KR20160121191A - Development of optimum pretreatment condition for simultaneous production of bioethanol and furfural from small-diameter lignocellulosic biomass - Google Patents

Development of optimum pretreatment condition for simultaneous production of bioethanol and furfural from small-diameter lignocellulosic biomass Download PDF

Info

Publication number
KR20160121191A
KR20160121191A KR1020150050851A KR20150050851A KR20160121191A KR 20160121191 A KR20160121191 A KR 20160121191A KR 1020150050851 A KR1020150050851 A KR 1020150050851A KR 20150050851 A KR20150050851 A KR 20150050851A KR 20160121191 A KR20160121191 A KR 20160121191A
Authority
KR
South Korea
Prior art keywords
biomass
furfural
pretreatment
bioethanol
sulfuric acid
Prior art date
Application number
KR1020150050851A
Other languages
Korean (ko)
Other versions
KR101734908B1 (en
Inventor
장수경
정한섭
홍창영
류가희
여환명
최준원
최인규
Original Assignee
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단 filed Critical 서울대학교산학협력단
Priority to KR1020150050851A priority Critical patent/KR101734908B1/en
Publication of KR20160121191A publication Critical patent/KR20160121191A/en
Application granted granted Critical
Publication of KR101734908B1 publication Critical patent/KR101734908B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/02Oxygen as only ring hetero atoms
    • C12P17/04Oxygen as only ring hetero atoms containing a five-membered hetero ring, e.g. griseofulvin, vitamin C
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Abstract

The present invention relates to a lignocellulosic biomass and, more specifically, to conditions for optimally producing furfural from a liquid hydrolyzate generated during a bio-ethanol production process while improving the yield of bio-ethanol production by establishing optimal conditions of a sulfuric acid pretreatment process with respect to Quercus mongolica.

Description

바이오에탄올 및 푸르푸랄 동시 생산을 위한 목질계 바이오매스에 대한 황산 전처리 최적조건 개발 {Development of optimum pretreatment condition for simultaneous production of bioethanol and furfural from small-diameter lignocellulosic biomass}Development of optimal conditions for pretreatment of sulfuric acid to woody biomass for the simultaneous production of bioethanol and furfural The development of optimum conditions for bioethanol and furfural from lignocellulosic biomass

본 발명은 소구경의 목질계 바이오매스로부터 바이오에탄올 및 푸르푸랄을 동시에 생산하기 위한 목질계 바이오매스에 대한 황산 전처리 최적조건을 탐색하는 것이며, 구체적으로는 목질계 바이오매스인 소구경의 신갈나무 예컨대 신갈나무에 대한 2단계 황산 전처리 공정의 최적조건을 확립하여 바이오에탄올 생산 수율을 훼손시키지 않고 바이오에탄올 생산 공정 중 발생한 액상 가수분해물로부터 푸르푸랄을 최적으로 생산하기 위한 조건들을 개발하는 것이다.The present invention seeks to find optimum conditions for the pretreatment of sulfuric acid for woody biomass for the simultaneous production of bioethanol and furfural from woody biomass of small diameter, The objective of this study was to establish the optimal conditions for the 2 - step sulfuric acid pretreatment process for the Quercus mongolica tree and to develop conditions for optimal production of furfural from the hydrolyzate produced during the bioethanol production process without compromising the yield of bioethanol production.

바이오매스로부터 바이오에탄올을 생산하기 위하여, 1세대 바이오매스로서 전분계 바이오매스(옥수수, 사탕수수 등 곡물)를 사용했으나 전분계 바이오매스의 경우 식량자원과의 경쟁으로 가격이 크게 상승하여 바이오에탄올의 가격 경쟁력의 위협요인이 되고 있다. 따라서 2세대 바이오매스로서 폐 목재 등의 목질계 바이오매스를 대상으로 약산으로 전처리, 당화 및 발효를 거쳐 바이오에탄올을 생산하지만, 수피가 포함된 바이오매스의 경우 약산에 의한 가수분해 효과가 상대적으로 낮고 결과적으로 바이오에탄올 생산을 위한 효소 가수분해/발효 효율이 낮은 문제점들이 있다.In order to produce bioethanol from biomass, starch-based biomass (cereal such as corn and sugar cane) was used as first-generation biomass, but in the case of starch-based biomass, prices rose significantly due to competition with food resources, It is becoming a threat to price competitiveness. Therefore, the second-generation biomass is produced by pretreating, saccharifying and fermenting the woody biomass such as waste wood to produce bioethanol. However, in the case of biomass containing bark, hydrolysis effect by weak acid is relatively low As a result, the efficiency of hydrolysis / fermentation of the enzyme for bioethanol production is low.

상세하게는 목질계 바이오매스는 구성성분 중 (셀룰로오스, 헤미셀룰로오스, 리그닌) 셀룰로오스만이 당화 및 발효 공정을 통해 바이오에탄올로 전환될 수 있고 불규칙적이고 복잡한 구조를 가지는 리그닌과 헤미셀룰로오스를 전처리 공정을 통해 제거되며, 특히, 침엽수종의 경우 추출물 등의 함량이 높아 바이오매스 전처리/효소 당화 시 분해가 상대적으로 어렵고, 리그닌 함량이 높은 수피가 포함될 경우도 상기와 같은 이유로 바이오에탄올 수율이 낮은 문제점들이 있다. 이에 따라 수피가 포함된 바이오매스의 경우 종래 약산 전처리 조건과는 차별되는 전처리 조건이 요망된다.In particular, woody biomass can be converted into bioethanol only through the saccharification and fermentation processes of cellulose (cellulose, hemicellulose, lignin), and the irregular and complicated structure of lignin and hemicellulose is removed through a pretreatment process In particular, in the case of softwood species, there is a problem that the yield of bioethanol is low because of the high content of the extract, etc., and thus the degradation during biomass pretreatment / enzyme saccharification is relatively difficult and the lignin content is high. Accordingly, in the case of the biomass containing the bark, pretreatment conditions different from the conventional weak acid pretreatment conditions are desired.

한편, 목질계 바이오매스로부터의 바이오에탄올 생산 효율을 높이기 위한 또 다른 방법으로 바이오에탄올 생산 공정에서 부산물로 폐기되는 헤미셀룰로오스 및 리그닌을 화합물이나 소재로 활용하는 기술 (바이오 리파이너리)이 유력하다.On the other hand, as another method for increasing bioethanol production efficiency from woody biomass, hemicellulose and lignin, which are discarded as by-products in the bioethanol production process, are likely to be used as compounds or materials (bio-refineries).

특허공개 제2012-00094364호 (2012.08.24)에는, 목질계 바이오매스 원료물질로부터 푸르푸랄 유도체를 직접 제조하기 위한 금속촉매조성물 및 이를 이용하여 목질계 바이오매스 원료물질로부터 푸르푸랄 유도체를 직접 제조하는 방법이 기재되어 있고, 이에 의하면 목질계 바이오매스 원료물질로부터 푸르푸랄 유도체를 직접 제조하기 위한 금속촉매조성물 및 이를 이용하여 목질계 바이오매스 원료물질로부터 푸르푸랄 유도체를 직접 제조하는 방법에 관한 것으로서, 목질계 바이오매스 원료물질로부터 푸르푸랄 유도체를 직접 제조하기 위한 금속촉매조성물에 있어서, MXn 또는 MXnH2O를 포함하여 이루어지며, 상기 M은 금속원소이고, 상기 X는 할로겐 원소, 트리플레이트, 노나플레이트, 메실레이트, 토실레이트 또는 디아조늄으로 이루어진 작용기 중 어느 하나이며, 상기 n은 1 내지 3인 것을 특징으로 하고 있다. 그러나, 이는 본원발명에서 언급된 균일 촉매인 황산과 대비되며, 특히 본원발명에서 구현하고자 하는 2단계 황선처리조건과는 차별된다. Patent Document No. 2012-00094364 (Aug. 24, 2012) discloses a metal catalyst composition for directly producing a furfural derivative from a woody biomass raw material, and a method for directly producing a furfural derivative from a woody biomass raw material A metal catalyst composition for directly producing a furfural derivative from a woody biomass raw material and a method for directly producing a furfural derivative from a woody biomass raw material using the same, 1. A metal catalyst composition for directly producing a furfural derivative from a biomass raw material, the metal catalyst composition comprising MXn or MXnH2O, wherein M is a metal element, X is a halogen element, triflate, , A tosylate or a functional group consisting of a diazonium And n is an integer of 1 to 3. However, this is in contrast to the sulfuric acid, which is a homogeneous catalyst mentioned in the present invention, and is different from the two-stage sulfur treatment condition to be implemented in the present invention.

선행기술들에서는 유용한 화학 물질인 푸르푸랄을 종래 바이오에탄올 생산을 위한 당(glucose)과 동시에 얻고자 하는 목적으로 전처리 조건을 개량한 문헌들은 발견되지 않으므로 이에 대한 활용 가능성을 제시하고자 하는 것이다.In the prior art, there is no document which improves the pretreatment condition for the purpose of obtaining furfural, which is a useful chemical substance, at the same time as glucose for producing bioethanol in the prior art.

바이오매스 전처리 후 부산물로 취급되었던 액상 가수분해물에는 헤미셀룰로오스 유래 당 및 당 분해산물이 다량 포함되어 이를 활용할 필요성이 대두된다. 특히 바이오매스 전처리 생성물인 액상 가수분해물에는 유용한 공업적 중간체인 푸르푸랄이 포함되어 있으므로, 수피가 포함된 바이오매스로부터 바이오에탄올 수율을 향상시키면서도 푸르푸랄을 최적으로 추출할 수 있는 액상 가수분해물이 생성되도록 바이오매스 전처리 조건을 확립할 필요가 있다.Liquid hydrolysates, which were treated as by-products after pretreatment of biomass, contain a large amount of hemicellulose-derived sugars and saccharide-decomposed products, thus necessitating the utilization thereof. Particularly, since the liquid hydrolyzate as a biomass pretreatment product contains furfural which is a useful industrial intermediate, it is possible to produce a liquid hydrolyzate capable of optimally extracting furfural while improving the yield of bioethanol from the biomass containing bark It is necessary to establish biomass pretreatment conditions.

본 발명의 목적은 수피가 포함된 바이오매스로부터 바이오에탄올 및 푸르푸랄을 최적으로 추출할 수 있는 바이오매스 전처리 조건을 확립하는 것이다.It is an object of the present invention to establish biomass pretreatment conditions capable of optimally extracting bioethanol and furfural from bark-containing biomass.

이러한 목적은, 수피가 포함된 바이오매스를 0.5 mm 분말상태로 분쇄하고 1:7 (신갈나무 분말: 황산 용매(w/v))으로 1% 황산과 혼합하여 반응온도 150℃, 반응시간 20분의 조건으로 제1 황산 가수분해하는 단계 및 제1 전처리 결과 획득한 액상가수분해물을 1% 황산과 혼합하여 반응온도 190℃, 반응시간 10분의 조건으로 제2 황산 가수분해하는 단계의 2단계 황산 전처리 공정에 의해 달성된다. 비-제한적으로 상기 전처리 방법은, 본 발명에 의하면, 신갈나무의 전처리 생성물인 액상 가수분해물로부터 푸르푸랄은 초기 신갈나무 중량 대비 7.45% 수율로 획득될 수 있다.For this purpose, the bark-containing biomass is pulverized into 0.5 mm powder and mixed with 1% sulfuric acid in a ratio of 1: 7 (manganese powder: sulfuric acid solvent (w / v) , And a step of hydrolyzing the liquid hydrolyzate obtained by the first pretreatment with 1% sulfuric acid and performing a second sulfuric acid hydrolysis under the conditions of a reaction temperature of 190 DEG C and a reaction time of 10 minutes This is accomplished by a pre-treatment process. Non-limitingly, according to the present invention, furfural from the liquid hydrolyzate, which is a pretreatment product of Quercus mongolica, can be obtained at a yield of 7.45% based on the weight of the initial myrtle tree.

도 1은 바이오에탄올 및 푸르푸랄 생산을 위한 공정 모식도이고,
도 2는 2차 전처리 반응온도, 반응시간에 따른 액상 내 XMG 함량을 도시한 것이고,
도 3은 2차 전처리 반응온도, 반응시간에 따른 액상 내 푸르푸랄 함량을 도시한 것이다.
Figure 1 is a process schematic diagram for the production of bioethanol and furfural,
2 shows the XMG content in the liquid phase according to the second pretreatment reaction temperature and reaction time,
FIG. 3 shows the furfural content in the liquid phase according to the second pretreatment reaction temperature and reaction time.

본 발명은 목질계 바이오매스, 구체적으로 소구경 신갈나무에 대한 황산 전처리 공정의 최적조건을 확립하여 바이오에탄올 생산 수율을 향상시키면서도 바이오에탄올 생산 공정 중 발생한 액상 가수분해물로부터 푸르푸랄을 최적으로 생산하기 위한 조건들을 확립하는 것이다.The present invention relates to a process for the production of furfural from liquid hydrolysates produced during the bioethanol production process while improving the yield of bioethanol production by establishing optimal conditions for the pretreatment of sulfuric acid to lignocellulosic biomass, To establish conditions.

본 발명에 의한 바이오매스 전처리 과정이 도 1에 도시된다. 신갈나무으로부터 황산 전처리를 이용하여 바이오에탄올을 생산하는 과정 중 전처리 생성물로는 고형 가수분해물 및 액상 가수분해물이 생성된다. 고형 가수분해물로부터는 도시된 바와 같이 궁극적으로 바이오에탄올이 생성된다. 전기된 바와 같이 바이오매스 구성성분 중 (셀룰로오스, 헤미셀룰로오스, 리그닌) 셀룰로오스만이 당화 및 발효 공정을 통해 바이오에탄올로 전환될 수 있으므로 고형 가수분해물에는 가능한 다량의 셀룰로오스가 함유되도록 전처리 조건이 확립되어야 한다. 한편, 액상 가수분해물에는 자일로스, 만노오스 및 갈락토스 (이하 XMG)등이 함유되며, 이러한 XMGsms 2차 황산 가수분해를 통하여 5탄당 전환산물인 푸르푸랄로 전환될 수 있으므로, 본 발명에서 확립하고자 하는 최적 전처리 조건이란, 고형 가수분해물에 가능한 다량의 셀룰로오스를 확보하면서도 액상가수분해물에 최대 함량의 푸르푸랄을 포함되도록 설계되는 처리 조건들을 의미한다. 최대 함량의 푸르푸랄을 생성할 수 있는 조건은 고형 가수분해물에 가능한 다량의 셀룰로오스를 함유하는 조건과 상충되는 조건이므로 최적 조건을 확립할 필요성이 존재한다. The biomass pretreatment process according to the present invention is shown in FIG. In the process of producing bioethanol from the mung bean tree using sulfuric acid pretreatment, solid hydrolyzate and liquid hydrolyzate are produced as pretreatment products. From the solid hydrolyzate, bioethanol is ultimately produced as shown. As described above, only cellulose (cellulose, hemicellulose, lignin) among the biomass components can be converted into bioethanol through the saccharification and fermentation process, so that the pretreatment conditions should be established so that the solid hydrolyzate contains as much cellulose as possible. On the other hand, the liquid hydrolyzate contains xylose, mannose, and galactose (hereinafter referred to as XMG), and can be converted into furfural as a pentose conversion product through the secondary hydrolysis of XMGsms. Therefore, The pretreatment conditions refer to treatment conditions designed to contain the maximum amount of furfural in the liquid hydrolyzate while ensuring a large amount of cellulose as possible for the solid hydrolyzate. There is a need to establish optimal conditions since the conditions capable of producing the maximum content of furfural are in conflict with the conditions containing as much cellulose as possible in the solid hydrolyzate.

실시예Example

목재파쇄기 (PRCS-3300ED, (주)풍림이엔지, 화성)를 이용하여 수피가 포함된 신갈나무을 칩 형태로 파쇄하였고, 칩은 다시 실험용 밀링기 (Cutting Mill pulverisette 15, FRITSCH GmbH, Germany)를 이용하여 0.5 mm 이하 분말로 분쇄하였다. 완성된 분말은 필요하다면, 플라스틱 지퍼 백에 담아 10% 미만의 함수율로 상온에서 보관하였다. 전처리용 소형 반응기에서, 2차에 걸쳐 황산 가수분해 처리하였다. 1차 전처리는, 시료 20g과 1% 황산 용매 140mL를 투입하여 반응온도 150℃, 반응시간 20분으로 실시하였다. 1차 전처리 공정의 액상 결과물에 대하여 다양한 조건(반응온도, 반응시간, 황산 농도)으로 2차 전처리를 수행하였다. (도 1 참고).Quince tree containing bark was crushed in a chip form using a wood crusher (PRCS-3300ED, Pungrim ENG, Hwaseong Co.). The chip was again milled using an experimental milling machine (Cutting Mill pulverisette 15, FRITSCH GmbH, Germany) mm or less. The finished powder was stored in a plastic zipper bag, if necessary, at room temperature with a water content of less than 10%. In a small reactor for pretreatment, hydrolysis was carried out in a secondary step. The first pretreatment was carried out at a reaction temperature of 150 ° C and a reaction time of 20 minutes by adding 20 g of a sample and 140 ml of a 1% sulfuric acid solvent. Secondary pretreatment was performed on the liquid phase of the first pretreatment process under various conditions (reaction temperature, reaction time, sulfuric acid concentration). (See FIG. 1).

2차 전처리 후 액상 부분 1mL를 취하여 0.45μm 막 필터 (membrane filter)로 여과한 후, 고성능 액체크로마토그래피 (HP1100, Hewlett Packard, Palo Alto, CA, USA)를 사용하여 글루코오스, 푸르푸랄 함량을 분석하였다 (용리액: 아세토니트릴: 증류수=75:25, 칼럼: Aminex HPX-87H column (300 mm × 7.8 mm, 5 μm).After the second pretreatment, 1 mL of the liquid portion was filtered through a 0.45 μm membrane filter, and glucose and furfural contents were analyzed using high performance liquid chromatography (HP1100, Hewlett Packard, Palo Alto, Calif., USA) (Eluent: acetonitrile: distilled water = 75:25, column: Aminex HPX-87H column (300 mm x 7.8 mm, 5 μm).

표 1에는 실시에 1에서 사용된 수피 포함 신갈나무 목분에 대한 성분분석표가 제시된다. 글루코오스가 44.6%로 나타난다.Table 1 shows a compositional analysis table for the bark of Quercus mongolica wood block used in Practice 1. And glucose is 44.6%.

구성Configuration 홀로셀룰로오스Holocellulose 리그닌Lignin 추출물extract GlucoseGlucose XyloseXylose GalactoseGalactose MannoseMannose ArabinoseArabinose 함량 (%)content (%) 44.6±1.044.6 ± 1.0 17.4±0.417.4 ± 0.4 1.8±0.01.8 ± 0.0 1.1±0.01.1 ± 0.0 1.6±0.01.6 ± 0.0 32.8±0.132.8 ± 0.1 2.6±0.02.6 ± 0.0

표 2에는 1차 전처리 후 액상 내 당 및 당 전환산물 함량을 보인다. 1차 전처리 공정 후 액상 내 xylose 함량은 16.0%로 나타났으며, 초기 신갈나무 목분의 xylose 함량 대비 약 92%에 해당하는 양임을 알 수 있다.Table 2 shows the content of liquid sugar and sugar conversion products after the first pretreatment. After the first pretreatment, the amount of xylose in the liquid phase was 16.0%, which is about 92% of the amount of xylose in the early quince seedlings.

구성Configuration 홀로셀룰로오스Holocellulose
1% 황산, 반응온도 150℃, 반응시간 20분

1% sulfuric acid, reaction temperature 150 캜, reaction time 20 min
GlucoseGlucose XyloseXylose GalactoseGalactose MannoseMannose ArabinoseArabinose 함량 (%)content (%) 4.8±0.24.8 ± 0.2 16.0±0.516.0 ± 0.5 1.7±0.11.7 ± 0.1 0.8±0.00.8 ± 0.0 1.6±0.11.6 ± 0.1

표 2에서 알 수 있는 바와 같이, 1차 전처리 공정 후 액상 내 glucose 함량은 4.8%로 나타났으며, 초기 신갈나무 목분의 glucose 함량 대비 약 11%에 해당하는 양이다. 바이오에탄올 생산을 고려할 때, 150℃/20분/1%의 1차 전처리 조건은 당화 공정 결과 glucose 수율이 우수한 반응 조건으로 알려져 있고, 160℃ 이상의 반응온도에서 glucose 소실이 발생하기 시작한다. 따라서, 1차 전처리 조건을 150℃/20분/1% 황산으로 확정하였다. As shown in Table 2, the glucose content in the liquid phase after the first pretreatment process was 4.8%, which is about 11% of the glucose content of the initial quercetin wood powder. Considering bioethanol production, the first pretreatment condition of 150 ℃ / 20 min / 1% is known to be a good reaction condition for glucose yield as a result of glycation process, and glucose loss begins to occur at a reaction temperature of 160 ℃ or higher. Therefore, the first pretreatment condition was determined as 150 ° C / 20 min / 1% sulfuric acid.

1차 전처리 공정 결과 액상 내 낮은 glucose 함량과 높은 xylose 함량을 나타내었기 때문에 glucose와 furfural을 동시에 생산하는 2단계 (two-step) 공정 적용에 용이할 것으로 판단하였다. 2차 전처리 공정 후 액상 내 XMG(xylose, mannose, galactose)의 함량은 반응온도와 반응시간이 증가함에 따라 감소하였고 (도 2 참고), 5탄당 전환산물인 furfural의 전환 반응에 사용된 것으로 보인다.As a result of the first pretreatment process, it showed low glucose content and high xylose content in the liquid phase, so it was considered to be easy to apply the two-step process which simultaneously produces glucose and furfural. The content of XMG (xylose, mannose, galactose) in the liquid phase after the second pretreatment process decreased with increasing reaction temperature and reaction time (see FIG. 2), and it seems to be used in the conversion reaction of furfural as a pentose conversion product.

반응시간 증가에 따라 2차 전처리 공정 후 액상 내 xylose의 함량은 160℃ 조건에서 큰 감소량을 나타낸 반면, 190℃ 조건에서는 반응시간 증가에 따른 차이가 거의 발생하지 않았다.As the reaction time increased, the amount of xylose in the liquid phase after the second pretreatment step showed a large decrease at 160 ℃, but no significant difference with increasing reaction time at 190 ℃.

본 발명의 최종 생성물인 Furfural의 경우 반응시간의 증가에 따라 임계점이 나타나는 반응온도가 감소하는 경향을 나타내고 (도 3), 임계점 이후 나타난 furfural 수율의 감소는 다른 산물로의 전환이 주요한 원인으로 보인다.In the case of the final product of the present invention, furfural shows a tendency that the reaction temperature at which the critical point appears as the reaction time increases (FIG. 3), and the reduction of the furfural yield after the critical point seems to be the main cause of conversion to other products.

도 3을 참고하면, 반응시간 20분, 30분에서는 각각 반응온도 180℃, 170℃에서 furfural의 함량 임계점이 분명하게 나타났으나, 반응시간 10분 조건에서는 분명한 임계점이 드러나지 않고 지속적으로 증가하였다.Referring to FIG. 3, at the reaction time of 20 minutes and 30 minutes, the critical point of the content of furfural was clearly observed at 180 ° C. and 170 ° C., respectively, but the critical point was continuously increased without a clear critical point at the reaction time of 10 minutes.

이러한 조건들을 고려할 때, 1차 전처리 조건 150℃/20분/1%에서 얻어진 액상을 2차 전처리 조건 190℃/10분/1%에서 반응할 경우 초기 신갈나무 중량 대비 7.45%의 furfural를 생산할 수 있을 것으로 판단되었다.Considering these conditions, when the liquid phase obtained at the first pretreatment condition of 150 ° C / 20 min / 1% is reacted at the second pretreatment condition of 190 ° C / 10 min / 1%, it can produce furfural of 7.45% .

본 발명은 수피가 포함된 바이오매스로부터 바이오에탄올 및 푸르푸랄을 최적으로 추출할 수 있는 바이오매스 전처리 조건을 확립하는 것이다. 본 발명을 통해 종래 furfural의 생산 공정 중 발생하는 문제점을 회피할 수 있고, 현재 화학 공업 분야에서 빈번하게 사용되고 있는 화합물의 원료 물질인 furfural를 바이오에탄올 생산 과정과 연계하여 친환경적으로 생산이 가능한 것이다. 또한 종래 바이오에탄올 공정의 부산물을 통해 furfural 생산함으로써 바이오매스 이용의 경제성을 향상시킬 것으로 기대된다. 아울러 목질계 바이오매스인 소경 신갈나무를 furfural 생산 원료로 사용하여 탄소 고정 효과 및 탄소 배출권과 관련한 긍정적인 효과도 획득할 수 있다.The present invention establishes biomass pretreatment conditions capable of optimally extracting bioethanol and furfural from bark-containing biomass. The present invention is capable of eco-friendly production of furfural which is a raw material of a compound which is frequently used in the chemical industry field in conjunction with the production process of bioethanol. It is also expected to improve the economical efficiency of biomass utilization by furfural production through by-products of conventional bioethanol process. It is also possible to obtain positive effects related to the carbon fixing effect and the carbon emission rights by using the woody biomass, bryozoan, as furfural production material.

Claims (5)

바이오에탄올 및 푸르푸랄 생성을 위한 바이오매스 전처리 방법에 있어서, 수피가 포함된 바이오매스 분말을 1% 황산과 혼합하여 반응온도 150℃, 반응시간 20분의 조건으로 제1 황산 가수분해하는 단계 및 제1 전처리 결과 획득한 액상가수분해물을 1% 황산과 혼합하여 반응온도 190℃, 반응시간 10분의 조건으로 제2 황산 가수분해하는 단계의 2단계 황산 전처리 공정인 것을 특징으로 하는, 바이오에탄올 및 푸르푸랄 생성을 위한 바이오매스 전처리 방법.A method for pretreating a biomass for the production of bioethanol and furfural, the method comprising: a step of mixing a biomass powder containing bark with 1% sulfuric acid and conducting a first sulfuric acid hydrolysis under the conditions of a reaction temperature of 150 ° C and a reaction time of 20 minutes; 1 is a two-stage sulfuric acid pre-treatment step of mixing the liquid hydrolyzate obtained as a result of the pretreatment with 1% sulfuric acid and performing a second sulfuric acid hydrolysis at a reaction temperature of 190 ° C and a reaction time of 10 minutes. Biomass pretreatment method for fuller production. 제1항에 있어서, 수피가 포함된 바이오매스 분말은 수피가 포함된 신갈나무 분말인, 바이오에탄올 및 푸르푸랄 생성을 위한 바이오매스 전처리 방법.The method according to claim 1, wherein the bark-containing biomass powder is a quince tree powder containing bark, and the biomass pretreatment method for producing bioethanol and furfural. 제1항에 있어서, 바이오매스 분말은 직경이 평균 0.5 mm 분말상태인, 바이오에탄올 및 푸르푸랄 생성을 위한 바이오매스 전처리 방법.The method according to claim 1, wherein the biomass powder has a mean diameter of 0.5 mm in the powder state, and the biomass pretreatment method for producing bioethanol and furfural. 제1항에 있어서, 상기 분말은 황산과 1:7 (신갈나무 분말: 황산 용매(w/v))으로 혼합되는, 바이오에탄올 및 푸르푸랄 생성을 위한 바이오매스 전처리 방법.The method of claim 1, wherein the powder is mixed with sulfuric acid in a ratio of 1: 7 (manganese powder: sulfuric acid solvent (w / v)). 제1항 내지 제4항 중 어느 하나의 항에 있어서, 바이오매스의 전처리 생성물인 액상 가수분해물로부터 푸르푸랄은 초기 바이오매스 중량 대비 7.45% 수율로 획득되는, 바이오에탄올 및 푸르푸랄 생성을 위한 바이오매스 전처리 방법.Process according to any one of claims 1 to 4, wherein the furfural from the liquid hydrolyzate as a pretreatment product of the biomass is obtained at a yield of 7.45% relative to the initial biomass weight. The biomass for the production of bioethanol and furfural Pretreatment method.
KR1020150050851A 2015-04-10 2015-04-10 Development of optimum pretreatment condition for simultaneous production of bioethanol and furfural from small-diameter lignocellulosic biomass KR101734908B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150050851A KR101734908B1 (en) 2015-04-10 2015-04-10 Development of optimum pretreatment condition for simultaneous production of bioethanol and furfural from small-diameter lignocellulosic biomass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150050851A KR101734908B1 (en) 2015-04-10 2015-04-10 Development of optimum pretreatment condition for simultaneous production of bioethanol and furfural from small-diameter lignocellulosic biomass

Publications (2)

Publication Number Publication Date
KR20160121191A true KR20160121191A (en) 2016-10-19
KR101734908B1 KR101734908B1 (en) 2017-05-12

Family

ID=57250989

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150050851A KR101734908B1 (en) 2015-04-10 2015-04-10 Development of optimum pretreatment condition for simultaneous production of bioethanol and furfural from small-diameter lignocellulosic biomass

Country Status (1)

Country Link
KR (1) KR101734908B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024071951A1 (en) * 2022-09-28 2024-04-04 한국화학연구원 5-halomethylfurfural production method involving pretreatment step

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102298290B1 (en) 2019-10-01 2021-09-07 한국과학기술연구원 Acidic saccharification of biomass
KR102606953B1 (en) * 2022-02-09 2023-11-29 세종대학교산학협력단 Furfural extraction using livestock manure and synthesis gas production method derived from extraction by-products

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012087054A (en) * 2010-10-15 2012-05-10 Sekisui Chem Co Ltd Method of producing furfural

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024071951A1 (en) * 2022-09-28 2024-04-04 한국화학연구원 5-halomethylfurfural production method involving pretreatment step

Also Published As

Publication number Publication date
KR101734908B1 (en) 2017-05-12

Similar Documents

Publication Publication Date Title
Aguilar-Reynosa et al. Comparison of microwave and conduction-convection heating autohydrolysis pretreatment for bioethanol production
Eliana et al. Effects of the pretreatment method on enzymatic hydrolysis and ethanol fermentability of the cellulosic fraction from elephant grass
Chandel et al. Multi-scale structural and chemical analysis of sugarcane bagasse in the process of sequential acid–base pretreatment and ethanol production by Scheffersomyces shehatae and Saccharomyces cerevisiae
Gao et al. Effects of different pretreatment methods on chemical composition of sugarcane bagasse and enzymatic hydrolysis
Kim et al. Sequential acid-/alkali-pretreatment of empty palm fruit bunch fiber
Wang et al. Sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) for robust enzymatic saccharification of hardwoods
Yang et al. Valorization of lignin and cellulose in acid-steam-exploded corn stover by a moderate alkaline ethanol post-treatment based on an integrated biorefinery concept
CN105723000B (en) method for producing sugars from biomass
EP2625279B1 (en) Enzymatic hydrolysis of lignocellulosic material in the presence of sulfur oxyanions and/or sulfhydryl compounds
Duque et al. Optimization of integrated alkaline–extrusion pretreatment of barley straw for sugar production by enzymatic hydrolysis
Wei et al. Improving corn stover enzymatic saccharification via ferric chloride catalyzed dimethyl sulfoxide pretreatment and various additives
Manfredi et al. Integral process assessment of sugarcane agricultural crop residues conversion to ethanol
Bouxin et al. Organosolv pretreatment of Sitka spruce wood: conversion of hemicelluloses to ethyl glycosides
Nair et al. Mild-temperature dilute acid pretreatment for integration of first and second generation ethanol processes
Rafiqul et al. Design of process parameters for the production of xylose from wood sawdust
Asakawa et al. Cholinium ionic liquid/cosolvent pretreatment for enhancing enzymatic saccharification of sugarcane bagasse
Jin et al. A stepwise pretreatment of sugarcane bagasse by alkaline and hydroxymethyl reagent for bioethanol production
JP2005229821A (en) Method for producing monosaccharide from biomass and apparatus for producing monosaccharide
Li et al. Scale-up of ionic liquid-based fractionation of single and mixed feedstocks
Duque et al. Study of process configuration and catalyst concentration in integrated alkaline extrusion of barley straw for bioethanol production
Feng et al. Combined severity during pretreatment chemical and temperature on the saccharification of wheat straw using acids and alkalis of differing strength
Perez-Pimienta et al. Ternary ionic liquid–water pretreatment systems of an agave bagasse and municipal solid waste blend
Cheng et al. Ethanol production from non-detoxified whole slurry of sulfite-pretreated empty fruit bunches at a low cellulase loading
Rochón et al. Co-production of bioethanol and xylosaccharides from steam-exploded eucalyptus sawdust using high solid loads in enzymatic hydrolysis: Effect of alkaline impregnation
KR101734908B1 (en) Development of optimum pretreatment condition for simultaneous production of bioethanol and furfural from small-diameter lignocellulosic biomass

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant