환하고 2% 포도당 대신에 2% 갈락토스가 첨가된 SC-Leu 배지에서 Cre 단백질을 발현시켜서 제거하였다. 마지막으로 Cre 단백질 발현을 위한 pSH68는 YPD 배지에서 연속 배양을 통해서 제거하였으며, 적절한 선별 배지에서의 성장을 확인하여 최종 mnn1Δoch1Δ 균주를 선별하였다. S. cerevisiae och1Δmnn1Δ strains are multiple genetic defects method using a Cre / loxP system from the strain L3262 (U. Gueldener et al, 2002, Nucleic Acids Res 30: e23; JH Hegemann, SB Heick, 2011, Methods Mol Biol 765: 189-206). First, the loxP - URA3 - loxP - deficient cassette for the deletion of ScOCH1 gene was amplified from pUG72 vector using Och1_pUG72_F and Och1_pUG72_R primers. After isolating the transformed strains in SC-Ura medium supplemented with 1 M sorbitol, ScOCH1 gene deletion was confirmed by polymerase chain reaction using chromosomal DNA as template using Och1_CF and Och1_CR primers. Then, the loxP - kanMX - loxP cassette for ScMNN1 gene deletion was constructed using pUG6 as a template and Mnn1_pUG6_F and Mnn1_pUG6_R primers and transformed into the prepared och1Δ strain. The transformed strains were selected in YPD medium supplemented with 1 M sorbitol and 200 mg / L G418. The detection of ScMNN1 gene deletion was performed by using polymerase chain reaction (PCR) using Mnn1_CF and Mnn1_CR primers as chromosomal DNA template Respectively. The selectable markers for gene deletion were generated by expressing the Cre protein in SC-Leu medium supplemented with 2% galactose in place of 2% glucose and transforming the pSH68 vector as reported in the above papers Respectively. Finally, pSH68 for expression of Cre protein was removed by continuous culture in YPD medium and the final mnn1Δoch1Δ strain was selected by confirming growth on appropriate selection medium.

상기 명명된 프라이머의 서열들은 하기와 같았다. The sequences of the named primers were as follows.

이름name 서열(5' -> 3')Sequences (5 '-> 3') 서열번호SEQ ID NO: Och1_pUG72_FOch1_pUG72_F atgtctaggaagttgtcccacctgatcgctacaaggaaatcaaaaTACGCTGCAGGTCGACAACCatgtctaggaagttgtcccacctgatcgctacaaggaaatcaaaaTACGCTGCAGGTCGACAACC 55 Och1_pUG72_ROch1_pUG72_R ttatttatgacctgcatttttatcagcatcttctttccagctcccACTAGTGGAT CTGATATCACCttatttatgacctgcatttttatcagcatcttctttccagctcccACTAGTGGAT CTGATATCACC 66 Och1_CFOch1_CF AATGGGGAGCGCTGATTCTCAATGGGGAGCGCTGATTCTC 77 Och1_CROch1_CR TCTACGGAAGGACGTTGAGATCTACGGAAGGACGTTGAGA 88 Mnn1_pUG6_FMnn1_pUG6_F aacgtaatcttgcggtatttaacgctagtttaagaaagtgttactgtgtaTACGCTGCA GGTCGACAACCaacgtaatcttgcggtatttaacgctagtttaagaaagtgttactgtgtaTACGCTGCA GGTCGACAACC 99 Mnn1_pUG6_RMnn1_pUG6_R gttcacaaaggctagtaccataaacagttagaaaaaacactggttaatgcACTAGTGGA TCTGATATCACCgttcacaaaggctagtaccataaacagttagaaaaaacactggttaatgcACTAGTGGA TCTGATATCACC 1010 Mnn1_CFMnn1_CF ATCATTGCGAGGTCTCAATTGGATCATTGCGAGGTCTCAATTGG 1111 Mnn1_CRMnn1_CR GATTAGAAAAACTCATCGAGCATCAAATGGATTAGAAAAACTCATCGAGCATCAAATG 1212 소문자는 OCH1MNN1 유전자의 측면서열과 상동성이 있는 부분임Case is part of the terms of the sequence homology of the OCH1 gene MNN1 Lim

1-2: S. cerevisiae och1Δmnn1Δ 균주에서 MNN4 또는 MNN6 유전자의 결손1-2: S. cerevisiae The deletion of MNN4 or MNN6 gene in och1? mnn1?

상기 실시예 1-1.에서 제작하였던 S. cerevisiae L3262 och1Δmnn1Δ 균주로부터 Cre/loxP 시스템을 이용한 다중 유전자 결손 방법(U. Gueldener et al, 2002, Nucleic Acids Res 30: e23; J.H. Hegemann, S.B. Heick, 2011, Methods Mol Biol 765: 189-206)을 이용하여 만노스인산화를 제어한다고 알려진 MNN4 유전자와 만노스인산화 효소로 알려진 MNN6 유전자를 추가로 파쇄하여 4중 결손 균주(och1Δmnn1Δmnn4Δmnn6Δ)를 제작하였다. A multiple gene deletion method using the Cre / loxP system from S. cerevisiae L3262 och1 ? Mnn1? Strain prepared in Example 1-1 (U. Gueldener et al, 2002, Nucleic Acids Res 30: e23; JH Hegemann, SB Heick, 2011 , Methods Mol Biol 765: 189-206) using the mannose by controlling the phosphorylation that crushed further MNN6 gene known as known MNN4 gene and mannose kinase deficient strain was produced (och1Δmnn1Δmnn4Δmnn6Δ) of the 4.

효모 균주의 배양을 위해서는 1 M 소르비톨이 첨가된 YPD 배지(1% 효모 추출물(yeast extract), 2% 펩톤(peptone), 2% 포도당) 또는 SC(synthetic complete) 배지(0.67% 효모 질소 염기(yeast nitrogen base), 2% 포도당, 드롭아웃 아미노산 혼합물(dropout amino acid mixture), 필요한 모든 아미노산 포함) 등을 사용하여 주로 28 ℃에서 배양하였다. Yeast strains were cultured in YPD medium supplemented with 1 M sorbitol (1% yeast extract, 2% peptone, 2% glucose) or SC (synthetic complete) medium (0.67% yeast nitrogen nitrogen base, 2% glucose, dropout amino acid mixture, and all necessary amino acids).

먼저, MNN4 유전자 결손을 위한 loxP - LEU2 - loxP 결손 카세트를 Mnn4_F와 Mnn4_R 프라이머(표 2)를 이용하여 pUG73 벡터로부터 중합효소 연쇄반응으로 증폭하여 2.5 kbp의 DNA 절편을 얻었다(도 1 (A)). 이렇게 얻어진 MNN4 유전자 결손 카세트를 och1Δmnn1Δ에 형질전환으로 도입하였으며, 1 M sorbitol이 첨가된 SC-LEU 선택배지(1 M sorbitol, 2% glucose, 0.67% yeast nitrogen base w/o amino acid, DO supplement -LEU)에서 형질 전환체를 선별하였다. 그리고 선별된 형질전환체들의 염색체 DNA를 추출하고 이를 주형으로 하여 Leu2_CF와 Mnn4_CR 프라이머들을 이용한 중합효소 연쇄 반응을 통하여 MNN4 유전자의 결손을 확인하여(도 1 (B)), LEU2 선택 마커가 들어 있는 och1Δmnn1Δmnn4Δ 균주(mnn1Δ :: loxP och1Δ :: loxP mnn4Δ::loxP-LEU2-loxP)를 제작하였다.First, a loxP - LEU2 - loxP- deficient cassette for MNN4 gene deletion was amplified from a pUG73 vector by a polymerase chain reaction using Mnn4_F and Mnn4_R primers (Table 2) to obtain a 2.5 kbp DNA fragment (Fig. 1 (A) . The resulting MNN4 gene-deficient cassette was transfected into och1Δmnn1Δ and transformed into SC-LEU selective medium (1 M sorbitol, 2% glucose, 0.67% yeast nitrogen base w / o amino acid, DO supplement-LEU ). ≪ / RTI > And which contains the extracted chromosomal DNA of selected transformants to confirm the loss of the MNN4 gene as a template through a polymerase chain reaction using the Leu2_CF and Mnn4_CR primers to (Fig. 1 (B)), LEU2 selection marker och1Δmnn1Δmnn4Δ The strain ( mnn1 [ Delta] :: loxP och1 [Delta] :: loxP mnn4 [Delta] :: loxP-LEU2-loxP ).

MNN6 유전자 결손을 위한 loxP - URA3 - loxP 결손 카세트는 Mnn6_F와 Mnn6_R 프라이머(표 2)를 이용하여 pUG72 벡터로부터 중합효소 연쇄반응으로 증폭하여 1.7 kbp의 DNA 절편을 얻었다(도2 (A)). 이렇게 얻어진 MNN6 유전자 결손 카세트를 상기에서 제작한 och1Δmnn1Δmnn4Δ 균주에 형질전환으로 도입하였으며, 1 M 소르비톨이 첨가된 SC-LEU 선택배지에서 형질 전환체를 선별하였다. 그리고 선별된 형질 전환체들의 염색체 DNA를 추출하고 이를 주형으로 하여 Mnn6_CF와 Ura3_CR 프라이머들을 이용한 중합효소 연쇄 반응을 통하여 MNN6 유전자의 결손을 확인하여(도2 (B)), LEU2URA3 선택마커가 들어 있는 4중 결손 och1Δmnn1Δmnn4Δmnn6Δ 균주(mnn1Δ::loxP och1Δ :: loxP mnn4Δ :: loxP - LEU2 - loxP mnn6Δ :: loxP - URA3 - loxP)를 제작하였다. The loxP - URA3 - loxP- deficient cassette for MNN6 gene deletion was amplified from the pUG72 vector using the Mnn6_F and Mnn6_R primers (Table 2) to obtain a 1.7 kbp DNA fragment (Fig. 2 (A)). The MNN6 gene-deficient cassette thus obtained was introduced into the och1Δmnn1Δmnn4Δ strain prepared above, and the transformant was selected from SC-LEU supplemented medium supplemented with 1 M sorbitol. The chromosomal DNA of the selected transformants was extracted and PCR was performed using Mnn6_CF and Ura3_CR primers as a template to confirm the deletion of the MNN6 gene (FIG. 2 (B)), and LEU2 and URA3 selection markers The quadruple deficient och1? Mnn1 ? Mnn4? Mnn6? Strain ( mnn1? :: loxP och1? :: loxP mnn4 [Delta] :: loxP - LEU2 - loxP mnn6 [Delta] :: loxP - URA3 - loxP ).

MNN4MNN6의 유전자 결손을 위해서 들어간 선별용 마커 LEU2URA3는 상기의 논문들에 보고된 바와 같이, 해당 균주들에 Cre 단백질 발현을 위한 pSH67 벡터를 도입하고 YPDS-G418 선택배지(1 M sorbitol, 2% glucose, 1% yeast extrat, 2% peptone, 200㎍/㎖ G418)에서 형질 전환체를 선별한 후, 이를 2% 포도당 대신 2% 갈락토오스(galactose)가 첨가된 YPDS-G418 배지에서 배양하여 Cre 단백질 발현시켜서 제거하였다. 그리고 Cre 단백질 발현을 위한 pSH47 벡터는 YPD 배지에서 연속 배양을 통해서 제거하였으며, 적절한 선별 배지에서의 성장을 확인하여 LEU2 마커가 제거된 3중 결손 och1Δmnn1Δmnn4Δ균주(mnn1Δ :: loxP och1Δ :: loxP mnn4Δ ::loxP)와 LEU2URA3선택 마커가 제거된 och1Δmnn1Δmnn4Δmnn6Δ 균주(mnn1Δ ::loxP och1Δ::loxP mnn4Δ::loxP mnn6Δ::loxP)를 제작하였다. MNN4 and the selectable marker LEU2 and URA3 for entering to the genetic defect of MNN6 are as reported in the above paper, introducing pSH67 vector for Cre protein expression in the strain, and YPDS-G418 selection medium (1 M sorbitol, The transformants were selected in 2% glucose, 1% yeast extrat, 2% peptone and 200 μg / ml G418 and then cultured in YPDS-G418 medium supplemented with 2% galactose instead of 2% Protein expression was removed. And Cre protein for the expression vector pSH47 was removed via a continuous culture in YPD medium, determine the growth in appropriate selection medium to 3 of the LEU2 marker has been removed defect och1Δmnn1Δmnn4Δ strain (mnn1Δ :: loxP och1? :: loxP mnn4A :: loxP ) and the och1Δmnn1Δmnn4Δmnn6Δ strain in which the LEU2 and URA3 selection markers were deleted ( mnn1Δ :: loxP och1Δ :: loxP mnn4Δ :: loxP mnn6Δ :: loxP ).

이름name 서열(5' -> 3')Sequences (5 '-> 3') 서열번호SEQ ID NO: Mnn4_FMnn4_F acaacgtcactattccttcacacaaataaactaattagttatgcttcagcgtacgctgcaggtcgacaacc acaacgtcactattccttcacacaaataaactaattagttatgcttcagcg tacgctgcaggtcgacaacc 1313 Mnn4_RMnn4_R aggaaaggctatagaaatgaagagattcatgaattttcagtcaggttctactagtggatctgatatcacc aggaaaggctatagaaatgaagagattcatgaattttcagtcaggttct actagtggatctgatatcacc 1414 Leu2_CFLeu2_CF agccttgtcaagagaccagaagccttgtcaagagaccaga 1515 Mnn4_CRMnn4_CR attgtttgccacttatcactggcgattgtttgccacttatcactggcg 1616 Mnn6_FMnn6_F agcgttcacccaaccttttgtgccctttagtgaagataagataaggtaag tacgctgcaggtcgacaacc agcgttcacccaaccttttgtgccctttagtgaagataagataaggtaag tacgctgcaggtcgacaacc 1717 Mnn6_RMnn6_R tatatattcatatgtagaagattattgttcttatacatcagtgttttgat actagtggatctgatatcacc tatatattcatatgtagaagattattgttcttatacatcagtgttttgat actagtggatctgatatcacc 1818 Mnn6_CFMnn6_CF gctctcgtgagacacgagttgctctcgtgagacacgagtt 1919 Ura3_CRUra3_CR cccgtcaattagttgcaccacccgtcaattagttgcacca 2020 Mnn14_FMnn14_F atgatgttatcactgcgcaggttctccatgtacgttttgagatctctgcgtacgctgcaggtcgacaacc atgatgttatcactgcgcaggttctccatgtacgttttgagatctctgcg tacgctgcaggtcgacaacc 2121 Mnn14_RMnn14_R ttaatatttttggtctgaaccaaatatattgtttgaagttttcttattatactagtggatctgatatcacc ttaatatttttggtctgaaccaaatatattgtttgaagttttcttattat actagtggatctgatatcacc 2222 Yur1_FYur1_F atggcaaaaggaggctcgctatacatcgttggcatattcttaccaatatgtacgctgcaggtcgacaacc atggcaaaaggaggctcgctatacatcgttggcatattcttaccaatatg tacgctgcaggtcgacaacc 2323 Yur1_RYur1_R ttaaatctcgtcttgctcttcttttaagaaatatttgccgctaccgttttactagtggatctgatatcacc ttaaatctcgtcttgctcttcttttaagaaatatttgccgctaccgtttt actagtggatctgatatcacc 2424 Ktr2_FKtr2_F atgcaaatctgcaaggtatttcttacacaggttaaaaaactactttttgttacgctgcaggtcgacaacc atgcaaatctgcaaggtatttcttacacaggttaaaaaactactttttgt tacgctgcaggtcgacaacc 2525 Ktr2_RKtr2_R ctatgaatcgtgtttgaggaagtatttaccgctgccgtccttccaccatc actagtggatctgatatcacc ctatgaatcgtgtttgaggaagtatttaccgctgccgtccttccaccatc actagtggatctgatatcacc 2626 Ktr4_FKtr4_F atgaggtttctttcaaaaaggatactgaaacctgtactttcagtgatcat tacgctgcaggtcgacaacc atgaggtttctttcaaaaaggatactgaaacctgtactttcagtgatcat tacgctgcaggtcgacaacc 2727 Ktr4_RKtr4_R tcaatacatttctaactcttcctcagacatagagtgtcttatccaggttg actagtggatctgatatcacc tcaatacatttctaactcttcctcagacatagagtgtcttatccaggttg actagtggatctgatatcacc 2828 Ktr5_FKtr5_F atgttgctaataagaaggacgataaatgcatttctgggatgtatccattg tacgctgcaggtcgacaaccatgttgctaataagaaggacgataaatgcatttctgggatgtatccattg tacgctgcaggtcgacaacc 2929 Ktr5_RKtr5_R ctagtttccgaactgtcttagatagtcttcccttatgtgctcctccattt actagtggatctgatatcaccctagtttccgaactgtcttagatagtcttcccttatgtgctcctccattt actagtggatctgatatcacc 3030 Ktr7_FKtr7_F atggctataagattgaatccaaaagtcagaaggttcttgctggataagtg tacgctgcaggtcgacaacc atggctataagattgaatccaaaagtcagaaggttcttgctggataagtg tacgctgcaggtcgacaacc 3131 Ktr7_RKtr7_R ctattcaattactctaaaattttctcttctgatctcttcaatcacgtctt actagtggatctgatatcacc ctattcaattactctaaaattttctcttctgatctcttcaatcacgtctt actagtggatctgatatcacc 3232 Mnn14_CFMnn14_CF cgaagatcaagtaagagtgcacttgcgaagatcaagtaagagtgcacttg 3333 Yur1_CFYur1_CF atctgtcactgcttattcatatcatcatctgtcactgcttattcatatcatc 3434 Ktr2_CFKtr2_CF atctcttcaggtatgtgacacctataatctcttcaggtatgtgacacctata 3535 Ktr4_CFKtr4_CF caacggaacgagctctataagacgcaacggaacgagctctataagacg 3636 Ktr5_CFKtr5_CF acactttaagcatgcggtgtgtggaacactttaagcatgcggtgtgtgga 3737 Ktr7_CFKtr7_CF gtatacatcaggctaacaatctgtgagtatacatcaggctaacaatctgtga 3838

실시예Example 2.  2. och1Δmnn1Δoch1? mnn1? 균주 및  Strain and MNN4MNN4 Wow MNN6MNN6 end 추가 결손 된 균주들의  Of additional defective strains NN -- 당사슬Sugar chain 비교 compare

상기 제작된 och1Δmnn1Δ 균주와 3중 결손 och1Δmnn1Δmnn4Δ 균주 및 4중 결손 och1Δmnn1Δmnn4Δmnn6Δ 균주들의 N-당사슬을 비교 분석하여 만노스 인산의 부가 효율의 변화를 관찰하였다. N - oligosaccharides of the och1Δmnn1Δ strain, the triple - deficient och1Δmnn1Δmnn4Δ strain and the quadruple - deficient och1Δmnn1Δmnn4Δmnn6Δ strain were compared and observed to observe changes in addition efficiency of mannose phosphate.

2-1: DNA 시퀀서를 이용한 효모 세포 벽 만노단백질(cell wall mannoproteins, CWMs)의 N-당사슬 분석2-1: N -oligosaccharide analysis of yeast cell wall mannoproteins (CWMs) using DNA sequencer

우선 효모의 CWMs을 기존에 보고된 핫 구연산 버퍼(hot citrate buffer: 20 mM sodium citrate buffer, pH 7.0)를 이용한 방법을 따라서 추출하고(Park et al, 2011, Appl Environ Microbiol 77: 1187-1195), DNA 시퀀서를 이용한 방법으로 분석하였다(Laroy et al, 2006, Nat Protoc 1: 397-405). First, CWMs of yeast were extracted according to the method using hot citrate buffer (20 mM sodium citrate buffer, pH 7.0) reported previously (Park et al, 2011, Appl Environ Microbiol 77: 1187-1195) and analyzed using a DNA sequencer (Laroy et al, 2006, Nat Protoc 1: 397-405).

간단히 기술하면, 2 ㎎의 CWMs에 2 배 부피의 Membrane Denaturing 버퍼 (MDB; 8 M Urea, 360 mM Tris-HCl (pH 8.6), 3.2 mM EDTA)를 첨가한 후 50 ℃에서 한 시간 방치하여 denaturation을 시켰다. 그리고 이를 메탄올로 활성화 시키고, 증류수로 씻어준 MultiScreen-immobilon PVDF membrane clear plate (Millipore, Billerica, MA, USA)에 로딩하였다. 0.1 M 디티오트레이톨(dithiothreitol)이 녹아 있는 MDB를 처리하여 37 ℃에서 1시간 반응 후 증류수로 씻어주고, 0.1 M 아이오도아세트산(iodoacetic acid)이 있는 MDB를 첨가하여 실온의 암 상태에서 30분 반응한 후, 증류수로 씻어주었다. 이후 증류수에 녹인 1% 폴리비닐피롤리돈(polyvinylpyrrolidone) 360 이용하여 멤브레인을 블록킹한 후, 증류수로 씻어주었다. 10 mM 트리스-아세테이트(tris-acetate) (pH 8.3)에 펩타이드 N-글리코시다제 F(PNGase F; New England Biolabs, MA, USA)를 처리하여 37 ℃에서 16시간 반응하여 N-당사슬을 절단 하여 회수하고, 이를 진공 건조시켰다. 그리고 100 mM APTS(8-Aminopyrene-1,3,6-trisulfonic acid) 를 1.2 M 구연산(citric acid)과 섞어 최종 20 mM APTS를 만들고 DMSO에 녹인 1 M 소듐 시아노브롬하이드리드(sodium cyanoborohydride, NaCNBH2)를 1:1 비율로 섞은 APTS 혼합 용액을 준비하였다. 그리고 이 APTS 혼합용액을 건조된 당사슬에 5 ㎕ 첨가 하여 37 ℃에서 16시간 동안 반응시켰다. 반응 후 10 ㎕의 HPLC 증류수로 반응을 정지시켰다. Sephadex G10(GE Healthcare, Milwaukee, WI, USA) 컬럼이 패킹된 Multiscreen Durapore membrane lined 96-well plate(Millipore, Billerica, MA, USA)를 이용해서 반응을 하지 않은 과량의 APTS를 제거하여 APTS가 표지된 당사슬을 분리한 후 기존에 보고된 방법을 따라서 DNA 시퀀서를 이용하여 분석하였다(Laroy et al, Nature Protocols 1: 397-405, 2006). 즉, APTS가 표지된 당사슬 용액 10 ㎕를 DNA 시퀀서 플레이트에 옮겨 담고, POP7-polyacrylamide linear polymer로 채워진 36 cm capillary array가 장착된 ABI 3130 DNA 시퀀서를 이용하여 분석하였다. DNA 시퀀서 분석 조건은 표 3에 기재된 바와 같으며, 데이터 분석은 GeneMapper 소프트웨어를 사용하였다.Briefly, 2 mg of CWMs were added with 2 volumes of Membrane Denaturing buffer (MDB; 8 M Urea, 360 mM Tris-HCl (pH 8.6), 3.2 mM EDTA) and allowed to denature at 50 ° C for one hour . Then, it was activated with methanol and loaded onto MultiScreen-immobilon PVDF membrane clear plate (Millipore, Billerica, MA, USA) washed with distilled water. The MDB containing 0.1 M dithiothreitol was treated, reacted at 37 ° C for 1 hour, washed with distilled water, and MDB containing 0.1 M iodoacetic acid was added. After the reaction, it was washed with distilled water. Then, the membrane was blocked with 1% polyvinylpyrrolidone 360 dissolved in distilled water, and washed with distilled water. By cutting the sugar chain-N for 16 hours at 37 ℃ to handle; (New England Biolabs, MA, USA PNGase F) 10 mM Tris-glycosidase F-acetate (tris-acetate) peptide N a (pH 8.3) Collected, and vacuum dried. Then, 100 mM APTS (8-Aminopyrene-1,3,6-trisulfonic acid) was mixed with 1.2 M citric acid to make a final 20 mM APTS. 1 M sodium cyanoborohydride (NaCNBH 2 ) Were mixed in a ratio of 1: 1 to prepare an APTS mixed solution. Then, 5 μl of this APTS mixed solution was added to the dried oligosaccharide, and reacted at 37 ° C. for 16 hours. After the reaction, the reaction was stopped with 10 μl of HPLC distilled water. APTS was labeled by removing excess unreacted APTS using a Multiscreen Durapore membrane lined 96-well plate (Millipore, Billerica, MA, USA) packed with Sephadex G10 (GE Healthcare, Milwaukee, The oligosaccharides were separated and analyzed using DNA sequencers according to previously reported methods (Laroy et al., Nature Protocols 1: 397-405, 2006). That is, 10 μl of the oligosaccharide solution labeled with APTS was transferred to a DNA sequencer plate and analyzed using an ABI 3130 DNA sequencer equipped with a 36 cm capillary array filled with POP7-polyacrylamide linear polymer. The DNA sequencer analysis conditions are as shown in Table 3, and data analysis was performed using GeneMapper software.

ParameterParameter Oven 온도Oven temperature 60℃60 ° C PrerunPrerun voltage voltage 15kV15 kV PrerunPrerun time time 180s180s Infection voltageInfection voltage 1.2V1.2V Injection timeInjection time 16s16s Run voltageRun voltage 15kV15 kV Run timeRun time 1,000s1,000s

2-2 : N-당사슬 분석 결과의 해석2-2: Interpretation of N -

이중 결손 och1Δmnn1Δ, 삼중 결손 och1Δmnn1Δmnn4Δ, 사중 결손 och1Δmnn1Δmnn4Δmnn6Δ 균주들의 N-당사슬을 분석하였을 때, 모두 3개의 주요 피크들이 관찰되었다(도3). 이 피크들은 왼쪽부터 두 개의 만노스인산이 부가된 (Man-P)2-Man8GlcNAc2 당사슬, 한 개의 만노스인산이 부가된 Man-P-Man8GlcNAc2당사슬 및 중성의 Man8GlcNAc2 당사슬들이다. Three major peaks were observed when analyzing the N - oligosaccharide of the double - deficient och1Δmnn1Δ , triple deficient och1Δmnn1Δmnn4Δ , and quadruple deficient och1Δmnn1Δmnn4Δmnn6Δ (FIG. 3). These peaks consisted of two mannose phosphorylated (Man-P) 2 -Man 8 GlcNAc 2 oligosaccharides from the left, one Mann-P-Man 8 GlcNAc 2 oligosaccharide with mannose phosphoric acid and neutral Man 8 GlcNAc 2 Sugar chains.

MNN4 유전자를 결손한 och1Δmnn1Δmnn4Δ 균주와 och1Δmnn1Δ 균주의 N-당사슬 프로파일에서 만노스인산이 부가된 당사슬의 함량을 비교하였을 때 별다른 차이를 보이지 않았다. The och1? Mnn1? Mnn4? Strain and the och1? Mnn1? There was no significant difference in the content of oligosaccharides added with mannose phosphate in the N - glycoprotein profile of the strain.

MNN4MNN6 유전자를 함께 결손한 och1Δmnn1Δmnn4Δmnn6Δ 균주는 och1Δmnn1Δoch1Δmnn1Δmnn4Δ 균주에 비해서 만노스인산이 부가된 당사슬의 함량이 다소 감소하였으나 그렇게 큰 차이를 보이지는 않았다. 이러한 결과로부터 MNN4MNN6 유전자 외에 다른 유전자가 만노스인산의 부가를 담당한다고 생각되었다. Och1Δmnn1Δmnn4Δmnn6Δ strains deficient with the MNN4 and MNN6 genes but slightly decreased the content of the phosphoric acid is added mannose oligosaccharides compared to och1Δmnn1Δ and och1Δmnn1Δmnn4Δ strain did not show such a large difference. These results suggest that genes other than MNN4 and MNN6 genes are responsible for the addition of mannose phosphate.

실시예Example 3.  3. MNN4MNN4 Wow MNN6MNN6 유전자와  Gene and 상동성이Homology 있는  there is S. S. cerevisiaecerevisiae 유전자  gene

N-당사슬 분석결과 MNN4 MNN6 유전자가 추가로 결손된 och1Δmnn1Δmnn4Δoch1Δmnn1Δmnn4Δmnn6Δ 균주들에서도 만노스인산의 부가 활성이 완전히 제거 되지 않았기 때문에 만노스인산화 활성에 중요한 유전자들을 추가로 결손 하기 위한 연구를 수행하였다. Results of N- MNN4 MNN6 Additional genes Deficient Since the addition activity of mannose phosphate was not completely eliminated even in och1Δmnn1Δmnn4Δ and och1Δmnn1Δmnn4Δmnn6Δ strains, studies were carried out to further defeat genes important for mannose phosphorylation activity.

이를 위해서 우선 MNN4MNN6 유전자들과 상동성이 있는 유전자들이 S. cerevisiae 효모에 추가로 있는지를 BLAST(basic local alignment tool)를 이용하여 미국 National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov)의 데이터 베이스를 탐색하였다. For this purpose, firstly, we investigated whether genes that are homologous to MNN4 and MNN6 genes are added to S. cerevisiae yeast by using the BLAST (Basic Local Alignment Tool) in the National Center for Biotechnology Information (http://www.ncbi.nlm.com) .nih.gov).

MNN4는 C-말단 부위에 KKKKEEEE의 반복 서열을 가지고 있어서 이 부위를 제외하고 BLAST를 하였고, 그 중 hypothetical protein YJR061W (NP_012595)를 선정하여 이를 MNN14로 명명하였다. Mnn14 단백질은 Mnn4와 마찬가지로 기질인 GDP-만노스와 결합에서 중요하다고 알려진 LicD 도메인을 가지고 있으나, Mnn4와는 다르게 C-말단에 KKKKEEEE의 반복 서열을 가지고 있지 않다. Mnn4와 Mnn14 단백질들 사이의 서열 동일성은 33%이고, 상동성은 44%로 계산되었다. MNN4 has a repeat sequence of KKKKEEEE at the C-terminal region, so BLAST was excluded, and the hypothetical protein YJR061W (NP_012595) was named MNN14 . The Mnn14 protein, like Mnn4, has the LicD domain, which is known to be important in binding to the substrate GDP-mannose. However, unlike Mnn4, it does not have a repeating sequence of KKKKEEEE at the C-terminus. The sequence identity between the Mnn4 and Mnn14 proteins was 33% and the homology was calculated to be 44%.

한편, MNN6 유전자와 상동성이 있는 유전자들로는 KTR family에 속하는 YUR1, KTR2 , KTR4 , KTR5KTR7 등이 검색되었다. Mnn6 단백질과 이들 단백질 사이의 동일성과 상동성은 도 4에 기재되어 있다.On the other hand, YUR1 , KTR2 , KTR4 , KTR5, and KTR7 belonging to the KTR family were found as genes homologous to the MNN6 gene. The identity and homology between the Mnn6 protein and these proteins are described in FIG.

실시예Example 4.  4. och1Δmnn1Δmnn4Δmnn6Δoch1? mnn1? mnn4? mnn6? 균주에서  In the strain MNN4MNN4 Wow MNN6MNN6 상동 유전자들의 추가 결손  Additional deletion of homologous genes

실시예 1에서 제작한 och1Δmnn1Δmnn4Δmnn6Δ 균주로부터 만노스인산화와 관련이 되어 있을 것이라고 추정되는 MNN4MNN6의 상동 유전자 6종을 추가로 결손 하였다. The homologous genes of MNN4 and MNN6 , which are presumed to be related to mannosylation from the och1Δmnn1Δmnn4Δmnn6Δ strain prepared in Example 1, were further deficient.

실시예 1에서와 동일한 방법으로 MNN14 , YUR1 , KTR2 , KTR4 , KTR5KTR7 유전자들을 결손 하였다. 이를 위해서 loxP-URA3-loxP의 유전자 결손 카세트를 각각 6쌍의 프라이머 (MNN14_F/MNN14_R, Yur1_F/Yur1_R, Ktr2_F/Ktr2_R, Ktr4_F/Ktr4_R, Ktr5_F/Ktr5_R, Ktr7_F/Ktr7_R; 표 2 참조)들을 이용하여 중합효소 연쇄반응으로 1.7 kbp 절편을 얻었다 (도 5 (A)). The MNN14 , YUR1 , KTR2 , KTR4 , KTR5 and KTR7 genes were deleted in the same manner as in Example 1. For this, the gene-deficient cassette of loxP-URA3-loxP was polymerized using 6 pairs of primers (MNN14_F / MNN14_R, Yur1_F / Ytr1_R, Ktr2_F / Ktr2_R, Ktr4_F / Ktr4_R, Ktr5_F / Ktr5_R, Ktr7_F / Ktr7_R; A 1.7 kbp fragment was obtained by an enzyme chain reaction (Fig. 5 (A)).

이렇게 얻어진 유전자 파쇄 카세트들을 och1Δmnn1Δmnn4Δmnn6Δ 균주에 형질전환 방법으로 도입하였으며, 1 M 소르비톨이 첨가된 SC-URA 선택배지(1 M sorbitol, 2% glucose, 0.67% yeast nitrogen base w/o amino acid, DO supplement -URA)에서 형질 전환체를 선별하였다. 그리고 선별된 형질 전환체들의 염색체 DNA를 추출하고 이를 주형으로 하여 Mnn14_CF/Ura3_CR, Yur1_CF/Ura3_CR, Ktr2_CF/Ura3_CR, Ktr4_CF/Ura3_CR, Ktr5_CF/Ura3_CR 및 Ktr7_CF/Ura3_CR 프라이머들을 이용한 중합효소 연쇄반응을 통하여 해당 유전자의 결손을 확인하였다(도5 (B)). The SC-URA selective medium (1 M sorbitol, 2% glucose, 0.67% yeast nitrogen base w / o amino acid, DO supplement - 1 M sorbitol supplemented with 1 M sorbitol was introduced into the och1Δmnn1Δmnn4Δmnn6Δ strain, URA). The chromosomal DNAs of the selected transformants were extracted and PCR was carried out using polymerase chain reaction using Mnn14_CF / Ura3_CR, Yur1_CF / Ura3_CR, Ktr2_CF / Ura3_CR, Ktr4_CF / Ura3_CR, Ktr5_CF / Ura3_CR and Ktr7_CF / Ura3_CR primers, (Fig. 5 (B)).

타깃 유전자의 결손을 위해서 들어간 선별용 마커 URA3는 실시예 1에서와 같이 Cre 단백질 발현을 위한 pSH68 벡터를 도입하고, 1 M 소르비톨이 들어간 SC-LEU 선택배지 (1 M sorbitol, 2% glucose, 0.67% yeast nitrogen base w/o amino acid, DO supplement -LEU)에서 형질 전환체를 선별한 후, 이를 2% 포도당 대신 2% 갈락토오스가 첨가된 SC-LEU 선택배지 (1 M sorbitol, 2% galactose, 0.67% yeast nitrogen base w/o amino acid, DO supplement -LEU)에서 배양하여 Cre 단백질 발현 시켜서 제거하였다. 그리고 pSH68 벡터는 YPD 배지에서 연속 배양을 통해서 제거하였으며, 적절한 선별 배지에서 성장을 확인하여 URA3 마커가 제거된 5중 결손 균주 och1Δmnn1Δmnn4Δmnn6Δmnn14Δ (- mnn14Δ), och1Δmnn1Δmnn4Δmnn6Δyur1Δ (-yur1Δ), och1Δmnn1Δmnn4Δmnn6Δktr2Δ (- ktr2Δ), och1Δmnn1Δmnn4Δmnn6Δktr4Δ (- ktr4Δ), och1Δmnn1Δmnn4Δmnn6Δktr5Δ (- ktr5Δ), och1Δmnn1Δmnn4Δmnn6Δktr7Δ (- ktr7Δ)들을 제작하였다.The selective marker URA3 for the target gene deletion was introduced into SC-LEU selective medium (1 M sorbitol, 2% glucose, 0.67%) containing 1 M sorbitol by introducing pSH68 vector for Cre protein expression as in Example 1, (1 M sorbitol, 2% galactose, 0.67%) supplemented with 2% galactose in place of 2% glucose was prepared by screening transformants from yeast nitrogen base w / o amino acid, DO supplement- yeast nitrogen base w / o amino acid, DO supplement-LEU). The pSH68 vector was removed by continuous culture in YPD medium, and the growth was confirmed in an appropriate selection medium. Thus, the URA3 marker-deleted 5-deficient strain och1Δmnn1Δmnn4Δmnn6Δmnn14Δ ( -mnn14? ), och1 ? mnn1 ? mnn4 ? mnn6 ? yur1? ( -yur1? ), och1? mnn1 ? mnn4? mnn6 ? ktr2? ( - ktr2? ), och1 ? mnn1 ? mnn4 ? mnn6 ? ktr4? ( - ktr4? ), och1 ? mnn1 ? mnn4 ? mnn6 ? ktr5? ( - ktr5? ), och1 ? mnn1 ? mnn4 ? mnn6 ? ktr7? ( - ktr7Δ ) were prepared.

실시예Example 5.  5. 만노스인산화Mannose phosphorylation 관련 유전자 다중 결손 균주들의  Of related gene mutant defective strains NN -- 당사슬Sugar chain 구조 분석 Structure analysis

사중 결손 och1Δmnn1Δmnn4Δmnn6Δ 균주와 실시예 4에서 제작된 추가로 MNN4 또는 MNN6의 상동 유전자가 결손된 5중 결손 균주들(- mnn14Δ , - yur1Δ, -ktr2Δ, -ktr4Δ, -ktr5Δ, -ktr7Δ)의 N-당사슬을 비교 분석하였다. The quadruple deletion strain och1Δmnn1Δmnn4Δmnn6Δ as in Example 4, more homologous genes or MNN4 MNN6 as produced a defect of the defect in 5 strains oligosaccharide - N in the (- - mnn14Δ, yur1Δ, -ktr2Δ , -ktr4Δ, -ktr5Δ, -ktr7Δ) Respectively.

우선, 1 M 소르비톨이 들어간 최소 배지 SC(1 M sorbitol, 2% glucose, 0.67% yeast nitrogen base with amino acids)에서 28℃, 72시간 배양한 후에 그 세포를 수득하여 멸균수로 씻고, 실시예 2에서와 같은 방법으로 CWMs를 얻어서 그 N-당사슬을 분석하였다(도 6). MNN6의 상동 유전자가 결손 된 - yur1Δ, - ktr2Δ , -ktr4Δ, - ktr5Δ, - ktr7Δ 균주들은 och1Δmnn1Δmnn4Δmnn6Δ 균주와 마찬가지로 중성 당사슬(Man8GlcNAc2)과 함께 만노스인산이 부가된 (Man-P)2-Man8GlcNAc2과 Man-P-Man8GlcNAc2 당사슬 피크들이 검출되는 N-당사슬 프로파일을 보여주었다. First, the cells were cultured at 28 ° C for 72 hours in a minimal medium SC containing 1 M sorbitol (1 M sorbitol, 2% glucose, 0.67% yeast nitrogen base with amino acids). The cells were then washed with sterile water, CWMs were obtained and assayed for their N -oligosaccharides in the same manner as in (Fig. 6). With a homologous gene of MNN6 defect - yur1Δ, - ktr2Δ, -ktr4Δ, - ktr5Δ, - ktr7Δ strains Like och1Δmnn1Δmnn4Δmnn6Δ strain neutral sugar chain (Man 8 GlcNAc 2) and a (P-Man) 2 -Man with mannose phosphate is added It showed the oligosaccharide profile - 8 GlcNAc 2 and Man-P-Man 8 GlcNAc N is 2 oligosaccharide peaks are detected.

반면에 MNN4의 상동 유전자인 MNN14가 결손 된 - mnn14Δ 균주에서 만노스인산이 부가된 당사슬 피크들 없이 단일 Man8GlcNAc2 당사슬 피크를 보여주어 만노스인산 부가 능력이 상실 된 것을 알 수 있었다(도 6). On the other hand, with a homologous gene, the MNN4 MNN14 defect - mannose in mnn14Δ strain without the addition of phosphoric acid is oligosaccharide peaks single Man 8 GlcNAc 2 Showing the sugar chain peak, indicating that the mannose phosphoric acid addition ability was lost (FIG. 6).

배양 환경이 영향을 미칠 수 있으므로 1 M 소르비톨이 첨가된 YPD 배지(1 M sorbitol, 2% galactose, 1% yeast extrat, 2% peptone)에서도 28℃, 72시간 배양한 후 상기와 같은 방법으로 CWMs의 N-당사슬을 분석하였다(도 7). 이 경우 MNN6의 상동 유전자가 결손 된 - yur1Δ, - ktr2Δ , - ktr4Δ, - ktr5Δ, - ktr7Δ 균주들은 och1Δmnn1Δmnn4Δmnn6Δ 균주와 동일하게 중성 당사슬과 함께 하나의 만노스인산이 부가된 Man-P-Man8GlcNAc2 당사슬 피크가 검출되었다. 그러나, MNN4의 상동 유전자인 MNN14가 결손 된 - mnn14Δ 균주에서는 Man8GlcNAc2 당사슬 피크 만이 검출되어 만노스인산 부가 능력이 상실된 것을 알 수 있었다(도 7). (1 M sorbitol, 2% galactose, 1% yeast extrat, 2% peptone) supplemented with 1 M sorbitol for 72 hours at 28 ° C, and then cultured in CWMs N -glycoside was analyzed (Fig. 7). In this case, the homologous gene of MNN6 defect - yur1Δ, - ktr2Δ, - ktr4Δ , - ktr5Δ, - ktr7Δ strains och1Δmnn1Δmnn4Δmnn6Δ strain in the same manner as one of the mannose phosphate is added with the neutral oligosaccharide Man-P-Man 8 GlcNAc 2 The oligosaccharide peak was detected. However, homologous genes, the MNN14 the loss of the MNN4 - the strain mnn14Δ Man 8 GlcNAc 2 Only the oligosaccharide peak was detected and it was found that the mannose phosphoric acid addition ability was lost (Fig. 7).

상기의 결과들은 배양 환경에 상관 없이, MNN14 유전자의 추가 결손을 통해서 S. cerevisiae 효모의 만노스인산화 활성을 완전히 제거할 수 있음을 보여준다. 이후 실험들은 모두 1 M 소르비톨이 들어간 최소 배지 SC (1 M sorbitol, 2% glucose, 0.67% yeast nitrogen base with amino acids)에서 실험이 수행되었다. The above results show that regardless of the culture environment, the mannose phosphorylation activity of S. cerevisiae yeast can be completely eliminated through additional deletion of the MNN14 gene. Experiments were performed in a minimal medium (1 M sorbitol, 2% glucose, 0.67% yeast nitrogen base with amino acids) containing 1 M sorbitol.

실시예Example 6.  6. och1Δmnn1Δmnn4Δmnn14Δoch1? mnn1? mnn4? mnn14? Wow och1Δmnn1Δmnn14Δoch1? mnn1? mnn14? 균주의 제조Production of strain

실시예 5에서 MNN14 유전자가 추가 결손 된 och1Δmnn1Δmnn4Δmnn6Δmnn14Δ 균주에서 만노스 인산화 능력이 완전히 제거된 것을 확인하였다. 이에 따라 MNN6 유전자가 결손 되지 않은 och1Δmnn1Δmnn4Δoch1Δmnn1Δ 균주 등에서 MNN14 유전자의 추가 결손이 만노스인산화 능력에 어떠한 영향을 주는 지를 알아보고자 했다. In Example 5, the deletion of the MNN14 gene, och1? Mnn1? Mnn4? Mnn6? Mnn14? It was confirmed that the mannose phosphorylation ability was completely removed from the strain. Accordingly, MNN6 Och1? Mnn1? Mnn4? And och1? Mnn1? In a strain or the like And to investigate the effect of additional deletion of MNN14 gene on mannose phosphorylation ability.

이를 위해서 실시예 1에서 기술하고 제작한 och1Δmnn1Δmnn4Δoch1Δmnn1Δ 균주들에 실시예 4에서 제작하였던 MNN14 유전자 결손 카세트를 도입하고 1 M sorbitol이 첨가된 SC-URA 선택배지에서 형질전환체를 선별하였다. 그리고 선별된 형질전환체들의 염색체 DNA를 추출하고 이를 주형으로 하여 Mnn14_CF와 Ura3_CR 프라이머들을 이용한 중합효소 연쇄반응을 통하여 MNN14 유전자의 결손을 확인하였다. MNN14 유전자의 결손을 위해서 들어간 선별용 마커 URA3는 실시예 1과 4에서와 같은 방법으로 제거하였으며, 마찬가지로 Cre 단백질 발현을 위한 pSH68 벡터도 YPD 배지에서 연속 배양을 통해서 제거하였다. For this, och1? Mnn1? Mnn4? And och1? Mnn1? Described and described in Example 1 The transformants were screened in SC-URA selective medium supplemented with MNN14 gene-deficient cassette prepared in Example 4 and added with 1 M sorbitol. Then, the chromosomal DNA of the selected transformants was extracted and polymerase chain reaction using Mnn14_CF and Ura3_CR primers was used as a template to confirm the deletion of the MNN14 gene. The selectable marker URA3 for the deletion of the MNN14 gene was removed in the same manner as in Examples 1 and 4, and the pSH68 vector for expressing Cre protein was also removed by continuous culture in YPD medium.

또한, 상기 MNN4MNN14 유전자들의 대표 결손 균주인 상기 och1Δmnn1Δmnn4Δmnn14Δ 균주를 och1Δmnn1Δmnn4Δmnn4paΔ로 명명하여 부타페스트 조약 하의 국제 기탁 기관인 한국 생명공학연구원에 2015년 4월 6일자로 기탁하여 KCTC12789P의 수탁번호를 부여받았다.In addition, the above- mentioned deletion strains of MNN4 and MNN14 genes, och1? Mnn1? Mnn4? Mnn14? The strain was named och1Δmnn1Δmnn4Δmnn4paΔ and deposited on April 6, 2015 with the deposit number of KCTC12789P by the International Depositary under the Butafest Treaty.

실시예Example 7.  7. och1Δmnn1Δmnn4Δmnn14Δoch1? mnn1? mnn4? mnn14? Wow och1Δmnn1Δmnn14Δoch1? mnn1? mnn14? 균주의 Strain NN -- 당사슬Sugar chain 분석 analysis

실시예 6에서 제작한 och1Δmnn1Δmnn4Δmnn14Δoch1Δmnn1Δmnn14Δ 균주들과 오중 결손 och1Δmnn1Δmnn4Δmnn6Δmnn14Δ 균주의 CWMs의 N-당사슬을 함께 분석하였다(도 8). The och1? Mnn1? Mnn4? Mnn14? And och1? Mnn1? Mnn14? With strains Five-point deficiency och1? Mnn1? Mnn4? Mnn6? Mnn14? N -oligosaccharides of the CWMs of the strain were analyzed together (FIG. 8).

N-당사슬의 분석은 실시예 2 및 5에서와 같이 1 M sorbitol이 들어간 SC 배지에서 28℃, 72시간 배양하여 얻은 세포들의 CWMs를 얻어서 실시하였다. The N -glycosylation assay was performed by obtaining CWMs of cells obtained by culturing in SC medium containing 1 M sorbitol at 28 ° C for 72 hours as in Examples 2 and 5.

실험 결과 och1Δmnn1Δmnn4Δmnn6Δmnn14Δoch1Δmnn1Δmnn4Δmnn14Δ 균주는 만노스인산이 부가된 당사슬 없이 Man8GlcNAc2 당사슬의 단일 피크를 보여주었다(도 8). 반면에 och1Δmnn1Δmnn14Δ 균주는 Man8GlcNAc2 당사슬과 함께 만노스인산이 부가된 (Man-P)2-Man8GlcNAc2과 Man-P-Man8GlcNAc2 당사슬 피크들이 검출되는 프로파일을 보여주었다. 이러한 결과는 효모에서 만노스인산의 부가 활성을 제거하기 위해서는 MNN4MNN14 유전자가 모두 결손 되어야 한다는 것을 보여준다. Experimental results showed that och1Δmnn1Δmnn4Δmnn6Δmnn14Δ and och1Δmnn1Δmnn4Δmnn14Δ The strains were grown in the absence of mannose phosphate added Man 8 GlcNAc 2 Showed a single peak of the oligosaccharide (Fig. 8). On the other hand, och1? Mnn1? Mnn14? (Man-P) 2 -Man 8 GlcNAc 2 and Man-P-Man 8 GlcNAc 2 with mannose phosphate added together with Man 8 GlcNAc 2 oligosaccharide Showed that the oligosaccharide peaks were detected. These results suggest that MNN4 and MNN14 genes should be defective to eliminate the addition activity of mannose phosphate in yeast.

실시예Example 8.  8. MNN4MNN4 Wow MNN14MNN14 유전자의 complementation 실험 Gene complementation experiment

만노스인산화 활성의 제거가 확인된 두 균주 och1Δmnn1Δmnn4Δmnn14Δoch1Δmnn1Δmnn4Δmnn6Δmnn14ΔMNN4 또는 MNN14 유전자를 발현하여 만노스인산화 능력의 회복 여부를 보는 complementation 실험을 수행하였다.A complementation experiment was performed to determine whether the mannose phosphorylation capacity was restored by expressing the MNN4 or MNN14 gene in two strains och1Δmnn1Δmnn4Δmnn14Δ and och1Δmnn1Δmnn4Δmnn6Δmnn14Δ , which showed the disappearance of the mannose phosphorylation activity.

8-1: YEp352-GAP, YEp352-Mnn4, 및 YEp352-Mnn14 벡터의 제작8-1: Production of YEp352-GAP, YEp352-Mnn4, and YEp352-Mnn14 vectors

먼저, Mnn4 단백질 발현을 위한 YEp352-Mnn4와 control 벡터인 YEp352-GAP 벡터를 하기와 같이 제작하였다. First, YEp352-Mnn4 for Mnn4 protein expression and YEp352-GAP vector as a control vector were prepared as follows.

구체적으로, S. cerevisiae의 GAPDH 프로모터(0.8 kb) 및 터미네이터(0.2 kb)는 L3262 균주의 염색체 DNA로부터 GAPDHp-F1/GAPDHp-R1와 GAPDHt-F1/GAPDHt-R1 프라이머들을 이용하여 중합효소 연쇄반응을 통해서 증폭하였다. Specifically, the GAPDH promoter (0.8 kb) and the terminator (0.2 kb) of S. cerevisiae were subjected to polymerase chain reaction using the GAPDHp-F1 / GAPDHp-R1 and GAPDHt-F1 / GAPDHt-R1 primers from the chromosomal DNA of strain L3262 Respectively.

증폭된 DNA 절편은 pDrive 벡터(QIAGEN, Germany)에 각각 삽입하여 pDrive-GAPDHp와 pDrive-GAPDHt 벡터들을 제작하였다. 재조합효소 EcoRI과 KpnI을 사용하여 pDrive-GAPDHp으로부터 GAPDH 프로모터를 절단하였으며, 같은 재조합 효소로 절단된 YEp352 벡터에 삽입하여 YEp352-GAPDHp 벡터를 제작하였다. 다음으로 KpnI과 PstI 효소를 사용하여 pDrive-GAPDHt로부터 GAPDH 터미네이터를 절단하여 같은 재조합 효소로 절단된 YEp352-GAPDHp 벡터에 삽입하여 YEp352-GAP 벡터를 제작하였다. The amplified DNA fragments were inserted into pDrive vector (QIAGEN, Germany) to construct pDrive-GAPDHp and pDrive-GAPDHt vectors. Using recombinant enzyme EcoR I and Kpn I cut was the GAPDH promoter from pDrive-GAPDHp, and then inserted into a vector digested with the same YEp352 recombinant enzyme was produced in the YEp352-GAPDHp vector. Next, inserted on the Kpn I and YEp352-GAPDHp vector digested with the Pst I enzyme from pDrive-GAPDHt a recombinase, such as by cutting the GAPDH terminator was produced in the YEp352-GAP vector.

MNN4 유전자는 S. cerevisiae BY4741 균주의 염색체 DNA로부터 Mnn4_F와 Mnn4_R 프라이머를 이용하여 증폭하였으며, 제한효소 BamHI와 SpeI를 처리한 절편을 BamHI와 XbaI을 처리한 YEp352-GAP 벡터에 삽입하여 YEp352-Mnn4 벡터를 제작하였다. The MNN4 gene was amplified from the chromosomal DNA of S. cerevisiae BY4741 using Mnn4_F and Mnn4_R primers and inserted into BamH I and Xba I-treated YEp352-GAP vectors with restriction enzymes BamH I and Spe I, -Mnn4 vector.

Mnn14 단백질 발현을 위한 YEp352-Mnn14 벡터 제작을 위해서 MNN14 유전자(2.8 kb)는 S. cerevisiae L3262의 염색체 DNA로부터 Y-Mnn14-F와 Y-Mnn14-R 프라이머를 이용한 중합효소 연쇄반응으로 증폭하였다. 여기에 KpnI 제한 효소를 처리하여 절단한 단편을 YEp352-GAP 벡터의 GAPDH 프로모터 뒤의 KpnI 위치에 삽입하여 YEp352-MNN14 벡터를 제작하였다.For the YEp352-Mnn14 vector construction for expression MNN14 Mnn14 protein gene (2.8 kb) it was amplified by polymerase chain reaction using the chromosomal DNA from the F-Y-Mnn14 and Mnn14-Y-R primer of S. cerevisiae L3262. The fragment digested with KpnI restriction enzyme was inserted into the KpnI site after the GAPDH promoter of YEp352-GAP vector to construct a YEp352-MNN14 vector.

상기 벡터 제작에 사용한 프라이머의 서열은 하기와 같았다. The sequences of the primers used for the vector production were as follows.

이름name 서열(5'->3')Sequences (5 '-> 3') 서열번호SEQ ID NO: GAPDHp-F1GAPDHp-F1 AGTCGAATTCATACTAGCGTTGAATGTTAGCGAGTC GAATTC ATACTAGCGTTGAATGTTAGCG 3939 GAPDHp-R1GAPDHp-R1 AGTCGGTACCTTTGTTTGTTTATGTGTGTTTATTCAGTC GGTACC TTTGTTTGTTTATGTGTGTTTATTC 4040 GAPDHt-F1GAPDHt-F1 AGTCGGTACCGGATCCTCTAGAGTGAATTTACTTTAAATCTT GCATAGTC GGTACCGGATCCTCTAGA GTGAATTTACTTTAAATCTT GCAT 4141 GAPDHt-R1GAPDHt-R1 AGTCCTGCAGATCCACAATGTATCAGGTATCTAGTC CTGCAG ATCCACAATGTATCAGGTATCT 4242 Mnn4_FMnn4_F CGCGGATCCATGCTTCAGCGAATATCATCTAAACCGC GGATCC ATGCTTCAGCGAATATCATCTAAAC 4343 Mnn4_RMnn4_R GGACTAGTTTAATTGCTGTGCCCCTCCTCGG ACTAGT TTAATTGCTGTGCCCCTCCTC 4444 Y-Mnn14-FY-Mnn14-F AACACACATAAACAAACAAAGGTACCATGATGTTATCACTGCGCAGGAACACACATAAACAAACAAA GGTACC ATGATGTTATCACTGCGCAGG 4545 Y-Mnn14-RY-Mnn14-R AAATTCACTCTAGAGGATCCGGTACCTTAATATTTTTGGTCTGAACCAAAAAATTCACTCTAGAGGATCC GGTACC TTAATATTTTTGGTCTGAACCAAA 4646 상기에서 밑줄 친 서열은 제한효소 위치임The underlined sequence in the above is the restriction enzyme site

8-2: och1Δmnn1Δmnn4Δmnn14Δ 균주의 만노스인산화 회복 실험8-2: och1? Mnn1? Mnn4? Mnn14? Experiments to recover mannose phosphorylation of the strain

만노스인산화 능력이 없는 och1Δmnn1Δmnn4Δmnn14Δ 균주에 실시예 8-1의 YEp352-GAP, YEp352-Mnn4와 YEp352-Mnn14 벡터를 통상적인 형질전환 방법으로 도입하였다. 그리고 이를 실시예 2 및 5에서와 같이 1 M 소르비톨이 들어간 SC-Ura3 배지에서 28℃, 72시간 배양하여 얻은 세포들의 CWMs를 얻어서 N-당사슬을 분석하였다(도 9). 그 결과 Mnn4 또는 Mnn14 단백질을 발현한 경우 모두에서 만노스인산화 능력이 회복되었다. 그러나 Mnn4를 발현한 경우에 비해서 Mnn14를 발현했을 때 만노스인산의 부가 능력이 훨씬 높아서 Mnn4보다 Mnn14가 만노스인산화에 있어서 보다 핵심적인 역할을 수행한다는 것을 추정할 수 있었다. Och1? Mnn1? Mnn4? Mnn14? Without mannose phosphorylation ability YEp352-GAP, YEp352-Mnn4 and YEp352-Mnn14 vectors of Example 8-1 were introduced into the strain by a conventional transformation method. N -glycans were analyzed by obtaining CWMs of the cells obtained by culturing in SC-Ura3 medium containing 1 M sorbitol at 28 ° C for 72 hours as in Examples 2 and 5 (FIG. 9). As a result, mannose phosphorylation ability was restored in all cases when Mnn4 or Mnn14 protein was expressed. However, Mnn14 phosphorylation was significantly higher in Mnn14 than in Mnn4, suggesting that Mnn14 plays a more important role in mannosylation than Mnn4.

8-3: och1Δmnn1Δmnn4Δmnn6Δmnn14Δ 균주의 만노스인산화 회복 실험8-3: och1? Mnn1? Mnn4? Mnn6? Mnn14? Experiments to recover mannose phosphorylation of the strain

실시예 8-2에서와 같이 만노스인산화 능력이 없는 och1Δmnn1Δmnn4Δmnn6Δmnn14Δ 균주에 YEp352-GAP, YEp352-Mnn4와 YEp352-Mnn14 벡터를 통상적인 형질전환 방법으로 도입하고, 그 세포들의 CWMs를 얻어서 N-당사슬을 분석하였다(도 10). 그 결과 실시예 8-2에서와 마찬가지로 Mnn4 또는 Mnn14 단백질을 발현한 경우 만노스인산화 능력이 회복되었으며, Mnn4에 비해서 Mnn14를 발현했을 때 만노스인산화 능력이 훨씬 높아졌다. 이러한 결과들로부터 Mnn14가 Mnn4에 비해서 만노스인산의 부가에서 보다 핵심적인 역할을 수행한다는 것을 추정할 수 있었다.As in Example 8-2, och1? Mnn1? Mnn4? Mnn6? Mnn14? YEp352-GAP, YEp352-Mnn4 and YEp352-Mnn14 vectors were introduced into the strain by conventional transformation methods, and CWMs of the cells were obtained to analyze N -glycosylase (FIG. 10). As a result, the MnN4 or Mnn14 protein was restored to mannosylphosphorylation ability as in Example 8-2, and the Mnn14 phosphorylation ability was much higher when Mnn14 was expressed compared to Mnn4. These results suggest that Mnn14 plays a key role in the addition of mannose phosphate to Mnn4.

실시예Example 9.  9. MNN4MNN4 Wow MNN14MNN14 유전자 결손에 따른 분비 발현 단백질의  Expression of secreted protein by gene deletion NN -- 당사슬의Oligosaccharide 변화 분석 Change analysis

상기의 실시예 2 내지 8에서는 효모의 세포 벽 만노단백질(cell wall mannoproteins, CWMs)의 N-당사슬을 분석한 것으로, 추가 확인을 위해서 이후의 실시예에서는 효모로부터 분비 발현되는 당단백질의 N-당사슬을 분석하는 실험을 수행하였다.In the Examples 2 to 8 of the cell walls of yeast manno proteins (cell wall mannoproteins, CWMs) of N - to have analyzed the sugar chain, N of glycoprotein secreted expression from the yeast in the embodiment subsequent to the additional check-oligosaccharide Were analyzed.

9-1: Gas1 단백질 분비 발현 벡터 제작9-1: Production of Gas1 protein secretion expression vector

모델 당단백질로서 S. cerevisiae 효모의 Gas1 단백질을 선택하고, 분비 발현을 위하여 C-말단의 glycosylphosphatidylinositol (GPI)-anchoring motif가 제거된 1 - 490번 아미노산 잔기의 단백질을 발현하는 유전자를 아래와 같은 중합효소 연쇄반응을 이용하여 증폭하였다(Gil et al, J Biotech 2015). S. cerevisiae L3262 균주의 genomic DNA를 추출한 후 이를 주형으로 하고 p-Gas1-F와 p-Gas1-R-1 프라이머를 사용하여 첫 번째 중합효소 연쇄반응으로 증폭하여 DNA 절편을 얻었다. 그리고 이를 다시 주형으로 하여 pGas1-F와 p-Gas1-R-2 프라이머를 이용하여 중합효소 연쇄반응으로 증폭하여 C-말단에 정제를 위한 8개의 His 잔기로 이루어진 His-tag을 첨가된 DNA 절편을 얻었다. 상기 증폭된 DNA는 DNA2.0 (Menlo Park, CA, 미국)의 pD1211 벡터에 Electra 방법(DNA2.0)으로 제조사에서 제공하는 프로토콜에 따라서 클로닝하였으며, 최종 제작된 벡터는 pD1211-Gas1p로 명명하였다. Gas1 protein of S. cerevisiae yeast was selected as the model glycoprotein and the gene expressing the protein of amino acid residues 1 to 490 in which the C-terminal glycosylphosphatidylinositol (GPI) -anchoring motif was removed was expressed as the following polymerase And amplified using a chain reaction (Gil et al, J Biotech 2015). Genomic DNA of S. cerevisiae strain L3262 was extracted and amplified by the first polymerase chain reaction using p-Gas1-F and p-Gas1-R-1 primers as templates and DNA fragments were obtained. Then, the DNA fragment was amplified by polymerase chain reaction using pGas1-F and p-Gas1-R-2 primers as a template, and a His-tagged DNA fragment consisting of 8 His residues for purification was added to the C- . The amplified DNA was cloned into the pD1211 vector of DNA2.0 (Menlo Park, CA, USA) using the Electra method (DNA2.0) according to the protocol provided by the manufacturer, and the final constructed vector was named pD1211-Gas1p.

상기 벡터 제작에 사용한 프라이머의 서열들은 하기와 같다. The sequences of the primers used for the vector production are as follows.

이름name 서열(5'->3')Sequences (5 '-> 3') 서열번호SEQ ID NO: p-Gas1-Fp-Gas1-F tacacgtacttagtcgctgaagctcttctatg atgttgtttaaatccctttcaaag tacacgtacttagtcgctgaagctcttctatg atgttgtttaaatccctttcaaag 4747 p-Gas1-R-1p-Gas1-R-1 gtgatgatgatgatggtggtggtgagaaccccctccacc actggattcagttccggaacc gtgatgatgatgatggtggtggtgagaaccccctccacc actggattcagttccggaacc 4848 p-Gas1-R-2p-Gas1-R-2 aggtacgaactcgattgacggctcttctaccaggtacgaactcgattgacggctcttctacc gtgatgatgatgatggtggtggtgatgatgatgatggtggtg 4949 상기에서 밑줄 친 서열은 Electra 클로닝을 위한 부분이며, italic으로 표시된 서열은 His-tag 및 linker 부분임The underlined sequence is for Electra cloning and the italic sequence is His-tag and linker

9-2: 재조합 Gas1 단백질의 분비 발현 및 정제9-2: Secretory expression and purification of recombinant Gas1 protein

상기에서 제작된 pD1211-Gas1p 벡터를 실시예 1에서 제작한 och1Δmnn1Δmnn4Δmnn6Δ 균주와 실시예 6에서 제작한 och1Δmnn1Δmnn4Δmnn14Δ 균주에 통상적인 형질전환 방법으로 도입하고, 1 M 소르비톨이 첨가된 SC-URA 선택배지(1 M sorbitol, 2% glucose, 0.67% yeast nitrogen base w/o amino acid, DO supplement -URA)에서 선별하여 재조합 Gas1 단백질을 분비 발현하는 균주들을 제작하였다. 또한, och1Δmnn1Δmnn4Δmnn14Δ 균주에 실시예 8에서 제작한 YEp352-Mnn4와 YEp352-Mnn14 벡터와 함께 pD1211-Gas1p 벡터를 통상적인 형질전환 방법으로 도입하고 1 M 소르비톨이 첨가된 SC-URA, LEU 선택배지에서 선별하여 Gas1을 분비 발현하는 och1Δmnn1Δmnn4Δmnn14Δ/Mnn4/Gas1와 och1Δmnn1Δmnn4Δmnn14Δ/Mnn14/Gas1 균주들을 제작하였다. Produced in the pD1211-Gas1p vector for Example 1, och1Δmnn1Δmnn4Δmnn6Δ strain as in Example 6 and was introduced by a conventional transformation method to och1Δmnn1Δmnn4Δmnn14Δ strain produced in, 1 M sorbitol is added SC-URA selection media (prepared in 1 M The strains were isolated from recombinant Gas1 protein by selection from sorbitol, 2% glucose, 0.67% yeast nitrogen base w / o amino acid, DO supplement-URA. Further, och1? Mnn1? Mnn4? Mnn14? The pD1211-Gas1p vector was introduced into the strain together with YEp352-Mnn4 vector and YEp352-Mnn14 vector prepared in Example 8 by a conventional transformation method and screened on SC-URA and LEU selective medium supplemented with 1 M sorbitol to secrete Gas1 The och1? Mnn1? Mnn4? Mnn14? / Mnn4 / Gas1 and och1? Mnn1? Mnn4? Mnn14? / Mnn14 / Gas1 strains were expressed.

상기에서 제작한 4종의 재조합 Gas1 분비 발현 효모 균주들을 1 M 소르비톨이 첨가된 적절한 선택배지 (SC-URA 또는 SC-URA, LEU)를 사용하여 28℃ 에서 3일 동안 배양하였다. 그리고 이를 통해서 얻은 배양 상등액을 통상의 His-tag 친화 컬럼을 사용하여 정제하였다(Gil et al, J Biotech 2015).Four yeast strains expressing recombinant Gasl secretion produced above were cultured at 28 ° C for 3 days using a suitable selective medium (SC-URA or SC-URA, LEU) supplemented with 1 M sorbitol. The culture supernatant thus obtained was purified using a conventional His-tag affinity column (Gil et al, J Biotech 2015).

9-3: 정제된 Gas1 단백질의 N-당사슬 분석9-3: N -oligosaccharide analysis of purified Gas1 protein

상기의 실험을 통해서 정제한 Gas1 단백질들의 N-당사슬은 기존 문헌(Lee KJ et al, 2013, Glycoconj J)에 기술 된 바와 같이 분리 정제하였다. 간략히 기술하면, 10 mg의 정제된 Gas1 단백질을 denaturation하고 직접 PNGase F (New Englad Biolabs)를 처리하여 당사슬을 유리한 후에 graphitized carbon 컬럼(Alltech, Lexington, MA, USA)을 이용한 solid phase extraction 방법을 이용하여 정제하였다. 이렇게 정제한 N-당사슬들은 실시예 2의 DNA 시퀀서를 이용한 방법으로 분석하였다(도 11).The N -glycosylation of the purified Gas1 proteins through the above experiment was isolated and purified as described in the existing literature (Lee KJ et al, 2013, Glycoconj J). Briefly, 10 mg of purified Gas1 protein was denaturated and directly processed with PNGase F (New Englad Biolabs) to obtain a glycoprotein. After solid phase extraction using a graphitized carbon column (Alltech, Lexington, MA, USA) Lt; / RTI > The N -glycosities thus purified were analyzed by the method using the DNA sequencer of Example 2 (Fig. 11).

분석 결과 och1Δmnn1Δmnn4Δmnn6Δ 균주에서 분비 발현한 재조합 Gas1 단백질에는 만노스인산이 부가된 당사슬들이 많은 양 부착되는 데 반하여, och1Δmnn1Δmnn4Δmnn14Δ 균주에서 분비 발현한 재조합 Gas1 단백질에는 만노스인산이 부가된 당사슬들이 관찰되지 않았다(도 11의 두 번째와 세 번째 프로파일). 이는 실시예 5와 7에서 효모의 CWM의 N-당사슬을 이용하여 분석한 결과들과(도 6과 8) 일치하며, S. cerevisiae 효모에서 분비 발현하는 당단백질의 당사슬에 만노스인산이 부가되지 않게 하기 위해서는 MNN4MNN14 유전자를 동시에 결손 해야 한다는 것을 확인해준다. 이러한 사실은 och1Δmnn1Δmnn4Δmnn14Δ 균주에 Mnn4 또는 Mnn14 단백질을 발현하여 complementation한 균주들(och1Δmnn1Δmnn4Δmnn14Δ/Mnn4와 och1Δmnn1Δmnn4Δmnn14Δ/Mnn14)에서 재조합 Gas1 단백질을 분비 발현한 실험을 통해서 더욱 확실하게 확인할 수 있다(도 11의 네 번째와 다섯 번째 프로파일). 두 경우 모두 만노스인산의 부가 능력이 회복되는 것을 확인할 수 있다. 이 경우에 주목 할 점은 Mnn4를 och1Δmnn1Δmnn4Δmnn14Δ 균주에서 발현 시켰을 때에는 만노스인산이 하나 부가된 당사슬만이 적은 양 검출되는 데 반하여, Mnn14를 발현 시켰을 때 만노스인산이 하나 부가된 당사슬 peak의 세기가 증가할 뿐 만 아니라 두 개가 부가된 당사슬에 매우 강한 세기의 peak로 검출되었다는 것이다. 이는 Mnn14의 만노스인산 부가 능력이 Mnn4보다 훨씬 우수하다는 것을 보여준다.Analysis showed that och1Δmnn1Δmnn4Δmnn6Δ In the recombinant Gas1 protein secreted from the strain, many oligosaccharides added with mannose phosphate adhere, whereas och1? Mnn1? Mnn4? Mnn14? In the recombinant Gas1 protein secreted from the strain, no mannose phosphate-added oligosaccharides were observed (the second and third profiles in Fig. 11). This is consistent with the results (Figs. 6 and 8) of the analysis using the N -glycosylation of CWM of yeast in Examples 5 and 7, and the addition of mannose phosphate to the oligosaccharide of the glycoprotein secreted in S. cerevisiae yeast In order to confirm that MNN4 and MNN14 genes should be defective at the same time. This fact suggests that och1? Mnn1? Mnn4? Mnn14? And the recombinant Gasl protein is secreted and expressed in strains ( och1? Mnn1? Mnn4? Mnn14? / Mnn4 and och1? Mnn1? Mnn4? Mnn14? / Mnn14) complementarily expressing Mnn4 or Mnn14 protein in the strain (fourth and fifth profiles in Fig. 11) . In both cases, the addition ability of mannose phosphoric acid is restored. In this case, when Mnn4 is expressed in the och1Δmnn1Δmnn4Δmnn14Δ strain, only a small amount of the oligosaccharide added with mannose phosphate is detected, whereas when the Mnn14 is expressed, the intensity of the oligosaccharide added with mannose phosphate increases But also two peaks were detected with strongly intense peaks in the oligosaccharide. This shows that the mannose phosphoric acid addition ability of Mnn14 is much better than that of Mnn4.

9-4: 정제된 Gas1 단백질의 등전점 전기영동9-4: Isoelectric point electrophoresis of purified Gas1 protein

상기의 정제된 Gas1 단백질들의 고유 등전점(isoelctric point)을 통상의 등전점 전기영동(isoelctric focusing: IEF) 방법을 이용하여 분석하였다. 간략히 기술하면 IEF 겔(ThermoFisher Scientific, Waltham, MA, USA)을 cathod와 anode 버퍼(ThermoFisher Scientific)로 채워진 챔버(ThermoFisher Scientific)에 장착하고, sample 버퍼(ThermoFisher Scientific)가 첨가된 Gas1 단백질 시료를 IEF 겔의 well에 로딩한 후 제조사에서 제공하는 프로토콜을 따라서 전기영동을 수행하였다. 전기영동이 끝난 겔은 fixation 버퍼(12% Trichloroacetic acid)에 30분 동안 반응 한 후, 쿠마시블루 염색을 진행하여 그 결과를 확인하였다(도 12). The isoelctric points of the purified Gas1 proteins were analyzed using conventional isoelectric focusing (IEF). Briefly, an IEF gel (ThermoFisher Scientific, Waltham, Mass., USA) was mounted in a chamber (ThermoFisher Scientific) filled with cathod and anode buffer (ThermoFisher Scientific) and a Gas1 protein sample with sample buffer (ThermoFisher Scientific) And electrophoresis was performed according to the protocol provided by the manufacturer. After electrophoresis, the gel was reacted with fixation buffer (12% Trichloroacetic acid) for 30 minutes, followed by Coomassie blue staining, and the result was confirmed (FIG. 12).

만노스인산은 음 전하를 띄고 있어서 만노스인산이 부가될 수록 단백질의 등전점은 더 낮아진다. 따라서 och1Δmnn1Δmnn4Δmnn6Δ 균주에서 분비 발현한 재조합 Gas1 단백질은 만노스인산이 많이 부가되어서 주요 단백질 band의 등전점이 pH 3 이하에 위치하며 끌리듯이 나타났다(도 12의 첫 번째 lane). 반면에, och1Δmnn1Δmnn4Δmnn14Δ 균주에서 분비 발현한 재조합 Gas1 단백질은 주요 band가 pH 4 이상에서 관찰되어(도 12의 두 번째 lane) 등전점이 높아지는 결과를 얻어서, 도 11의 N-당사슬 분석에서 만노스인산의 부가 능력이 제거된 것과 일치하는 결과를 얻었다. 또한 Mnn4 또는 Mnn14 단백질 발현을 complementation한 균주들(och1Δmnn1Δmnn4Δmnn14Δ/Mnn4와 och1Δmnn1Δmnn4Δmnn14Δ/Mnn14)에서 분비 발현한 재조합 Gas1 단백질들은 och1Δmnn1Δmnn4Δmnn14Δ 균주에서 분비 발현한 단백질에 비해서 등전점이 확연히 낮아지는 것을 확인할 수 있었다(도 12의 세 번째와 네 번째 lane). 여기서도 Mnn14 단백질 발현을 complementation한 균주가 Mnn4 complementation 균주에 비해서 등전점이 더 낮아지는 것으로부터 Mnn14의 만노스인산 부가 능력이 보다 우수함을 확인할 수 있었다. Since mannose phosphoric acid has a negative charge, the isoelectric point of the protein becomes lower as mannose phosphoric acid is added. Thus, och1? Mnn1? Mnn4? Mnn6? The recombinant Gas1 protein secreted from the strain was added with a lot of mannose phosphate, so that the isoelectric point of the main protein band was located below pH 3 and was attracted (the first lane of FIG. 12). On the other hand, och1? Mnn1? Mnn4? Mnn14? The recombinant Gas1 protein secreted from the strain was found to have a major band at pH 4 or higher (second lane in FIG. 12), resulting in higher isoelectric point. Thus, the addition ability of mannose phosphate in the N - The results were consistent. In addition, recombinant Gas1 proteins secreted from strains complementary to Mnn4 or Mnn14 protein expression ( och1? Mnn1? Mnn4? Mnn14? / Mnn4 and och1? Mnn1? Mnn4? Mnn14? / Mnn14) were identified as och1? Mnn1? Mnn4? Mnn14? It was confirmed that the isoelectric point was significantly lower than that of the protein secreted from the strain (the third and fourth lanes of FIG. 12). It was also confirmed that the MnN14 phosphorus addition ability of the strain complementary to the Mnn14 protein expression was higher than that of the Mnn4 complementation strain.

이상의 설명으로부터, 본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 이와 관련하여, 이상에서 기술한 실시 예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허 청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.From the above description, it will be understood by those skilled in the art that the present invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. In this regard, it should be understood that the above-described embodiments are to be considered in all respects as illustrative and not restrictive. The scope of the present invention should be construed as being included in the scope of the present invention without departing from the scope of the present invention as defined by the appended claims.

한국생명공학연구원Korea Biotechnology Research Institute KCTC12789PKCTC12789P 2015040620150406

<110> KOREA RESEARCH INSTITUTE OF BIOSCIENCE AND BIOTECHNOLOGY <120> An essential gene MNN14 for mannosylphosphorylation in Saccharomyces cerevisiae and a method for producing recombinant glycoprotein using a MNN14-defected microorganism <130> KPA150188-KR-P1 <150> 10-2015-0064855 <151> 2015-05-08 <160> 49 <170> KopatentIn 2.0 <210> 1 <211> 935 <212> PRT <213> Saccharomyces cerevisiae <400> 1 Met Met Leu Ser Leu Arg Arg Phe Ser Met Tyr Val Leu Arg Ser Leu 1 5 10 15 Arg Leu His Phe Lys Lys Ile Ile Ile Thr Leu Leu Thr Ile Gln Leu 20 25 30 Leu Phe Ile Thr Ile Phe Val Leu Gly Gly Arg Ser Ser Ile Ile Asp 35 40 45 Gly Asn Trp Lys Ser Phe Met Ala Leu Phe Phe Lys Pro Leu Ala Tyr 50 55 60 Thr Asn Arg Asn Asn Asn His Ala Ser Phe Asp Leu Arg Ser Lys Asp 65 70 75 80 Asn Val Ala Lys Leu Tyr Glu Lys Met Asn Phe Asp Thr Ser Gly Lys 85 90 95 Trp Ile Asp Thr Tyr Thr Leu Lys Asn Asn Leu Leu Thr Val Lys Met 100 105 110 Gly Pro Glu Lys Gly Gln Val Leu Asp Ser Val Asp Glu Leu Arg Tyr 115 120 125 Tyr Asp Asn Asp Pro Arg Leu Val Trp Ser Val Leu Leu Asp His Leu 130 135 140 Leu Glu Ser Asp Ser Asn Glu Tyr Ala Phe Ser Trp Tyr Asp Trp Ala 145 150 155 160 Asn Phe Asp Ser Thr Asn Lys Leu Ile Ala Leu Arg His Thr Asn Ile 165 170 175 Ser Cys Gln Phe Val Cys Glu Gly Ala Phe Asp Lys Asn Val Leu Glu 180 185 190 Met Val Glu Ser Glu Val Gln Glu Pro Leu Phe Val Thr Asn Arg Asn 195 200 205 Lys Tyr Asp Glu Ser Leu Trp Tyr Asn Arg Val Arg Lys Val Val Asp 210 215 220 Ser Asn Ser Val Gln Gln Ala Ile His Asp His Cys Met Asn Asn Asp 225 230 235 240 Ala Tyr Ser Asn Gly Thr Pro Phe Glu Leu Pro Phe Ile Ile Ser Glu 245 250 255 Ile Ser Glu Arg Leu Arg Pro Glu Val Tyr Asp Leu Gln Ala Lys Asn 260 265 270 His Leu Leu Tyr Ser Asn Phe Thr Pro Leu Ser Leu Thr Val Leu Asp 275 280 285 Ser Asp Lys Asp Ala Tyr Arg Ile Asn Leu Lys Thr Thr Asp Ser Ser 290 295 300 Lys Ser Asn Ile Val Gln Thr Asn Leu Leu Gln Asn Tyr Ile Lys Arg 305 310 315 320 His Arg Asn Glu Met Val Asn Gly Asp Leu Ile Phe Asn His Thr Ser 325 330 335 Met Phe Glu Lys Phe Leu His His Gly Ser Thr Lys Lys Arg Lys Leu 340 345 350 Asp Val Glu Ala Leu Asp Lys Thr Ile Tyr Ala Gly Glu Tyr Leu Glu 355 360 365 Leu Ser Pro Ser Asp Phe Gln Phe Asn Ala Lys Glu Arg Ile Ile Glu 370 375 380 Leu Glu Thr Arg Leu Arg Ser Glu Gly Leu Pro Ser His Asp Thr His 385 390 395 400 Tyr Leu Arg Ser Leu Lys Thr Ser Val Asn Thr Ser Pro Ala Leu Gln 405 410 415 Gln Lys Tyr Phe Ala Glu Ala Ser Asp Ile Thr Asp Ala Thr Ala Asp 420 425 430 Gly His His Arg Asp Arg Arg Phe Phe Ser Ile Gly His Asn Leu Leu 435 440 445 Asn Asp Pro Gln Glu Phe Glu Ala Arg Leu Asn Ser Leu Ile Arg Asn 450 455 460 Phe Gln Lys Phe Val Lys Ala Asn Gly Leu Ile Ser Trp Leu Ser His 465 470 475 480 Gly Thr Leu Tyr Gly Tyr Leu Tyr Asp Gly Leu Lys Phe Pro Trp Asp 485 490 495 Val Asp His Asp Leu Gln Met Pro Ile Lys His Leu His Tyr Leu Ser 500 505 510 Gln Tyr Phe Asn Gln Ser Leu Ile Leu Glu Asp Pro Arg Glu Gly Asn 515 520 525 Gly Arg Phe Leu Leu Asp Val Gly Ser Ala Ile Thr Val Gly Val His 530 535 540 Gly Asn Gly Glu Asn Asn Ile Asp Ala Arg Phe Ile Asp Ile Asp Ser 545 550 555 560 Gly Ile Tyr Ile Asp Ile Thr Gly Leu Ser Val Ser Ser Asp Ala Ala 565 570 575 Lys Gln Tyr Met Ser Lys Phe Val Glu Glu Glu Ser Ser Gly Glu Ser 580 585 590 Phe Ser Ala Leu Ile Glu Asp Tyr Lys Phe Asp Glu Asn Asp Tyr Phe 595 600 605 Asp Glu Val Asp Gly Arg Glu Gly Leu Ala Lys Tyr Thr Ile His Glu 610 615 620 Leu Met Glu Trp Val Asn Ser His Pro Asp Asp Phe Thr Asp Ala Glu 625 630 635 640 Lys Asn Leu Val Thr Lys Thr Tyr Lys Lys Glu Leu Ala Ile Ser Arg 645 650 655 Ser Asp Tyr Ala Glu Lys Asp Leu Ser Pro Lys Gln Arg Tyr Leu Val 660 665 670 Asn Glu Lys Tyr Asn Leu Tyr Asn Cys Arg Asn Gln His Phe Ser Ser 675 680 685 Leu Asn Ile Ile Ser Pro Leu Arg Asn Thr Met Phe Ser Gly Val Ser 690 695 700 Ala Phe Val Pro Asn Arg Pro Ile Ala Thr Leu Asn Asn Glu Tyr Lys 705 710 715 720 Val Pro Ala Lys Tyr Gly Leu Leu Ser Phe Gln Gly Lys Val Tyr Leu 725 730 735 Pro Glu Phe Arg Tyr Trp Phe Ser Phe Ala Asp Met Lys Lys Phe Ala 740 745 750 Asn Leu Gln Leu Lys Glu Pro Lys Ile Thr Arg Leu Glu Ser Pro Leu 755 760 765 Asn Asp Leu Lys Phe Ser Asp Ile Ser Leu Leu Ile Thr Asn Ile Leu 770 775 780 Lys Cys Gly Phe His Ser Val Phe Ala Ser Leu Phe Asn Ser Phe Asp 785 790 795 800 Ser Thr Val Tyr Arg Leu Lys Glu Leu Glu Ile Gln Tyr Asp Pro Ser 805 810 815 Leu Ser Glu Glu Glu Lys Ser Ser Leu Leu Lys Thr Leu Arg Arg Gly 820 825 830 Met Ser Lys Lys Ile Lys Ser Pro Glu Lys Asp Pro Ile Ile Tyr Ile 835 840 845 Tyr Glu Arg Lys Leu Trp Glu Asn Val Glu Lys Leu Leu Asn Ala Ser 850 855 860 Asn Ile Tyr Asn Ile Ala Ser Gln Val Glu Lys Glu Lys Gly Lys Glu 865 870 875 880 Phe Val Glu Arg Ser Gln Gln Val Tyr Glu Arg Asn Phe Asp Gly Phe 885 890 895 Arg Leu Pro Asp Gly Gly Asn Ser Lys Thr Val Asn Asp Leu Asn Ser 900 905 910 Lys Gly Leu Asn Leu Phe Gly Asp Asn Lys Lys Thr Ser Asn Asn Ile 915 920 925 Phe Gly Ser Asp Gln Lys Tyr 930 935 <210> 2 <211> 2808 <212> DNA <213> Saccharomyces cerevisiae <400> 2 atgatgttat cactgcgcag gttctccatg tacgttttga gatctctgcg gcttcacttt 60 aaaaagataa tcattactct tctaactatc cagttactat tcattaccat atttgtattg 120 ggcggtcgct cgtcgattat tgacggtaac tggaagtcat tcatggcgct ctttttcaaa 180 ccgcttgctt acactaacag aaacaacaac catgcttctt tcgatctgag atcaaaagac 240 aacgtagcca aactttacga aaaaatgaat tttgatactt caggcaaatg gatcgacacg 300 tacaccttga agaataatct tctcactgtg aaaatgggtc ctgaaaaagg gcaagttctt 360 gattcggtag atgaattgag atattacgat aacgacccaa ggctggtatg gtcagtttta 420 ctagatcact tattagaatc agattccaat gaatacgcat tttcgtggta cgattgggct 480 aattttgact ctacaaacaa actcattgca ctgagacaca cgaacatatc ttgccagttc 540 gtttgcgagg gtgcctttga taaaaatgtg ctagaaatgg tagagagtga agtccaagag 600 cctttattcg tcacaaatag gaataaatat gacgaatcgc tctggtacaa cagggtaaga 660 aaggttgtcg attctaattc tgtgcagcaa gccatacatg atcactgcat gaataatgac 720 gcgtattcca atggtactcc cttcgaattg ccttttatca taagcgaaat ttctgaaagg 780 ttgaggccag aagtgtatga cttacaagcc aaaaaccact tgttatattc taactttact 840 ccactgtcat taaccgtact ggacagcgat aaagatgcat acagaatcaa tttgaagaca 900 acagactctt ccaaatcaaa tatagtacag acaaatctac tacagaatta cattaagagg 960 cacagaaatg aaatggtaaa tggcgacctc attttcaacc acacttccat gtttgaaaaa 1020 tttttacatc atggatccac taaaaaaagg aaacttgacg ttgaagcgtt ggataaaaca 1080 atatacgctg gagagtatct agaactatca ccatctgatt tccaattcaa tgcaaaagag 1140 aggatcattg aattagagac caggctcagg tctgaaggcc taccatctca tgatacccac 1200 tatttacgaa gtttaaagac gtccgtaaat acgtcccctg cattacagca aaagtatttc 1260 gcagaggcct ctgatattac ggacgcgact gccgatggtc atcatagaga caggcgattt 1320 ttctcaatcg gacataatct cctaaatgac cctcaggagt ttgaagcaag attgaattct 1380 ttgatcagaa attttcagaa atttgttaag gctaacggat taatttcctg gctatcgcat 1440 ggtacattgt atggatatct atatgatggt ctgaagtttc cctgggatgt cgaccatgat 1500 ttacagatgc ccattaaaca tttacattac ttgagtcaat atttcaacca atccctaata 1560 ttagaagatc caagagaagg taatggaaga ttcttactag atgtaggaag cgcaattacg 1620 gtaggagttc atgggaacgg cgaaaacaat attgatgctc gtttcatcga tattgactca 1680 ggtatataca ttgacatcac gggacttagc gttagttccg atgcggctaa acagtacatg 1740 tccaaatttg tagaagaaga aagctcgggc gaaagctttt ctgcccttat tgaagactat 1800 aagtttgacg aaaacgacta ttttgacgag gtggatggta gagaaggttt agctaaatat 1860 accatacatg aattaatgga atgggttaat tctcatccag acgactttac ggatgcagaa 1920 aagaatttag tcaccaaaac atacaagaaa gagcttgcaa tttcgagaag cgattatgct 1980 gaaaaagact tgtctccgaa acaaaggtat ttggtaaatg agaagtataa cctttacaat 2040 tgtagaaacc agcatttttc cagtctaaac atcatatcac ccttgagaaa tacaatgttc 2100 agcggtgtgt cagcatttgt tcctaatagg cccatagcaa cattgaataa tgagtataaa 2160 gttccggcaa aatacgggct tttgtcattc caaggtaagg tgtatttacc ggaattcaga 2220 tactggttct cgtttgcaga catgaagaag tttgcaaatt tgcagctgaa agaacccaag 2280 ataacacgac tggaaagtcc cttaaatgat ttaaaattca gcgacataag cctactgata 2340 acaaacattt taaaatgtgg gtttcactcc gtatttgcca gcttatttaa ttcttttgac 2400 agtactgttt acagactcaa agagcttgaa atacagtatg atcctagctt gagtgaggaa 2460 gaaaaaagta gtctattaaa aactctacgg cgaggaatgt caaaaaaaat aaaatcacca 2520 gaaaaagatc cgatcatata tatatacgaa agaaagttat gggaaaacgt ggaaaagttg 2580 ttgaatgcgt caaacatcta caacattgct tcacaagttg agaaggaaaa aggtaaagag 2640 tttgttgaac ggtcccagca agtatatgaa agaaactttg acggcttcag acttcccgat 2700 ggcggcaaca gtaagactgt aaatgatctg aattctaagg gcttaaatct ctttggtgat 2760 aataagaaaa cttcaaacaa tatatttggt tcagaccaaa aatattaa 2808 <210> 3 <211> 1178 <212> PRT <213> Saccharomyces cerevisiae <400> 3 Met Leu Gln Arg Ile Ser Ser Lys Leu His Arg Arg Phe Leu Ser Gly 1 5 10 15 Leu Leu Arg Val Lys His Tyr Pro Leu Arg Arg Ile Leu Leu Pro Leu 20 25 30 Ile Leu Leu Gln Ile Ile Ile Ile Thr Phe Ile Trp Ser Asn Ser Pro 35 40 45 Gln Arg Asn Gly Leu Gly Arg Asp Ala Asp Tyr Leu Leu Pro Asn Tyr 50 55 60 Asn Glu Leu Asp Ser Asp Asp Asp Ser Trp Tyr Ser Ile Leu Thr Ser 65 70 75 80 Ser Phe Lys Asn Asp Arg Lys Ile Gln Phe Ala Lys Thr Leu Tyr Glu 85 90 95 Asn Leu Lys Phe Gly Thr Asn Pro Lys Trp Val Asn Glu Tyr Thr Leu 100 105 110 Gln Asn Asp Leu Leu Ser Val Lys Met Gly Pro Arg Lys Gly Ser Lys 115 120 125 Leu Glu Ser Val Asp Glu Leu Lys Phe Tyr Asp Phe Asp Pro Arg Leu 130 135 140 Thr Trp Ser Val Val Leu Asn His Leu Gln Asn Asn Asp Ala Asp Gln 145 150 155 160 Pro Glu Lys Leu Pro Phe Ser Trp Tyr Asp Trp Thr Thr Phe His Glu 165 170 175 Leu Asn Lys Leu Ile Ser Ile Asp Lys Thr Val Leu Pro Cys Asn Phe 180 185 190 Leu Phe Gln Ser Ala Phe Asp Lys Glu Ser Leu Glu Ala Ile Glu Thr 195 200 205 Glu Leu Gly Glu Pro Leu Phe Leu Tyr Glu Arg Pro Lys Tyr Ala Gln 210 215 220 Lys Leu Trp Tyr Lys Ala Ala Arg Asn Gln Asp Arg Ile Lys Asp Ser 225 230 235 240 Lys Glu Leu Lys Lys His Cys Ser Lys Leu Phe Thr Pro Asp Gly His 245 250 255 Gly Ser Pro Lys Gly Leu Arg Phe Asn Thr Gln Phe Gln Ile Lys Glu 260 265 270 Leu Tyr Asp Lys Val Arg Pro Glu Val Tyr Gln Leu Gln Ala Arg Asn 275 280 285 Tyr Ile Leu Thr Thr Gln Ser His Pro Leu Ser Ile Ser Ile Ile Glu 290 295 300 Ser Asp Asn Ser Thr Tyr Gln Val Pro Leu Gln Thr Glu Lys Ser Lys 305 310 315 320 Asn Leu Val Gln Ser Gly Leu Leu Gln Glu Tyr Ile Asn Asp Asn Ile 325 330 335 Asn Ser Thr Asn Lys Arg Lys Lys Asn Lys Gln Asp Val Glu Phe Asn 340 345 350 His Asn Arg Leu Phe Gln Glu Phe Val Asn Asn Asp Gln Val Asn Ser 355 360 365 Leu Tyr Lys Leu Glu Ile Glu Glu Thr Asp Lys Phe Thr Phe Asp Lys 370 375 380 Asp Leu Val Tyr Leu Ser Pro Ser Asp Phe Lys Phe Asp Ala Ser Lys 385 390 395 400 Lys Ile Glu Glu Leu Glu Glu Gln Lys Lys Leu Tyr Pro Asp Lys Phe 405 410 415 Ser Ala His Asn Glu Asn Tyr Leu Asn Ser Leu Lys Asn Ser Val Lys 420 425 430 Thr Ser Pro Ala Leu Gln Arg Lys Phe Phe Tyr Glu Ala Gly Ala Val 435 440 445 Lys Gln Tyr Lys Gly Met Gly Phe His Arg Asp Lys Arg Phe Phe Asn 450 455 460 Val Asp Thr Leu Ile Asn Asp Lys Gln Glu Tyr Gln Ala Arg Leu Asn 465 470 475 480 Ser Met Ile Arg Thr Phe Gln Lys Phe Thr Lys Ala Asn Gly Ile Ile 485 490 495 Ser Trp Leu Ser His Gly Thr Leu Tyr Gly Tyr Leu Tyr Asn Gly Met 500 505 510 Ala Phe Pro Trp Asp Asn Asp Phe Asp Leu Gln Met Pro Ile Lys His 515 520 525 Leu Gln Leu Leu Ser Gln Tyr Phe Asn Gln Ser Leu Ile Leu Glu Asp 530 535 540 Pro Arg Gln Gly Asn Gly Arg Tyr Phe Leu Asp Val Ser Asp Ser Leu 545 550 555 560 Thr Val Arg Ile Asn Gly Asn Gly Lys Asn Asn Ile Asp Ala Arg Phe 565 570 575 Ile Asp Val Asp Thr Gly Leu Tyr Ile Asp Ile Thr Gly Leu Ala Ser 580 585 590 Thr Ser Ala Pro Ser Arg Asp Tyr Leu Asn Ser Tyr Ile Glu Glu Arg 595 600 605 Leu Gln Glu Glu His Leu Asp Ile Asn Asn Ile Pro Glu Ser Asn Gly 610 615 620 Glu Thr Ala Thr Leu Pro Asp Lys Val Asp Asp Gly Leu Val Asn Met 625 630 635 640 Ala Thr Leu Asn Ile Thr Glu Leu Arg Asp Tyr Ile Thr Ser Asp Glu 645 650 655 Asn Lys Asn His Lys Arg Val Pro Thr Asp Thr Asp Leu Lys Asp Leu 660 665 670 Leu Lys Lys Glu Leu Glu Glu Leu Pro Lys Ser Lys Thr Ile Glu Asn 675 680 685 Lys Leu Asn Pro Lys Gln Arg Tyr Phe Leu Asn Glu Lys Leu Lys Leu 690 695 700 Tyr Asn Cys Arg Asn Asn His Phe Asn Ser Phe Glu Glu Leu Ser Pro 705 710 715 720 Leu Ile Asn Thr Val Phe His Gly Val Pro Ala Leu Ile Pro His Arg 725 730 735 His Thr Tyr Cys Leu His Asn Glu Tyr His Val Pro Asp Arg Tyr Ala 740 745 750 Phe Asp Ala Tyr Lys Asn Thr Ala Tyr Leu Pro Glu Phe Arg Phe Trp 755 760 765 Phe Asp Tyr Asp Gly Leu Lys Lys Cys Ser Asn Ile Asn Ser Trp Tyr 770 775 780 Pro Asn Ile Pro Ser Ile Asn Ser Trp Asn Pro Asn Leu Leu Lys Glu 785 790 795 800 Ile Ser Ser Thr Lys Phe Glu Ser Lys Leu Phe Asp Ser Asn Lys Val 805 810 815 Ser Glu Tyr Ser Phe Lys Asn Leu Ser Met Asp Asp Val Arg Leu Ile 820 825 830 Tyr Lys Asn Ile Pro Lys Ala Gly Phe Ile Glu Val Phe Thr Asn Leu 835 840 845 Tyr Asn Ser Phe Asn Val Thr Ala Tyr Arg Gln Lys Glu Leu Glu Ile 850 855 860 Gln Tyr Cys Gln Asn Leu Thr Phe Ile Glu Lys Lys Lys Leu Leu His 865 870 875 880 Gln Leu Arg Ile Asn Val Ala Pro Lys Leu Ser Ser Pro Ala Lys Asp 885 890 895 Pro Phe Leu Phe Gly Tyr Glu Lys Ala Met Trp Lys Asp Leu Ser Lys 900 905 910 Ser Met Asn Gln Thr Thr Leu Asp Gln Val Thr Lys Ile Val His Glu 915 920 925 Glu Tyr Val Gly Lys Ile Ile Asp Leu Ser Glu Ser Leu Lys Tyr Arg 930 935 940 Asn Phe Ser Leu Phe Asn Ile Thr Phe Asp Glu Thr Gly Thr Thr Leu 945 950 955 960 Asp Asp Asn Thr Glu Asp Tyr Thr Pro Ala Asn Thr Val Glu Val Asn 965 970 975 Pro Val Asp Phe Lys Ser Asn Leu Asn Phe Ser Ser Asn Ser Phe Leu 980 985 990 Asp Leu Asn Ser Tyr Gly Leu Asp Leu Phe Ala Pro Thr Leu Ser Asp 995 1000 1005 Val Asn Arg Lys Gly Ile Gln Met Phe Asp Lys Asp Pro Ile Ile Val 1010 1015 1020 Tyr Glu Asp Tyr Ala Tyr Ala Lys Leu Leu Glu Glu Arg Lys Arg Arg 1025 1030 1035 1040 Glu Lys Lys Lys Lys Glu Glu Glu Glu Lys Lys Lys Lys Glu Glu Glu 1045 1050 1055 Glu Lys Lys Lys Lys Glu Glu Glu Glu Lys Lys Lys Lys Glu Glu Glu 1060 1065 1070 Glu Lys Lys Lys Lys Glu Glu Glu Glu Lys Lys Lys Lys Glu Glu Glu 1075 1080 1085 Glu Lys Lys Lys Gln Glu Glu Glu Glu Lys Lys Lys Lys Glu Glu Glu 1090 1095 1100 Glu Lys Lys Lys Gln Glu Glu Gly Glu Lys Met Lys Asn Glu Asp Glu 1105 1110 1115 1120 Glu Asn Lys Lys Asn Glu Asp Glu Glu Lys Lys Lys Asn Glu Glu Glu 1125 1130 1135 Glu Lys Lys Lys Gln Glu Glu Lys Asn Lys Lys Asn Glu Asp Glu Glu 1140 1145 1150 Lys Lys Lys Gln Glu Glu Glu Glu Lys Lys Lys Asn Glu Glu Glu Glu 1155 1160 1165 Lys Lys Lys Gln Glu Glu Gly His Ser Asn 1170 1175 <210> 4 <211> 3534 <212> DNA <213> Saccharomyces cerevisiae <400> 4 atgcttcagc gaatatcatc taaacttcac aggcggttct tatctggcct gctgcgtgtc 60 aagcactacc cattaaggcg cattctcctt ccactgattc tactgcagat catcattata 120 acgtttatct ggtcaaattc accgcagcgt aacggacttg ggcgggacgc tgattacctt 180 ctaccaaatt acaacgaact tgacagtgat gatgattcct ggtatagcat cctgacttcg 240 tctttcaaaa acgatcgcaa gatccagttc gctaagacat tatacgaaaa tttaaaattc 300 ggcaccaacc ctaaatgggt caatgaatat actctgcaaa atgacctgct ctcggtcaaa 360 atgggccctc gaaagggcag taagctcgaa tccgtggatg agttgaagtt ttacgacttc 420 gaccctcgtc tcacgtggtc cgttgtgctg aaccatttgc aaaataatga cgcagatcag 480 ccagaaaagt tacccttttc atggtacgac tggacaacct tccacgagct gaataagctg 540 atttccatag ataaaactgt tctgccctgc aattttcttt tccagtccgc tttcgacaaa 600 gagtctttag aggccattga gacagagctc ggcgaacctt tgttcctata cgaaagacca 660 aagtacgcgc agaaactgtg gtacaaggcc gctagaaacc aggacagaat caaagactca 720 aaggaactaa aaaagcattg ttccaagcta ttcactccag acgggcatgg ctctcctaag 780 ggtttaagat ttaatacgca atttcaaata aaggagctgt atgataaagt tagacccgaa 840 gtttaccaat tgcaggcaag aaactacatt ttgactacac agtcgcatcc actatccatt 900 tccatcatcg aatcagataa ttccacgtat caagtcccct tgcaaactga aaaatcaaaa 960 aacttggtgc aatccggcct gttgcaggaa tatattaatg ataacattaa ttctacgaac 1020 aagagaaaga aaaataaaca ggacgtagaa ttcaaccata acaggctttt ccaggaattc 1080 gtcaataacg accaagttaa ctccctatac aaactggaaa ttgaagaaac tgataaattc 1140 acttttgata aagatttggt ttatttatcc ccttcggatt tcaagttcga tgcctccaaa 1200 aaaattgaag agttagagga acagaagaaa ctctatccgg acaaattttc cgctcataat 1260 gagaattatc tgaacagttt gaagaattcc gtaaagacaa gccctgcatt gcaaagaaag 1320 ttcttctatg aggctggtgc cgtgaagcaa tataaaggta tggggttcca tcgtgacaag 1380 aggttcttca atgttgatac attaatcaat gataaacaag aataccaggc tagattgaac 1440 tcaatgatca gaacattcca aaagtttact aaagccaacg gcatcatatc ttggttgtct 1500 cacggaacgc tgtacggcta tctttacaat ggaatggctt tcccttggga taacgatttc 1560 gacttgcaaa tgcccattaa gcatttacaa ttgctcagtc aatacttcaa ccaatctctt 1620 atattggaag acccaagaca gggtaatgga cgttatttcc tagacgtcag cgactccttg 1680 acagtaagaa ttaacggtaa cggtaaaaac aatatcgatg caagattcat tgacgtcgac 1740 accggccttt acattgatat taccggtcta gctagcactt ctgcccctag tagggattac 1800 ttgaattctt atattgaaga gcggttgcaa gaggaacatt tggatatcaa taatatccct 1860 gaatcgaacg gtgagaccgc tactttgccc gacaaagtag atgatgggtt agtcaatatg 1920 gctacactaa acatcactga gctacgtgat tacattacca gcgacgaaaa taaaaatcat 1980 aaaagagtcc ccactgatac tgatttgaaa gatcttttga aaaaggaact ggaagagtta 2040 ccaaagtcta agaccattga aaacaagttg aatcctaaac aaagatattt tctcaacgaa 2100 aaacttaaac tttacaattg tagaaacaac cattttaact cgttcgagga actatctccc 2160 ttaatcaata ctgttttcca tggtgtgcca gcgttgattc ctcacagaca tacctactgc 2220 ttgcacaatg aatatcatgt acctgataga tatgcatttg atgcttacaa aaatactgct 2280 tatttgcccg aatttagatt ttggttcgac tatgacgggt taaagaaatg cagtaatatt 2340 aattcatggt atccaaacat ccccagtatt aattcatgga atccgaacct cttgaaagaa 2400 atatcgtcta cgaaatttga gtcgaaactt tttgattcca acaaagtctc tgaatactct 2460 ttcaaaaacc tatccatgga tgatgttcgc ttaatttata aaaatattcc aaaagctggc 2520 tttatcgagg tatttactaa cttgtacaat tccttcaatg tcactgcata taggcaaaag 2580 gaattggaaa ttcaatactg ccaaaacctg acatttattg aaaaaaagaa attattacat 2640 caattgcgca ttaatgttgc tcctaagtta agctcccctg caaaggaccc atttcttttt 2700 ggttatgaaa aagctatgtg gaaggattta tcaaaatcta tgaaccagac tacattagat 2760 caagttacca agattgttca tgaagaatat gtcggaaaaa ttattgatct gtccgaaagt 2820 ttgaaataca ggaatttttc acttttcaac attacttttg atgaaactgg aacaactcta 2880 gatgataaca cagaagatta tactcctgct aatactgttg aagtaaatcc tgtggatttt 2940 aaatcaaatt taaactttag tagcaactcc tttttggatt taaattcata tggtttagac 3000 ctttttgcgc caactttatc cgacgttaac agaaagggta ttcaaatgtt tgataaggac 3060 cctattattg tatacgagga ctatgcttat gccaagttac ttgaagaaag aaagcggagg 3120 gagaagaaga agaaggagga agaggagaag aagaagaagg aagaagagga aaagaagaag 3180 aaggaagaag aagaaaagaa aaagaaggaa gaggaagaga agaaaaagaa ggaagaagaa 3240 gagaagaaaa agaaggaaga agaagaaaag aagaagcagg aggaagagga gaaaaagaag 3300 aaggaagaag aagagaagaa gaagcaggaa gaaggagaaa agatgaagaa tgaagatgaa 3360 gaaaataaga agaatgaaga tgaagaaaag aagaagaacg aagaagagga aaaaaagaag 3420 caggaagaga aaaacaagaa gaatgaagat gaagaaaaga agaagcagga agaggaagaa 3480 aagaagaaga acgaagaaga ggaaaaaaag aagcaggagg aggggcacag caat 3534 <210> 5 <211> 65 <212> DNA <213> Artificial Sequence <220> <223> Och1_pUG72_F <400> 5 atgtctagga agttgtccca cctgatcgct acaaggaaat caaaatacgc tgcaggtcga 60 caacc 65 <210> 6 <211> 66 <212> DNA <213> Artificial Sequence <220> <223> Och1_pUG72_R <400> 6 ttatttatga cctgcatttt tatcagcatc ttctttccag ctcccactag tggatctgat 60 atcacc 66 <210> 7 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Och1_CF <400> 7 aatggggagc gctgattctc 20 <210> 8 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Och1_CR <400> 8 tctacggaag gacgttgaga 20 <210> 9 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> Mnn1_pUG6_F <400> 9 aacgtaatct tgcggtattt aacgctagtt taagaaagtg ttactgtgta tacgctgcag 60 gtcgacaacc 70 <210> 10 <211> 71 <212> DNA <213> Artificial Sequence <220> <223> Mnn1_pUG6_R <400> 10 gttcacaaag gctagtacca taaacagtta gaaaaaacac tggttaatgc actagtggat 60 ctgatatcac c 71 <210> 11 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Mnn1_CF <400> 11 atcattgcga ggtctcaatt gg 22 <210> 12 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Mnn1_CR <400> 12 gattagaaaa actcatcgag catcaaatg 29 <210> 13 <211> 71 <212> DNA <213> Artificial Sequence <220> <223> Mnn4_F <400> 13 acaacgtcac tattccttca cacaaataaa ctaattagtt atgcttcagc gtacgctgca 60 ggtcgacaac c 71 <210> 14 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> Mnn4_R <400> 14 aggaaaggct atagaaatga agagattcat gaattttcag tcaggttcta ctagtggatc 60 tgatatcacc 70 <210> 15 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Leu2_CF <400> 15 agccttgtca agagaccaga 20 <210> 16 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Mnn4_CR <400> 16 attgtttgcc acttatcact ggcg 24 <210> 17 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> Mnn6_F <400> 17 agcgttcacc caaccttttg tgccctttag tgaagataag ataaggtaag tacgctgcag 60 gtcgacaacc 70 <210> 18 <211> 71 <212> DNA <213> Artificial Sequence <220> <223> Mnn6_R <400> 18 tatatattca tatgtagaag attattgttc ttatacatca gtgttttgat actagtggat 60 ctgatatcac c 71 <210> 19 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Mnn6_CF <400> 19 gctctcgtga gacacgagtt 20 <210> 20 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Ura3_CR <400> 20 cccgtcaatt agttgcacca 20 <210> 21 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> Mnn14_F <400> 21 atgatgttat cactgcgcag gttctccatg tacgttttga gatctctgcg tacgctgcag 60 gtcgacaacc 70 <210> 22 <211> 71 <212> DNA <213> Artificial Sequence <220> <223> Mnn14_R <400> 22 ttaatatttt tggtctgaac caaatatatt gtttgaagtt ttcttattat actagtggat 60 ctgatatcac c 71 <210> 23 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> Yur1_F <400> 23 atggcaaaag gaggctcgct atacatcgtt ggcatattct taccaatatg tacgctgcag 60 gtcgacaacc 70 <210> 24 <211> 71 <212> DNA <213> Artificial Sequence <220> <223> Yur1_R <400> 24 ttaaatctcg tcttgctctt cttttaagaa atatttgccg ctaccgtttt actagtggat 60 ctgatatcac c 71 <210> 25 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> Ktr2_F <400> 25 atgcaaatct gcaaggtatt tcttacacag gttaaaaaac tactttttgt tacgctgcag 60 gtcgacaacc 70 <210> 26 <211> 71 <212> DNA <213> Artificial Sequence <220> <223> Ktr2_R <400> 26 ctatgaatcg tgtttgagga agtatttacc gctgccgtcc ttccaccatc actagtggat 60 ctgatatcac c 71 <210> 27 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> Ktr4_F <400> 27 atgaggtttc tttcaaaaag gatactgaaa cctgtacttt cagtgatcat tacgctgcag 60 gtcgacaacc 70 <210> 28 <211> 71 <212> DNA <213> Artificial Sequence <220> <223> Ktr4_R <400> 28 tcaatacatt tctaactctt cctcagacat agagtgtctt atccaggttg actagtggat 60 ctgatatcac c 71 <210> 29 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> Ktr5_F <400> 29 atgttgctaa taagaaggac gataaatgca tttctgggat gtatccattg tacgctgcag 60 gtcgacaacc 70 <210> 30 <211> 71 <212> DNA <213> Artificial Sequence <220> <223> Ktr5_R <400> 30 ctagtttccg aactgtctta gatagtcttc ccttatgtgc tcctccattt actagtggat 60 ctgatatcac c 71 <210> 31 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> Ktr7_F <400> 31 atggctataa gattgaatcc aaaagtcaga aggttcttgc tggataagtg tacgctgcag 60 gtcgacaacc 70 <210> 32 <211> 71 <212> DNA <213> Artificial Sequence <220> <223> Ktr7_R <400> 32 ctattcaatt actctaaaat tttctcttct gatctcttca atcacgtctt actagtggat 60 ctgatatcac c 71 <210> 33 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Mnn14_CF <400> 33 cgaagatcaa gtaagagtgc acttg 25 <210> 34 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> Yur1_CF <400> 34 atctgtcact gcttattcat atcatc 26 <210> 35 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> Ktr2_CF <400> 35 atctcttcag gtatgtgaca cctata 26 <210> 36 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Ktr4_CF <400> 36 caacggaacg agctctataa gacg 24 <210> 37 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Ktr5_CF <400> 37 acactttaag catgcggtgt gtgga 25 <210> 38 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> Ktr7_CF <400> 38 gtatacatca ggctaacaat ctgtga 26 <210> 39 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> GAPDHp-F1 <400> 39 agtcgaattc atactagcgt tgaatgttag cg 32 <210> 40 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> GAPDHp-R1 <400> 40 agtcggtacc tttgtttgtt tatgtgtgtt tattc 35 <210> 41 <211> 46 <212> DNA <213> Artificial Sequence <220> <223> GAPDHt-F1 <400> 41 agtcggtacc ggatcctcta gagtgaattt actttaaatc ttgcat 46 <210> 42 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> GAPDHt-R1 <400> 42 agtcctgcag atccacaatg tatcaggtat ct 32 <210> 43 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> Mnn4_F <400> 43 cgcggatcca tgcttcagcg aatatcatct aaac 34 <210> 44 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Mnn4_R <400> 44 ggactagttt aattgctgtg cccctcctc 29 <210> 45 <211> 47 <212> DNA <213> Artificial Sequence <220> <223> Y-Mnn14-F <400> 45 aacacacata aacaaacaaa ggtaccatga tgttatcact gcgcagg 47 <210> 46 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> Y-Mnn14-R <400> 46 aaattcactc tagaggatcc ggtaccttaa tatttttggt ctgaaccaaa 50 <210> 47 <211> 56 <212> DNA <213> Artificial Sequence <220> <223> p-Gas1-F <400> 47 tacacgtact tagtcgctga agctcttcta tgatgttgtt taaatccctt tcaaag 56 <210> 48 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> p-Gas1-R-1 <400> 48 gtgatgatga tgatggtggt ggtgagaacc ccctccacca ctggattcag ttccggaacc 60 60 <210> 49 <211> 52 <212> DNA <213> Artificial Sequence <220> <223> p-Gas1-R-2 <400> 49 aggtacgaac tcgattgacg gctcttctac cgtgatgatg atgatggtgg tg 52 <110> KOREA RESEARCH INSTITUTE OF BIOSCIENCE AND BIOTECHNOLOGY An essential gene MNN14 for mannosylphosphorylation in Saccharomyces cerevisiae and a method for producing recombinant glycoprotein using a MNN14-defected microorganism <130> KPA150188-KR-P1 <150> 10-2015-0064855 <151> 2015-05-08 <160> 49 <170> Kopatentin 2.0 <210> 1 <211> 935 <212> PRT <213> Saccharomyces cerevisiae <400> 1 Met Met Leu Ser Leu Arg Arg Phe Ser Met Tyr Val Leu Arg Ser Leu   1 5 10 15 Arg Leu His Phe Lys Lys Ile Ile Ile Thr Leu Leu Thr Ile Gln Leu              20 25 30 Leu Phe Ile Thr Ile Phe Val Leu Gly Gly Arg Ser Ser Ile Ile Asp          35 40 45 Gly Asn Trp Lys Ser Phe Met Ala Leu Phe Phe Lys Pro Leu Ala Tyr      50 55 60 Thr Asn Arg Asn Asn Asn His Ala Ser Phe Asp Leu Arg Ser Lys Asp  65 70 75 80 Asn Val Ala Lys Leu Tyr Glu Lys Met Asn Phe Asp Thr Ser Gly Lys                  85 90 95 Trp Ile Asp Thr Tyr Thr Leu Lys Asn Asn Leu Leu Thr Val Lys Met             100 105 110 Gly Pro Glu Lys Gly Gln Val Leu Asp Ser Val Asp Glu Leu Arg Tyr         115 120 125 Tyr Asp Asn Asp Pro Arg Leu Val Trp Ser Val Leu Leu Asp His Leu     130 135 140 Leu Glu Ser Asp Ser Asn Glu Tyr Ala Phe Ser Trp Tyr Asp Trp Ala 145 150 155 160 Asn Phe Asp Ser Thr Asn Lys Leu Ile Ala Leu Arg His Thr Asn Ile                 165 170 175 Ser Cys Gln Phe Val Cys Glu Gly Ala Phe Asp Lys Asn Val Leu Glu             180 185 190 Met Val Glu Ser Glu Val Gln Glu Pro Leu Phe Val Thr Asn Arg Asn         195 200 205 Lys Tyr Asp Glu Ser Leu Trp Tyr Asn Arg Val Val Lys Val Val Asp     210 215 220 Ser Asn Ser Val Gln Gln Ala Ile His Asp His Cys Met Asn Asn Asp 225 230 235 240 Ala Tyr Ser Asn Gly Thr Pro Phe Glu Leu Pro Phe Ile Ile Ser Glu                 245 250 255 Ile Ser Glu Arg Leu Arg Pro Glu Val Tyr Asp Leu Gln Ala Lys Asn             260 265 270 His Leu Leu Tyr Ser Asn Phe Thr Pro Leu Ser Leu Thr Val Leu Asp         275 280 285 Ser Asp Lys Asp Ala Tyr Arg Ile Asn Leu Lys Thr Thr Asp Ser Ser     290 295 300 Lys Ser Asn Ile Val Gln Thr Asn Leu Leu Gln Asn Tyr Ile Lys Arg 305 310 315 320 His Arg Asn Glu Met Val Asn Gly Asp Leu Ile Phe Asn His Thr Ser                 325 330 335 Met Phe Glu Lys Phe Leu His His Gly Ser Thr Lys Lys Arg Lys Leu             340 345 350 Asp Val Glu Ala Leu Asp Lys Thr Ile Tyr Ala Gly Glu Tyr Leu Glu         355 360 365 Leu Ser Pro Ser Asp Phe Gln Phe Asn Ala Lys Glu Arg Ile Ile Glu     370 375 380 Leu Glu Thr Arg Leu Arg Ser Glu Gly Leu Pro Ser His Asp Thr His 385 390 395 400 Tyr Leu Arg Ser Leu Lys Thr Ser Val Asn Thr Ser Pro Ala Leu Gln                 405 410 415 Gln Lys Tyr Phe Ala Glu Ala Ser Asp Ile Thr Asp Ala Thr Ala Asp             420 425 430 Gly His His Arg Asp Arg Arg Phe Phe Ser Ile Gly His Asn Leu Leu         435 440 445 Asn Asp Pro Gln Glu Phe Glu Ala Arg Leu Asn Ser Leu Ile Arg Asn     450 455 460 Phe Gln Lys Phe Val Lys Ala Asn Gly Leu Ile Ser Trp Leu Ser His 465 470 475 480 Gly Thr Leu Tyr Gly Tyr Leu Tyr Asp Gly Leu Lys Phe Pro Trp Asp                 485 490 495 Val Asp His Asp Leu Gln Met Pro Ile Lys His Leu His Tyr Leu Ser             500 505 510 Gln Tyr Phe Asn Gln Ser Leu Ile Leu Glu Asp Pro Arg Glu Gly Asn         515 520 525 Gly Arg Phe Leu Leu Asp Val Gly Ser Ala Ile Thr Val Gly Val His     530 535 540 Gly Asn Gly Glu Asn Asn Ile Asp Ala Arg Phe Ile Asp Ile Asp Ser 545 550 555 560 Gly Ile Tyr Ile Asp Ile Thr Gly Leu Ser Val Ser Ser Asp Ala Ala                 565 570 575 Lys Gln Tyr Met Ser Lys Phe Val Glu Glu Glu Ser Ser Gly Glu Ser             580 585 590 Phe Ser Ala Leu Ile Glu Asp Tyr Lys Phe Asp Glu Asn Asp Tyr Phe         595 600 605 Asp Glu Val Asp Gly Arg Glu Gly Leu Ala Lys Tyr Thr Ile His Glu     610 615 620 Leu Met Glu Trp Val Asn Ser His Pro Asp Asp Phe Thr Asp Ala Glu 625 630 635 640 Lys Asn Leu Val Thr Lys Thr Tyr Lys Lys Glu Leu Ala Ile Ser Arg                 645 650 655 Ser Asp Tyr Ala Glu Lys Asp Leu Ser Pro Lys Gln Arg Tyr Leu Val             660 665 670 Asn Glu Lys Tyr Asn Leu Tyr Asn Cys Arg Asn Gln His Phe Ser Ser         675 680 685 Leu Asn Ile Ile Ser Pro Leu Arg Asn Thr Met Phe Ser Gly Val Ser     690 695 700 Ala Phe Val Pro Asn Arg Pro Ile Ala Thr Leu Asn Asn Glu Tyr Lys 705 710 715 720 Val Pro Ala Lys Tyr Gly Leu Leu Ser Phe Gln Gly Lys Val Tyr Leu                 725 730 735 Pro Glu Phe Arg Tyr Trp Phe Ser Phe Ala Asp Met Lys Lys Phe Ala             740 745 750 Asn Leu Gln Leu Lys Glu Pro Lys Ile Thr Arg Leu Glu Ser Pro Leu         755 760 765 Asn Asp Leu Lys Phe Ser Asp Ile Ser Leu Leu Ile Thr Asn Ile Leu     770 775 780 Lys Cys Gly Phe His Ser Val Phe Ala Ser Leu Phe Asn Ser Phe Asp 785 790 795 800 Ser Thr Val Tyr Arg Leu Lys Glu Leu Glu Ile Gln Tyr Asp Pro Ser                 805 810 815 Leu Ser Glu Glu Glu Lys Ser Ser Leu Leu Lys Thr Leu Arg Arg Gly             820 825 830 Met Ser Lys Lys Ile Lys Ser Pro Glu Lys Asp Pro Ile Ile Tyr Ile         835 840 845 Tyr Glu Arg Lys Leu Trp Glu Asn Val Glu Lys Leu Leu Asn Ala Ser     850 855 860 Asn Ile Tyr Asn Ile Ala Ser Gln Val Glu Lys Glu Lys Gly Lys Glu 865 870 875 880 Phe Val Glu Arg Ser Gln Gln Val Tyr Glu Arg Asn Phe Asp Gly Phe                 885 890 895 Arg Leu Pro Asp Gly Gly Asn Ser Lys Thr Val Asn Asp Leu Asn Ser             900 905 910 Lys Gly Leu Asn Leu Phe Gly Asp Asn Lys Lys Thr Ser Asn Asn Ile         915 920 925 Phe Gly Ser Asp Gln Lys Tyr     930 935 <210> 2 <211> 2808 <212> DNA <213> Saccharomyces cerevisiae <400> 2 atgatgttat cactgcgcag gttctccatg tacgttttga gatctctgcg gcttcacttt 60 aaaaagataa tcattactct tctaactatc cagttactat tcattaccat atttgtattg 120 ggcggtcgct cgtcgattat tgacggtaac tggaagtcat tcatggcgct ctttttcaaa 180 ccgcttgctt acactaacag aaacaacaac catgcttctt tcgatctgag atcaaaagac 240 aacgtagcca aactttacga aaaaatgaat tttgatactt caggcaaatg gatcgacacg 300 tacaccttga agaataatct tctcactgtg aaaatgggtc ctgaaaaagg gcaagttctt 360 gattcggtag atgaattgag atattacgat aacgacccaa ggctggtatg gtcagtttta 420 ctagatcact tattagaatc agattccaat gaatacgcat tttcgtggta cgattgggct 480 aattttgact ctacaaacaa actcattgca ctgagacaca cgaacatatc ttgccagttc 540 gtttgcgagg gtgcctttga taaaaatgtg ctagaaatgg tagagagtga agtccaagag 600 cctttattcg tcacaaatag gaataaatat gacgaatcgc tctggtacaa cagggtaaga 660 aaggttgtcg attctaattc tgtgcagcaa gccatacatg atcactgcat gaataatgac 720 gcgtattcca atggtactcc cttcgaattg ccttttatca taagcgaaat ttctgaaagg 780 ttgaggccag aagtgtatga cttacaagcc aaaaaccact tgttatattc taactttact 840 ccactgtcat taaccgtact ggacagcgat aaagatgcat acagaatcaa tttgaagaca 900 acagactctt ccaaatcaaa tatagtacag acaaatctac tacagaatta cattaagagg 960 cacagaaatg aaatggtaaa tggcgacctc attttcaacc acacttccat gtttgaaaaa 1020 tttttacatc atggatccac taaaaaaagg aaacttgacg ttgaagcgtt ggataaaaca 1080 atatacgctg gagagtatct agaactatca ccatctgatt tccaattcaa tgcaaaagag 1140 aggatcattg aattagagac caggctcagg tctgaaggcc taccatctca tgatacccac 1200 tatttacgaa gtttaaagac gtccgtaaat acgtcccctg cattacagca aaagtatttc 1260 gcagaggcct ctgatattac ggacgcgact gccgatggtc atcatagaga caggcgattt 1320 ttctcaatcg gacataatct cctaaatgac cctcaggagt ttgaagcaag attgaattct 1380 ttgatcagaa attttcagaa atttgttaag gctaacggat taatttcctg gctatcgcat 1440 ggtacattgt atggatatct atatgatggt ctgaagtttc cctgggatgt cgaccatgat 1500 ttacagatgc ccattaaaca tttacattac ttgagtcaat atttcaacca atccctaata 1560 ttagaagatc caagagaagg taatggaaga ttcttactag atgtaggaag cgcaattacg 1620 gtaggagttc atgggaacgg cgaaaacaat attgatgctc gtttcatcga tattgactca 1680 ggtatataca ttgacatcac gggacttagc gttagttccg atgcggctaa acagtacatg 1740 tccaaatttg tagaagaaga aagctcgggc gaaagctttt ctgcccttat tgaagactat 1800 aagtttgacg aaaacgacta ttttgacgag gtggatggta gagaaggttt agctaaatat 1860 accatacatg aattaatgga atgggttaat tctcatccag acgactttac ggatgcagaa 1920 aagaatttag tcaccaaaac atacaagaaa gagcttgcaa tttcgagaag cgattatgct 1980 gaaaaagact tgtctccgaa acaaaggtat ttggtaaatg agaagtataa cctttacaat 2040 tgtagaaacc agcatttttc cagtctaaac atcatatcac ccttgagaaa tacaatgttc 2100 agcggtgtgt cagcatttgt tcctaatagg cccatagcaa cattgaataa tgagtataaa 2160 gttccggcaa aatacgggct tttgtcattc caaggtaagg tgtatttacc ggaattcaga 2220 tactggttct cgtttgcaga catgaagaag tttgcaaatt tgcagctgaa agaacccaag 2280 ataacacgac tggaaagtcc cttaaatgat ttaaaattca gcgacataag cctactgata 2340 acaaacattt taaaatgtgg gtttcactcc gtatttgcca gcttatttaa ttcttttgac 2400 agtactgttt acagactcaa agagcttgaa atacagtatg atcctagctt gagtgaggaa 2460 gaaaaaagta gtctattaaa aactctacgg cgaggaatgt caaaaaaaat aaaatcacca 2520 gaaaaagatc cgatcatata tatatacgaa agaaagttat gggaaaacgt ggaaaagttg 2580 ttgaatgcgt caaacatcta caacattgct tcacaagttg agaaggaaaa aggtaaagag 2640 tttgttgaac ggtcccagca agtatatgaa agaaactttg acggcttcag acttcccgat 2700 ggcggcaaca gtaagactgt aaatgatctg aattctaagg gcttaaatct ctttggtgat 2760 aataagaaaa cttcaaacaa tatatttggt tcagaccaaa aatattaa 2808 <210> 3 <211> 1178 <212> PRT <213> Saccharomyces cerevisiae <400> 3 Met Leu Gln Arg Ile Ser Ser Lys Leu His Arg Arg Phe Leu Ser Gly   1 5 10 15 Leu Leu Arg Val Lys His Tyr Pro Leu Arg Arg Ile Leu Leu Pro Leu              20 25 30 Ile Leu Leu Gln Ile Ile Ile Ile Thr Phe Ile Trp Ser Asn Ser Pro          35 40 45 Gln Arg Asn Gly Leu Gly Arg Asp Ala Asp Tyr Leu Leu Pro Asn Tyr      50 55 60 Asn Glu Leu Asp Ser Asp Asp Asp Ser Trp Tyr Ser Ile Leu Thr Ser  65 70 75 80 Ser Phe Lys Asn Asp Arg Lys Ile Gln Phe Ala Lys Thr Leu Tyr Glu                  85 90 95 Asn Leu Lys Phe Gly Thr Asn Pro Lys Trp Val Asn Glu Tyr Thr Leu             100 105 110 Gln Asn Asp Leu Leu Ser Val Lys Met Gly Pro Arg Lys Gly Ser Lys         115 120 125 Leu Glu Ser Val Asp Glu Leu Lys Phe Tyr Asp Phe Asp Pro Arg Leu     130 135 140 Thr Trp Ser Val Val Leu Asn His Leu Gln Asn Asn Asp Ala Asp Gln 145 150 155 160 Pro Glu Lys Leu Pro Phe Ser Trp Tyr Asp Trp Thr Thr Phe His Glu                 165 170 175 Leu Asn Lys Leu Ile Ser Ile Asp Lys Thr Val Leu Pro Cys Asn Phe             180 185 190 Leu Phe Gln Ser Ala Phe Asp Lys Glu Ser Leu Glu Ala Ile Glu Thr         195 200 205 Glu Leu Gly Glu Pro Leu Phe Leu Tyr Glu Arg Pro Lys Tyr Ala Gln     210 215 220 Lys Leu Trp Tyr Lys Ala Ala Arg Asn Gln Asp Arg Ile Lys Asp Ser 225 230 235 240 Lys Glu Leu Lys Lys His Cys Ser Lys Leu Phe Thr Pro Asp Gly His                 245 250 255 Gly Ser Pro Lys Gly Leu Arg Phe Asn Thr Gln Phe Gln Ile Lys Glu             260 265 270 Leu Tyr Asp Lys Val Arg Pro Glu Val Tyr Gln Leu Gln Ala Arg Asn         275 280 285 Tyr Ile Leu Thr Thr Gln Ser His Pro Leu Ser Ile Ser Ile Ile Glu     290 295 300 Ser Asp Asn Ser Thr Tyr Gln Val Pro Leu Gln Thr Glu Lys Ser Lys 305 310 315 320 Asn Leu Val Gln Ser Gly Leu Leu Gln Glu Tyr Ile Asn Asp Asn Ile                 325 330 335 Asn Ser Thr Asn Lys Arg Lys Lys Asn Lys Gln Asp Val Glu Phe Asn             340 345 350 His Asn Arg Leu Phe Gln Glu Phe Val Asn Asn Asp Gln Val Asn Ser         355 360 365 Leu Tyr Lys Leu Glu Ile Glu Glu Thr Asp Lys Phe Thr Phe Asp Lys     370 375 380 Asp Leu Val Tyr Leu Ser Pro Ser Asp Phe Lys Phe Asp Ala Ser Lys 385 390 395 400 Lys Ile Glu Glu Leu Glu Glu Gln Lys Lys Leu Tyr Pro Asp Lys Phe                 405 410 415 Ser Ala His Asn Glu Asn Tyr Leu Asn Ser Leu Lys Asn Ser Val Lys             420 425 430 Thr Ser Pro Ala Leu Gln Arg Lys Phe Phe Tyr Glu Ala Gly Ala Val         435 440 445 Lys Gln Tyr Lys Gly Met Gly Phe His Arg Asp Lys Arg Phe Phe Asn     450 455 460 Val Asp Thr Leu Ile Asn Asp Lys Gln Glu Tyr Gln Ala Arg Leu Asn 465 470 475 480 Ser Met Ile Arg Thr Phe Gln Lys Phe Thr Lys Ala Asn Gly Ile Ile                 485 490 495 Ser Trp Leu Ser His Gly Thr Leu Tyr Gly Tyr Leu Tyr Asn Gly Met             500 505 510 Ala Phe Pro Trp Asp Asn Asp Phe Asp Leu Gln Met Pro Ile Lys His         515 520 525 Leu Gln Leu Leu Ser Gln Tyr Phe Asn Gln Ser Leu Ile Leu Glu Asp     530 535 540 Pro Arg Gln Gly Asn Gly Arg Tyr Phe Leu Asp Val Ser Asp Ser Leu 545 550 555 560 Thr Val Arg Ile Asn Gly Asn Gly Lys Asn Asn Ile Asp Ala Arg Phe                 565 570 575 Ile Asp Val Asp Thr Gly Leu Tyr Ile Asp Ile Thr Gly Leu Ala Ser             580 585 590 Thr Ser Ala Pro Ser Arg Asp Tyr Leu Asn Ser Tyr Ile Glu Glu Arg         595 600 605 Leu Gln Glu Glu His Leu Asp Ile Asn Asn Ile Pro Glu Ser Asn Gly     610 615 620 Glu Thr Ala Thr Leu Pro Asp Lys Val Asp Asp Gly Leu Val Asn Met 625 630 635 640 Ala Thr Leu Asn Ile Thr Glu Leu Arg Asp Tyr Ile Thr Ser Asp Glu                 645 650 655 Asn Lys Asn His Lys Arg Val Val Thr Asp Thr Asp Leu Lys Asp Leu             660 665 670 Leu Lys Lys Glu Leu Glu Glu Leu Pro Lys Ser Lys Thr Ile Glu Asn         675 680 685 Lys Leu Asn Pro Lys Gln Arg Tyr Phe Leu Asn Glu Lys Leu Lys Leu     690 695 700 Tyr Asn Cys Arg Asn Asn His Phe Asn Ser Phe Glu Glu Leu Ser Pro 705 710 715 720 Leu Ile Asn Thr Val Phe His Gly Val Pro Ala Leu Ile Pro His Arg                 725 730 735 His Thr Tyr Cys Leu His Asn Glu Tyr His Val Pro Asp Arg Tyr Ala             740 745 750 Phe Asp Ala Tyr Lys Asn Thr Ala Tyr Leu Pro Glu Phe Arg Phe Trp         755 760 765 Phe Asp Tyr Asp Gly Leu Lys Lys Cys Ser Asn Ile Asn Ser Trp Tyr     770 775 780 Pro Asn Ile Pro Ser Ile Asn Ser Trp Asn Pro Asn Leu Leu Lys Glu 785 790 795 800 Ile Ser Ser Thr Lys Phe Glu Ser Lys Leu Phe Asp Ser Asn Lys Val                 805 810 815 Ser Glu Tyr Ser Phe Lys Asn Leu Ser Met Asp Asp Val Arg Leu Ile             820 825 830 Tyr Lys Asn Ile Pro Lys Ala Gly Phe Ile Glu Val Phe Thr Asn Leu         835 840 845 Tyr Asn Ser Phe Asn Val Thr Ala Tyr Arg Gln Lys Glu Leu Glu Ile     850 855 860 Gln Tyr Cys Gln Asn Leu Thr Phe Ile Glu Lys Lys Lys Leu Leu His 865 870 875 880 Gln Leu Arg Ile Asn Val Ala Pro Lys Leu Ser Ser Pro Ala Lys Asp                 885 890 895 Pro Phe Leu Phe Gly Tyr Glu Lys Ala Met Trp Lys Asp Leu Ser Lys             900 905 910 Ser Met Asn Gln Thr Thr Leu Asp Gln Val Thr Lys Ile Val His Glu         915 920 925 Glu Tyr Val Gly Lys Ile Ile Asp Leu Ser Glu Ser Leu Lys Tyr Arg     930 935 940 Asn Phe Ser Leu Phe Asn Ile Thr Phe Asp Glu Thr Gly Thr Thr Leu 945 950 955 960 Asp Asp Asn Thr Glu Asp Tyr Thr Pro Ala Asn Thr Val Glu Val Asn                 965 970 975 Pro Val Asp Phe Lys Ser Asn Leu Asn Phe Ser Ser Asn Ser Phe Leu             980 985 990 Asp Leu Asn Ser Tyr Gly Leu Asp Leu Phe Ala Pro Thr Leu Ser Asp         995 1000 1005 Val Asn Arg Lys Gly Ile Gln Met Phe Asp Lys Asp Pro Ile Ile Val    1010 1015 1020 Tyr Glu Asp Tyr Ala Tyr Ala Lys Leu Leu Glu Glu Arg Lys Arg Arg 1025 1030 1035 1040 Glu Lys Lys Lys Lys Glu Glu Glu Glu Lys Lys Lys Lys Glu Glu Glu                1045 1050 1055 Glu Lys Lys Lys Lys Glu Glu Glu Glu Lys Lys Lys Lys Glu Glu Glu            1060 1065 1070 Glu Lys Lys Lys Lys Glu Glu Glu Glu Lys Lys Lys Lys Glu Glu Glu        1075 1080 1085 Glu Lys Lys Lys Gln Glu Glu Glu Glu Lys Lys Lys Lys Glu Glu Glu    1090 1095 1100 Glu Lys Lys Lys Gln Glu Glu Gly Glu Lys Met Lys Asn Glu Asp Glu 1105 1110 1115 1120 Glu Asn Lys Lys Asn Glu Asp Glu Glu Lys Lys Lys Asn Glu Glu Glu                1125 1130 1135 Glu Lys Lys Lys Gln Glu Glu Lys Asn Lys Lys Asn Glu Asp Glu Glu            1140 1145 1150 Lys Lys Lys Gln Glu Glu Glu Glu Lys Lys Lys Asn Glu Glu Glu Glu        1155 1160 1165 Lys Lys Lys Gln Glu Glu Gly His Ser Asn    1170 1175 <210> 4 <211> 3534 <212> DNA <213> Saccharomyces cerevisiae <400> 4 atgcttcagc gaatatcatc taaacttcac aggcggttct tatctggcct gctgcgtgtc 60 aagcactacc cattaaggcg cattctcctt ccactgattc tactgcagat catcattata 120 acgtttatct ggtcaaattc accgcagcgt aacggacttg ggcgggacgc tgattacctt 180 ctaccaaatt acaacgaact tgacagtgat gatgattcct ggtatagcat cctgacttcg 240 tctttcaaaa acgatcgcaa gatccagttc gctaagacat tatacgaaaa tttaaaattc 300 ggcaccaacc ctaaatgggt caatgaatat actctgcaaa atgacctgct ctcggtcaaa 360 atgggccctc gaaagggcag taagctcgaa tccgtggatg agttgaagtt ttacgacttc 420 gaccctcgtc tcacgtggtc cgttgtgctg aaccatttgc aaaataatga cgcagatcag 480 ccagaaaagt tacccttttc atggtacgac tggacaacct tccacgagct gaataagctg 540 atttccatag ataaaactgt tctgccctgc aattttcttt tccagtccgc tttcgacaaa 600 gagtctttag aggccattga gacagagctc ggcgaacctt tgttcctata cgaaagacca 660 aagtacgcgc agaaactgtg gtacaaggcc gctagaaacc aggacagaat caaagactca 720 aaggaactaa aaaagcattg ttccaagcta ttcactccag acgggcatgg ctctcctaag 780 ggtttaagat ttaatacgca atttcaaata aaggagctgt atgataaagt tagacccgaa 840 gtttaccaat tgcaggcaag aaactacatt ttgactacac agtcgcatcc actatccatt 900 tccatcatcg aatcagataa ttccacgtat caagtcccct tgcaaactga aaaatcaaaa 960 aacttggtgc aatccggcct gttgcaggaa tatattaatg ataacattaa ttctacgaac 1020 aagagaaaga aaaataaaca ggacgtagaa ttcaaccata acaggctttt ccaggaattc 1080 gtcaataacg accaagttaa ctccctatac aaactggaaa ttgaagaaac tgataaattc 1140 acttttgata aagatttggt ttatttatcc ccttcggatt tcaagttcga tgcctccaaa 1200 aaaattgaag agttagagga acagaagaaa ctctatccgg acaaattttc cgctcataat 1260 gagaattatc tgaacagttt gaagaattcc gtaaagacaa gccctgcatt gcaaagaaag 1320 ttcttctatg aggctggtgc cgtgaagcaa tataaaggta tggggttcca tcgtgacaag 1380 aggttcttca atgttgatac attaatcaat gataaacaag aataccaggc tagattgaac 1440 tcaatgatca gaacattcca aaagtttact aaagccaacg gcatcatatc ttggttgtct 1500 cacggaacgc tgtacggcta tctttacaat ggaatggctt tcccttggga taacgatttc 1560 gacttgcaaa tgcccattaa gcatttacaa ttgctcagtc aatacttcaa ccaatctctt 1620 atattggaag acccaagaca gggtaatgga cgttatttcc tagacgtcag cgactccttg 1680 acagtaagaa ttaacggtaa cggtaaaaac aatatcgatg caagattcat tgacgtcgac 1740 accggccttt acattgatat taccggtcta gctagcactt ctgcccctag tagggattac 1800 ttgaattctt atattgaaga gcggttgcaa gaggaacatt tggatatcaa taatatccct 1860 gaatcgaacg gtgagaccgc tactttgccc gacaaagtag atgatgggtt agtcaatatg 1920 gctacactaa acatcactga gctacgtgat tacattacca gcgacgaaaa taaaaatcat 1980 aaaagagtcc ccactgatac tgatttgaaa gatcttttga aaaaggaact ggaagagtta 2040 ccaaagtcta agaccattga aaacaagttg aatcctaaac aaagatattt tctcaacgaa 2100 aaacttaaac tttacaattg tagaaacaac cattttaact cgttcgagga actatctccc 2160 ttaatcaata ctgttttcca tggtgtgcca gcgttgattc ctcacagaca tacctactgc 2220 ttgcacaatg aatatcatgt acctgataga tatgcatttg atgcttacaa aaatactgct 2280 tatttgcccg aatttagatt ttggttcgac tatgacgggt taaagaaatg cagtaatatt 2340 aattcatggt atccaaacat ccccagtatt aattcatgga atccgaacct cttgaaagaa 2400 atatcgtcta cgaaatttga gtcgaaactt tttgattcca acaaagtctc tgaatactct 2460 ttcaaaaacc tatccatgga tgatgttcgc ttaatttata aaaatattcc aaaagctggc 2520 tttatcgagg tatttactaa cttgtacaat tccttcaatg tcactgcata taggcaaaag 2580 gaattggaaa ttcaatactg ccaaaacctg acatttattg aaaaaaagaa attattacat 2640 caattgcgca ttaatgttgc tcctaagtta agctcccctg caaaggaccc atttcttttt 2700 ggttatgaaa aagctatgtg gaaggattta tcaaaatcta tgaaccagac tacattagat 2760 caagttacca agattgttca tgaagaatat gtcggaaaaa ttattgatct gtccgaaagt 2820 ttgaaataca ggaatttttc acttttcaac attacttttg atgaaactgg aacaactcta 2880 gatgataaca cagaagatta tactcctgct aatactgttg aagtaaatcc tgtggatttt 2940 aaatcaaatt taaactttag tagcaactcc tttttggatt taaattcata tggtttagac 3000 ctttttgcgc caactttatc cgacgttaac agaaagggta ttcaaatgtt tgataaggac 3060 cctattattg tatacgagga ctatgcttat gccaagttac ttgaagaaag aaagcggagg 3120 gagaagaaga agaaggagga agaggagaag aagaagaagg aagaagagga aaagaagaag 3180 aaggaagaag aagaaaagaa aaagaaggaa gaggaagaga agaaaaagaa ggaagaagaa 3240 gagaagaaaa agaaggaaga agaagaaaag aagaagcagg aggaagagga gaaaaagaag 3300 aaggaagaag aagagaagaa gaagcaggaa gaaggagaaa agatgaagaa tgaagatgaa 3360 gaaaataaga agaatgaaga tgaagaaaag aagaagaacg aagaagagga aaaaaagaag 3420 caggaagaga aaaacaagaa gaatgaagat gaagaaaaga agaagcagga agaggaagaa 3480 aagaagaaga acgaagaaga ggaaaaaaag aagcaggagg aggggcacag caat 3534 <210> 5 <211> 65 <212> DNA <213> Artificial Sequence <220> <223> Och1_pUG72_F <400> 5 atgtctagga agttgtccca cctgatcgct acaaggaaat caaaatacgc tgcaggtcga 60 caacc 65 <210> 6 <211> 66 <212> DNA <213> Artificial Sequence <220> <223> Och1_pUG72_R <400> 6 ttatttatga cctgcatttt tatcagcatc ttctttccag ctcccactag tggatctgat 60 atcacc 66 <210> 7 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Och1_CF <400> 7 aatggggagc gctgattctc 20 <210> 8 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Och1_CR <400> 8 tctacggaag gacgttgaga 20 <210> 9 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> Mnn1_pUG6_F <400> 9 aacgtaatct tgcggtattt aacgctagtt taagaaagtg ttactgtgta tacgctgcag 60 gtcgacaacc 70 <210> 10 <211> 71 <212> DNA <213> Artificial Sequence <220> <223> Mnn1_pUG6_R <400> 10 gttcacaaag gctagtacca taaacagtta gaaaaaacac tggttaatgc actagtggat 60 ctgatatcac c 71 <210> 11 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Mnn1_CF <400> 11 atcattgcga ggtctcaatt gg 22 <210> 12 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Mnn1_CR <400> 12 gattagaaaa actcatcgag catcaaatg 29 <210> 13 <211> 71 <212> DNA <213> Artificial Sequence <220> <223> Mnn4_F <400> 13 acaacgtcac tattccttca cacaaataaa ctaattagtt atgcttcagc gtacgctgca 60 ggtcgacaac c 71 <210> 14 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> Mnn4_R <400> 14 aggaaaggct atagaaatga agagattcat gaattttcag tcaggttcta ctagtggatc 60 tgatatcacc 70 <210> 15 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Leu2_CF <400> 15 agccttgtca agagaccaga 20 <210> 16 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Mnn4_CR <400> 16 attgtttgcc acttatcact ggcg 24 <210> 17 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> Mnn6_F <400> 17 agcgttcacc caaccttttg tgccctttag tgaagataag ataaggtaag tacgctgcag 60 gtcgacaacc 70 <210> 18 <211> 71 <212> DNA <213> Artificial Sequence <220> <223> Mnn6_R <400> 18 tatatattca tatgtagaag attattgttc ttatacatca gtgttttgat actagtggat 60 ctgatatcac c 71 <210> 19 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Mnn6_CF <400> 19 gctctcgtga gacacgagtt 20 <210> 20 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Ura3_CR <400> 20 cccgtcaatt agttgcacca 20 <210> 21 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> Mnn14_F <400> 21 atgatgttat cactgcgcag gttctccatg tacgttttga gatctctgcg tacgctgcag 60 gtcgacaacc 70 <210> 22 <211> 71 <212> DNA <213> Artificial Sequence <220> <223> Mnn14_R <400> 22 ttaatatttt tggtctgaac caaatatatt gtttgaagtt ttcttattat actagtggat 60 ctgatatcac c 71 <210> 23 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> Yur1_F <400> 23 atggcaaaag gaggctcgct atacatcgtt ggcatattct taccaatatg tacgctgcag 60 gtcgacaacc 70 <210> 24 <211> 71 <212> DNA <213> Artificial Sequence <220> <223> Yur1_R <400> 24 ttaaatctcg tcttgctctt cttttaagaa atatttgccg ctaccgtttt actagtggat 60 ctgatatcac c 71 <210> 25 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> Ktr2_F <400> 25 atgcaaatct gcaaggtatt tcttacacag gttaaaaaac tactttttgt tacgctgcag 60 gtcgacaacc 70 <210> 26 <211> 71 <212> DNA <213> Artificial Sequence <220> <223> Ktr2_R <400> 26 ctatgaatcg tgtttgagga agtatttacc gctgccgtcc ttccaccatc actagtggat 60 ctgatatcac c 71 <210> 27 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> Ktr4_F <400> 27 atgaggtttc tttcaaaaag gatactgaaa cctgtacttt cagtgatcat tacgctgcag 60 gtcgacaacc 70 <210> 28 <211> 71 <212> DNA <213> Artificial Sequence <220> <223> Ktr4_R <400> 28 tcaatacatt tctaactctt cctcagacat agagtgtctt atccaggttg actagtggat 60 ctgatatcac c 71 <210> 29 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> Ktr5_F <400> 29 atgttgctaa taagaaggac gataaatgca tttctgggat gtatccattg tacgctgcag 60 gtcgacaacc 70 <210> 30 <211> 71 <212> DNA <213> Artificial Sequence <220> <223> Ktr5_R <400> 30 ctagtttccg aactgtctta gatagtcttc ccttatgtgc tcctccattt actagtggat 60 ctgatatcac c 71 <210> 31 <211> 70 <212> DNA <213> Artificial Sequence <220> <223> Ktr7_F <400> 31 atggctataa gattgaatcc aaaagtcaga aggttcttgc tggataagtg tacgctgcag 60 gtcgacaacc 70 <210> 32 <211> 71 <212> DNA <213> Artificial Sequence <220> <223> Ktr7_R <400> 32 ctattcaatt actctaaaat tttctcttct gatctcttca atcacgtctt actagtggat 60 ctgatatcac c 71 <210> 33 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Mnn14_CF <400> 33 cgaagatcaa gtaagagtgc acttg 25 <210> 34 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> Yur1_CF <400> 34 atctgtcact gcttattcat atcatc 26 <210> 35 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> Ktr2_CF <400> 35 atctcttcag gtatgtgaca cctata 26 <210> 36 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Ktr4_CF <400> 36 caacggaacg agctctataa gacg 24 <210> 37 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Ktr5_CF <400> 37 acactttaag catgcggtgt gtgga 25 <210> 38 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> Ktr7_CF <400> 38 gtatacatca ggctaacaat ctgtga 26 <210> 39 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> GAPDHp-F1 <400> 39 agtcgaattc atactagcgt tgaatgttag cg 32 <210> 40 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> GAPDHp-R1 <400> 40 agtcggtacc tttgtttgtt tatgtgtgtt tattc 35 <210> 41 <211> 46 <212> DNA <213> Artificial Sequence <220> <223> GAPDHt-F1 <400> 41 agtcggtacc ggatcctcta gagtgaattt actttaaatc ttgcat 46 <210> 42 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> GAPDHt-R1 <400> 42 agtcctgcag atccacaatg tatcaggtat ct 32 <210> 43 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> Mnn4_F <400> 43 cgcggatcca tgcttcagcg aatatcatct aaac 34 <210> 44 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Mnn4_R <400> 44 ggactagttt aattgctgtg cccctcctc 29 <210> 45 <211> 47 <212> DNA <213> Artificial Sequence <220> <223> Y-Mnn14-F <400> 45 aacacacata aacaaacaaa ggtaccatga tgttatcact gcgcagg 47 <210> 46 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> Y-Mnn14-R <400> 46 aaattcactc tagaggatcc ggtaccttaa tatttttggt ctgaaccaaa 50 <210> 47 <211> 56 <212> DNA <213> Artificial Sequence <220> <223> p-Gas1-F <400> 47 tacacgtact tagtcgctga agctcttcta tgatgttgtt taaatccctt tcaaag 56 <210> 48 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> p-Gas1-R-1 <400> 48 gtgatgatga tgatggtggt ggtgagaacc ccctccacca ctggattcag ttccggaacc 60                                                                           60 <210> 49 <211> 52 <212> DNA <213> Artificial Sequence <220> <223> p-Gas1-R-2 <400> 49 aggtacgaac tcgattgacg gctcttctac cgtgatgatg atgatggtgg tg 52

Claims (6)

Mnn4 단백질 및 서열번호 1로 표시되는 Mnn14 단백질의 활성이 모두 내재적 활성에 비하여 약화된, 재조합 효모 균주.
Wherein the activity of the Mnn4 protein and the Mnn14 protein of SEQ ID NO: 1 are all weaker than the intrinsic activity.
제1항에 있어서,
상기 내재적 활성의 약화는 상기 단백질을 암호화하는 염색체상의 유전자의 전체 또는 일부를 결실시키는 방법; 상기 단백질의 활성이 감소되도록 돌연변이된 유전자로, 염색체상의 상기 단백질을 암호화하는 유전자를 대체하는 방법; 상기 단백질을 암호화하는 염색체상의 유전자의 발현 조절 서열에 변이를 도입하는 방법; 상기 단백질을 암호화하는 유전자의 발현 조절 서열을 활성이 약하거나 없는 서열로 교체하는 방법; 상기 염색체상의 유전자의 전사체에 상보적으로 결합하여 상기 mRNA로부터 단백질로의 번역을 저해하는 안티센스 올리고뉴클레오티드를 도입하는 방법; 상기 단백질을 암호화하는 유전자의 SD 서열 앞단에 SD 서열과 상보적인 서열을 인위적으로 부가하여 2차 구조물을 형성시켜 리보솜(ribosome)의 부착이 불가능하게 만드는 법 및 해당 서열의 ORF(open reading frame)의 3' 말단에 역전사되도록 프로모터를 부가하는 RTE(Reverse transcription engineering) 방법으로 이루어지는 군에서 선택되는 방법으로 수행되는 것인, 재조합 효모 균주.
The method according to claim 1,
Wherein said weakening of said intrinsic activity comprises deleting all or part of the gene on the chromosome encoding said protein; A method of replacing a gene mutated to reduce the activity of the protein and a gene encoding the protein on a chromosome; A method of introducing a mutation into an expression control sequence of a gene on a chromosome encoding said protein; A method of replacing the expression control sequence of the gene encoding the protein with a weak or absent sequence; Introducing an antisense oligonucleotide complementary to a transcript of the gene on the chromosome and inhibiting translation of the mRNA to a protein; A method of artificially adding a sequence complementary to the SD sequence to the front of the SD sequence of the gene encoding the protein to form a secondary structure to render the attachment of the ribosome impossible and the use of an ORF (open reading frame) And a reverse transcription engineering (RTE) method in which a promoter is added to the 3 'end to reverse transcribe the recombinant yeast strain.
제1항에 있어서, 상기 효모는 사카로마이세스 세레비지애 (saccharomycens cerevisiae)인, 재조합 효모 균주.
The recombinant yeast strain according to claim 1, wherein the yeast is saccharomycens cerevisiae .
제1항에 있어서, 상기 재조합 효모 균주는 Mnn1 단백질, Och1 단백질, 또는 둘 다의 활성이 내재적 활성에 비하여 약화된, 재조합 효모 균주.
The recombinant yeast strain according to claim 1, wherein the recombinant yeast strain is attenuated in activity of Mnn1 protein, Och1 protein, or both, compared with the intrinsic activity.
제1항에 있어서, 상기 재조합 효모 균주는 당단백질을 코딩하는 유전자를 추가로 포함하는, 재조합 효모 균주.
The recombinant yeast strain according to claim 1, wherein the recombinant yeast strain further comprises a gene encoding a glycoprotein.
(a) 재조합 당단백질을 코딩하는 유전자를 포함하는, Mnn4 단백질 및 서열번호 1로 표시되는 Mnn14 단백질의 활성이 모두 내재적 활성에 비하여 약화된, 재조합 효모 균주를 배양하여 상기 당단백질을 생산하는 단계; 및
(b) 상기 (a) 단계에서 생산된 당단백질을 회수하는 단계를 포함하는, 재조합 당단백질을 제조하는 방법.
(a) producing the glycoprotein by culturing a recombinant yeast strain in which the activity of the Mnn4 protein and the Mnn14 protein of SEQ ID NO: 1 is weaker than the intrinsic activity, comprising the gene encoding the recombinant glycoprotein; And
(b) recovering the glycoprotein produced in the step (a).
KR1020160055677A 2015-05-08 2016-05-04 An essential gene MNN14 for mannosylphosphorylation in Saccharomyces cerevisiae and a method for producing recombinant glycoprotein using a MNN14-defected microorganism KR101782938B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150064855 2015-05-08
KR20150064855 2015-05-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020170118794A Division KR101863892B1 (en) 2015-05-08 2017-09-15 Mannosylphosphorylation Reaction Using Recombinant MNN14 Protein

Publications (2)

Publication Number Publication Date
KR20160131952A true KR20160131952A (en) 2016-11-16
KR101782938B1 KR101782938B1 (en) 2017-09-29

Family

ID=57249204

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020160055677A KR101782938B1 (en) 2015-05-08 2016-05-04 An essential gene MNN14 for mannosylphosphorylation in Saccharomyces cerevisiae and a method for producing recombinant glycoprotein using a MNN14-defected microorganism
KR1020170118794A KR101863892B1 (en) 2015-05-08 2017-09-15 Mannosylphosphorylation Reaction Using Recombinant MNN14 Protein

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020170118794A KR101863892B1 (en) 2015-05-08 2017-09-15 Mannosylphosphorylation Reaction Using Recombinant MNN14 Protein

Country Status (2)

Country Link
KR (2) KR101782938B1 (en)
WO (1) WO2016182273A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102428938B1 (en) * 2019-11-01 2022-08-04 한국생명공학연구원 Recombinant Mnn14 enzyme with increased mannosyl-phosphorylation activity by N-terminal deletion

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2770010B2 (en) * 1996-03-29 1998-06-25 工業技術院長 Gene for positively controlling mannose-1-phosphate transfer in yeast and method for producing high mannose-type neutral sugar chain using mutant mutant of this gene
WO2001014522A1 (en) * 1999-08-19 2001-03-01 Kirin Beer Kabushiki Kaisha Novel yeast variants and process for producing glycoprotein containing mammalian type sugar chain

Also Published As

Publication number Publication date
KR20170107948A (en) 2017-09-26
KR101863892B1 (en) 2018-06-01
WO2016182273A1 (en) 2016-11-17
KR101782938B1 (en) 2017-09-29

Similar Documents

Publication Publication Date Title
Strahl-Bolsinger et al. PMT1, the gene for a key enzyme of protein O-glycosylation in Saccharomyces cerevisiae.
Fontes et al. Characterization of an immunoglobulin binding protein homolog in the maize floury-2 endosperm mutant.
Roemer et al. Yeast beta-glucan synthesis: KRE6 encodes a predicted type II membrane protein required for glucan synthesis in vivo and for glucan synthase activity in vitro.
Davidson et al. A MAP kinase cascade composed of cell type specific and non‐specific elements controls mating and differentiation of the fungal pathogen Cryptococcus neoformans
Parlati et al. The calnexin homologue cnx1+ in Schizosaccharomyces pombe, is an essential gene which can be complemented by its soluble ER domain.
Hill et al. Yeast KRE2 defines a new gene family encoding probable secretory proteins, and is required for the correct N-glycosylation of proteins.
Müller et al. A nuclear mutation that post-transcriptionally blocks accumulation of a yeast mitochondrial gene product can be suppressed by a mitochondrial gene rearrangement
KR20120084734A (en) Method for producing proteins in pichia pastoris that lack detectable cross binding activity to antibodies against host cell antigens
AU2016307066A1 (en) Production of steviol glycosides in recombinant hosts
Lauder et al. Dual requirement for the yeast MMS19 gene in DNA repair and RNA polymerase II transcription
Dijkgraaf et al. The KNH1 gene of Saccharomyces cerevisiae is a functional homolog of KRE9
Raymond et al. A Ste6p/P‐glycoprotein homologue from the asexual yeast Candida albicans transports the a‐factor mating pheromone in Saccharomyces cerevisiae
Berben et al. Studies on the structure, expression and function of the yeast regulatory gene PH02
Nakanishi et al. Hut1 proteins identified in Saccharomyces cerevisiae and Schizosaccharomyces pombe are functional homologues involved in the protein‐folding process at the endoplasmic reticulum
KR101782938B1 (en) An essential gene MNN14 for mannosylphosphorylation in Saccharomyces cerevisiae and a method for producing recombinant glycoprotein using a MNN14-defected microorganism
CN113797326B (en) Vaccine for preventing diseases caused by coronaviruses
CA2158749A1 (en) Materials and methods relating to proteins that interact with casein kinase i
Lussier et al. KTR2: a new member of the KRE2 mannosyltransferase gene family
KR100915670B1 (en) A novel YlMPO1 gene derived from Yarrowia lipolytica and a process for preparing a glycoprotein not being mannosylphosphorylated by using a mutated Yarrowia lipolytica in which YlMPO1 gene is disrupted
JPH11514885A (en) Chitin synthase 1
JP2770010B2 (en) Gene for positively controlling mannose-1-phosphate transfer in yeast and method for producing high mannose-type neutral sugar chain using mutant mutant of this gene
Schwer et al. Multicopy suppressors of temperature-sensitive mutations of yeast mRNA capping enzyme
Mylin et al. SIP1 is a catabolite repression-specific negative regulator of GAL gene expression.
Jean-Francois et al. Post-transcriptional defects in the synthesis of the mitochondrial H+-ATPase subunit 6 in yeast mutants with lesions in the subunit 9 structural gene
Narasimhan et al. Prohibitin, a putative negative control element present in Pneumocystis carinii

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant