KR20160103712A - 질소-도핑 이산화티타늄 또는 질소-도핑 이산화티타늄 및 항균제를 함유하는 지각과민처치용 조성물 - Google Patents

질소-도핑 이산화티타늄 또는 질소-도핑 이산화티타늄 및 항균제를 함유하는 지각과민처치용 조성물 Download PDF

Info

Publication number
KR20160103712A
KR20160103712A KR1020150026396A KR20150026396A KR20160103712A KR 20160103712 A KR20160103712 A KR 20160103712A KR 1020150026396 A KR1020150026396 A KR 1020150026396A KR 20150026396 A KR20150026396 A KR 20150026396A KR 20160103712 A KR20160103712 A KR 20160103712A
Authority
KR
South Korea
Prior art keywords
tio
nitrogen
doped
titanium dioxide
drug
Prior art date
Application number
KR1020150026396A
Other languages
English (en)
Other versions
KR101797457B1 (ko
Inventor
오승한
박지영
Original Assignee
원광대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 원광대학교산학협력단 filed Critical 원광대학교산학협력단
Priority to KR1020150026396A priority Critical patent/KR101797457B1/ko
Publication of KR20160103712A publication Critical patent/KR20160103712A/ko
Application granted granted Critical
Publication of KR101797457B1 publication Critical patent/KR101797457B1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/5115Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/13Amines
    • A61K31/155Amidines (), e.g. guanidine (H2N—C(=NH)—NH2), isourea (N=C(OH)—NH2), isothiourea (—N=C(SH)—NH2)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0002Galenical forms characterised by the drug release technique; Application systems commanded by energy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1611Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/02Stomatological preparations, e.g. drugs for caries, aphtae, periodontitis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/56Compounds, absorbed onto or entrapped into a solid carrier, e.g. encapsulated perfumes, inclusion compounds, sustained release forms

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oncology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Nanotechnology (AREA)
  • Optics & Photonics (AREA)
  • Cosmetics (AREA)
  • Communicable Diseases (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

본 발명은 질소-도핑 이산화티타늄 또는 질소-도핑 이산화티타늄 및 항균제를 함유하는 지각과민처치용 조성물 및 이의 제조방법에 관한 것으로서, 질소-도핑이산화티타늄의 가시광선 조사에 의한 광촉매 활성능은 약물 용출을 촉진시키고, 클로르헥시딘 등 항균제의 항균효과를 향상시키며, 세포독성을 나타내지 않았고, 따라서 질소-도핑 이산화티타늄 나노입자는 자외선에서만 활성을 나타내는 기존의 한계를 극복함으로써 치과재료의 새로운 영역에 융합기술 개발을 가능하게 하고 환자의 동통을 줄여 줄 뿐만 아니라 치아우식에 의한 2차적인 질환까지도 예방할 수 있을 것으로 보인다.

Description

질소-도핑 이산화티타늄 또는 질소-도핑 이산화티타늄 및 항균제를 함유하는 지각과민처치용 조성물{Composition for desensitizer comprising nitrogen doped titania, or nitrogen doped titania and antimicrobial}
본 발명은 질소-도핑 이산화티타늄 또는 질소-도핑 이산화티타늄 및 항균제를 함유하는 지각과민처치용 조성물 및 이의 제조방법에 관한 것이다.
상아질 지각과민증은 노출된 상아질 영역에 자극이 가해질 때 나타나는 치통의 하나이다. 상아질 지각과민증은 다른 치과질환보다 상대적으로 더 빈번히 발생한다. 성인층에서 상아질 지각과민증의 발생비율은 4-84%이고, 설문지 조사 및 임상 스터디와 같은 연구 방법에 따라 다양하게 나타난다(Gillam et al., 2006). 또한 Ye et al에서 상아질 지각과민증 및 과민성 치아의 최대수의 발생 빈도는 50대 이상에서 각각 38%, 3.9이다(Ye et al., 2012).
상아질 지각과민증을 유도하는 메커니즘과 관련하여서는 다양한 이론이 존재하는데, 그 중 가장 강력한 가설은 유체역학(fluid mechanics) 이론이다(Brannstrom and Astrom, 1972). 상기 이론은 기계적 자극의 예를 들어 와동형성(cavity preparation), 강한 바람, 또는 보수재료의 충진과 같은 기계적 자극에 의해 고농축된 용액이 외부로 노출된 상아질과 접촉하도록 작용하게 하는 것으로 설명한다. 유체역학에 기초하여 노출된 상아질의 고농축된 용액이 상아세관(dentinal tubules)으로 이동하면, 치수(dental pulp) 및 상아질(dentin)의 계면에 위치하는 치아 모세포(odontoblasts)를 덮는 A-d 액손 터미널 수용체가 활성화된다. 결국 A-d 액손 터미널 수용체의 활성화로 인하여 상아질 지각과민이 야기된다. 이러한 유체역학 이론은 많은 과학자들에 의해 지지되었다(Forssell-Ahlberg, 1978; David and Pashle, 1990).
또한, 상아질 지각과민증은 노출된 상아질에 의해 주로 야기되며, 상아질의 원치않는 노출은 부분적으로 부적합한 칫솔질 마모(tooth brushing wear), 치아파절(tooth fracture), 치은퇴축(gingival recession), 치근 노출(root exposure), 치주 치료(periodontal treatment), 또는 컴포지트 레진 수복(composite resin restoration) 등에 기인한다(Orchardson and Gillam, 2006).
상아질 지각과민증 치료에 많은 기술이 도입되어 왔다. 예를 들어 KNO3 제제 처리를 통한 신경 재분극 방지 및/또는 제2 상아질 형성의 촉진, 스미어층을 형성함으로써 상아세관을 닫히게 하는 방법, 약물을 통해 상아세관은 막는 방법 등이 상아질 지각과민증 회복에 사용되어 왔다. 지각과민처치제는 상아세관을 막는데 사용되어왔다. 칼슘 하이드록사이드, 불화 나트륨, 질산 은, 글루코코르티코이드, 결합 레진(unfilled bonding resin) 및 옥살레이트가 대표적인 지각과민처치제이다(Camps et al., 1998). 치과용 접착제 시스템 처리, 상아질 표면의 용융/재결정화 처리, 및 상아세관 폐쇄와 같은 다른 방법도 알려져 있다(Kimura et al., 2000). 현재까지 지각과민처치제 및 레이저 기술이 주로 사용되고 있다.
글루타르알데하이드는 혈청 알부민의 침전 및 하이드록시에틸메타크릴레이트(HEMA)의 고분자화를 유도하고, 상아세관(dentinal tubules)을 폐쇄시켜 지각과민처치제로 작용할 수 있다는 점이 알려져 있다(Olusile et al., 2008; Oinet al., 2006). Rusin et al. (2010)에는 상아세관 표면에 HEMA 및 레진-개질된 글래스 아이오노머를 도포한 후 SEM 관찰에 의해 하이브리드 층이 형성된다고 보고하였다.
한편 한국등록특허 1,420,677호에는 질소가 도핑된 이산화티타늄 및 이의 제조방법이 개시되어 있다. 여기에서는 이산화티타늄의 표면에 최적 함량의 질소가 직접 도핑되어 결합을 형성하며, 분산력이 우수하면서도 초친수성의 질소가 도핑된 이산화티타늄이 제공될 수 있다고 기재되어 있다. 그러나 상기 특허에서는 옥외 광고판에 사용되는 보호필름의 표면이 강우 시에 물과 접촉하여 오염물들을 세척해내는 능력을 부가하고자 보호필름에 초친수성을 부여할 필요가 있어 안출된 것으로 본 발명과는 그 목적이 상이하다. 즉, 상기 특허는 광촉매 소재의 사용에 의존하지 않으면서도 고효율 초친수성의 코팅 조성물 개발을 위하여 질소를 도핑하여 이산화티타늄 입자의 표면을 개질함으로써 친수성이 부여되는 질소 도핑 이산화티타늄을 제공함에 목적이 있는 것이고, 가시광선 조사에 의해 약물의 서방형 용출(sustained release)이 가능한 담체로서의 사용에 대하여 전혀 개시하고 있지 않다.
한국등록특허 1,420,677호 한국공개특허 2014-0086743호
Absi AM, Adam D (1987). Dentin hypersensitivity : The effect in vitro of acids and dietary substances on root planed and burred dentin. J Clin Periodontol 14:274. Bard AJ (1982). Design of semiconductor photoelectrochemical systems for solar energy conversion. J Phys Chem 86:172177. Brannstrom M, Astrom A (1972). The hydrodynamics of the dentine : its possible relationship to dental pain. Int dental J 22:219-227. Cai R, Kubota Y, Shuin T, Sakai H, Hashimoto K, Fujishima A (1992). induction of cytotoxicity by photo excited TiO2 particles. Cancer Res 52:2346-2348. Camps J, Pizant S, Dejou J, Franquin JC (1998). Effect of desensitizing agents on human dentin permeability. Am J Dent 11:286-290. Chen XB, Burda C (2004). Photoelectron spectroscopic investigation of nitrogen-doped titania nanoparticles. J Phys Chem B 108:15446-15449. David H, Pashle DH (1990). Mechanisms of dentin sensitivity. Dent Clin North Am 34:449-474. de Souza LB1, de Aquino SG, de Souza PP, Hebling J, Costa CA (2007). Cytotoxic effects of different concentrations of chlorhexidine. Am J Dent 20:400-404. Delany GM, Patterson SS, Miller CH, Newton CW (1982). The effect of chlorhexidine gluconate irrigation on the root canal flora freshly extracted necrotic teeth. Oral Surg 53:518-523. Edmiston Jr CE, Seabrook GR, Johnson CP, Paulson DS, Beausoleil CM (2007). Comparative of a new and innovative 2% chlorhexidine gluconate-impregnated cloth with 4% chlorhexidine gluconate as topical antiseptic for preparation of the skin prior to surgery. Am J Infect Control 35:89-96. Forssell-Ahlberg K (1978). Influences of noxious dental pulp. Acta Physiol Scand 103:71-80. Fujishima A, Honda K (1972). Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37-38. Gillam DG, Bulman JS, Jackson RJ, Newman HN (2006). Dentist perceptions of dentine hypersensitivity and knowledge of its treatment. J Oral Rehabil 29:219-225. Graetzel M (1983). Energy Resources through Photochemistry and Catalysis. New York: Academic Press. Grnuit T, Bochicchio G, Napolitano LM, McCarter RJ, Roghman MC (2001). Prophylactic chlorhexidine oral rinses decreases ventilator-associated pneumonia in surgical ICU patients. Surg Infect 2:5-18. Haps S, Slot DE, Berchier CE, Van der Weijden GA (2008). The effect of cetylpyridinium chloride-containing mouth rinses as adjuncts to toothbrushing on plaque and parameters of gingival inflammation: a systematic review. Int J Dent Hyg 6:290-303. Hu CC, Hsu TC, Kao LH (2012). One-Step Cohydrothermal Synthesis of Nitrogen-Doped Titanium Oxide Nanotubes with Enhanced Visible Light Photocatalytic Activity. Int J Photo 2012: Article ID 391958. Irie H, Watanabe Y, Hashimoto K (2003). Reversible control of wettability of a TiO2 surface by introducing roughness. Electrochem Solid-State Lett 8:23-25. Jeansonne MJ, White RR (1994). A comparison of 2.0% chlorhexidine gluconate and 5.25% Sodium Hypochlorite as antimicrobial endodontic irrigants. J Endod 20:276-278. Kimura Y, Wilder-Smith P, Yonaga K, Matsumoto K (2000). Treatment of dentine hypersensitivity by lasers: a review. J Clin Periodontol 27:715-721. Kubota Y, Shuin T, Kawasaki C, Hosaka M, Kitamura H, Cai R, Sakai H, Hashimoto K, Fujishima A (1994). Photokilling of T-24 homan bladder cancer cells with titanium dioxide. Br J Cancer 70:1107-1111. Lee TH, Hu CC, Lee SS, Chou MY, Chang YC (2010). Cytotoxicity of chlorhexidine on human osteoblastic cells is related to intracellular glutathione levels. Int Endod J 43:430-435. Leikin, Jerrold B, Paloucek, Frank P (2008). Chlorhexdine Gluconate. 4th ed. Posoning and Toxicology Hanbook. Informa; pp. 183-184. Lewis RJ (1996). Sax's Dangerous Properties of Industrial Materials 13. 9th ed. New York: Van Nostrand Reinhold; pp. 691. Meiers JC, Kresin JC (1996). Cavity disinfectants and dentin bonding. Oper Dent 21:153-159. Michelich VJ, Schuster GS, Pashley DH (1980). Bacterial penetration of hyman dentin in vitro. J Dent Res 59:1398. Mitoraj D, Kisch H (2008). The nature of nitrogen-modified titanium dioxide photocatalysts active in visible light. Angew Chem Int Ed, 47:9975-9978. Mjor I (1972). Human coronaldentine: Structure and reactions, Oral Surg Oral Med Oral Pathol 33:810-823. Napolitano LM (2006). Decolonization of the skin of the patient and surgeon. Surg Infect 7:S3-15. Oin C, Xu J, Zhang Y (2006). Spectroscopic investigation of the function of aqueous 2-hydroxyethylmethacrylate/glutaraldehyde solution as a dentin desensitizer. Eur J Oral Sci 114:354-359. Ollis DF, Al-Ekabi H (1993). Photocatalytic purification and treatment of water and air. 3th ed. St. Elsevier; pp. 356-358. Olusile AO, Bamise CT, Oginni AO, Dosumu OO (2008). Short-term Clinical Evaluation of Four Desensitizing Agents. J Contemp Dent Pract 9:22-29. Orchardson R, Gillam DG (2006). Managing dentin hypersensitivity. J Am Dent Assoc 137:990-998. Pashley DH (1990). Mechanisms of dentin sensitivity. Dent Clin North Am 34:449-473. Pashley DH (2001). The use of oxalate to reduce dentin permeability under adhesive restorations. Am J Dent 12:89-94. Pelizzetti, E., Schiavello, M (1991). Photochemical Conversion and Storage of Solar Energy; Kluwer Academic Publishers: Dordrecht Qian J, Cui G, Jing M, Wang Y, Zhang M, Yang J (2012). Hydrothermal Synthesis of Nitrogen-Doped Titanium Dioxide and Evaluation of Its Visible Light Photocatalytic Activity. Int J Photo 2012: Article ID 198497. Roseenthal MW (1990). Historic review of the management of tooth hypersensitivity. Dent Clin North Am 34:403-427. Rusin RP, Aqee k, Suchko M, Pashley DH (2010). Effect of a new desensitizing material on human dentin permeability. Dent Mater 26:600-607. Sakthivel S, Janczarek M, Kisch H (2004). Visible light activity and photoelectrochemical properties of nitrogen-doped TiO2. J Phys Chem B 108:19384-19387. Sandham HJ, Nadeau L, Phillips HI (1992), The effect of chlorhexidine varnish treatment on salivary mutans streptococcal levels in child orthodontic patients. J Dent Res 71:32-35. Sathish M, Viswanathan B, Viswanath RP, Gopina CS (2005). Synthesis, characterization, electronic structure, and photocatalytic activity of nitrogen-doped TiO2 nanocatalyst. Chem Mater 17:6349-6353. Sato S (1986). Photocatalytic activity of NOx-doped TiO2 in the visible light region. Chem Phys Lett 123:126-128. Sauer ML and Ollis DF(1996). Photocatalyzed oxidation of ethanol and acetaldehyde in humidified air. J Catal 158:570-582. Schiavello M (1988). Photocatalysis and Environment. Dordrecht: Kluwer Academic Publisher; pp. 663-677. Serpone N, Pelizzetti E (1989). Photocatalysis : fundamentals and applications. New York: Wiley Interscience; pp. 565. Shigeru K, Eito Y, Hideto M (2012). Photocatalytic Hydrogenation on Semiconductor Particles (Chapter 12). Hydrogenation. Iyad Karampp 291-308. Shipu L, Shiwei L, Jianjun L, Nengqian P, Danhong L, Jianbao L (2012). Nitrogen-Doped TiO2 Nanotube Arrays with Enhanced Photoelectrochemical Property. Int J Photo 2012: Article ID 794207 Sopyan I, Murasawa S, Hashimoto K, Fujishima A (1994). Highly efficient TiO2 film photocatalist: Degradation of gaseous acetaldehyde. Chem Lett 723-726. Tanner J, Swarbrook S, Sturart J (2008). Surgical hand antisepsis to reduce surgical site infection. Cochrane Database Syst Rev 23. Vorontsov AV, Savinov EN, Barannik GB, Troitsky VN and Pramon VN (1997). Quantitative studies on the heterogeneous gas-phase photooxidation of CO and simple VOCs by air over TiO2. Catal Today 39:207-218. Warfringe J, Dahlen G, Bergenholtz (1985). Dental pulp response to bacterial cell wall material. J Dent Res 64:1046-1050. White RR, Hays GL, Janer LR (1997). Residual antimicrobial activity after canal irrigation with chlorhexidine. J Endod 23:315-317. Wong MS, Chou HP, Yang TS (2006). Reactively sputtered N-doped titanium oxide films as visible-light photocatalyst. Thin Solid Films 494:244-249. Xu Z, Yu J (2011). Visible-light-induced photoelectro chemical behaviors of Fe-modified TiO2 nanotube arrays. Nanoscale 3:3138-3144. Ye W, Feng XP, Li R (2012). The prevalence of dentine hypersensitivity in Chinses adults. J Oral Rehabil 39:182-187. Yuan J, Chen MX, Shi JW, Shangguan WF (2006). Preparations and photocatalytic hydrogen evolution of N-doped TiO2 from urea and titanium tetrachloride. Int J Hydrogen Energy 31:13261331.
본 발명의 목적은 가시광선 조사를 통해 약물 용출이 조절되고, 원격으로 용출이 조절되는 약물 전달 시스템을 갖는 새로운 지각과민처치제를 제공하는 것이다.
본 발명에서는 질소-도핑 티타니아(N-도핑 TiO2) 또는 질소-도핑 티타니아(N-도핑 TiO2) 및 항균제를 함유하는 지각과민처치용 조성물 및 이의 제조방법을 제공함으로써, 상기 과제를 해결하였다.
수열 처리를 통해 제조된 N-도핑 TiO2 나노입자의 특성분석(나노입자의 확산 흡광도, 크기 및 형성, 나노입자 표면의 화학적 구조)을 수행하였다. 또한, 두 가지 종류의 항균 약물(클로르헥시딘 및 세틸피리디늄 클로라이드(CPC))를 함유하는 N-도핑 TiO2 지각과민처치제의 약물 용출 특성, 항균 활성 및 생체적합성 테스트를 수행하였다.
1) 스터디 1: N-도핑 TiO2 나노입자의 제조 및 특성분석
가시광선 조사에 의해 광촉매 활성을 나타내는 N-도핑 TiO2를 수열 처리를 통해 합성하였다. N-도핑 TiO2의 특성분석을 UV-Vis 분광광도기, TEM, XRD 및 XPS 분석을 통해 수행하였다.
2) 스터디 2: N-도핑 TiO2 항균 지각과민처치제의 생물학적 평가
두 가지 종류의 항균 약물, 클로르헥시딘 및 CPC를 N-도핑 TiO2 지각과민처치제에 다른 농도로 첨가하였다. 본 발명에 따른 지각과민처치제의 원격-조절되는 항균 효과 및 생체적합성을 평가하기 위하여 가시광선 조사 또는 비조사시 약물 용출 시험, 항균 한천 확산 시험 및 세포독성 시험을 수행하였다.
본 발명의 발명자는 상기 스터디를 통해 본 발명에 따른 N-도핑 TiO2 나노입자 및 항균약물을 더 포함하는 N-도핑 TiO2 나노입자가 가시광선 조사에 의해 약물 용출을 원격제어할 수 있다는 점, 서방형 약물 용출이 가능하다는 점, 가시광선 조사 시 S. mutans 살균능이 우수하다는 점, 클로르헥시딘과 CPC의 항균효과를 향상시킨다는 점, 세포독성을 나타내지 않는다는 점을 규명함으로써, 본 발명을 완성하게 되었다.
본 발명에서는 치과용 가시광선 광중합 조사에 의해 약물이 용출되는 광-원격제어 서방형 약물용출 지각과민처치제 제공을 위해서 가시광선 광촉매효과가 있는 질소 도핑 TiO2 나노입자를 제조하고 특성(물질의 흡광도, 입자의 크기 및 형태, 결정성, 표면의 화학성분 및 화학결합 구조)을 분석하였으며, 질소 도핑 TiO2 함유 지각과민처치제를 제조한 후 2 종의 항균약물 (클로르헥시딘 및 세틸피리디늄 클로라이드(CPC))를 첨가하여 가시광선 조사 전/후의 약물용출량, 항균효과 및 세포독성 등을 평가하였으며 그 결과는 다음과 같다.
우선 확산 UV-Vis 분광광도기 측정결과, 130℃에서 12시간 수열처리한 TiO2 나노입자 실험군이 다른 실험군에 비하여 치과용 광중합기의 주 파장인 470 nm 에서 가장 높은 흡수단을 나타내었으며, 투과전자현미경 (TEM) 관찰 결과, 수열처리에 의한 새로운 나노입자 형성 및 기존 입자의 거대화가 관찰되었으나, 새로운 나노입자의 낮은 결정화도로 인하여 X-선 결정분석 (XRD) 결과에서는 새로운 결정상이 관찰되지 않았다. 또한 광전자분광기 (XPS)를 이용한 Ti2p, N1s, C1s, 및 O1s 결합 스펙트럼 분석결과, 수열처리에 의해 도핑된 질소는 TiO2의 치환형 자리에 분포되어 있는 것을 확인하였다.
또한 약물 용출 실험 결과, 2종 (클로르헥시딘 및 세틸피리디늄 클로라이드(CPC))의 항균약물이 함유된 질소 도핑 TiO2 지각과민처치제는 전형적인 서방형 약물 용출 거동을 나타내었고, 치과용 광중합기의 가시광선 조사 유무에 의해 유의차 있는 약물 용출량을 나타내었다 (P<0.05). 2 종의 세균 (Streptococcus mutansStaphylococcus aureus)을 이용한 한천 배지 항균실험 결과, 항균효과는 2 종의 항균약물의 농도에 비례하여 증가하였고, 하나의 실험 조건 (CPC 0.5%)을 제외한 모든 실험 조건에서 가시광선을 조사한 실험군의 S. mutans 살균능이 광을 조사하지 않은 실험군의 S. mutans 살균능에 비하여 유의하게 높았다 (P<0.05). S. aureus의 살균능은 3개의 군 (클로르헥시딘 0.1, 0.5% 및 CPC 0.1%)을 제외한 나머지 실험군에서 가시광선 조사 유무에 따라 유의성 있는 차이를 나타냈다(P<0.05). 또한 우치를 이용한 항균실험 결과, 2 종의 항균약물 자체만으로는 우치에서 배양된 세균을 전부 사멸시킬 수 없었으나, 질소 도핑 TiO2 는 항균약물의 존재 여부에 상관없이 가시광선 조사에 의해 S. mutans를 전부 사멸시켰다. 한천중층법을 이용한 세포독성시험 결과, 클로르헥시딘은 농도에 상관없이 독성이 없었으나, CPC는 전체 실험 농도에서 심한 독성을 나타내었다.
이상의 결과로, 질소도핑 TiO2에 가시광선을 조사함으로써, 광촉매 활성능을 나타내며, 이로써 약물 용출을 촉진시키고 클로르헥시딘과 CPC의 항균효과를 향상시키는 것을 확인하였다. 또한, 질소도핑 TiO2 나노입자는 세포독성을 나타내지 않았다. 따라서 질소도핑 TiO2 나노입자는 자외선에서만 활성을 나타내는 기존의 한계를 극복함으로써 치과재료의 새로운 영역에 융합기술 개발을 가능하게 하고 환자의 동통을 줄여 줄 뿐만 아니라 치아우식에 의한 2차적인 질환까지도 예방할 수 있을 것으로 사료된다.
도1은 반도체 물질에서 광촉매 반응의 원리를 나타낸 그림이다.
도2는 몇몇 반도체 광촉매의 밴드 갭 및 밴드 엣지 포지션을 나타낸 그림이다.
도3은 롱테이퍼 클로져(long tapered closure)를 갖는 테플론-라인 스테인레스 스틸 고압 반응기를 도시한 것이다.
도4a는 치과용 광중합기의 주파장에 의해 가시광선이 조사되는 것을 나타낸 것이고, 도4b는 마이크로플레이트 리더를 나타낸 것이다.
도5a는 우치를 표면연마하는 사진, 도5b는 우치 항박테리아 시험을 수행하기 위한 표면연마된 우치 시료를 나타내는 사진이다.
도6은 TiO2 및 각각 130℃에서 12시간 동안, 170℃에서 12시간 동안 및 130℃에서 48시간 동안 수열 기술에 의해 제조된 N-도핑 TiO2의 UV-vis 흡광도 스펙트럼을 나타낸 것이다.
도7은 TEM 이미지를 나타낸 것으로서, (a) TiO2 및 (b)는 130℃에서 12시간 동안, (c)는 130℃에서 48시간 동안 및 (d)는 170℃에서 12시간 동안 수열 기술로 제조된 N-도핑 TiO2의 TEM 이미지이다.
도8은 입자 크기 히스토그램을 나타낸 것으로서 (a)는 TiO2 및 (b) 130℃에서 12 h 동안, (c) 130℃에서 48 h 동안, 및 (d) 170℃에서 12 h 동안 수열 기술에 의해 제조된 수열 기술에 의해 제조된 N-도핑 TiO2의 입자 크기를 나타내는 히스토그램이다.
도9는 TEM-EDX 이미지를 나타낸 것으로서, (a)는 TiO2 (b) 130℃에서 12 h 동안, (c) 130℃에서 48 h 동안, 및 (d) 170℃에서 12 h 동안 수열 기술에 의해 제조된 N-도핑 TiO2의 이미지를 각각 나타낸다.
도10은 XRD 패턴을 나타낸 것으로서, (a)는 TiO2 (b) 130℃에서 12 h 동안, (c) 130℃에서 48 h 동안, 및 (d) 170℃에서 12 h 동안 수열 기술에 의해 제조된 N-도핑 TiO2의 XRD 패턴을 각각 나타낸다.
도11은 TiO2 및 N-도핑 TiO2 나노입자(130℃에서 12시간)의 (a) C1s, (b) N1s, (c) Ti2p 및 (d) O1s XPS 스펙트럼을 나타낸다.
도12는 각기 다른 농도의 N-도핑 TiO2 클로르헥시딘의 용출량을 나타낸 것이다(가시광선 조사 없었음).
도13은 각기 다른 농도의 N-도핑 TiO2 클로르헥시딘의 용출량을 나타낸 것이다(가시광선 1분간 조사한 경우).
도14는 각기 다른 농도의 CPC의 용출량을 나타낸 것이다(가시광선 조사 없었음).
도15는 각기 다른 농도의 N-도핑 TiO2 CPC의 용출량을 나타낸 것이다(가시광선 1분간 조사한 경우).
도16은 다양한 표면 처리가 된 우치상에서 배양한 S. mutans의 SEM 이미지이다:
(a) 우치 (박테리아 씨딩 전)
(b) 박테리아 배양된 우치
(c) N-도핑 TiO2 지각과민처치제(가시광선 조사가 없었음)
(d) N-도핑 TiO2 지각과민처치제(가시광선 1분간 조사한 경우)
(e) 2% 클로르헥시딘을 함유하는 N-도핑 TiO2 지각과민처치제(가시광선 조사가 없었음)
(f) 2% 클로르헥시딘을 함유하는 N-도핑 TiO2 지각과민처치제(가시광선 1분간 조사한 경우)
(g) 2% CPC를 함유하는 N-도핑 TiO2 지각과민처치제(가시광선 조사가 없었음)
(h) (f) 2% CPC를 함유하는 N-도핑 TiO2 지각과민처치제(가시광선 1분간 조사한 경우)
도17은 2% 클로르헥시딘을 함유하는 N-도핑 TiO2 지각과민처치제의 가시광선 조사 및 비조사 그룹의 항박테리아 저해 존을 나타낸 것이다(S. mutans).
도18은 2% CPC를 함유하는 N-도핑 TiO2 지각과민처치제의 가시광선 조사 및 비조사 그룹의 항박테리아 저해 존을 나타낸 것이다(S. mutans).
도19는 2% 클로르헥시딘을 함유하는 N-도핑 TiO2 지각과민처치제의 가시광선 조사 및 비조사 그룹의 항박테리아 저해 존을 나타낸 것이다(S. aureus).
도20은 2% CPC를 함유하는 N-도핑 TiO2 지각과민처치제의 가시광선 조사 및 비조사 그룹의 항박테리아 저해 존을 나타낸 것이다(S. aureus).
도21은 실험군의 존/사멸 인덱스의 비쥬얼 및 광학 마이크로스코프 이미지를 나타낸 것으로서; (a) 대조군, (b) 음성 대조군, (c) 양성 대조군, (d) N-도핑 TiO2 지각과민처치제, (e) 2% 클로르헥시딘을 함유하는 N-도핑 TiO2 지각과민처치제, (f)는 2% CPC를 함유하는 N-도핑 TiO2 지각과민처치제이다.
도22는 (a) 모노에탄올아민(MEA), (b) 디에탄올아민(DEA), (c) 트리에탄올아민(TEA)의 화학구조를 나타낸 것이다.
도23은 (a) 친입형 고용체(interstitial solid solution) 및 (b) 치환형 고용체(substitutional solid solution)의 모식도를 나타낸 것이다.
본 발명은 이산화티타늄 입자 표면에 질소가 도핑되어 형성된, 질소가 도핑된 이산화티타늄 나노입자; 및 약물을 함유하는, 가시광선 조사에 의해 약물을 서방형으로 용출(sustained release)시키는, 약물 서방형 용출 조성물에 관한 것이다.
본 발명의 일 양태에서, 약물은 치과용 지각과민처치제일 수 있으며, 지각과민처치제는 구체적으로 글루타르알데하이드(glutaraldehyde), 벤조카인, 질산칼륨, 플루오르화 염, 염화스트론튬, 염화칼륨, 이염기성 시트르산나트륨, 옥살산철, 알루미늄 락테이트, 질산나트륨, 질산리튬, 질산마그네슘, 질산칼슘, 시트르산나트륨, 플루로닉 겔에서의 이염기성 시트르산 나트륨, 주석산 칼륨, 수산화칼슘, 이염기성 인산칼슘, 아세트산 스트론튬, 일불소인산 나트륨, 포름알데하이드, 비사볼롤(bisabolol), 아스피린, 이부프로펜, 코데인, 아세트아미노펜, 살리실산나트륨, 살리실산 트리에탄올아민 또는 이들의 조합일 수 있고, 이를 하이드록시에틸 메타크릴레이트(hydroxyethyl methacrylate) 및 물과 혼합한 것을 사용할 수 있다.
본 발명의 일 양태에서, 지각과민처치제 이외에 필요에 따라 치아 미백제, 항미생물제, 항생제, 항충치제(anticavity agent), 항플라그제, 항치석제, 구강건조완화제 또는 구취억제제가 함유될 수 있으며, 치아 미백제로는 카르바마이드 퍼옥사이드, 과산화수소, 탄산수소나트륨 및 이들의 조합이; 항미생물제 및 항생제로는 치과용으로 사용되는 통상의 항미생물제 또는 항생제가; 항충치제로는 플루오르화물, 플루오르화 나트륨, 일불소인산나트륨, 니코메탄올 플루오르하이드레이트, 플루오르화 암모늄 및 플루오르화 칼륨 또는 이들의 조합이; 항플라그제로는 알코올, 트리클로산(triclosan), 상귀나린(sanguinarine), 헥세티딘(hexetidyne), 시트르산 아연(zinc citrate), 플루오라이드(fluoride), 라우릴 황산 나트륨(lauryl sodium sulfate), 인산 아연(zinc phosphate), 아세트산 아연(zinc phosphate), 아스파르트산 아연(zinc aspartate), 징크아세틸메치오네이트(zinc acetylmethionate), 징크 시트레이트 트리하이드레이트(zinc citrate trihydrate), 타닌산 아연(zinc tannate), 글루콘산 아연(zinc gluconate), 징크 락토비오네이트(zinc lactobionate), 징크 말토비오네이트(zinc maltobionate), 징크 하이드롤라이즈드 콜라겐(zinc hydrolyzed collagen), 징크 피롤리돈 카르복실산(zinc pyrrolidone carboxylic acid)(아연 PCA), 징크 트리브로모살리실란피이드(zinc tribromosalicylanfiide), 카프릴산 아연(zinc caprylate), 옥토산 아연(zinc octoate), 징크 라우레이트(zinc laurate), 징크 미리스테이트(zinc myristate), 징크 스테아레이트(zinc stearate), 올레산 아연(zinc oleate), 탄산 아연(zinc carbonate), 붕산 아연(zinc borate), 징크 실리케이트(zinc silicate), 황화 아연(zinc sulfide), 황산 아연(zinc sulfate), 산화 아연(zinc oxide), 징크 페놀 술포네이트(zinc phenol sulfonate), 징크 스타네이트(zinc stannate), 징크 dl-락테이트(zinc dl-lactate), 트리하이드레이트(trihydrate), 징크 코코에이트(zinc cocoate), 탄닌산(tannic acid), 시트르산(citric acid), 아세트산(acetic acid), 젖산(lactic acid), 소듐 트리하이드로겐 피로포스페이트(sodium trihydrogen pyrophosphate), 디소듐 디하이드로겐 피로포스페이트(disodium dihydrogen pyrophosphate), 트리소듐 하이드로겐 피로포스페이트(trisodium hydrogen pyrophosphate), 트리소듐 하이드로겐 피로포스페이트 모노하이드레이트(trisodium hydrogen pyrophosphate monohydrate), 트리소듐 하이드로겐 피로포스페이트 노나하이드레이트(trisodium hydrogen pyrophosphate nonahydrate), 테트라소듐 피로포스페이트(tetrasodium pyrophosphate), 테트라소듐 피로포스페이트 데카하이드레이트(tetrasodium pyrophosphate decahydrate), 포타슘 트리하이드로겐 피로포스페이트(potassium trihydrogen pyrophosphate), 디포타슘 디하이드로겐 피로포스페이트(dipotassium dihydrogen pyrophosphate), 트리포타슘 하이드로겐 피로포스페이트(tripotassium hydrogen pyrophosphate), 테트라포타슘 피로포스페이트(tetrapotassium pyrophosphate), 디암모늄 디히드로겐 피로포스페이트(diammonium dihydrogen pyrophosphate), 트리암모늄 하이드로겐 피로포스페이트(triammonium hydrogen pyrophosphate), 트리암모늄 하이드로겐 피로포스페이트 모노하이드레이트(triammonium hydrogen pyrophosphate monohydrate), 칼슘 디하이드로겐 피로포스페이트(calcium dihydrogen pyrophosphate), 칼슘 피로포스페이트(calcium pyrophosphate), 테트라알루미늄 피로포스페이트(tetraaluminium pyrophosphate), 덱스트라나아제(dextranase), 뮤타나제(mutanase), 셀룰라아제(cellulase), 파파인(papain), 브로멜린(bromelin) 및 이들의 조합이; 항치석제로는 피로인산(pyrophosphate), 아연 염 및 이들의 조합이; 구강건조완화제로는 락토페린(lactoferrin), 라이소자임(lysozyme), 락토페록시다아제(lactoperoxidase), 면역글로불린(immunoglobulins), 콜루스트룸 추출물(colustrum extract), 글루코오스 옥시다아제(glucose oxidase), 아밀라아제(amylase), 아밀로글루코시다아제(amyloglucosidase), 글루코시다아제(glucoxidase), 파파인(papain), 펩티자임(peptizyme) 및 알로에 베라(aloe vera) 또는 이들의 조합이; 구취억제제로는 클로르헥시딘(chlorhexidine), 과산화수소, 비타민 B, 비타민 C, 중탄산나트륨, 허브(herb), 루(rue) 및 이들의 조합이 사용될 수 있다.
본 발명의 일 양태에서, 항균제를 추가로 함유할 수 있으며, 항균제로는 클로르헥시딘 또는 세틸피리디늄 클로라이드이 사용될 수 있으며, 보다 구체적으로 클로르헥시딘을 사용할 수 있다.
본 발명의 일 양태에서, 도핑된 질소는 이산화티타늄의 간질 자리(interstitial site)가 아닌 치환형 자리(substitutional site)에 분포하는 것을 특징으로 한다.
본 발명의 일 양태에서, 이산화티타늄 나노입자의 평균 직경은 10 내지 50 nm, 구체적으로 15 내지 35 nm이다.
본 발명의 일 양태에서, 상기 약물 서방형 용출 조성물은 치과용으로 사용될 수 있다.
본 발명의 일 양태에서, 상기 조성물은 치과용 약제, 타블렛, 츄잉검, 당제, 치약, 마우스린스, 구강 스프레이, 식품 등의 형태로 상품화될 수 있다.
본 발명은 또한 이산화티타늄 나노입자에 트리에탄올아민(TEA)을 넣고 교반하는 단계; 및 교반 단계 후 이산화티타늄에 질소를 도핑하는 수열반응 단계;를 포함하는, 질소가 도핑된 이산화티타늄 나노입자의 제조방법에 관한 것이다.
본 발명의 일 양태에서, 상기 수열반응 단계는 100 내지 200℃의 온도에서 10시간 이상, 구체적으로 120 내지 140℃의 온도에서 10시간 내지 24시간, 보다 더 구체적으로 약 130℃의 온도에서 약 12시간 동안 수행될 수 있다.
이하 본 발명을 실시예 및 실험예를 통해 보다 자세히 설명한다. 다만 하기 실시예 및 실험예는 본 발명의 이해를 돕기 위한 것이지 본 발명의 권리범위를 이로 한정하려는 의도는 아니다.
< 실험재료의 준비 >
두 가지 종류의 항균제, 클로르헥시딘 디아세테이트 염 수화물(Sigma, MO, USA) 및 세틸피리디늄 클로라이드 (CPC; Sigma, MO, USA)를 디메틸 술폭사이드(DMSO; Sigma, MO, USA)에 용해시켜 20 wt%의 스톡 용액을 제조하였다.
TiO2 나노입자(Aeroxide TiO2 P25, Evonik Industry AG, Germany)를 N-도핑 TiO2 나노입자를 제조하는 데 사용하였고, 트리에탄올아민(TEA; Sigma, MO, USA)이 질소 도핑 수열(hydrothermal) 처리 시 용매로 사용되었다.
실험에 사용된 우치는 3일 내 앞 부위에서 수집하였고, 수집된 우치는 4℃에서 증류수에 보관하였다.
< 실시예 실험예 >
실시예 1. N-도핑 TiO 2 나노입자의 제조
TiO2 나노입자 0.5 g을 TEA(Sigma, MO, USA) 용액 40 mL에 넣고, 혼합물을 균질하게 분산시킨 후 용액을 15분간 고-강도 초음파 처리하였다. 그 후 용액을 테플론-라인 스테인레스 고압 반응기(도 3 참조) 안에 넣고, 고압 반응기를 실링한 후 온도 및 시간 조건을 달리하여 수열(hydrothermal) 처리하였다(표 1 참조). 남은 용액을 실온에서 냉각하고, 2차 증류수로 세척한 후 침전물을 원심분리하고 37℃ 공기 중에서 24시간 동안 건조시켰다.
샘플명 처리온도 처리시간
110℃ 12 h 110℃ 12 h
130℃ 12 h 130℃ 12 h
150℃ 12 h 150℃ 12 h
170℃ 12 h 170℃ 12 h
실험예 1. N-도핑 TiO 2 의 특성
합성된 나노입자의 크기 및 형태는 200 kV의 조건에서 투과전자현미경(TEM; transmission electron microscope, Tecnai G2 F30, FEI company, Netherlands)으로 관찰되었다. 샘플의 결정구조는 X선 회절분석기(XRD; X-ray diffractometer; X'Pert PROMRD, PANalytical Co., USA)로 분석되었으며, 이 때 Cu Kα를 사용하였고 30 kV/30 mA, 20~80˚의 조건에서 측정되었다. 샘플의 확산성 UV-Vis 스펙트럼 적분구 장치(integrating sphere assmbly)가 장착된 UV-Vis 분광광도기(Solidspec-3700, Shimadzu Co., Japan)로 측정되었고, BaSO4를 대조군으로 사용하였다. 샘플 중 Ti2p, C1s, N1s, 및 O1s의 결합에너지 분석은 X-선 광전자분광분석기(XPS; K-Alpha ESKA system; ??Thermo Co, USA)를 사용하여 분석하였다. 각 원소의 결합에너지(binding energy)는 C1s의 284.9 eV를 기준으로 하였다.
실시예 2. N-도핑 TiO 2 를 함유하는 항균성 지각과민처치제( desensitizer )의 제조
지각과민처치제를 통상의 지각과민처치제 조성물(Gluma Desensitizer, Heraeus Dental, Germany)에 기초하여 제조하였다. 본 실시예에서 제조된 지각과민처치제 조성물의 상세 조성은 다음 표2에 나타낸 바와 같다.
구성성분 양 (%)
글루타르알데하이드(Glutaraldehyde) 5
HEMA (Hydroxyethyl methacrylate) 35
60
지각과민처치제의 모든 구성성분을 30분 동안 격렬하게 혼합하고, 혼합된 용액을 다음 실험을 위해 4에서 보관하였다. N-도핑 TiO2 0.1 wt%를 지각과민처치제에 첨가하고, TiO2의 농도는 제조된 샘플의 균질성 및 안정성 때문에 변화시키지 않았다. 항박테리아 효과 및 생체적합성을 나타내는 클로르헥시딘 및 CPC의 농도를 최적화하기 위하여, 0.1, 0.5, 1, 및 2%의 각 약물을 N-도핑 TiO2 지각과민처치제에 첨가하였다. 여기에서 N-도핑 TiO2 지각과민처치제는 대조군으로 사용되었다.
실험예 2. N-도핑 항균성 지각과민처치제의 생물학적 평가
(1) 약물 용출 시험
각 용액에 대한 표준 커프-피팅을 구하기 위하여 클로르헥시딘 및 CPC의 표준 용액 흡광도를 CPC의 경우 310 nm 파장에서, 클로르헥시딘의 경우 350 nm의 파장에서 UV-Vis 분광광도기(UV mini-1240, Shimadzu Co., Japan)로 측정하였다. 대조군 및 다양한 실험군은 상기 기재된 바에 따라 제조하였다. 0.1, 0.5, 1, 및 2% 클로르헥시딘 및 CPC를 함유하는 실험 시료 60 μL를 48-웰 플레이트의 웰에 첨가하고, 37℃에서 48시간 동안 건조시켰다. 약물 용출 양상을 시험하기 위하여, 1 mL의 2차 증류수를 모든 그룹의 샘플을 함유하는 48-웰 플레이트의 각 웰에 첨가하였다. 모든 실험군 중, 가시광선 조사 군에는 1분 간 가시광선을 조사하였다. 치과용 광중합기의 주(dental curing unit, XL 3000, 3M Co., USA)가 가시광선 조사에 사용되었다(도 4 참조).
실험 시료들을 2차 증류수에 침지시키고, 37℃ 인큐베이터에 다양한 배양시간(1 h, 6 h, 24 h, 72 h, 1 wk, 및 2 wk) 동안 저장하였다. 배양 후, 각 용액의 상등액을 수집하여 상등액의 흡광도를 ELISA 마이크로플레이트 리더(Thermo-Max, Thermo Co., USA)로 측정하였으며, CPC의 경우 310 nm 파장, 클로르헥시딘의 경우 350 nm 파장에서 측정하였다.
(2) 우치 항박테리아 시험
우치근(root of bovine tooth)의 경우 시멘텀(cementum) 및 에나멜의 변연부 계면(marginal interface)를 삭제하였다. 우치의 펄프를 제거하고 준비된 우치를 유틸리티 왁스로 마운트하였다. 마운트된 우치의 경우 상아질(dentin) 및 에나멜의 경계선 아래 0.5 mm를 노출시키고, 그 후 상아질 부위를 균일한 크기로 제조하기 위하여 600 그리트(grit) SiC 페이퍼로 표면연마하였다(도 5 참조). 표면연마된 우치를 2차 증류수에 4℃에서 보관하였다. 항균 활성을 시험하기 위하여 우치의 상아질을 ① 0.1% N-도핑 TiO2, ② 2% 클로르헥시딘 및 0.1% N-도핑 TiO2, 또는 ③ 2% CPC 및 0.1% N-도핑 TiO2을 함유하는 지각과민처치제로 코팅하여 3가지 유형의 실험 시료를 제조하였다. 코팅되지 않은 우치를 대조시료로 사용하였다. 우치를 사용한 항박테리아 활성 시험에 대한 상세한 정보는 하기 표3에 나타낸 바와 같다.
그룹 정의
대조군 어떠한 처리도 하지 않은 우치(지각과민처치제 코팅되지 않음)
그룹 1 0.1% N-도핑 TiO2만 함유하는 지각과민처치제로 코팅된 우치
그룹 2 0.1% N-도핑 TiO2 및 2% 클로르헥시딘을 함유하는 지각과민처치제로 코팅된 우치
그룹 3 0.1% N-도핑 TiO2 및 2% CPC를 함유하는 지각과민처치제로 코팅된 우치
Streptococcus mutans를 1×108 CFU/mL의 접종 밀도로 시료(우치의 상아질 부위)의 표면에 접종하고, 37℃에서 24시간 동안 보관하였다. 24시간 배양한 후, 일부 시료에 1분 간 가시광선을 조사하였다. 콜로니의 형성 및 박테리아 분포를 주사전자현미경(FE-SEM; field emission scanning electron microscope; S4800, Hitachi/Horiba Co., Japan)을 사용하여 관찰하였다.
(3) 한천 확산 항균 시험
한천 확산 항균시험을 한천 웰 기술을 이용하여 Muller Hinton Agar medium에서 수행하였다. Staphylococcus aureus (SA; ATCC, 209) 및 Streptococcus mutans (SM; ATCC, 25175)을 사용하였다. 한천을 100 mm 페트리 디쉬의 표면에 5 mm의 두께로 고르게 분포시켰다. 약 0.5 mL의 박테리아 현탁액을 한천 플레이트의 표면에 묻혔다. 박테리아 현탁액의 농도(CFU)는 1×105 CFU/mL로 하였다. 항균 시험용 페이퍼 디스크(직경: 6 mm)를 페트리 디쉬의 각 4분위 수 부위의 중간에 놓았다. 시험 용액 6 μL를 페이퍼 디스크 상에 적하하고, 페이퍼 디스크를 시험 용액을 적용한 후 5분이 경과한 후 한천 플레이트로부터 제거하였다. 한천 플레이트를 37℃에서 24시간 동안 배양하였다. (항균)물질 주변의 저해존의 직경을 mm 단위로 측정하였다. 시험은 각 물질 당 4회 반복하여 실시하였다.
(4) 아가확산 시험(세포독성 시험)
세포독성 시험을 한천중층법 시험을 이용하여 수행하였다(ISO 7405:2008 entitled with "Dentistry -- Evaluation of biocompatibility of medical devices used in dentistry." Established L929 cell lines from American Type Culture Collection (Rockville, MD)). 세포 1 mL 당, 5%의 FBS를 함유하는 이글배지(Eagleminimum essential medium) 20 mL를 첨가하고 혼합하였다. 세포를 100 mm 세포 배양 디쉬에 플레이팅하고, 37℃, 5% CO2에서 1주 동안 3×105 cells/mL의 밀도로 배양하였다. 농도가 3×105 cells/mL를 초과하는 경우, 세포를 계대 배양하였고, 배양을 반복하였다. 한천 배지를 50% 한천 및 5% FBS를 함유하는 이글배지 50%로 제조하였다. 한천 배지에서, 이글배지를 동량의 FBS로 대체하고 30분간 실온에 두어 겔이 되게 하였다. 한천 배지를 뉴트럴레드 지시 용액으로 30분 간 염색하였다. 염색 용액을 제거한 후, 10×10 mm2 사이즈의 직사각형 시료 2개를 음성(폴리에틸렌) 및 양성(라텍스) 대조군과 함께 한천 배지로 채운 각 페트리 디쉬상에 오버레이 하였다. 각 세포 배양 디쉬를 그 후 37℃에서 5% CO2하 24시간 동안 배양하였다. 24시간 후 용해지표(lysis index)에 대한 탈색지표(decoloration index) 비와 동일한 세포 반응에 따라 평가하였다. 탈색지표는 시료가 위치하는 곳의 탈색된 세포 존의 등급에 의해 검출되었고, 용해지표는 시료가 위치하는 곳의 세포 라이시스 등급에 의해 측정되었다. 반응지표(response index)는 탈색지표에서 융해지표로 나눈 값으로 표시된다. (표 4, 5 및 6).
탈색지표 기준
탈색 지표 설 명
0
1
2
3
4
5
탈색 관찰되지 않음.
시험 재료에만 탈색 부분 관찰
시험 재료의 5.0 mm 이하 탈색 부분
시험 재료의 10.0 mm 이하 탈색 부분
시험 재료의 10.0 mm 이상 탈색 부분
배지 전체에 탈색 부분
용해지표 기준
용해 지표 설 명
0
1
2
3
4
5
세포 용해 관찰되지 않음.
20 % 이하의 세포 용해
20~40 %의 세포 용해
40~60 % 세포 용해
60~80 % 세포 용해
80 % 이상의 세포 용해
반응지표 및 세포독성
지 표 세포 반응 설 명
0
1
2
3
0/0
1/1
2/2~3/3
4/4~5/5
비세포 독성
경미한 세포 독성
중등도 세포 독성
심한 세포 독성
* 통계학적 분석
모든 약물 용출 시험 데이터 및 한천 확산 항균 시험 데이터는 평균값 표준편차로 표현하였고 one-way ANOVA (SPSS 12.0; SPSS GmbH, Germany) 및 post-hoc Duncan range test를 이용하여 통계학적으로 분석하였다. P값이 0.05 미만이라면 통계학적으로 유의한 차이인 것으로 간주하였다.
< 실험 결과 >
1) 확산 UV-Vis 흡광도
TiO2 및 N-도핑 TiO2의 확산 반사율에 의해 얻어진 UV-Vis 흡광도 스펙트럼을 도 10에 나타냈다. TiO2 샘플의 UV-Vis 흡광도 스펙트럼에서, 순수 TiO2에서 UV 영역에서 강한 흡수 밴드가 관찰되었다. 반대로 N-도핑 TiO2에서 400 및 600 nm 사이 가시광선 영역에서 N-도핑 TiO2에서 전형적인 흡수 특성인 의미 있는 흡수 테일이 존재했다. 분명히, 수열 조건에서 질소로 TiO2를 개질한 경우 흡수 영역이 더 긴 파장, 600 nm 영역으로 쉬프트되는 것으로 나타났다(Irie et al., 2003; Sato, 1986).
UV-Vis 흡광도 스펙트럼 결과를 통해, 다른 실험군에 비하여 130에서 12시간 동안 수열처리된 N-도핑 TiO2는 치과용 광중합기의 주 파장인 470 nm의 파장에서 가장 높은 흡수단을 보였다. 따라서 130℃에서 12시간 동안 수열처리한 N-도핑 TiO2에 대해 그 특징을 더 측정하였다.
2) TEM 관찰
도7 및 도8은 TEM 이미지 및 다른 온도 및 시간 조건에서 수열 처리된 TiO2 나노입자의 크기 히스토그램을 보여준다. 도8에 나타낸 바와 같이, TiO2 나노입자는 15 내지 35 nm의 사이즈 범위에서 불규칙한 구형 모양을 나타낸다. 수열 처리 후, TiO2의 입자 크기 분포는 수열 처리한 온도 및 시간 조건에 상관없이 도8에 나타낸 바와 같이 감소하였으나, TiO2의 평균 크기는 표7에 나타낸 바와 같이 변화가 없었다. 그러므로 나노입자가 새로이 형성되고, 기존에 존재하던 나노입자가 수열처리 동안 결정 성장을 통해 거대화되었다. 추가로, 새로이 형성된 작은 나노입자들의 모양은 거대화된 나노입자보다 더욱 균일하게 나타났다.
도9 및 표8은 각각 다른 온도 및 다른 시간 조건에서 수열 처리된 TiO2 나노입자의 TEM-EDX 이미지 및 TEM-EDX 분석의 정량결과를 나타낸 것이다. TEM-EDM 이미지로부터, N의 메인 피크가 분명하지 않았는데 이는 N 피크와 O 피크의 오버랩핑 때문인 것으로 보인다. 또한, 130℃에서 48시간 수열 처리된 시료에서 N 값은 다른 시료의 N값보다 더 높았다. TEM-EDX 분석 결과 및 확산 UV-Vis 흡광도 스펙트럼 결과에 차이가 있고, 그 차이는 아마도 TEM-EDX 분석 메커니즘에 기인하는 것으로 보인다. TiO2는 공기 중에서 가스 및 유기 화합물을 흡수하여 많은 불순물이 TiO2의 표면에 침착된다. TEM-EDX는 물리적 흡수, 공유 결합 및 원소 도핑과 같은 결합 형태와 상관없이 TiO2 상에 모든 질소가 검출될 수 있다. 따라서 TEM-EDX 분석 및 확산 UV-Vis 흡광도 스펙트럼 사이에는 차이가 있을 수 있다.
TEM 이미지로부터 계산된 실험시료의 입자 크기
샘플명 입자 크기
P25 28.79 ± 7.24
130℃ 12 h 27.61 ± 8.44
130℃ 48 h 26.65 ± 9.62
170℃ 12 h 27.47 ± 8.56
TEM-EDX 분석의 정량결과
샘플 원소 (wt%)
N O Ti
P25 12.35 ± 1.23 42.95 ± 3.85 44.70 ± 2.62
130℃ 12 h 12.53 ± 2.85 35.88 ± 9.53 51.59 ± 6.68
130℃ 48 h 13.83 ± 3.03 37.72 ± 4.24 48.45 ± 1.21
170℃ 12 h 10.43 ± 2.17 33.66 ± 3.36 55.91 ± 5.52
3) XRD 패턴의 분석
각 TiO2 샘플의 XRD 패턴을 도10에 나타냈다. 모든 샘플에서 아나타제와 루타일이 혼재된 상으로 존재하는 것으로 관찰되었다. 그러나 N-유래 피크는 N-도핑 TiO2에서 관찰되지 않았다. 따라서 질소 도핑은 TiO2의 결정형 구조에 변화를 야기하지 않음을 알 수 있었다(Sathish et al., 2005; Yuan et al., 2006).
4) XPS 분석
TiO2 및 N-도핑 TiO2 샘플의 XPS N1s 및 C1s 스펙트럼을 도 11에 나타냈고, Ti 2p3 /2 및 2p1 /2 피크가 459.2 및 464.8 eV에 각각 나타났으며, TiO2에서 O-Ti-O의 Ti 2p 피크에 기인한 것으로 보인다(Chen and Burda, 2004; Shathish et al., 2005, Wong et al., 2006). 일반적으로 대부분의 문헌에서는 N-도핑 TiO2에서 Ti 2p의 결합 에너지가 더 낮고, Ti 2p3 /2 및 2p1 /2의 레벨이 0.5 - 2 eV까지 감소할 수 있다는 데 동의한다. 본 실험에서, 두 개의 다른 Ti 피크가 2p3 /2 및 2p1 /2 레벨에서 관찰되었다. 2p3 /2 및 2p1 /2 레벨 피크의 다른 쌍이 456.1 및 462.0 eV에서 보였는데, 이는 N-도핑 TiO2에서 N-Ti-N 또는 O-Ti-N의 Ti 2p 피크에 해당될 수 있다(TiN에서 Ti 2p3 /2 및 2p1 /2 레벨은 455.1 및 461.0 eV에 나타남)(Chen and Burda, 2004; Sakthivel et al., 2006; Wong et al., 2006). 이는 TiO2 라티스(lattice)가 높은 농도의 질소와 일관되게, 실험에서 N-치환에 대하여 괄목할 만큼 개질되었다는 점을 시사한다. 도11d에서, 산소 1s 코어 레벨 피크가 530 및 527 eV 근처에서 나타났고, 이는 산소의 성질이 다르다는 것을 가리킨다. TiO2에서 Ti-O-Ti 링키지로부터의 530.3 eV에서 O 1s 피크는 최근 보고된 것의 값과 일치하였다. 그러나 N-도핑 TiO2에서 O 1s의 더 낮은 결합에너지는 이전에 보고된바 없다. 본 발명에서는 N-도핑 TiO2의 Ti-O-N-O 링키지가 527.2 eV에서 O 1s 피크를 나타낸다는 점, 이는 TiO2 라티스에서 티타늄이 질소 치환되는데 기인한다는 점을 밝혔다. 이는 N 1s 분석에 의해 더 뒷받침될 수 있다. 도11b를 보면, N-도핑 TiO2로부터의 N1s 코어 레벨이 397.4, 400.3, 및 402.5 eV에서 세 개의 다른 피크를 나타냈다. 최근 연구자들은 Ti-N-Ti 링키지의 특징적 피크로서 396~398 eV에서의 N 1s 피크가 나타난다는 점에 동의하며, 이는 질소 원자가 TiO2 라티스에 치환적으로 도핑된 것을 나타낸다(Shathish et al., 2005; Chen and Burda, 2004; Shathish et al., 2005, Wong et al., 2006). 따라서 397.4 eV에서 N 1s 피크는 N-도핑 TiO2에서 Ti-N-Ti-O 또는 Ti-N-Ti-N 링키지에 기인할 수 있고, (397.5 eV에서 N1s 피크는 TiN에 기인) 라티스에서 산소가 질소 치환되는데서 기인한 것일 수 있다.
2. N-도핑 TiO 2 항균 지각과민처치제의 생물학적 평가
1) 약물 용출 시험
약물 용출 시험 결과는 모든 실험군에서 서방형 용출(sustained release)의 양상을 나타냈고, 가시광선-조사 군으로부터 용출된 약물의 양은 조사하지 않은 군에 비하여 보통 더 높은 것으로 나타났다(표 9, 10, 11, 12, 도 12, 13, 14, 15). 배양기간의 함수에 따른 클로르헥시딘 및 CPC 용출 결과로부터, 현저한 차이점이 가시광선 조사군 및 비조사군 사이에 관찰되었고, 그 시점은 배양기간 2주인 시점이었다(P<0.05).
(하기 표9는 증류수에 담근 후 클로르헥시딘의 용출량을 측정한 결과임)
Figure pat00001
* 동일한 문자를 갖는 첨자는 현저한 차이가 없었음 (p>0.05)
* 상이한 첨자문자는 각 약물 함량 내의 시간주기 중 현저히 상이한 것을 나타냄(p>0.05)
(하기 표10은 증류수에 담근 후 N-도핑 TiO2 클로르헥시딘의 용출량 측정결과임)
Figure pat00002
* 동일한 문자를 갖는 첨자는 현저한 차이가 없었음 (p>0.05)
(하기 표11은 증류수에 담근 후 CPC의 용출량을 측정한 결과임)
Figure pat00003
* 동일한 문자를 갖는 첨자는 현저한 차이가 없었음 (p>0.05)
(하기 표12는 증류수에 담근 후 N-도핑 TiO2 CPC의 용출량 측정결과임)
Figure pat00004
* 동일한 문자를 갖는 첨자는 현저한 차이가 없었음 (p>0.05)
2) 우치 시험
S. mutans를 사용한 우치 시험 결과로부터, 클로르헥시딘 또는 CPC 그 자체는 우치에 배양된 모든 박테리아를 죽일 수는 없는 것으로 보인다(도16e 및 g 참조). 그러나 N-도핑 TiO2 지각과민처치제는 항균 약물의 존재여부와 상관없이 가시광선을 조사하였을 때 모든 박테리아를 제거하는 것으로 나타났다. 따라서 가시광선 영역에서 N-도핑 TiO2의 광촉매 활성은 TiO2 표면에 침착된 박테리아를 포함하여, 어떤 물질도 근절하는데 충분하다는 점을 알 수 있다.
3) 한천 확산 항균 시험
표13, 14 및 도 17, 18, 19, 20에 나타낸 바와 같이, 배양 24시간 후 가시광선-조사군의 항균 저해존은 클로르헥시딘 또는 CPC의 농도와 상관없이 가시광선-비조사군의 저해존보다 일반적으로 더 큰 것으로 나타났고, 한 조건을 제외하고 두 그룹 사이에 현저한 차이가 있는 것으로 나타났다(도 17, 18, 19, 20의 별표 참조). 또한 항균 저해존 값은 클로르헥시딘 또는 CPC의 농도에 비례하여 증가하는 것으로 나타났다.
(하기 표13은 항균 저해존의 직경(평균값 ± SD) 측정결과임)
Figure pat00005
* 동일한 문자를 갖는 첨자는 현저한 차이가 없었음 (p>0.05)
(하기 표14는 항균 저해존의 (평균값± SD) (S. aureus) 측정결과임)
Figure pat00006
* 동일한 문자를 갖는 첨자는 현저한 차이가 없었음 (p>0.05)
4) 한천중층법 시험(세포독성 시험)
클로르헥시딘 또는 CPC가 로딩된 지각과민처치제의 세포독성을 측정하기 위하여 한천중층법 시험을 수행하였고, 세포사멸 및 파괴(lysis and demolition)된 존을 측정하였다(표 15, 도 21). 한천중층법 시험 결과로부터, 클로르헥시딘은 그 농도와 관계없이 어떠한 독성도 나타내지 않았다. 그러나 모든 CPC 로딩 실험군에서 심각한 세포독성이 나타났고, 심지어 낮은 농도의 CPC에서도 낮은 스코어의 존 인덱스가 나타났다.
N-도핑 TiO2 나노입자의 함입 면에서, 나노입자들은 L929 세포의 세포독성에 영향을 미치지 않았고, 세포독성은 항균 약물의 존재 결과로 인한 것이었다.
한천중층법 시험에 의해 측정된 실험군의 세포독성 결과
존 인덱스
(Zone index)
용해지표
(Lysis index)
반응지표
(Response index)
스코어
음성대조군 0 0 0/0 None
클로르헥시딘 0.1% 0 0 0/0 None
0.5% 0 0 0/0 None
1% 0 0 0/0 None
2% 0 0 0/0 None
CPC 0.1% 2 5 2/5 Severe
0.5% 3 5 3/5 Severe
1% 4 5 4/5 Severe
2% 4 5 4/5 Severe
< 결론 >
1. 확산 UV-Vis 분광광도기 측정 결과, 다른 실험조건과 비교하여 130℃에서 12시간 동안 수열처리된 TiO2 나노입자의 경우 치과용 광중합기의 주파장과 동일한 470 nm의 파장에서 가장 높은 흡수단을 보이는 것으로 나타났다.
2. TEM 관찰 및 XRD 패턴 분석 결과, 수열 처리 동안 나노입자들이 새로이 형성되고, 기-존재하는 나노입자들이 결정 성장을 통해 거대화되는 것으로 나타났으나, 새로운 나노입자의 낮은 결정화도로 인하여 새로이 형성된 나노입자의 결정상(crystalline phase)은 관찰되지 않았다.
3. XPS 분석의 Ti2p, N1s, C1s 및 O1s 결합 스펙트럼 분석결과를 통해, 수열 처리를 통해 도핑된 N이 TiO2의 간질형 자리(interstitial site) 대신 치환형 자리(substitutional site)에 위치하는 것을 알 수 있었다.
4. 약물 용출 시험을 통해, 클로르헥시딘 및 CPC를 함유하는 지각과민처치제 군의 경우, 2주 내에 전형적인 서방형 용출(sustained release) 양상을 나타냈다. 가시광선-조사군에서 용출되는 약물의 양은 비-조사군에 비하여 현저히 높은 것으로 나타났다(P<0.05).
5. 한천 확산 항균 시험을 통해, 항균 효과가 클로르헥시딘 또는 CPC의 농도에 비례하여 증가하는 것으로 나타났다. 또한 가시광선-조사 군에서 항균 약물의 종류에 상관없이 비-조사군에 비하여 현저히 높은 값을 나타냈다(P<0.05).
6. 우치 항균 시험을 통해, 항균 약물의 존재와 상관없이 가시광선-조사 실험군에서 우상아질의 표면에서 모든 박테리아가 제거되는 것으로 나타났다.
7. 한천중층법 시험을 통해, 클로르헥시딘이 농도와 상관없이 세포독성을 나타내지 않는 것으로 나타났으나, CPC의 경우 실험한 농도조건에서 심각한 세포독성이 나타났다.
요컨대, 질소도핑 TiO2의 가시광선 조사에 의한 광촉매 활성능은 약물 용출을 촉진시키고 클로르헥시딘과 CPC의 항균효과를 향상시키는 것을 확인하였다. 또한, 질소도핑 TiO2 나노입자는 세포독성을 나타내지 않았다. 따라서 질소도핑 TiO2 나노입자는 자외선에서만 활성화되는 기존의 한계를 극복함으로써 치과재료의 새로운 영역에 융합기술 개발을 가능하게 하고 환자의 동통을 줄여 줄 뿐만 아니라 치아우식에 의한 2차적인 질환까지도 예방할 수 있을 것으로 사료된다.

Claims (10)

  1. 이산화티타늄 입자 표면에 질소가 도핑되어 형성된, 질소가 도핑된 이산화티타늄 나노입자; 및
    약물을 함유하는,
    가시광선 조사에 의해 약물을 서방형 용출(sustained release)시키는, 약물 서방형 용출 조성물.
  2. 제1항에 있어서,
    약물이 치과용 지각과민처치제인 것을 특징으로 하는, 약물 서방형 용출 조성물.
  3. 제1항에 있어서,
    항균제를 추가로 함유하는 것을 특징으로 하는, 약물 서방형 용출 조성물.
  4. 제1항에 있어서,
    항균제는 클로르헥시딘인 것을 특징으로 하는, 약물 서방형 용출 조성물.
  5. 제1항에 있어서,
    도핑된 질소는 이산화티타늄의 치환형 자리(substitutional site)에 분포하는 것을 특징으로 하는, 약물 서방형 용출 조성물.
  6. 제1항에 있어서,
    이산화티타늄 나노입자의 평균 직경이 10 내지 50 nm인 것을 특징으로 하는, 약물 서방형 용출 조성물.
  7. 제1항 내지 제6항 중 어느 한 항에 있어서,
    상기 약물 서방형 용출 조성물이 치과용으로 사용되는 것을 특징으로 하는, 약물 서방형 용출 조성물.
  8. 이산화티타늄 나노입자에 트리에탄올아민(TEA)을 넣고 교반하는 단계; 및
    교반 단계 후 이산화티타늄에 질소를 도핑하는 수열반응 단계;를 포함하는, 질소가 도핑된 이산화티타늄 나노입자의 제조방법.
  9. 제8항에 있어서,
    상기 수열반응 단계는 100 내지 200℃의 온도에서 10시간 이상 수행되는 것을 특징으로 하는, 질소가 도핑된 이산화티타늄 나노입자의 제조방법.
  10. 제8항에 있어서,
    상기 수열반응 단계는 120 내지 140℃의 온도에서 10시간 내지 24시간 수행되는 것을 특징으로 하는, 질소가 도핑된 이산화티타늄 나노입자의 제조방법.
KR1020150026396A 2015-02-25 2015-02-25 질소-도핑 이산화티타늄 또는 질소-도핑 이산화티타늄 및 항균제를 함유하는 지각과민처치용 조성물 KR101797457B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150026396A KR101797457B1 (ko) 2015-02-25 2015-02-25 질소-도핑 이산화티타늄 또는 질소-도핑 이산화티타늄 및 항균제를 함유하는 지각과민처치용 조성물

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150026396A KR101797457B1 (ko) 2015-02-25 2015-02-25 질소-도핑 이산화티타늄 또는 질소-도핑 이산화티타늄 및 항균제를 함유하는 지각과민처치용 조성물

Publications (2)

Publication Number Publication Date
KR20160103712A true KR20160103712A (ko) 2016-09-02
KR101797457B1 KR101797457B1 (ko) 2017-11-14

Family

ID=56942935

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150026396A KR101797457B1 (ko) 2015-02-25 2015-02-25 질소-도핑 이산화티타늄 또는 질소-도핑 이산화티타늄 및 항균제를 함유하는 지각과민처치용 조성물

Country Status (1)

Country Link
KR (1) KR101797457B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190074372A (ko) * 2017-12-20 2019-06-28 한국세라믹기술원 가시광 응답형 이산화티타늄의 제조방법

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140086743A1 (en) 2012-09-26 2014-03-27 Alstom Technology Ltd Method and cooling system for cooling blades of at least one blade row in a rotary flow machine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101420677B1 (ko) 2012-09-19 2014-07-17 한국세라믹기술원 질소가 도핑된 이산화티타늄 및 이의 제조방법

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140086743A1 (en) 2012-09-26 2014-03-27 Alstom Technology Ltd Method and cooling system for cooling blades of at least one blade row in a rotary flow machine

Non-Patent Citations (57)

* Cited by examiner, † Cited by third party
Title
Absi AM, Adam D (1987). Dentin hypersensitivity : The effect in vitro of acids and dietary substances on root planed and burred dentin. J Clin Periodontol 14:274.
Bard AJ (1982). Design of semiconductor photoelectrochemical systems for solar energy conversion. J Phys Chem 86:172177.
Brannstrom M, Astrom A (1972). The hydrodynamics of the dentine : its possible relationship to dental pain. Int dental J 22:219-227.
Cai R, Kubota Y, Shuin T, Sakai H, Hashimoto K, Fujishima A (1992). induction of cytotoxicity by photo excited TiO2 particles. Cancer Res 52:2346-2348.
Camps J, Pizant S, Dejou J, Franquin JC (1998). Effect of desensitizing agents on human dentin permeability. Am J Dent 11:286-290.
Chen XB, Burda C (2004). Photoelectron spectroscopic investigation of nitrogen-doped titania nanoparticles. J Phys Chem B 108:15446-15449.
David H, Pashle DH (1990). Mechanisms of dentin sensitivity. Dent Clin North Am 34:449-474.
de Souza LB1, de Aquino SG, de Souza PP, Hebling J, Costa CA (2007). Cytotoxic effects of different concentrations of chlorhexidine. Am J Dent 20:400-404.
Delany GM, Patterson SS, Miller CH, Newton CW (1982). The effect of chlorhexidine gluconate irrigation on the root canal flora freshly extracted necrotic teeth. Oral Surg 53:518-523.
Edmiston Jr CE, Seabrook GR, Johnson CP, Paulson DS, Beausoleil CM (2007). Comparative of a new and innovative 2% chlorhexidine gluconate-impregnated cloth with 4% chlorhexidine gluconate as topical antiseptic for preparation of the skin prior to surgery. Am J Infect Control 35:89-96.
Forssell-Ahlberg K (1978). Influences of noxious dental pulp. Acta Physiol Scand 103:71-80.
Fujishima A, Honda K (1972). Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37-38.
Gillam DG, Bulman JS, Jackson RJ, Newman HN (2006). Dentist perceptions of dentine hypersensitivity and knowledge of its treatment. J Oral Rehabil 29:219-225.
Graetzel M (1983). Energy Resources through Photochemistry and Catalysis. New York: Academic Press.
Grnuit T, Bochicchio G, Napolitano LM, McCarter RJ, Roghman MC (2001). Prophylactic chlorhexidine oral rinses decreases ventilator-associated pneumonia in surgical ICU patients. Surg Infect 2:5-18.
Haps S, Slot DE, Berchier CE, Van der Weijden GA (2008). The effect of cetylpyridinium chloride-containing mouth rinses as adjuncts to toothbrushing on plaque and parameters of gingival inflammation: a systematic review. Int J Dent Hyg 6:290-303.
Hu CC, Hsu TC, Kao LH (2012). One-Step Cohydrothermal Synthesis of Nitrogen-Doped Titanium Oxide Nanotubes with Enhanced Visible Light Photocatalytic Activity. Int J Photo 2012: Article ID 391958.
Irie H, Watanabe Y, Hashimoto K (2003). Reversible control of wettability of a TiO2 surface by introducing roughness. Electrochem Solid-State Lett 8:23-25.
Jeansonne MJ, White RR (1994). A comparison of 2.0% chlorhexidine gluconate and 5.25% Sodium Hypochlorite as antimicrobial endodontic irrigants. J Endod 20:276-278.
Kimura Y, Wilder-Smith P, Yonaga K, Matsumoto K (2000). Treatment of dentine hypersensitivity by lasers: a review. J Clin Periodontol 27:715-721.
Kubota Y, Shuin T, Kawasaki C, Hosaka M, Kitamura H, Cai R, Sakai H, Hashimoto K, Fujishima A (1994). Photokilling of T-24 homan bladder cancer cells with titanium dioxide. Br J Cancer 70:1107-1111.
Lee TH, Hu CC, Lee SS, Chou MY, Chang YC (2010). Cytotoxicity of chlorhexidine on human osteoblastic cells is related to intracellular glutathione levels. Int Endod J 43:430-435.
Leikin, Jerrold B, Paloucek, Frank P (2008). Chlorhexdine Gluconate. 4th ed. Posoning and Toxicology Hanbook. Informa; pp. 183-184.
Lewis RJ (1996). Sax's Dangerous Properties of Industrial Materials 13. 9th ed. New York: Van Nostrand Reinhold; pp. 691.
Meiers JC, Kresin JC (1996). Cavity disinfectants and dentin bonding. Oper Dent 21:153-159.
Michelich VJ, Schuster GS, Pashley DH (1980). Bacterial penetration of hyman dentin in vitro. J Dent Res 59:1398.
Mitoraj D, Kisch H (2008). The nature of nitrogen-modified titanium dioxide photocatalysts active in visible light. Angew Chem Int Ed, 47:9975-9978.
Mjor I (1972). Human coronaldentine: Structure and reactions, Oral Surg Oral Med Oral Pathol 33:810-823.
Napolitano LM (2006). Decolonization of the skin of the patient and surgeon. Surg Infect 7:S3-15.
Oin C, Xu J, Zhang Y (2006). Spectroscopic investigation of the function of aqueous 2-hydroxyethylmethacrylate/glutaraldehyde solution as a dentin desensitizer. Eur J Oral Sci 114:354-359.
Ollis DF, Al-Ekabi H (1993). Photocatalytic purification and treatment of water and air. 3th ed. St. Elsevier; pp. 356-358.
Olusile AO, Bamise CT, Oginni AO, Dosumu OO (2008). Short-term Clinical Evaluation of Four Desensitizing Agents. J Contemp Dent Pract 9:22-29.
Orchardson R, Gillam DG (2006). Managing dentin hypersensitivity. J Am Dent Assoc 137:990-998.
Pashley DH (1990). Mechanisms of dentin sensitivity. Dent Clin North Am 34:449-473.
Pashley DH (2001). The use of oxalate to reduce dentin permeability under adhesive restorations. Am J Dent 12:89-94.
Pelizzetti, E., Schiavello, M (1991). Photochemical Conversion and Storage of Solar Energy; Kluwer Academic Publishers: Dordrecht
Qian J, Cui G, Jing M, Wang Y, Zhang M, Yang J (2012). Hydrothermal Synthesis of Nitrogen-Doped Titanium Dioxide and Evaluation of Its Visible Light Photocatalytic Activity. Int J Photo 2012: Article ID 198497.
Roseenthal MW (1990). Historic review of the management of tooth hypersensitivity. Dent Clin North Am 34:403-427.
Rusin RP, Aqee k, Suchko M, Pashley DH (2010). Effect of a new desensitizing material on human dentin permeability. Dent Mater 26:600-607.
Sakthivel S, Janczarek M, Kisch H (2004). Visible light activity and photoelectrochemical properties of nitrogen-doped TiO2. J Phys Chem B 108:19384-19387.
Sandham HJ, Nadeau L, Phillips HI (1992), The effect of chlorhexidine varnish treatment on salivary mutans streptococcal levels in child orthodontic patients. J Dent Res 71:32-35.
Sathish M, Viswanathan B, Viswanath RP, Gopina CS (2005). Synthesis, characterization, electronic structure, and photocatalytic activity of nitrogen-doped TiO2 nanocatalyst. Chem Mater 17:6349-6353.
Sato S (1986). Photocatalytic activity of NOx-doped TiO2 in the visible light region. Chem Phys Lett 123:126-128.
Sauer ML and Ollis DF(1996). Photocatalyzed oxidation of ethanol and acetaldehyde in humidified air. J Catal 158:570-582.
Schiavello M (1988). Photocatalysis and Environment. Dordrecht: Kluwer Academic Publisher; pp. 663-677.
Serpone N, Pelizzetti E (1989). Photocatalysis : fundamentals and applications. New York: Wiley Interscience; pp. 565.
Shigeru K, Eito Y, Hideto M (2012). Photocatalytic Hydrogenation on Semiconductor Particles (Chapter 12). Hydrogenation. Iyad Karampp 291-308.
Shipu L, Shiwei L, Jianjun L, Nengqian P, Danhong L, Jianbao L (2012). Nitrogen-Doped TiO2 Nanotube Arrays with Enhanced Photoelectrochemical Property. Int J Photo 2012: Article ID 794207
Sopyan I, Murasawa S, Hashimoto K, Fujishima A (1994). Highly efficient TiO2 film photocatalist: Degradation of gaseous acetaldehyde. Chem Lett 723-726.
Tanner J, Swarbrook S, Sturart J (2008). Surgical hand antisepsis to reduce surgical site infection. Cochrane Database Syst Rev 23.
Vorontsov AV, Savinov EN, Barannik GB, Troitsky VN and Pramon VN (1997). Quantitative studies on the heterogeneous gas-phase photooxidation of CO and simple VOCs by air over TiO2. Catal Today 39:207-218.
Warfringe J, Dahlen G, Bergenholtz (1985). Dental pulp response to bacterial cell wall material. J Dent Res 64:1046-1050.
White RR, Hays GL, Janer LR (1997). Residual antimicrobial activity after canal irrigation with chlorhexidine. J Endod 23:315-317.
Wong MS, Chou HP, Yang TS (2006). Reactively sputtered N-doped titanium oxide films as visible-light photocatalyst. Thin Solid Films 494:244-249.
Xu Z, Yu J (2011). Visible-light-induced photoelectro chemical behaviors of Fe-modified TiO2 nanotube arrays. Nanoscale 3:3138-3144.
Ye W, Feng XP, Li R (2012). The prevalence of dentine hypersensitivity in Chinses adults. J Oral Rehabil 39:182-187.
Yuan J, Chen MX, Shi JW, Shangguan WF (2006). Preparations and photocatalytic hydrogen evolution of N-doped TiO2 from urea and titanium tetrachloride. Int J Hydrogen Energy 31:13261331.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190074372A (ko) * 2017-12-20 2019-06-28 한국세라믹기술원 가시광 응답형 이산화티타늄의 제조방법

Also Published As

Publication number Publication date
KR101797457B1 (ko) 2017-11-14

Similar Documents

Publication Publication Date Title
Carrouel et al. Nanoparticles as anti-microbial, anti-inflammatory, and remineralizing agents in oral care cosmetics: a review of the current situation
Yazdanian et al. The potential application of green-synthesized metal nanoparticles in dentistry: a comprehensive review
Agnihotri et al. Nanometals in dentistry: Applications and toxicological implications—A systematic review
EP3177142B1 (en) A process for preparing an antimicrobial particulate composition
Allaker et al. Nanoparticles and the control of oral infections
US20040171505A1 (en) Cleansers, cleaning system, bleaching agents and compositions for environmental conservation
KR20010015579A (ko) 이산화티탄 광촉매에 의한 변색치아 표백법
Barma et al. Antibacterial Activity of Mouthwash Incorporated with Silica Nanoparticles against S. aureus, S. mutans, E. faecalis: An in-vitro Study
CN102614090A (zh) 一种牙膏组合物
CN111759751A (zh) 一种由蓝光led激发的美白牙膏及其制备方法
WO2018092889A1 (ja) 一材型の歯面処理材
Nasiri et al. Recent advances in metal nanoparticles to treat periodontitis
TWI579001B (zh) 具有光催化活性且包含以二氧化鈦奈米粒子完成表面官能基化之無機粒子之口腔保健與口腔衛生產品
Chen et al. Recent advances on nanomaterials for antibacterial treatment of oral diseases
KR20060066654A (ko) 치아 표백재 및 치아 표백 방법
Pushpalatha et al. The anticariogenic efficacy of nano silver fluoride
KR101797457B1 (ko) 질소-도핑 이산화티타늄 또는 질소-도핑 이산화티타늄 및 항균제를 함유하는 지각과민처치용 조성물
Allaker The use of antimicrobial nanoparticles to control oral infections
Hameed et al. Evaluation of antibacterial properties of copper nanoparticles surface coating on titanium dental implant
Al-Fadhily et al. A novel coating of orthodontic archwires with chlorhexidine hexametaphosphate nanoparticles
Kannan et al. Recent updates and feasibility of nanodrugs in the prevention and eradication of dental biofilm and its associated pathogens–a review
JP4852714B2 (ja) 歯牙漂白材
CN103041976B (zh) 口腔用CoCr合金材料表面制备含银抗菌涂层的方法
EP3313415B1 (en) Composition for the prevention of microbial growth
CN1743027A (zh) 含银口腔清洁用品

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant