KR20160126893A - Felt Manufacturing Method for Nano Membrane Cartridge Bag Filter using Electrospinning - Google Patents

Felt Manufacturing Method for Nano Membrane Cartridge Bag Filter using Electrospinning Download PDF

Info

Publication number
KR20160126893A
KR20160126893A KR1020160048532A KR20160048532A KR20160126893A KR 20160126893 A KR20160126893 A KR 20160126893A KR 1020160048532 A KR1020160048532 A KR 1020160048532A KR 20160048532 A KR20160048532 A KR 20160048532A KR 20160126893 A KR20160126893 A KR 20160126893A
Authority
KR
South Korea
Prior art keywords
bag filter
electrospinning
cartridge bag
substrate
nonwoven fabric
Prior art date
Application number
KR1020160048532A
Other languages
Korean (ko)
Other versions
KR101834931B1 (en
Inventor
김정근
Original Assignee
동화 바이텍스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동화 바이텍스 주식회사 filed Critical 동화 바이텍스 주식회사
Publication of KR20160126893A publication Critical patent/KR20160126893A/en
Application granted granted Critical
Publication of KR101834931B1 publication Critical patent/KR101834931B1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/02Loose filtering material, e.g. loose fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/02Particle separators, e.g. dust precipitators, having hollow filters made of flexible material
    • B01D46/023Pockets filters, i.e. multiple bag filters mounted on a common frame
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4282Addition polymers
    • D04H1/4318Fluorine series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/4334Polyamides
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/4334Polyamides
    • D04H1/4342Aromatic polyamides
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4374Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece using different kinds of webs, e.g. by layering webs
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
    • D04H1/48Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres in combination with at least one other method of consolidation
    • D04H1/49Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres in combination with at least one other method of consolidation entanglement by fluid jet in combination with another consolidation means
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
    • D04H1/498Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres entanglement of layered webs
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H13/00Other non-woven fabrics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/39Electrospinning

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Nonwoven Fabrics (AREA)
  • Filtering Materials (AREA)

Abstract

A method for manufacturing a felt for a heat-resistant nano membrane cartridge bag filter using electrospinning according to the present invention includes: a first step in which a mat-shaped felt base material is formed; a second step in which the formed base material is subjected to pore formation and an increase in density through water punching; a third step in which nanofiber stacking is performed through polymer solution electrospinning on the surface of the density-increased base material; and a fourth step in which the nanofiber is attached to the base material through the rolling compression of the nanofiber-stacked base material.

Description

전기방사법을 이용한 내열성 나노 멤브레인 카트리지 백 필터용 부직포 제조방법{Felt Manufacturing Method for Nano Membrane Cartridge Bag Filter using Electrospinning}TECHNICAL FIELD [0001] The present invention relates to a method for manufacturing a non-woven fabric for a heat-resistant nanomembrane cartridge bag filter using electrospinning,

본 발명은 백필터를 고밀도화시켜 소형화할 수 있도록 하여 이와 수반되는 모터의 용량 또한 소형화되도록 하기 위한 전기방사법을 이용한 내열성 나노 멤브레인 카트리지 백 필터용 부직포 제조방법에 관한 것이다.The present invention relates to a method of manufacturing a nonwoven fabric for a heat resistant nano-membrane cartridge bag filter using an electrospinning method in order to miniaturize the bag filter by making the bag filter denser and miniaturize the capacity of the motor.

일반적으로, 열연, 후판 등의 제품을 생산하기 위한 중간 단계의 제품인 슬래브(반제품)을 생산하기 위해서는 철광석과 석탄을 이용해 소결광 및 코크스를 생산 후, 고로에 장입해 용선(쇳물)을 생산하고, 용선(쇳물)의 불순물을 제거하고 성분 조정을 통해 강종에 적합한 용강을 만드는 용광로공법을 이용한다.Generally, in order to produce slabs (semi-finished products), which are intermediate products for producing hot rolled products and heavy plates, iron ore and coal are used to produce sintered ore and coke, and then charged in blast furnace to produce molten iron. (Blast furnace) to remove impurities and adjust the composition to make the molten steel suitable for the steel type.

이때, 용선을 생산하기 위한 고로, 코크스를 생산하기 위한 코크스로, 철광석을 가열해서 뭉쳐주는 소결로 및 용광로를 거치게 되는데 각 로에서 발생되는 공해물질을 정화시키기 위해 필터백을 설치하여 정화시키게 된다. 각 로에 필터백을 설치하게 되므로 유지비용이 많이 소요되는 문제점이 있다.At this time, a filter bag is installed to purify the blast furnace to produce the coke, the coke to produce the coke, the sintering furnace to heat the iron ore, and the furnace. There is a problem that the filter bag is installed in each of the furnaces, which requires a large maintenance cost.

아울러, 고로, 코크스로, 용광로에서 배출되는 배기가스는 대략 100℃ 정도이나, 소결로에서 배출되는 배기가스는 대략 200℃ 정도로 내열성 백필터를 사용하여야 한다. 또한, 각 로에서 발생되는 배기가스를 정화시키는 용량이 커야 하므로 백필터가 대형화되는 문제점이 있다. 아울러, 필터가 대형화됨에 따라 이와 수반되는 모터의 용량 또한 대형화되어야 하는 문제점이 있다.In addition, the exhaust gas discharged from the blast furnace, the coke oven, and the furnace is about 100 ° C., but the exhaust gas discharged from the sintering furnace should use a heat-resistant bag filter at about 200 ° C. Further, since the capacity for purifying the exhaust gas generated in each of the passages is large, there is a problem that the size of the bag filter is increased. In addition, as the size of the filter is increased, the capacity of the motor accompanied therewith must also be increased.

공해물질의 배출을 대폭 줄일 수 있는 용광로공법의 문제점을 개선하기 위하여 최근에는 파이넥스 공법(FINEX, 직접제강법)이 제안된 바 있다.In order to solve the problem of the furnace construction method capable of drastically reducing the emission of pollutants, the FINEX method (direct steel making method) has recently been proposed.

파이넥스 공법(FINEX, 직접제강법)은 가루형태의 철광석과 일반 유연탄을 사용하여 쇳물을 생산하는 최첨단 기술로 철광석을 덩어리로 만드는 중간과정인 소결공정이 생략되어 설비투자비를 절감할 수 있을 뿐 아니라, 기존의 용광로공법에 비해 황산화물, 질소산화물 등 공해물질의 배출을 대폭 줄일 수 있는 환경친화적 기술이다.The FINEX method (direct steelmaking) is a state-of-the-art technology that produces iron oxide using powdered iron ore and conventional bituminous coal. It omits the sintering process, which is an intermediate process to make iron ore lumps, Is an environmentally friendly technology that can significantly reduce the emission of pollutants such as sulfur oxides and nitrogen oxides compared with the blast furnace method.

이러한 파이넥스 공법은 로의 개수가 줄어들어 공해물질의 배출이 대폭 줄어들기는 하나, 이또한 배기가스를 정화시키는 용량이 커야 하므로 백필터가 대형화되는 문제점이 있다. 아울러, 필터가 대형화됨에 따라 이와 수반되는 모터의 용량 또한 대형화되어야 하는 문제점이 있다.In the case of such a FINEX process, the number of furnaces is reduced, so that the emission of pollutants is greatly reduced. However, since the capacity for purifying exhaust gas must be large, there is a problem that the size of the bag filter is increased. In addition, as the size of the filter is increased, the capacity of the motor accompanied therewith must also be increased.

따라서, 백필터를 고밀도화시켜 소형화할 수 있도록 하여 이와 수반되는 모터의 용량 또한 소형화되도록 하기 위한 백필터용 부직포의 개발이 요구되고 있다.Accordingly, development of a nonwoven fabric for bag filters is required to miniaturize the bag filter by increasing the density of the bag filter, and to reduce the capacity of the accompanying motor.

본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 목적은, 백필터를 고밀도화시켜 소형화할 수 있도록 하여 이와 수반되는 모터의 용량 또한 소형화되도록 하기 위한 전기방사법을 이용한 내열성 나노 멤브레인 카트리지 백 필터용 부직포 제조방법을 제공하는 것이다.SUMMARY OF THE INVENTION It is an object of the present invention to provide a heat resistant nano membrane cartridge using an electrospinning method for miniaturizing a bag filter by densifying the bag filter, And a method for producing a nonwoven fabric for a bag filter.

아울러, 본 발명의 다른 목적은 표면여과가 이루어지도록 하여 필터의 청소가 용이하도록 함으로써 필터의 수명을 연장되도록 하는 전기방사법을 이용한 내열성 나노 멤브레인 카트리지 백 필터용 부직포 제조방법을 제공하는 것이다.Another object of the present invention is to provide a method for manufacturing a non-woven fabric for a heat resistant nano-membrane cartridge bag filter using an electrospinning method in which surface filtration is performed to facilitate the cleaning of the filter so that the life of the filter is extended.

상기의 목적을 달성하기 위한 본 발명의 전기방사법을 이용한 내열성 나노 멤브레인 카트리지 백 필터용 부직포 제조방법은 매트형태로 된 펠트(felt) 기재를 형성하는 제 1 단계; 형성된 기재를 워터 펀칭하여 기공을 형성하여 고밀도화하는 제 2 단계; 고밀도화된 기재의 표면에 폴리머 용액을 전기방사하여 나노섬유를 적층하는 제 3 단계; 나노섬유가 적층된 기재를 롤링 압착하여 나노섬유를 기재에 부착시키는 제 4 단계; 를 포함하여 이루어지는 것을 특징으로 한다.In order to accomplish the above object, there is provided a method for manufacturing a non-woven fabric for a heat-resistant nano-membrane cartridge bag filter using electrospinning, comprising the steps of: forming a mat-like felt base material; A second step of water punching the formed substrate to form pores to increase the density; A third step of electrospinning the polymer solution on the surface of the densified substrate to laminate the nanofibers; A fourth step of rolling-bonding the base material on which the nanofibers are laminated to attach the nanofibers to the base material; And a control unit.

이때, 상기 제 1 단계에서 상기 기재는 아라미드, PPS, 폴리이미드, 폴리아미드, PSA, 테프론(PTFE), 노맥스로부터 선택되는 어느 하나의 재질 또는 이들의 혼합 재질로 된 것을 특징으로 한다.In this case, in the first step, the substrate is made of any one material selected from the group consisting of aramid, PPS, polyimide, polyamide, PSA, Teflon (PTFE), and Nomex, or a mixed material thereof.

아울러, 상기 제 2 단계시 노즐직경은 0.07~0.15mm이고, 노즐 분사압력은 200~300bar인 것을 특징으로 한다.In the second step, the nozzle diameter is 0.07-0.15 mm, and the nozzle injection pressure is 200-300 bar.

또한, 상기 기재의 중간부위에는 글래스 스크린(glass screen)이 개재된 것을 특징으로 한다.Further, a glass screen is interposed at an intermediate portion of the substrate.

또, 상기 제 2 단계에서 전기방사 전압은 50 내지 80 kV이고, 노즐 직경은 0.1 내지 0.3 mm이며, 방사압력은 0.5 내지 1.5 kgf/mm2 인 것을 특징으로 한다.In the second step, the electrospinning voltage is 50 to 80 kV, the nozzle diameter is 0.1 to 0.3 mm, and the radiation pressure is 0.5 to 1.5 kgf / mm 2 .

아울러, 상기 제 1 단계에 의해 형성된 기재에 대한 상기 제 4 단계에 의해 롤링 압착된 기재의 통기도 변화율은 50 내지 80% 감소되며, 상기 제 3 단계에 의해 적층된 나노섬유에 대한 상기 제 4 단계에 의해 롤링 압착된 나노섬유의 통기도 변화율은 50 내지 70% 감소되는 것을 특징으로 한다.In addition, the rate of change in air permeability of the substrate rolled by the fourth step with respect to the substrate formed by the first step is reduced by 50 to 80%, and in the fourth step with respect to the laminated nanofibers by the third step Wherein the rate of change of air permeability of the rolled nanofibers is reduced by 50 to 70%.

또한, 상기 폴리머 용액은 PVDF 71 내지 80 wt%, DMAc 13 내지 21 wt%, 아세톤 4 내지 7 wt%, 폴리우레탄 1 내지 3 wt%로 된 것을 특징으로 한다.The polymer solution is characterized by comprising 71 to 80 wt% of PVDF, 13 to 21 wt% of DMAc, 4 to 7 wt% of acetone, and 1 to 3 wt% of polyurethane.

또, 상기 폴리머 용액의 점도는 3000 내지 4000 cP 이며, 고형분은 20 내지 30% 인 것을 특징으로 한다.The polymer solution has a viscosity of 3000 to 4000 cP and a solid content of 20 to 30%.

아울러, 상기 폴리머 용액은 PAA 85 내지 90 wt%, DMAc 2 내지 5 wt%, 아세톤 6 내지 10 wt%, 폴리우레탄 1 내지 3 wt%로 된 것을 특징으로 한다.In addition, the polymer solution is characterized by comprising 85 to 90 wt% of PAA, 2 to 5 wt% of DMAc, 6 to 10 wt% of acetone, and 1 to 3 wt% of polyurethane.

또한, 상기 폴리머 용액의 점도는 1500 내지 12000 cP 이며, 고형분은 15 내지 20% 인 것을 특징으로 한다.The polymer solution has a viscosity of 1500 to 12000 cP and a solid content of 15 to 20%.

또, 상기 제 4 단계시 롤링 압착 압력은 150 내지 180kg/cm2 이며, 롤링 속도는 2 내지 5 m/min 이고, 롤링 온도는 200 내지 280 ℃ 인 것을 특징으로 한다.The rolling pressure in the fourth step is 150 to 180 kg / cm 2 , the rolling speed is 2 to 5 m / min, and the rolling temperature is 200 to 280 ° C.

상기와 같은 구성에 의한 본 발명의 전기방사법을 이용한 내열성 나노 멤브레인 카트리지 백 필터용 부직포 제조방법에 의해 제조된 백 필터용 부직포는 백필터를 고밀도화시켜 소형화할 수 있도록 하여 이와 수반되는 모터의 용량 또한 소형화할 수 있어 설비비용 및 유지비용을 절감할 수 있는 효과가 있다.The nonwoven fabric for a bag filter manufactured by the method of manufacturing a nonwoven fabric for a heat resistant nano membrane cartridge bag filter using the electrospinning method of the present invention having the above-described structure enables the bag filter to be miniaturized by densifying the bag filter, It is possible to reduce the equipment cost and the maintenance cost.

아울러, 기재의 표면에 부착된 나노섬유에 의해 표면여과가 이루어지므로 필터의 청소가 용이하고 필터의 수명을 연장할 수 있는 효과가 있다.In addition, since the surface filtration is performed by the nanofibers attached to the surface of the base material, the filter can be easily cleaned and the life of the filter can be extended.

도 1은 본 발명의 전기방사법을 이용한 내열성 나노 멤브레인 카트리지 백 필터용 부직포 제조공정을 나타낸 공정도이다.
도 2는 본 발명의 전기방사법을 이용한 내열성 나노 멤브레인 카트리지 백 필터용 부직포 제조방법에 의해 제조된 백 필터용 부직포의 공기투과도에 대한 시험성적서이다.
1 is a process diagram showing a process for producing a nonwoven fabric for a heat resistant nano-membrane cartridge bag filter using the electrospinning process of the present invention.
FIG. 2 is a test report on air permeability of a nonwoven fabric for bag filter manufactured by a method for manufacturing a non-woven fabric for a heat resistant nano membrane cartridge bag filter using the electrospinning method of the present invention.

이하, 본 발명의 전기방사법을 이용한 내열성 나노 멤브레인 카트리지 백 필터용 부직포 제조방법를 도면을 참조하여 상세히 설명한다.Hereinafter, a method for manufacturing a non-woven fabric for a heat resistant nano-membrane cartridge bag filter using the electrospinning method of the present invention will be described in detail with reference to the drawings.

도 1은 본 발명의 전기방사법을 이용한 내열성 나노 멤브레인 카트리지 백 필터용 부직포 제조공정을 나타낸 공정도이다.1 is a process diagram showing a process for producing a nonwoven fabric for a heat resistant nano-membrane cartridge bag filter using the electrospinning process of the present invention.

본 발명의 전기방사법을 이용한 내열성 나노 멤브레인 카트리지 백 필터용 부직포는 매트형태로 된 펠트(felt) 기재를 형성하는 제 1 단계; 형성된 기재를 워터 펀칭하여 기공을 형성하여 고밀도화하는 제 2 단계; 고밀도화된 기재의 표면에 폴리머 용액을 전기방사하여 나노섬유를 적층하는 제 3 단계; 나노섬유가 적층된 기재를 롤링 압착하여 나노섬유를 기재에 부착시키는 제 4 단계; 를 포함하여 이루어진다.The nonwoven fabric for a heat-resistant nano-membrane cartridge bag filter using the electrospinning process of the present invention comprises a first step of forming a felt base material in the form of a mat; A second step of water punching the formed substrate to form pores to increase the density; A third step of electrospinning the polymer solution on the surface of the densified substrate to laminate the nanofibers; A fourth step of rolling-bonding the base material on which the nanofibers are laminated to attach the nanofibers to the base material; .

이때, 상기 제 1 단계에서 상기 기재는 아라미드, PPS, 폴리이미드, 폴리아미드, PSA, 테프론(PTFE)으로부터 선택되는 어느 하나의 재질 또는 이들의 혼합 재질로 된다.At this time, in the first step, the base material may be any one material selected from the group consisting of aramid, PPS, polyimide, polyamide, PSA, and PTFE, or a mixed material thereof.

부직포 기재의 단사 섬도는 2 내지 5 denier이고, 최종 중량은 300 내지 400 gsm이며, 두께는 1.0 내지 1.5 mm이다.The monofilament fineness of the nonwoven substrate is 2 to 5 denier, the final weight is 300 to 400 gsm, and the thickness is 1.0 to 1.5 mm.

부직포 기재의 단사 섬도가 2 denier 미만인 경우에는 통기 저항이 너무 커져서 전력 유지 비용이 과대하게 되는 문제점이 있다.If the monofilament fineness of the nonwoven fabric substrate is less than 2 denier, the ventilation resistance becomes too large and the power maintenance cost becomes excessive.

부직포 기재의 단사 섬도가 5 denier를 초과하는 경우에는 통기 저항이 너무 낮아져서 미세 먼지가 유출되는 문제점이 발생된다.If the monofilament fineness of the nonwoven fabric substrate exceeds 5 denier, the ventilation resistance becomes too low to cause fine dust to leak out.

부직포 기재의 중량이 300g/m2 미만이면 워터펀칭에 의해 기공을 형성할 때 부직포 기재의 손상이 되게 되어 부직포 기재의 강도가 저하됨에 따라 내마모성, 인장, 파열 강도 등이 저하되게 되는 문제점이 있다.When the weight of the nonwoven fabric substrate is less than 300 g / m 2, the nonwoven fabric substrate is damaged when pores are formed by water punching. As a result, the strength of the nonwoven fabric substrate is lowered, and thus abrasion resistance, tensile strength, burst strength and the like are lowered.

반면에, 상기 부직포 기재의 중량이 400g/m2을 초과하게 되면 필터백의 중량이 크게 되며 워터펀칭시에 표면 구조가 너무 치밀하게 되어 기공이 너무 작게 되어 필터의 역할을 제대로 수행할 수 없게 되는 문제점이 있다.On the other hand, when the weight of the nonwoven fabric substrate exceeds 400 g / m 2 , the weight of the filter bag is increased and the surface structure becomes too dense at the time of water punching, and the pore becomes too small, .

부직포 기재의 두께가 1.0mm 미만으로 너무 얇으면 부직포 기재의 강도가 저하됨에 따라 내마모성, 인장, 파열 강도 등이 저하되게 되는 문제점이 있다.If the thickness of the nonwoven fabric substrate is too small, the strength of the nonwoven fabric substrate is lowered, and the abrasion resistance, tensile strength, breaking strength and the like are lowered.

부직포 기재의 두께가 1.5mm를 초과하여 너무 두꺼우면 부직포 기재의 강도는 개선되나 필터효율이 저하되는 문제점이 있다.If the thickness of the nonwoven base material exceeds 1.5 mm and is too thick, the strength of the nonwoven base material is improved but the filter efficiency is lowered.

상기 제 2 단계에서 워터 펀칭(spun-lace)의 노즐직경은 0.07~0.15mm이고, 노즐 분사압력은 최적 고압(200~300bar)이다. 워터 펀칭은 고압의 워터 제트가 망 형태로 배열된 웹으로 펀칭하게 된다.In the second step, the nozzle diameter of the spun-lace nozzle is 0.07 to 0.15 mm, and the nozzle injection pressure is the optimum high pressure (200 to 300 bar). Water punching involves punching a web of high pressure water jets into a network.

상기 워터 펀칭용 노즐의 직경이 0.07mm 미만이 되게 되면 표면 구조에 영향을 주지 못하게 되고 전체적인 섬유 조직의 구조가 재배열되는 데에 영향을 주지 못하게 되어 섬유 조직이 조밀하지 못하게 된다.If the diameter of the water-punching nozzle is less than 0.07 mm, the surface structure is not affected and the overall structure of the fiber structure is not affected.

상기 워터 펀칭용 노즐의 직경이 0.15mm를 초과하게 되면 표면 구조에 영향을 크게 주게 되어 섬유 조직이 너무 조밀하게 되어 오히려 여과성능을 저하시키게 되는 문제점이 있다.If the diameter of the water-punching nozzle is more than 0.15 mm, the surface structure is greatly affected, and the fiber structure becomes too dense and the filtration performance is deteriorated.

상기 워터 펀칭용 노즐의 노즐 분사압력이 200 bar 미만으로 너무 낮게 되면 워터 펀칭에 의해 섬유 조직이 재배열되는 데에 영향을 주지 못하게 되어 섬유 조직이 조밀하지 못하게 되며, 노즐 분사압력이 300 bar를 초과하게 되면 섬유 조직 구조가 재배열되기는 하나 부직포 기재를 손상시키게 되므로 적당한 노즐 압력으로 분사되도록 한다.If the nozzle injection pressure of the nozzle for water punching is too low to be less than 200 bar, it will not affect rearrangement of the fiber structure due to water punching, and the fiber structure will not be densified. If the nozzle injection pressure exceeds 300 bar , The fiber structure is rearranged but the nonwoven fabric substrate is damaged, so that it is sprayed at an appropriate nozzle pressure.

워터 펀칭을 하게 되면 수류 교락에 의해 기재가 재배열되어 고밀도 부직포 기재를 제조할 수 있게 된다. 워터 펀칭은 기존의 니들펀칭에 비해 고밀도 부직포 기재를 제조할 수 있게 된다.When the water punching is performed, the base material is rearranged by the water entanglement to make the high density nonwoven fabric base material. The water punching can produce a high density nonwoven fabric substrate compared to the conventional needle punching.

워터 펀칭에 의한 고내열성 백 필터 기재의 물성변화는 아래 [표 1]과 같다.The changes in the physical properties of the high heat-resistant bag filter substrate by water punching are shown in Table 1 below.

[표 1] 고내열성 백 필터 기재의 물성[Table 1] Properties of high heat-resistant bag filter substrate

Figure pat00001
Figure pat00001

중량이 줄어들고 통기도는 감소한다는 것은 고내열성 백 필터 기재가 고밀도화된 것을 의미한다.The decrease in weight and the reduction in air permeability means that the high heat resistant bag filter base material is densified.

아울러, 상기 제 3 단계에서 전기방사는 Electro-Spinning에 의한 방법으로 방사되게 되고, 전기방사 전압은 50 내지 80 kV이고, 노즐 직경은 0.1 내지 0.3 mm이며, 방사압력은 0.5 내지 1.5 kgf/mm2 이다. 이렇게 방사된 나노 섬유 멤브레인은 직경이 대략 1,000nm이고, 방사중량은 15 내지 20gsm 가 된다.In addition, in the third step, the electrospinning is performed by an electro-spinning method, the electrospinning voltage is 50 to 80 kV, the nozzle diameter is 0.1 to 0.3 mm, the radiation pressure is 0.5 to 1.5 kgf / mm 2 to be. The thus-spun nanofiber membrane has a diameter of about 1,000 nm and a spinning weight of 15 to 20 gsm.

노즐 직경이 0.1mm 미만이면 드롭렛(Droplet) 현상이 번번하게 발생되며, 0.3mm를 초과하면 나노섬유 멤브레인 형성이 불가능하게 될 수 있다.If the nozzle diameter is less than 0.1 mm, a droplet phenomenon occurs frequently. If the nozzle diameter exceeds 0.3 mm, formation of nanofiber membrane may become impossible.

방사전압이 50kV 미만이고 방사압력이 0.5 kgf/mm2 미만으로 너무 낮으면 폴리머 용액의 방사가 원활하지 않게 되어 드롭렛(Droplet) 현상이 발생되게 되어 균일한 나노섬유를 적층할 수 없게 된다.If the spinning voltage is less than 50 kV and the spinning pressure is too low (less than 0.5 kgf / mm 2 ), the spinning of the polymer solution will not be smooth and droplet phenomenon will occur, making it impossible to stack uniform nanofibers.

반면에, 방사전압이 50kV를 초과하고 방사압력이 0.5 kgf/mm2를 초과하게 되면 폴리머 용액의 방사가 원활하게 되나 나노섬유의 강도가 저하되게 된다.On the other hand, if the radiation voltage exceeds 50 kV and the radiation pressure exceeds 0.5 kgf / mm 2 , the radiation of the polymer solution becomes smooth, but the strength of the nanofiber is lowered.

또한, 상기 기재의 중간부위에는 글래스 스크린(glass screen)이 개재된 것을 특징으로 한다. 상기 기재의 중간부위에는 글래스 스크린(glass screen)이 개재되게 되면 기재의 강도를 증가시키게 되고 부직포 절곡시 성형성을 향상시키게 된다.Further, a glass screen is interposed at an intermediate portion of the substrate. If a glass screen is interposed in the intermediate portion of the base material, the strength of the base material is increased and the moldability is improved when the nonwoven fabric is bent.

아울러, 상기 제 1 단계에 의해 형성된 기재에 대한 상기 제 4 단계에 의해 롤링 압착된 기재의 통기도 변화율은 50 내지 80% 감소되며, 상기 제 3 단계에 의해 적층된 나노섬유에 대한 상기 제 4 단계에 의해 롤링 압착된 나노섬유의 통기도 변화율은 50 내지 70% 감소되는 것이 바람직하다.In addition, the rate of change in air permeability of the substrate rolled by the fourth step with respect to the substrate formed by the first step is reduced by 50 to 80%, and in the fourth step with respect to the laminated nanofibers by the third step The rate of change of air permeability of the rolled nanofibers is preferably reduced by 50 to 70%.

또한, 상기 폴리머 용액은 PVDF 71 내지 80 wt%, DMAc 13 내지 21 wt%, 아세톤 4 내지 7 wt%, 폴리우레탄 1 내지 3 wt%로 된 것을 특징으로 한다.The polymer solution is characterized by comprising 71 to 80 wt% of PVDF, 13 to 21 wt% of DMAc, 4 to 7 wt% of acetone, and 1 to 3 wt% of polyurethane.

PVDF 용액의 원활한 섬유화를 위하여 Solvent에 아세톤을 첨가한다.Add acetone to the solvent to smooth the PVDF solution.

폴리우레탄을 첨가하게 되면 방사된 나노섬유가 기재에 점착되는 점착성이 증대되게 된다.The addition of polyurethane increases the adhesion of the radiated nanofibers to the substrate.

또, 상기 폴리머 용액의 점도는 3000 내지 4000 cP 이며, 고형분은 20 내지 30% 인 것을 특징으로 한다.The polymer solution has a viscosity of 3000 to 4000 cP and a solid content of 20 to 30%.

폴리머 용액의 점도가 3000 cP 미만으로 너무 낮거나 고형분이 20% 미만으로 너무 적게 되면 폴리머 용액의 방사는 원활하나 나노섬유의 강도가 저하되게 된다.If the viscosity of the polymer solution is too low (less than 3000 cP) or the solids content is too low (less than 20%), the polymer solution will be smoothly radiated, but the strength of the nanofibers will decrease.

반면에, 폴리머 용액의 점도가 4000 cP를 초과하여 너무 높거나 고형분이 30%를 초과하여 너무 많게 되면 폴리머 용액의 방사가 원활하지 않게 되어 드롭렛(Droplet) 현상이 발생되게 되어 균일한 나노섬유를 적층할 수 없게 된다.On the other hand, if the viscosity of the polymer solution is excessively higher than 4000 cP, or if the solid content exceeds 30%, the polymer solution will not be radiated smoothly, causing droplet phenomenon, It is impossible to stack them.

아울러, 상기 폴리머 용액은 PAA 85 내지 90 wt%, DMAc 2 내지 5 wt%, 아세톤 6 내지 10 wt%, 폴리우레탄 1 내지 3 wt%로 된 것을 특징으로 한다.In addition, the polymer solution is characterized by comprising 85 to 90 wt% of PAA, 2 to 5 wt% of DMAc, 6 to 10 wt% of acetone, and 1 to 3 wt% of polyurethane.

PAA 용액의 원활한 섬유화를 위하여 Solvent에 아세톤을 첨가한다.Acetone is added to the solvent for smooth fiberization of PAA solution.

폴리우레탄을 첨가하게 되면 방사된 나노섬유가 기재에 점착되는 점착성이 증대되게 된다.The addition of polyurethane increases the adhesion of the radiated nanofibers to the substrate.

또한, 상기 폴리머 용액의 점도는 1500 내지 12000 cP 이며, 고형분은 15 내지 20% 인 것을 특징으로 한다.The polymer solution has a viscosity of 1500 to 12000 cP and a solid content of 15 to 20%.

PAA 용액의 원활한 섬유화를 위하여 Solvent에 아세톤을 첨가한다.Acetone is added to the solvent for smooth fiberization of PAA solution.

폴리우레탄을 첨가하게 되면 방사된 나노섬유가 기재에 점착되는 점착성이 증대되게 된다.The addition of polyurethane increases the adhesion of the radiated nanofibers to the substrate.

전기방사에 의한 고내열성 백 필터 기재의 중량 및 통기도 변화는 아래 [표 2]와 같다.The changes in weight and air permeability of the high heat-resistant bag filter base by electrospinning are shown in Table 2 below.

[표 2] 고내열성 백 필터 기재의 중량 및 통기도 변화[Table 2] Change in weight and air permeability of high heat-resistant bag filter base

Figure pat00002
Figure pat00002

전사방사에 의해 중량변화는 커지나, 통기도는 감소하는 것을 알 수 있다. 이와 같이 통기도는 감소한다는 것은 필터링시 배기가스에 포함된 공해물질이 기재에 영향을 주지 않고 기재의 표면에 부착된 나노섬유에 의해 표면여과가 이루어지므로 필터의 청소가 용이하고 필터의 수명을 연장할 수 있는 효과가 있다.It can be seen that the weight change is increased by the transferring radiation, but the air permeability is reduced. The decrease in air permeability means that the pollutants contained in the exhaust gas do not affect the substrate during filtration and surface filtration is performed by the nanofibers adhered to the surface of the substrate, so that the filter is easily cleaned and the life of the filter is extended There is an effect that can be.

아울러, 백필터 기재의 고밀도화됨에 따라 필터를 소형화할 수 있으며, 이와 수반되는 모터의 용량 또한 소형화할 수 있어 설비비용 및 유지비용을 절감할 수 있는 효과가 있다.In addition, as the density of the bag filter substrate is increased, the size of the filter can be reduced, and the capacity of the accompanying motor can be downsized, thereby reducing facility cost and maintenance cost.

또, 상기 제 4 단계시 롤링 압착 압력은 150 내지 180kg/cm2 이며, 롤링 속도는 2 내지 5 m/min 이고, 롤링 온도는 200 내지 280 ℃ 인 것을 특징으로 한다.The rolling pressure in the fourth step is 150 to 180 kg / cm 2 , the rolling speed is 2 to 5 m / min, and the rolling temperature is 200 to 280 ° C.

롤링 압착 압력이 150 kg/cm2 미만으로 너무 작거나 롤링 속도가 5 m/min을 초과하여 너무 빠르게 되면, 기재와 나노섬유의 부착력이 저하되게 되고 기재의 통기도 및 나노섬유의 통기도가 너무 높게 되어 미세 먼지가 유출되게 되는 문제점이 있다.If the rolling pressing pressure is too low, less than 150 kg / cm 2 , or the rolling speed is too fast, more than 5 m / min, the adhesive force between the substrate and the nanofibers is lowered and the air permeability of the substrate and the air permeability of the nanofibers become too high There is a problem that fine dust is leaked out.

롤링 압착 압력이 180 kg/cm2를 초과하여 너무 크거나 롤링 속도가 2 m/min미만으로 너무 느리게 되면, 기재와 나노섬유의 부착력은 증가되나 기재의 통기도 및 나노섬유의 통기도가 너무 낮게 되어 필터 효율이 낮게 되는 문제점이 있다.If the rolling pressure is too high to exceed 180 kg / cm < 2 > or the rolling speed is too slow to be less than 2 m / min, the adhesion of the substrate and the nanofibers increases but the air permeability of the substrate and the air permeability of the nanofibers become too low, There is a problem that the efficiency becomes low.

롤링온도는 기재와 나노섬유의 물성이 변화되지 않고 기공변화를 위한 롤링 압착이 가능한 온도로 되는 것이 바람직하다.The rolling temperature is preferably a temperature at which the physical properties of the substrate and the nanofiber are not changed and the rolling press can be performed for pore change.

롤링 압착에 의한 고내열성 백 필터 기재의 물성변화는 아래 [표 3]과 같다.The changes in physical properties of the high heat-resistant bag filter substrate due to rolling contact are shown in Table 3 below.

[표 3] 고내열성 백 필터 기재의 롤링 압착에 의한 물성변화[Table 3] Change of physical properties by rolling compression of high heat-resistant bag filter base

Figure pat00003
Figure pat00003

롤링 압착에 의해 중량변화는 줄어들고 통기도는 감소하는 것을 알 수 있다.It can be seen that the weight change is reduced and the air permeability is reduced by rolling pressing.

도 2는 본 발명의 전기방사법을 이용한 내열성 나노 멤브레인 카트리지 백 필터용 부직포 제조방법에 의해 제조된 백 필터용 부직포의 공기투과도에 대한 시험성적서이다.FIG. 2 is a test report on air permeability of a nonwoven fabric for bag filter manufactured by a method for manufacturing a non-woven fabric for a heat resistant nano membrane cartridge bag filter using the electrospinning method of the present invention.

본 발명의 상기한 실시예에 한정하여 기술적 사상을 해석해서는 안된다. 적용범위가 다양함은 물론이고, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당업자의 수준에서 다양한 변형 실시가 가능하다. 따라서 이러한 개량 및 변경은 당업자에게 자명한 것인 한 본 발명의 보호범위에 속하게 된다.The technical idea should not be interpreted as being limited to the above-described embodiment of the present invention. It will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims. Accordingly, such modifications and changes are within the scope of protection of the present invention as long as it is obvious to those skilled in the art.

Claims (11)

매트형태로 된 펠트(felt) 기재를 형성하는 제 1 단계;
형성된 기재를 워터 펀칭하여 기공을 형성하여 고밀도화하는 제 2 단계;
고밀도화된 기재의 표면에 폴리머 용액을 전기방사하여 나노섬유를 적층하는 제 3 단계;
나노섬유가 적층된 기재를 롤링 압착하여 나노섬유를 기재에 부착시키는 제 4 단계;
를 포함하여 이루어지는 것을 특징으로 하는 전기방사법을 이용한 내열성 나노 멤브레인 카트리지 백 필터용 부직포 제조방법.
A first step of forming a felt base material in the form of a mat;
A second step of water punching the formed substrate to form pores to increase the density;
A third step of electrospinning the polymer solution on the surface of the densified substrate to laminate the nanofibers;
A fourth step of rolling-bonding the base material on which the nanofibers are laminated to attach the nanofibers to the base material;
The method of manufacturing a non-woven fabric for a heat-resistant nano-membrane cartridge bag filter using electrospinning.
제 1 항에 있어서,
상기 제 1 단계에서 상기 기재는 아라미드, PPS, 폴리이미드, 폴리아미드, PSA, 테프론(PTFE), 노맥스로부터 선택되는 어느 하나의 재질 또는 이들의 혼합 재질로 된 것을 특징으로 하는 전기방사법을 이용한 내열성 나노 멤브레인 카트리지 백 필터용 부직포 제조방법.
The method according to claim 1,
In the first step, the substrate is made of any one material selected from the group consisting of aramid, PPS, polyimide, polyamide, PSA, Teflon (PTFE), and Nomex, or a mixed material thereof. A method for manufacturing a nonwoven fabric for a nano membrane cartridge bag filter.
제 2 항에 있어서,
상기 제 2 단계시 워터펀칭을 위한 노즐직경은 0.07~0.15mm이고, 노즐 분사압력은 200~300bar인 것을 특징으로 하는 전기방사법을 이용한 내열성 나노 멤브레인 카트리지 백 필터용 부직포 제조방법.
3. The method of claim 2,
Wherein the nozzle diameter for water punching in the second step is 0.07 to 0.15 mm and the nozzle injection pressure is 200 to 300 bar.
제 3 항에 있어서,
상기 기재의 중간부위에는 글래스 스크린(glass screen)이 개재된 것을 특징으로 하는 전기방사법을 이용한 내열성 나노 멤브레인 카트리지 백 필터용 부직포 제조방법.
The method of claim 3,
Wherein a glass screen is interposed in an intermediate portion of the base material. The method for manufacturing a nonwoven fabric for a heat-resistant nano-membrane cartridge bag filter using electrospinning.
제 2 항 내지 제 4 항에서 선택되는 어느 한 항에 있어서,
상기 제 3 단계에서 전기방사 전압은 50 내지 80 kV이고, 전기방사를 위한 노즐 직경은 0.1 내지 0.3 mm이며, 전기방사를 위한 노즐 방사압력은 0.5 내지 1.5 kgf/mm2 인 것을 특징으로 하는 전기방사법을 이용한 내열성 나노 멤브레인 카트리지 백 필터용 부직포 제조방법.
5. The compound according to any one of claims 2 to 4,
Wherein the electrospinning voltage in the third step is 50 to 80 kV, the nozzle diameter for electrospinning is 0.1 to 0.3 mm, and the nozzle radiation pressure for electrospinning is 0.5 to 1.5 kgf / mm 2 . A method for manufacturing a nonwoven fabric for a heat resistant nanomembrane cartridge bag filter using the same.
제 5 항에 있어서,
상기 제 1 단계에 의해 형성된 기재에 대한 상기 제 4 단계에 의해 롤링 압착된 기재의 통기도 변화율은 50 내지 80% 감소되며,
상기 제 3 단계에 의해 적층된 나노섬유에 대한 상기 제 4 단계에 의해 롤링 압착된 나노섬유의 통기도 변화율은 50 내지 70% 감소되는 것을 특징으로 하는 전기방사법을 이용한 내열성 나노 멤브레인 카트리지 백 필터용 부직포 제조방법.
6. The method of claim 5,
The rate of change in air permeability of the rolled substrate by the fourth step with respect to the substrate formed by the first step is reduced by 50 to 80%
Wherein the rate of change of air permeability of the nanofibers rolled by the fourth step with respect to the nanofibers stacked in the third step is reduced by 50 to 70%. The nonwoven fabric for a heat resistant nanomembrane cartridge bag filter using electrospinning Way.
제 6 항에 있어서,
상기 폴리머 용액은 PVDF 71 내지 80 wt%, DMAc 13 내지 21 wt%, 아세톤 4 내지 7 wt%, 폴리우레탄 1 내지 3 wt%로 된 것을 특징으로 하는 전기방사법을 이용한 내열성 나노 멤브레인 카트리지 백 필터용 부직포 제조방법.
The method according to claim 6,
Wherein the polymer solution is composed of 71 to 80 wt% of PVDF, 13 to 21 wt% of DMAc, 4 to 7 wt% of acetone, and 1 to 3 wt% of polyurethane, and the nonwoven fabric for a heat resistant nanomembrane cartridge bag filter Gt;
제 7 항에 있어서,
상기 폴리머 용액의 점도는 3000 내지 4000 cP 이며, 고형분은 20 내지 30% 인 것을 특징으로 하는 전기방사법을 이용한 내열성 나노 멤브레인 카트리지 백 필터용 부직포 제조방법.
8. The method of claim 7,
Wherein the polymer solution has a viscosity of 3000 to 4000 cP and a solid content of 20 to 30%. The method for manufacturing a nonwoven fabric for a heat resistant nano-membrane cartridge bag filter according to an electrospinning process.
제 6 항에 있어서,
상기 폴리머 용액은 PAA 85 내지 90 wt%, DMAc 2 내지 5 wt%, 아세톤 6 내지 10 wt%, 폴리우레탄 1 내지 3 wt%로 된 것을 특징으로 하는 전기방사법을 이용한 내열성 나노 멤브레인 카트리지 백 필터용 부직포 제조방법.
The method according to claim 6,
Wherein the polymer solution comprises 85 to 90 wt% of PAA, 2 to 5 wt% of DMAc, 6 to 10 wt% of acetone, and 1 to 3 wt% of polyurethane. Gt;
제 9 항에 있어서,
상기 폴리머 용액의 점도는 1500 내지 12000 cP 이며, 고형분은 15 내지 20% 인 것을 특징으로 하는 전기방사법을 이용한 내열성 나노 멤브레인 카트리지 백 필터용 부직포 제조방법.
10. The method of claim 9,
Wherein the polymer solution has a viscosity of 1500 to 12000 cP and a solid content of 15 to 20%.
제 5 항에 있어서,
상기 제 4 단계시 롤링 압착 압력은 150 내지 180kg/cm2 이며, 롤링 속도는 2 내지 5 m/min 이고, 롤링 온도는 200 내지 280 ℃ 인 것을 특징으로 하는 전기방사법을 이용한 내열성 나노 멤브레인 카트리지 백 필터용 부직포 제조방법.
6. The method of claim 5,
Wherein the rolling pressure in the fourth step is 150 to 180 kg / cm 2 , the rolling speed is 2 to 5 m / min, and the rolling temperature is 200 to 280 ° C. The heat resistant nanomembrane cartridge bag filter .
KR1020160048532A 2015-04-22 2016-04-21 Felt Manufacturing Method for Nano Membrane Cartridge Bag Filter using Electrospinning KR101834931B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20150056342 2015-04-22
KR1020150056342 2015-04-22

Publications (2)

Publication Number Publication Date
KR20160126893A true KR20160126893A (en) 2016-11-02
KR101834931B1 KR101834931B1 (en) 2018-03-07

Family

ID=57518246

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160048532A KR101834931B1 (en) 2015-04-22 2016-04-21 Felt Manufacturing Method for Nano Membrane Cartridge Bag Filter using Electrospinning

Country Status (1)

Country Link
KR (1) KR101834931B1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109158106A (en) * 2018-09-30 2019-01-08 西安工程大学 Self-supporting metal oxide nanofibres catalytic purification material and preparation method thereof
WO2018226076A3 (en) * 2017-06-09 2019-01-24 주식회사 아모그린텍 Filter medium, manufacturing method therefor, and filter unit including same
KR20190123004A (en) * 2018-04-23 2019-10-31 충남대학교산학협력단 Manufacturing method of fine dust filter
KR20190123010A (en) * 2018-04-23 2019-10-31 충남대학교산학협력단 Manufacturing method of fine dust filter
KR20190123007A (en) * 2018-04-23 2019-10-31 충남대학교산학협력단 Manufacturing method of fine dust filter
CN112359483A (en) * 2020-10-16 2021-02-12 北京航天凯恩化工科技有限公司 Polyimide thermal insulation flocculus and preparation method thereof
KR20220045459A (en) * 2020-10-05 2022-04-12 주식회사 휴비스 High Heat Resistant Multilayer Filter Media
US11359064B2 (en) 2017-11-15 2022-06-14 Amogreentech Co., Ltd. Composition for producing graphite-polymer composite and graphite-polymer composite produced therethrough

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101479757B1 (en) 2013-08-01 2015-01-06 (주)에프티이앤이 Polyethersulfone nanofiber filter with excellent heat-resisting property and its method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018226076A3 (en) * 2017-06-09 2019-01-24 주식회사 아모그린텍 Filter medium, manufacturing method therefor, and filter unit including same
US11839855B2 (en) 2017-06-09 2023-12-12 Amogreentech Co., Ltd. Filter medium, manufacturing method therefor, and filter unit including same
US11359064B2 (en) 2017-11-15 2022-06-14 Amogreentech Co., Ltd. Composition for producing graphite-polymer composite and graphite-polymer composite produced therethrough
KR20190123004A (en) * 2018-04-23 2019-10-31 충남대학교산학협력단 Manufacturing method of fine dust filter
KR20190123010A (en) * 2018-04-23 2019-10-31 충남대학교산학협력단 Manufacturing method of fine dust filter
KR20190123007A (en) * 2018-04-23 2019-10-31 충남대학교산학협력단 Manufacturing method of fine dust filter
CN109158106A (en) * 2018-09-30 2019-01-08 西安工程大学 Self-supporting metal oxide nanofibres catalytic purification material and preparation method thereof
CN109158106B (en) * 2018-09-30 2021-03-30 西安工程大学 Self-supporting metal oxide nano fiber catalytic purification material and preparation method thereof
KR20220045459A (en) * 2020-10-05 2022-04-12 주식회사 휴비스 High Heat Resistant Multilayer Filter Media
CN112359483A (en) * 2020-10-16 2021-02-12 北京航天凯恩化工科技有限公司 Polyimide thermal insulation flocculus and preparation method thereof

Also Published As

Publication number Publication date
KR101834931B1 (en) 2018-03-07

Similar Documents

Publication Publication Date Title
KR101834931B1 (en) Felt Manufacturing Method for Nano Membrane Cartridge Bag Filter using Electrospinning
JP4745815B2 (en) Air filter material for internal combustion engines
CN107137979B (en) Micron fiber three-dimensional framework/polymer nanofiber composite filter material and preparation method thereof
CN101607157B (en) Method for manufacturing iron-chromium-aluminum metal fiber filter material
CN107469465B (en) High-temperature-resistant bag-type dust removal filter material made of pre-oxidized polyacrylonitrile fibers and preparation method of high-temperature-resistant bag-type dust removal filter material
WO2005107920A1 (en) Material for air filter
CN106890506B (en) Low-impedance high-efficiency air filtering material and preparation method thereof
KR101187382B1 (en) A nonwoven for air filtration and a preparation method thereof
CN111013255A (en) Preparation method of micro/nano fiber aerogel composite filter material
KR20170075011A (en) Electrically charged nonwoven fabric, filtration material using same, and method for producing electrically charged nonwoven fabric
KR100946981B1 (en) Filter material for air cleaning
CN103987886B (en) Comprise fluororesin such sheets and the manufacture method thereof of fluororesin fiber
CN112973281B (en) Multilayer superfine fiber filtering material and preparation method thereof
KR20140106874A (en) Porous support, method for manufacturing the same and membrane for gas or liquid filter comprising the same
JP7026458B2 (en) Dust collector cloth and bug filter
TW201542897A (en) Insulating nonwoven fabric and production method thereof, and insulation material
CN201179396Y (en) High temperature dust separation filter cylinder
JP5076883B2 (en) Filter felt
KR102273728B1 (en) Nano membrane, nano membrane assembly and manufacturing method of nano membrane
CN110215767B (en) Preparation method of corrosion-resistant filter material
CN113813698A (en) Filter material
US20150266780A1 (en) Method for manufacturing ceramic filter
CN201899930U (en) Glass fiber and aramid fiber compound filter needled felt
JP2017029907A (en) Heat resistant dust collection filter cloth
CN202020971U (en) Polyester stripe water needle felt with oil-resistant, anti-static and water-proof performance

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right