KR20160087959A - Carbazole Derivatives and Organic light emitting device Comprising the Same - Google Patents

Carbazole Derivatives and Organic light emitting device Comprising the Same Download PDF

Info

Publication number
KR20160087959A
KR20160087959A KR1020150006855A KR20150006855A KR20160087959A KR 20160087959 A KR20160087959 A KR 20160087959A KR 1020150006855 A KR1020150006855 A KR 1020150006855A KR 20150006855 A KR20150006855 A KR 20150006855A KR 20160087959 A KR20160087959 A KR 20160087959A
Authority
KR
South Korea
Prior art keywords
compound
light emitting
organic light
present
organic
Prior art date
Application number
KR1020150006855A
Other languages
Korean (ko)
Inventor
황민지
유형철
김민지
김선주
유동혁
이상률
김경철
김봉
노광영
Original Assignee
제이투에이치바이오텍 (주)
주식회사 천보
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제이투에이치바이오텍 (주), 주식회사 천보 filed Critical 제이투에이치바이오텍 (주)
Priority to KR1020150006855A priority Critical patent/KR20160087959A/en
Publication of KR20160087959A publication Critical patent/KR20160087959A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D263/00Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings
    • C07D263/52Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings condensed with carbocyclic rings or ring systems
    • C07D263/54Benzoxazoles; Hydrogenated benzoxazoles
    • C07D263/56Benzoxazoles; Hydrogenated benzoxazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached in position 2
    • C07D263/57Aryl or substituted aryl radicals
    • H01L51/50
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1033Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1037Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with sulfur

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

The present invention relates to a carbazole derivative organic light emitting compound and an organic light emitting device comprising the same. In the compound disclosed in the present invention, a substituent introduced at the ortho position induces the steric distortion in the organic light emitting compound to disconnect the pie conjugation, thereby minimizing the expansion of the conjugation between substituents due to a high steric hindrance, thus maintaining excellent triplet energy, and a hole transport substituent and an electron transport substituent are respectively bound to a benzene ring, thereby exhibiting excellent hole injection transport and electron injection transport characteristics. The compound disclosed in the present invention has excellent blue and green phosphorescent characteristics together with superior quantum efficiency, current efficiency, and power efficiency, and thus can be favorably used as an efficient phosphorescent host material.

Description

카바졸 유도체 및 이를 포함하는 유기 발광 소자{Carbazole Derivatives and Organic light emitting device Comprising the Same}[0001] The present invention relates to a carbazole derivative and an organic light emitting device including the same,

본 발명은 카바졸 유도체 및 이를 포함하는 유기 발광 소자에 관한 것이다.The present invention relates to a carbazole derivative and an organic light emitting device including the same.

종래의 유기발광 소자용 재료의 경우 다양한 형태의 재료가 개발되어 왔으나, 낮은 전하이동도와 발광 효율 및 수명 문제점으로 인해 상용화에 한계가 있었다. 특히 청색 및 녹색 인광 소자의 경우 금속착물형 발광 도판트 재료 보다 높은 삼중항에너지를 가지고 있어야 우수한 효율의 소자 특성을 구현할 수 있지만, 높은 삼중항에너지를 가지는 단위(코어)가 한정되어 다양한 요구를 충족시키는 재료의 개발이 미흡한 실정이다. 따라서 기존의 화합물을 개선하기 위해서 새로운 형태의 화합물을 고안하여 효율개선 및 수명향상이 이루어져야 한다. Conventional materials for organic light emitting devices have been developed in various types of materials, but commercialization has been limited due to low charge mobility, luminous efficiency, and lifetime problems. Especially, blue and green phosphorescent devices must have higher triplet energies than metal complex type luminescent dopants to realize device characteristics with excellent efficiency. However, since the unit (core) with high triplet energy is limited, it meets various demands The development of materials to be used is inadequate. Therefore, in order to improve existing compounds, new types of compounds should be devised to improve the efficiency and improve the lifetime.

유기 발광 다이오드는 발광 메카니즘에 따라 형광과 인광 소자로 구분할 수 있다. 인광 소자의 경우 형광 소자에 비해 이론적으로 4배의 효율을 낼 수 있는 소자로 최근 이에 대한 개발이 활발하게 진행되고 있다. 이러한 인광 소자용 발광재료(도판트 재료)는 주로 이리듐 금속 착물이 주로 사용되고 있으며, 적색 뿐만 아니라 녹색, 청색 재료가 개발되었다. 적색, 녹색 및 청색 도판트 재료의 삼중항 에너지는 각각 2.3 eV, 2.5 eV, 2.7 eV 내외의 각 발광 영역에 적합한 삼중항 에너지를 가지고 있다. 일반적으로 유기 발광 다이오드 소자는 효율향상 및 수명향상을 위해 호스트/도판트 시스템으로 발광층을 구성한다. 따라서 이러한 인광성 발광 도판트 재료를 호스팅하기 위한 적합한 호스트 재료가 필요하며, 기본적으로 발광 도판트 재료에 비해 높은 삼중항 에너지를 가지고 있어야 호스트에서 도판트로의 엑시톤 에너지 전달이 원할히 진행되어 높은 효율을 얻을 수 있다. 적색의 경우 비교적 낮은 삼중항 에너지가 요구되므로 다양한 호스트 재료들이 개발되어 상용화되었다. 그러나 녹색 및 청색 발광층을 구성하기 위한 호스트 재료의 경우 높은 삼중항 에너지가 요구되므로 호스트 재료의 코어 구조의 선정이 매우 제한적일 수밖에 없다. 일반적으로 높은 삼중항 에너지를 가지는 코어는 벤젠을 비롯하여 피리딘, 피리미딘 등의 헤테로 방향족 화합물과 카바졸, 다이벤조퓨란, 다이벤조싸이오펜 등의 일부 융합고리 화합물이 이러한 요구에 충족시킬 수 있는 코어 분자로 알려져 있다. 그러나 높은 삼중항 에너지를 가지고 있는 코어 분자에 다양한 치환기가 도입될 경우 분자의 컨쥬게이션 길이가 늘어나면서, 삼중항 에너지가 급격히 떨어지는 경향이 있다. 따라서 최적의 인광용 호스트 재료를 개발하는데 있어서 분자설계가 매우 제한적일 수밖에 없다.Organic light emitting diodes can be classified into fluorescent and phosphorescent devices according to a light emitting mechanism. In the case of phosphorescent devices, it is theoretically four times as efficient as a fluorescent device. The luminescent material (dopant material) for such a phosphorescent device is mainly an iridium metal complex, and red, green and blue materials have been developed. The triplet energies of the red, green, and blue dopant materials have triplet energies suitable for each emission region of about 2.3 eV, 2.5 eV, and 2.7 eV, respectively. Generally, an organic light emitting diode device constitutes a light emitting layer as a host / dopant system in order to improve the efficiency and the lifetime. Therefore, a host material suitable for hosting such a phosphorescent dopant material is required, and basically, it should have a higher triplet energy than the luminescent dopant material, so that the exciton energy transfer from the host to the dopant proceeds smoothly, . Since red requires a relatively low triplet energy, a variety of host materials have been developed and commercialized. However, since the host material for constituting the green and blue light emitting layers requires high triplet energy, the selection of the core structure of the host material is very limited. Generally, a core having a high triplet energy is a core in which a heteroaromatic compound such as pyridine, pyrimidine, etc., and a fused ring compound such as carbazole, dibenzofuran, dibenzothiophene, etc., . However, when various substituents are introduced into a core molecule having a high triplet energy, the conjugation length of the molecule is increased, and the triplet energy tends to drop sharply. Therefore, the molecular design is inevitably limited in developing an optimal phosphorescent host material.

보다 양호한 인광 방출을 위한 몇몇 호스트 물질이 보고되었다. 카바졸계 화합물의 전하 전도 능력(charge conducting ability), 광물리적 특성과 산화환원 특성, 충분히 높은 삼중항 에너지 및 캐리어-수송 특성으로 인해, 이들 카바졸계 화합물에 대한 연구가 활발히 진행 중에 있다.Several host materials have been reported for better phosphorescence emission. Due to the charge conducting ability, photophysical properties and redox properties, sufficiently high triplet energy and carrier-transporting properties of the carbazole-based compounds, research on these carbazole-based compounds is actively underway.

예를 들어, 미국특허출원 공개번호 US 2003/205696는 유기발광소자에 사용하기에 적합한 게스트-호스트 방출 시스템을 개시하고 있으며, 여기서 호스트 물질은, 질소에 결합된 전자-공여종을 갖는 하나의 카바졸 코어와, 1개 이상의 탄소 원자에 결합된 방향족 아민기 또는 카바졸기를 포함하는 화합물을 포함하며, 상기 화합물은 높은 밴드갭 전위 및 고에너지 삼중항 여기 상태를 가진다. 이러한 물질은 관련 게스트 물질에 의한 단파장 인광 발광을 허용하며, 상기 물질과 발광성 인광 유기금속 화합물(예를 들어, 이리듐 착체)의 조합물은 유기발광소자의 제조에 유용하다.For example, U.S. Patent Application Publication No. US 2003/205696 discloses a guest-host emission system suitable for use in an organic light-emitting device, wherein the host material comprises one carbon-containing electron- A sol core and a compound comprising an aromatic amine group or a carbazole group bonded to at least one carbon atom, said compound having a high band gap potential and a high energy triplet excited state. Such a material allows short wavelength phosphorescence by the related guest material, and a combination of the above material and a luminescent phosphorescent organic metal compound (for example, an iridium complex) is useful for the production of an organic light emitting device.

본 발명에서는 이러한 분자설계의 다양성을 확보하고 최적의 특성을 낼 수 있는 코어 분자로 카바졸 유도체의 구조를 고안하였다. 카바졸 유도체의 경우 상대적으로 높은 삼중항에너지를 가지고 있는 것이 특징이며, 페닐기에 전기적 특성이 상이한 분자를 도입하여 호스트 재료의 정공 주입/수송 및 전자 주입/수송 특성을 적절하게 조절할 수 있는 장점을 가지고 있다.
In the present invention, the structure of the carbazole derivative is devised as a core molecule capable of ensuring the diversity of the molecular design and obtaining the optimum characteristics. The carbazole derivative has a relatively high triplet energy and has the advantage of being able to appropriately control hole injecting / transporting and electron injecting / transporting characteristics of the host material by introducing molecules having different electrical characteristics into the phenyl group have.

본 명세서 전체에 걸쳐 다수의 논문 및 특허문헌이 참조되고 그 인용이 표시되어 있다. 인용된 논문 및 특허문헌의 개시 내용은 그 전체로서 본 명세서에 참조로 삽입되어 본 발명이 속하는 기술 분야의 수준 및 본 발명의 내용이 보다 명확하게 설명된다.Numerous papers and patent documents are referenced and cited throughout this specification. The disclosures of the cited papers and patent documents are incorporated herein by reference in their entirety to better understand the state of the art to which the present invention pertains and the content of the present invention.

본 발명자들은 높은 삼중항 에너지를 가져 우수한 효율의 소자 특성을 구현할 수 있는 유기발광 화합물을 발굴하기 위하여 예의 연구 노력하였다. 그 결과, 본 발명의 화학식 1로 표시되는 유기발광 화합물은 오쏘(ortho) 위치에 도입된 치환기가 유기발광 화합물에 입체적으로 뒤틀림을 유도하여 파이 컨쥬게이션을 단절시킴으로써 각 벤젠고리간의 입체 장애로 인해 높은 삼중항 에너지를 유지하면서, 페닐기에 정공 수송특성을 지닌 치환기와 전자 수송 특성을 가지는 치환기가 각각 도입되어 정공 주입 및 수송 그리고 전자 주입 및 수송 특성이 우수한 유기발광 화합물로 유용하게 이용될 수 있다는 사실을 발견함으로써 본 발명을 완성하게 되었다.
The present inventors have made intensive researches in order to find out an organic luminescent compound which has high triplet energy and can realize a device characteristic of excellent efficiency. As a result, the organic luminescent compound represented by the formula (1) of the present invention has a structure in which substituents introduced at the ortho position induce three-dimensional distortion in the organic luminescent compound to thereby interrupt the piconjugation, The substituent having a hole transporting property and the substituent having an electron transporting property are introduced into the phenyl group while maintaining the triplet energy, and thus it can be usefully used as an organic light emitting compound having excellent hole injection and transportation, electron injection and transport properties The present invention has been completed.

따라서 본 발명의 목적은 카바졸 유도체의 유기발광 화합물을 제공하는 데 있다.Accordingly, an object of the present invention is to provide an organic luminescent compound of a carbazole derivative.

본 발명의 다른 목적은 상기 유기발광 화합물을 포함하는 유기발광 소자를 제공하는 데 있다.
Another object of the present invention is to provide an organic light emitting device including the organic light emitting compound.

본 발명의 목적 및 이점은 하기의 발명의 상세한 설명 및 청구범위에 의해 보다 명확하게 된다.The objects and advantages of the present invention will become more apparent from the following detailed description of the invention and claims.

본 발명의 일 양태에 따르면, 본 발명은 하기의 화학식 1로 표시되는 카바졸 유도체 유기발광 화합물을 제공한다:According to one aspect of the present invention, there is provided a carbazole derivative organic electroluminescent compound represented by Formula 1:

화학식 1Formula 1

Figure pat00001
Figure pat00001

상기 화학식에서, X는 O, S, NR4(R4는 수소 또는 C1-C3 알킬) 또는 CR5(R5는 수소 또는 C1-C3 알킬)이고; R1은 독립적으로 수소 또는 13각 내지 19각 고리의 헤테로아릴 페닐이고; 그리고 R2 및 R3는 각각 독립적으로 수소 또는 C1-C5 알킬이거나 또는 R2 및 R3는 함께 6각의 아릴 고리를 이룬다.In the above formulas, X is O, S, NR 4 (R 4 is hydrogen or C 1 -C 3 alkyl) or CR 5 (R 5 is hydrogen or C 1 -C 3 alkyl); R < 1 > is independently hydrogen or heteroarylphenyl of from 13 to 19 rings; And R 2 and R 3 are each independently hydrogen or C 1 -C 5 alkyl, or R 2 and R 3 together form a six-membered aryl ring.

본 발명자들은 오쏘(ortho) 위치에 도입된 치환기가 유기발광 화합물에 입체적으로 뒤틀림을 유도하여 파이 컨쥬게이션을 단절시킴으로써 높은 삼중항 에너지를 가져 우수한 효율의 소자 특성을 구현할 수 있는 유기발광 화합물을 발굴하기 위하여 예의 연구 노력하였다. 그 결과, 상기 화학식 1로 표시되는 유기발광 화합물이 각 벤젠고리간의 입체 장애로 인해 높은 삼중항 에너지를 유지하면서, 양 말단의 페닐기에 정공 수송특성을 지닌 치환기와 전자 수송 특성을 가지는 치환기가 각각 도입되어 정공 주입 및 수송 그리고 전자 주입 및 수송 특성이 우수한 유기발광 화합물로 유용하게 이용될 수 있다는 사실을 발견하였다.The present inventors have discovered that an organic luminescent compound having high triplet energy and capable of realizing excellent efficiency characteristics can be obtained by substituting a substituent introduced at an ortho position to induce a three-dimensional distortion of an organic luminescent compound to thereby interrupt the piconjugation I tried my best to study. As a result, the organic luminescent compound represented by the above formula (1) has a high triplet energy due to the steric hindrance between each benzene ring, and a substituent having hole transporting property and a substituent having electron transporting property are introduced And can be usefully used as an organic light emitting compound having excellent hole injecting and transporting properties and electron injecting and transporting properties.

본 명세서에서, 용어“유기발광 화합물(organic light emitting compound)”는 유기화합물 분자 내 이중결합의 컨쥬게이션으로 인하여 전압 부하에 의한 정공 및 전자 간의 상호작용에 의해 발광 특성을 보이는 화합물을 의미한다. As used herein, the term " organic light emitting compound " refers to a compound that exhibits luminescent properties due to interaction between holes and electrons due to voltage loading due to conjugation of double bonds in organic compound molecules.

유기발광 화합물은 유기발광 소자에서 유기물층으로 사용되며, 기능에 따라, 발광 재료와 전하수송 재료, 예컨대 정공주입 재료, 정공수송 재료, 전자수송 재료, 전자주입 재료 등으로 분류될 수 있다. 상기 발광 재료는 발광 메커니즘에 따라 전자의 일중항 여기상태로부터 유래되는 형광 재료와 전자의 삼중항 여기상태로부터 유래되는 인광 재료로 분류될 수 있으며, 발광 재료는 발광색에 따라 청색, 녹색 및 적색 발광 재료로 구분될 수 있다. 본 발명에 따르면, 본 발명의 유기발광 화합물은 높은 삼중항 에너지를 가지는 인광 재료로 유용하게 이용될 수 있다. The organic light emitting compound is used as an organic material layer in an organic light emitting device and can be classified into a light emitting material and a charge transporting material such as a hole injecting material, a hole transporting material, an electron transporting material, and an electron injecting material depending on functions. The light emitting material may be classified into a fluorescent material derived from the singlet excitation state of electrons and a phosphorescent material derived from the triplet excited state of electrons according to a light emitting mechanism. The light emitting material may be classified into blue, green, and red light emitting materials . According to the present invention, the organic luminescent compound of the present invention can be usefully used as a phosphorescent material having high triplet energy.

본 명세서에서 용어“알킬”은 직쇄 또는 분쇄의 포화 탄화수소기를 의미하며, 예를 들어, 메틸, 에틸, 프로필, 이소부틸, 펜틸 또는 헥실 등을 포함한다. C1-C3 알킬은 탄소수 1 내지 3의 알킬 유니트를 가지는 알킬기를 의미하며, C1-C3 알킬이 치환된 경우 치환체의 탄소수는 포함되지 않은 것이다. As used herein, the term " alkyl " means a straight or branched saturated hydrocarbon group, including, for example, methyl, ethyl, propyl, isobutyl, pentyl or hexyl. C 1 -C 3 alkyl means an alkyl group having an alkyl unit having 1 to 3 carbon atoms, and when C 1 -C 3 alkyl is substituted, the number of carbon atoms of the substituent is not included.

본 발명의 구체적인 구현예에 따르면, 본 발명의 화학식 1로 표시되는 유기발광 화합물에서, X는 O, S, NR4(R4는 수소 또는 C1-C3 알킬) 또는 CR5(R5는 수소 또는 C1-C3 알킬)이고, 보다 구체적으로 X는 O 또는 S이다. According to a specific embodiment of the present invention, X is O, S, NR 4 (R 4 is hydrogen or C 1 -C 3 alkyl) or CR 5 (R 5 is Hydrogen or C 1 -C 3 alkyl), and more specifically X is O or S.

본 발명의 구체적인 구현예에 따르면, 본 발명의 화학식 1로 표시되는 유기발광 화합물에서, R2 및 R3는 각각 독립적으로 수소 또는 C1-C5 알킬이거나 또는 R2 및 R3는 함께 6각의 아릴 고리를 이룬다. 보다 구체적으로, 본 발명의 화학식 1로 표시되는 유기발광 화합물은 R2 및 R3가 함께 6각의 아릴 고리를 이루는 화학식 14 내지 16으로 표시되는 유기화합물이다. According to a specific embodiment of the present invention, in the organic luminescent compound represented by the formula (1) of the present invention, R 2 and R 3 are each independently hydrogen or C 1 -C 5 alkyl, or R 2 and R 3 together form a hexa ≪ / RTI > More specifically, the organic luminescent compound represented by Formula 1 of the present invention is an organic compound represented by Formulas 14 to 16 in which R 2 and R 3 together form a six-membered aryl ring.

본 발명의 구체적인 구현예에 따르면, 본 발명의 화학식 1의 R1은 독립적으로 비치환되거나 C1-C3 알킬로 치환된 카바졸(carbazole) C6-C10 아릴인 것을 특징으로 하는 유기발광 화합물이다.According to a specific embodiment of the present invention, R 1 of formula (1) of the present invention is independently carbazole C 6 -C 10 aryl which is unsubstituted or substituted by C 1 -C 3 alkyl. / RTI >

본 발명의 보다 구체적인 구현예에 따르면, 본 발명의 화학식 1의 R1은 각각 독립적으로

Figure pat00002
,
Figure pat00003
,
Figure pat00004
,
Figure pat00005
,
Figure pat00006
,
Figure pat00007
,
Figure pat00008
,
Figure pat00009
,
Figure pat00010
,
Figure pat00011
,
Figure pat00012
,
Figure pat00013
,
Figure pat00014
,
Figure pat00015
또는
Figure pat00016
인 것을 특징으로 하는 유기발광 화합물이다. According to a more specific embodiment of the invention, R 1 of general formula (I) of the present invention are each independently
Figure pat00002
,
Figure pat00003
,
Figure pat00004
,
Figure pat00005
,
Figure pat00006
,
Figure pat00007
,
Figure pat00008
,
Figure pat00009
,
Figure pat00010
,
Figure pat00011
,
Figure pat00012
,
Figure pat00013
,
Figure pat00014
,
Figure pat00015
or
Figure pat00016
≪ / RTI >

본 발명의 보다 구체적인 구현예에 따르면, 본 발명의 화학식 1로 표시되는 유기발광 화합물은 하기의 화학식 2 내지 16으로 표시되는 화합물로 구성된 군으로부터 선택된다:According to a more specific embodiment of the present invention, the organic electroluminescent compound represented by Formula 1 of the present invention is selected from the group consisting of the following compounds represented by Formulas 2 to 16:

화학식 2 화학식 3(2)

Figure pat00017
Figure pat00018

Figure pat00017
Figure pat00018

화학식 4 화학식 5(4)

Figure pat00019
Figure pat00020

Figure pat00019
Figure pat00020

화학식 6 화학식 7(6)

Figure pat00021
Figure pat00022

Figure pat00021
Figure pat00022

화학식 8 화학식 9(8)

Figure pat00023
Figure pat00024

Figure pat00023
Figure pat00024

화학식 10 화학식 11(10)

Figure pat00025
Figure pat00026
Figure pat00025
Figure pat00026

화학식 12 화학식 13(12)

Figure pat00027
Figure pat00028

Figure pat00027
Figure pat00028

화학식 14 화학식 15(14)

Figure pat00029
Figure pat00030

Figure pat00029
Figure pat00030

화학식 16 Formula 16

Figure pat00031

Figure pat00031

본 발명의 다른 양태에 따르면, 본 발명은 본 발명의 유기발광 화합물을 포함하는 유기발광 소자를 제공한다. According to another aspect of the present invention, there is provided an organic light emitting device comprising the organic light emitting compound of the present invention.

본 발명에서 이용되는 유기발광 화합물에 대해서는 이미 상술하였으므로, 과도한 중복을 피하기 위하여 그 기재를 생략한다.Since the organic luminescent compound used in the present invention has already been described above, the description thereof is omitted in order to avoid excessive overlapping.

본 명세서에서 용어“유기발광 소자(organic light-emitting device)”는 자기 발광 현상을 이용한 디스플레이 장비로서, 빛을 내는 층이 유기 화합물로 이루어진 박막 발광 소자를 의미한다. 유기 발광 현상을 이용하는 유기발광 소자는 통상 양극과 음극 및 이 사이에 유기물층을 포함하는 구조를 가진다. 여기서 유기물층은 유기발광 소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등으로 이루어질 수 있다. 이러한 유기발광 소자의 구조에서 두 전극 사이에 전압을 걸어주게 되면 양극에서는 정공이, 음극에서는 전자가 유기물층에 주입되게 되고, 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되며, 이 엑시톤이 다시 바닥상태로 떨어질 때 빛이 나게 된다. As used herein, the term " organic light-emitting device " refers to a thin film light-emitting device in which a light-emitting layer is made of an organic compound. An organic light emitting device using an organic light emitting phenomenon generally has a structure including an anode, a cathode, and an organic material layer therebetween. Here, in order to enhance the efficiency and stability of the organic light emitting device, the organic material layer may have a multi-layered structure composed of different materials and may include a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer. When a voltage is applied between the two electrodes in the structure of such an organic light emitting device, holes are injected in the anode, electrons are injected into the organic layer in the cathode, excitons are formed when injected holes and electrons meet, When it falls back to the ground state, the light comes out.

본 발명의 구체적인 구현예에 따르면, 본 발명의 유기발광 소자는 청색 또는 녹색 인광 소자이다. 유기발광 소자를 구성하는 유기발광 재료는 발광색에 따라 청색, 녹색 및 적색 발광 재료로 구분될 수 있으며, 이 중 청색 및 녹색 인광 소자는 금속착물형 발광 도판트 재료보다 높은 삼중항 에너지를 가지고 있어야 우수한 효율의 소자 특성을 구현할 수 있다. 본 발명에 따르면, 본 발명의 유기발광 소자는 오쏘(ortho) 위치에 도입된 치환기가 유기발광 화합물에 입체적으로 뒤틀림을 유도하여 입체 장애 특성으로 인해 말단의 상이한 특성을 가지는 두 개의 분자 그룹이 비교적 독립적으로 작용하여 호스트 재료의 전기적 특성 조절이 용이하며, 컨쥬게이션 확장을 최소화함으로써 삼중항 에너지의 저하를 막을 수 있다. 따라서 본 발명의 화합물은 높은 삼중항 에너지로 인해 녹색 및 청색 인광 소자의 발광 호스트로서 매우 우수한 특성을 보여준다. According to a specific embodiment of the present invention, the organic light emitting element of the present invention is a blue or green phosphor element. The organic light emitting material constituting the organic light emitting device can be classified into blue, green and red light emitting materials depending on the luminescent color. Of these, the blue and green phosphorescent devices are required to have higher triplet energy than the metal complex type luminescent dopant material Thereby realizing the device characteristics of efficiency. According to the present invention, the organic light emitting device of the present invention is a compound wherein two groups of molecules having different terminal characteristics due to the steric hindrance characteristic induce a three-dimensionally distorted substituent introduced into the organic light emitting compound at the ortho position are relatively independent The electrical properties of the host material can be easily controlled, and the extension of the conjugation can be minimized, thereby preventing the degradation of the triplet energy. Therefore, the compound of the present invention exhibits excellent properties as a luminescent host of green and blue phosphorescent devices due to high triplet energy.

본 발명의 특징 및 이점을 요약하면 다음과 같다:The features and advantages of the present invention are summarized as follows:

(a) 본 발명은 카바졸 유도체 유기발광 화합물 및 이를 포함하는 유기발광 소자를 제공한다.(a) The present invention provides a carbazole derivative organic light emitting compound and an organic light emitting device containing the same.

(b) 본 발명에서 개시하는 유기발광 화합물은 오쏘(ortho) 위치에 도입된 치환기가 유기발광 화합물에 입체적으로 뒤틀림을 유도하여 파이 컨쥬게이션을 단절시킴으로써 각 벤젠고리간의 입체 장애로 인해 우수한 삼중항 에너지를 유지할 뿐 아니라, 양쪽 말단 벤젠고리에 각각 정공 수송 치환기와 전자 수송 치환기가 결합되어 정공 주입·수송 및 전자 주입·수송 특성이 우수하다.(b) The organic luminescent compound disclosed in the present invention has a structure in which a substituent introduced at an ortho position induces a three-dimensional distortion in an organic luminescent compound to thereby interrupt the piconjugation, And a hole transport substituent and an electron transport substituent are bonded to the both terminal benzene rings, respectively, so that the hole injection / transport and electron injection / transport properties are excellent.

(c) 본 발명에서 개시하는 화합물은 뛰어난 양자효율, 전류효율 및 전력효율과 함께 우수한 청색 및 녹색 인광 발광 특성을 가져, 효율적인 인광 호스트 재료로 유용하게 이용될 수 있다.(c) The compounds disclosed in the present invention have excellent blue and green phosphorescence characteristics together with excellent quantum efficiency, current efficiency and power efficiency, and can be usefully used as an efficient phosphorescent host material.

도 1a, 도 1b 및 도 1c는 화합물 (a)가 가질 수 있는 입체구조를 3D 시뮬레이션을 통해서 나타낸 도이다.
도 2는 화합물 (a)의 1H NMR(400MHz)를 나타낸 도이다.
도 3은 화합물(b)의 질량분석(MS) 실험데이터를 나타낸 도이다.
도 4는 화합물(k)의 주기적 전압측정(Cyclic Voltametry)를 나타낸 도이다.
도 5는 화합물(j)의 UV 및 PL 스펙트럼을 나타낸 도이다.
도 6은 화합물(g)의 휘도(L)에 따른 양자효율(QE) 및 전력효율(PE)을 나타낸 도이다.
Figs. 1A, 1B, and 1C are diagrams showing 3D structures that a compound (a) may have through 3D simulation.
2 is a diagram showing 1 H NMR (400 MHz) of the compound (a).
3 is a graph showing mass spectrometry (MS) experimental data of compound (b).
Figure 4 is a diagram showing the cyclic voltametry of compound (k).
Figure 5 shows the UV and PL spectra of compound (j).
Fig. 6 is a graph showing the quantum efficiency QE and the power efficiency (PE) according to the luminance L of the compound (g).

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.
Hereinafter, the present invention will be described in more detail with reference to Examples. It is to be understood by those skilled in the art that these embodiments are only for describing the present invention in more detail and that the scope of the present invention is not limited by these embodiments in accordance with the gist of the present invention .

실시예Example

중간체의 합성Synthesis of intermediates

1. 중간체 (Ⅰ -Ⅴ) 1. Intermediates (I-V)

[합성예][Synthesis Example]

Figure pat00032
Figure pat00032

아닐린유도체 (183.3mmol)에 메탄올 (800ml)을 넣고 45℃에서 용해 시켰다. 2-브로모벤즈알데하이드 (183.3mmol)를 상기 반응용액에 투입한 후 약 24시간 동안 상온 교반하였다. 반응 종료 후 메탄올을 농축기를 사용하여 제거하였다. 농축된 화합물에 2,3-다이클로로-5,6-다이사이아노-파라-벤조퀴논 (219.9mmol)과 메틸렌클로라이드 (1200ml)를 투입하고 24시간 동안 상온 교반하였다. 반응 용액을 여과 후, 여액은 농축기를 사용하여 용매를 제거하였다. 농축된 화합물에 에틸 아세테이트/헥산 혼합 용매를 전개 용매로 컬럼크로마토그래피를 실시하여 각각의 중간체 (I~Ⅴ)를 얻었다.
Methanol (800 ml) was added to the aniline derivative (183.3 mmol) and dissolved at 45 占 폚. 2-Bromobenzaldehyde (183.3 mmol) was added to the reaction solution, followed by stirring at room temperature for about 24 hours. After completion of the reaction, methanol was removed using a concentrator. 2,3-Dichloro-5,6-dicyano-para-benzoquinone (219.9 mmol) and methylene chloride (1200 ml) were added to the concentrated compound and stirred at room temperature for 24 hours. The reaction solution was filtered, and the filtrate was removed using a concentrator. The concentrated compound was subjected to column chromatography using an eluting solvent of ethyl acetate / hexane as a developing solvent to obtain each intermediate (I to V).

중간체 (I) : 수율 60.1%, 1H NMR (400MHz, CDCl3) δ 7.30~7.45(m,4H), 7.58~7.61(m,1H), 7.74(d,1H,J=8.0), 7.84~7.86(m,1H), 8.06(d,1H,J=8.0).
Intermediate (I): Yield 60.1%, 1 H NMR (400MHz , CDCl3) δ 7.30 ~ 7.45 (m, 4H), 7.58 ~ 7.61 (m, 1H), 7.74 (d, 1H, J = 8.0), 7.84 ~ 7.86 (m, 1 H), 8.06 (d, 1 H, J = 8.0).

중간체 (Ⅱ) : 수율 58.7%, 1H NMR (400MHz, CDCl3) δ 2.52(s,3H), 7.20(d,1H,J=8.4), 7.35(t,1H,J=7.6), 7.42~7.47(m,2H), 7.71(d,1H,J=8.0), 7.76(d,1H,J=8.4), 8.06(d,1H,J=7.6).
& Lt; 1 > H NMR (400 MHz, CDCl3) [delta] 2.52 (s, 3H), 7.20 (m, 2H), 7.71 (d, 1H, J = 8.0), 7.76 (d, 1H, J = 8.4), 8.06 (d, 1H, J = 7.6).

중간체 (Ⅲ) : 수율 58.9%, 1H NMR (400MHz, DMSO) δ 7.47~7.58(m,4H), 7.86(d,1H,J=8.0), 8.01(d,1H,J=7.2), 8.12(d,1H,J=8.4), 8.19(d,1H,J=7.6).
Intermediate (Ⅲ): Yield 58.9%, 1 H NMR (400MHz , DMSO) δ 7.47 ~ 7.58 (m, 4H), 7.86 (d, 1H, J = 8.0), 8.01 (d, 1H, J = 7.2), 8.12 (d, 1H, J = 8.4), 8.19 (d, 1H, J = 7.6).

중간체 (Ⅳ) : 수율 59.3%, 1H NMR (400MHz, CDCl3) δ 2.50(s,3H), 7.20(d,1H,J=8.0), 7.34(t,1H,J=7.6), 7.42~7.47(m,2H), 7.63(s,1H), 7.75(d,1H,J=8.0), 8.05(d,1H,J=8.0).
Intermediate (Ⅳ): Yield 59.3%, 1 H NMR (400MHz , CDCl3) δ 2.50 (s, 3H), 7.20 (d, 1H, J = 8.0), 7.34 (t, 1H, J = 7.6), 7.42 ~ 7.47 (m, 2H), 7.63 (s, 1H), 7.75 (d, 1H, J = 8.0), 8.05 (d, 1H, J = 8.0).

중간체 (Ⅴ) : 수율 54.8%, 1H NMR (400MHz, CDCl3) δ 7.36(t,1H,J=7.6), 7.48(t,1H,J=7.6), 7.56(t,1H,J=7.6), 7.68(t,1H,J=7.6), 7.75~7.80(m,2H), 7.85(d,1H,J=8.8), 7.98(d,1H,J=8.0), 8.16(d,1H,J=8.0), 8.60(d,1H,J=8.4).
Intermediate (Ⅴ): Yield 54.8%, 1 H NMR (400MHz , CDCl3) δ 7.36 (t, 1H, J = 7.6), 7.48 (t, 1H, J = 7.6), 7.56 (t, 1H, J = 7.6) , 7.68 (d, IH, J = 8.0), 8.16 (d, IH, J = = 8.0), 8.60 (d, 1H, J = 8.4).

화합물의 합성Synthesis of compounds

상기 중간체 (I, Ⅱ, Ⅲ, Ⅳ, Ⅴ) (7.3mmol)와 보로닉 에시드 유도체 (1,2,3) (8.0mmol)를 1,4-다이옥산 (18ml)에 용해시킨 후 질소 버블링을 통해 용액 내의 산소를 제거하였다. 테트라키스 트리페닐포스피노 팔라듐 (0.4mmol)과 소듐 카보네이트 (21.9mmol) 그리고 물 (6ml)을 반응용매에 투입한 후 약 30분간 질소 버블링을 통해 산소를 제거하였다. 약 3~4시간 동안 환류 교반한 후 반응 혼합물을 상온으로 낮추었다. 셀라이트 여과 후, 여액을 다이클로로메탄과 물을 이용하여 유기층을 추출하였다. 마그네슘 설페이트를 이용하여 수분 제거 후 농축하여 고체를 얻었다. 에틸 아세테이트/헥산 혼합용매를 전개용매로 컬럼크로마토그래피를 실시하여 각각의 화합물 (a)~(o) 의 총 15가지 화합물을 얻었다.
The intermediate (I, II, III, IV, V) (7.3 mmol) and the boronic acid derivative (1,2,3) (8.0 mmol) were dissolved in 1,4-dioxane (18 ml) To remove oxygen in the solution. Tetraquistriphenylphosphinopalladium (0.4 mmol), sodium carbonate (21.9 mmol) and water (6 ml) were added to the reaction solvent, and oxygen was removed through nitrogen bubbling for about 30 minutes. After refluxing for about 3 to 4 hours, the reaction mixture was cooled to room temperature. After filtration through Celite, the organic layer was extracted from the filtrate using dichloromethane and water. After removal of moisture using magnesium sulfate, the mixture was concentrated to obtain a solid. Column chromatography was carried out using a developing solvent of ethyl acetate / hexane as a developing solvent to obtain a total of 15 compounds of the respective compounds (a) to (o).

화합물 (a) : 수율 67.1%, 1H NMR (400MHz, DMSO) δ 7.05(m,4H), 7.18(t,2H,J=7.0), 7.34(s,1H), 7.44(m,2H), 7.59(t,2H,J=6.6), 7.62~7.67(m,3H), 7.71~7.82(m,3H), 8.10(d,1H,J=7.6), 8.15(d,2H,J=7.6). Compound (a): Yield 67.1%, 1 H NMR (400MHz , DMSO) δ 7.05 (m, 4H), 7.18 (t, 2H, J = 7.0), 7.34 (s, 1H), 7.44 (m, 2H), 2H, J = 6.6), 7.62-7.67 (m, 3H), 7.71-7.82 (m, 3H), 8.10 (d, .

질량분석 TOF MS 437.1
Mass spectrometry TOF MS 437.1

화합물 (b) : 수율 69.9%, 1H NMR (400MHz, DMSO) δ 7.29(t,2H,J=7.6), 7.35(d,2H,J=8), 7.38~7.46(m,4H), 7.52~7.6(m,5H), 7.65~7.72(m,2H), 7.75~7.79(m,2H), 8.14(d,1H,J=8), 8.25(d,2H,J=7.6). Compound (b): Yield 69.9%, 1 H NMR (400MHz , DMSO) δ 7.29 (t, 2H, J = 7.6), 7.35 (d, 2H, J = 8), 7.38 ~ 7.46 (m, 4H), 7.52 2H), 7.75 (m, 2H), 8.14 (d, 1H, J = 8), 8.25 (d, 2H, J = 7.6).

질량분석 TOF MS 437.1
Mass spectrometry TOF MS 437.1

화합물 (c) : 수율 67.9%, 1H NMR (400MHz, DMSO) δ 7.02(s,1H), 7.13(d,2H,J=8.4), 7.27~7.73(m,13H), 7.78(d,1H,J=7.6), 7.96(d,1H,J=7.2), 8.23-8.25(m,2H). Compound (c): Yield 67.9%, 1 H NMR (400MHz , DMSO) δ 7.02 (s, 1H), 7.13 (d, 2H, J = 8.4), 7.27 ~ 7.73 (m, 13H), 7.78 (d, 1H , J = 7.6), 7.96 (d, 1H, J = 7.2), 8.23-8.25 (m, 2H).

질량분석 TOF MS 437.1
Mass spectrometry TOF MS 437.1

화합물 (d) : 수율 63.9%, 1H NMR (400MHz, DMSO) δ 2.43(s,3H), 7.07(m,4H), 7.18(m,2H), 7.23(d,1H,J=8.4), 7.31(s,1H), 7.42(s,1H), 7.54~7.61(m,3H), 7.64(d,2H,J=7.6), 7.68~7.76(m,2H), 8.06(d,1H,J=7.6), 8.14(d,2H,J=7.2). Compound (d): Yield 63.9%, 1 H NMR (400MHz , DMSO) δ 2.43 (s, 3H), 7.07 (m, 4H), 7.18 (m, 2H), 7.23 (d, 1H, J = 8.4), 1H, J = 7.6 (d, 2H, J = 7.6), 7.68-7.76 (m, 2H), 8.06 = 7.6), 8.14 (d, 2H, J = 7.2).

질량분석 TOF MS 451.1
Mass spectrometry TOF MS 451.1

화합물 (e) : 수율 60.6%, 1H NMR (400MHz, DMSO) δ 2.41(s,3H), 7.19(d,1H,J=8.4), 7.27~7.35(m,5H), 7.43(t,2H,J=7.6), 7.50(d,2H,J=8.4), 7.57(d,1H,J=8.4), 7.61~7.74(m,4H), 8.10(d,1H,J=7.6), 8.24(d,2H,J=8.0). Compound (e): Yield 60.6%, 1 H NMR (400MHz , DMSO) δ 2.41 (s, 3H), 7.19 (d, 1H, J = 8.4), 7.27 ~ 7.35 (m, 5H), 7.43 (t, 2H 1H, J = 7.6), 7.50 (d, 2H, J = 8.4), 7.57 (d, 1H, J = 8.4), 7.61-7.74 d, 2H, J = 8.0).

질량분석 TOF MS 451.1
Mass spectrometry TOF MS 451.1

화합물 (f) : 수율 60.4%, 1H NMR (400MHz, DMSO) δ 2.35(s,3H), 7.03(s,1H), 7.04~7.20(m,3H), 7.26~7.30(m,4H), 7.37~7.42(m,4H), 7.54~7.58(m,1H), 7.62~7.70(m,3H), 7.92(d,1H,J=6.8), 8.22(d,2H,J=8). Compound (f): 60.4%, 1 H NMR (400 MHz, DMSO)? 2.35 (s, 3H), 7.03 (s, 1H), 7.04-7.20 (m, 3H), 7.26-7.30 2H), 7.32-7.42 (m, 4H), 7.54-7.58 (m, 1H), 7.62-7.70 (m, 3H), 7.92 (d, 1H, J = 6.8), 8.22 (d, 2H, J = 8).

질량분석 TOF MS 451.1
Mass spectrometry TOF MS 451.1

화합물 (g) : 수율 54%, 1H NMR (400MHz, DMSO) δ 7.17(s,1H), 7.23~7.25(m,2H), 7.29~7.45(m,8H), 7.50~7.66(m,4H), 7.96(d,2H,J=8), 8.03(d,1H,J=8), 8.24~8.28(m,2H). Compound (g): Yield 54%, 1 H NMR (400 MHz, DMSO)? 7.17 (s, 1H), 7.23-7.25 (m, 2H), 7.29-7.45 (m, 8H), 7.50-7.66 ), 7.96 (d, 2H, J = 8), 8.03 (d, 1H, J = 8), 8.24 ~ 8.28 (m, 2H).

질량분석 TOF MS 453.1
Mass spectrometry TOF MS 453.1

화합물 (h) : 수율 65.4%, 1H NMR (400MHz, DMSO) δ 7.28(t,2H,J=8.0), 7.34~7.69(m,12H), 8.01(t,2H,J=8.0), 8.06(d,1H,J=7.2), 8.23(d,2H,J=8). Compound (h): Yield 65.4%, 1 H NMR (400MHz , DMSO) δ 7.28 (t, 2H, J = 8.0), 7.34 ~ 7.69 (m, 12H), 8.01 (t, 2H, J = 8.0), 8.06 (d, 1 H, J = 7.2), 8.23 (d, 2H, J = 8).

질량분석 TOF MS 453.1
Mass spectrometry TOF MS 453.1

화합물 (i) : 수율 60%, 1H NMR (400MHz, DMSO) δ 7.17(s,1H), 7.24~7.64(m,14H), 7.96(d,2H,J=8), 8.03(d,1H,J=8), 8.25~8.28(m,2H). Compound (i): 60% yield, 1 H NMR (400 MHz, DMSO)? 7.17 (s, 1H), 7.24-7.64 (m, 14H), 7.96 (d, 2H, J = , J = 8), 8.25-8.28 (m, 2H).

질량분석 TOF MS 453.1
Mass spectrometry TOF MS 453.1

화합물 (j) : 수율 67.2%, 1H NMR (400MHz, DMSO) δ 2.46(s,3H), 7.07~7.09(m,4H), 7.18~7.22(m,2H), 7.25(d,1H,J=7.6), 7.34(m,1H), 7.42(s,1H), 7.51(d,1H,J=8.4), 7.56~7.67(m,6H), 7.71~7.78(m,2H), 8.09(d,1H,J=7.2), 8.16(d,2H,J=8). Compound (j): Yield 67.2%, 1 H NMR (400MHz , DMSO) δ 2.46 (s, 3H), 7.07 ~ 7.09 (m, 4H), 7.18 ~ 7.22 (m, 2H), 7.25 (d, 1H, J = 7.6), 7.34 (m, IH), 7.42 (s, IH), 7.51 (d, IH, J = 8.4), 7.56-7.67 (m, 6H), 7.71-7.78 , 1H, J = 7.2), 8.16 (d, 2H, J = 8).

질량분석 TOF MS 451.1
Mass spectrometry TOF MS 451.1

화합물 (k) : 수율 50.1%, 1H NMR (400MHz, DMSO) δ 2.40(s,3H), 7.19(d,1H,J=8.4), 7.26~7.75(m,15H), 8.10(d,1H,J=7.2), 8.23~8.25(d,2H,J=8). Compound (k): Yield 50.1%, 1 H NMR (400MHz , DMSO) δ 2.40 (s, 3H), 7.19 (d, 1H, J = 8.4), 7.26 ~ 7.75 (m, 15H), 8.10 (d, 1H , J = 7.2), 8.23 ~ 8.25 (d, 2H, J = 8).

질량분석 TOF MS 451.1
Mass spectrometry TOF MS 451.1

화합물 (l) : 수율 50.3%, 1H NMR (400MHz, DMSO) δ 2.34(s,3H), 7.06(d,1H,J=8.4), 7.18~7.30(m,4H), 7.36~7.43(m,2H), 7.47(s,1H), 7.49~7.52(m,1H), 7.57~7.72(m,7H), 7.04(d,1H,J=7.6), 8.18(d,1H,J=7.6), 8.25(s,1H) Compound (l): Yield 50.3%, 1 H NMR (400MHz , DMSO) δ 2.34 (s, 3H), 7.06 (d, 1H, J = 8.4), 7.18 ~ 7.30 (m, 4H), 7.36 ~ 7.43 (m 1H, J = 7.6), 7.47 (s, 1H), 7.49-7.52 (m, , 8.25 (s, 1 H)

질량분석 TOF MS 451.1Mass spectrometry TOF MS 451.1

화합물 (m) : 수율 64.5%, 1H NMR (400MHz, DMSO) δ 6.79(t,2H,J=7.2), 7.03(d,2H,J=8), 7.07(t,2H,J=7.2), 7.36(m,1H), 7.57~7.82(m,9H), 7.96(d,1H,J=9.2), 8.08(d,2H,J=7.6), 8.12(d,1H,J=8), 8.18(d,1H,J=7.2), 8.23(d,1H,J=7.6). Compound (m): Yield 64.5%, 1 H NMR (400MHz , DMSO) δ 6.79 (t, 2H, J = 7.2), 7.03 (d, 2H, J = 8), 7.07 (t, 2H, J = 7.2) 1H, J = 9.2), 8.08 (d, 2H, J = 7.6), 8.12 (d, 1H, J = 8), 7.36 (m, 1H), 7.57-7.82 8.18 (d, 1H, J = 7.2), 8.23 (d, 1H, J = 7.6).

질량분석 TOF MS 487.1
Mass spectrometry TOF MS 487.1

화합물 (n) : 수율 53.3%, 1H NMR (400MHz, DMSO) δ 7.28(t,2H,J=8), 7.34~7.43(m,4H), 7.57~7.78(m,10H), 7.95(d,1H,J=8.8), 8.08~8.10(d,1H,J=8), 8.23~8.25(m,3H), 8.28(d,1H,J=8.8). Compound (n): 53.3% Yield 1 H NMR (400 MHz, DMSO)? 7.28 (t, 2H, J = 8), 7.34-7.43 (m, 4H), 7.57-7.78 1H, J = 8.8), 8.08-8.10 (d, 1H, J = 8), 8.23-8.25 (m, 3H), 8.28 (d, 1H, J = 8.8).

질량분석 TOF MS 487.1
Mass spectrometry TOF MS 487.1

화합물 (o) : 수율 52.3%, 1H NMR (400MHz, DMSO) δ 6.96~7.03(m,5H), 7.16~7.20(m,2H), 7.20~7.27(m,1H), 7.34~7.38(m,2H), 7.58~7.63(m,3H), 7.71~7.74(m,3H), 7.86(d,1H,J=8.8), 8.02(d,1H,J=7.6), 8.10(d,1H,J=8.4), 8.20~8.25(m,2H) 8.32(d,1H,J=8.4). Compound (o): Yield 52.3%, 1 H NMR (400MHz , DMSO) δ 6.96 ~ 7.03 (m, 5H), 7.16 ~ 7.20 (m, 2H), 7.20 ~ 7.27 (m, 1H), 7.34 ~ 7.38 (m 2H), 7.58-7.63 (m, 3H), 7.71-7.74 (m, 3H), 7.86 (d, 1H, J = 8.8), 8.02 J = 8.4), 8.20 ~ 8.25 (m, 2H) 8.32 (d, 1H, J = 8.4).

질량분석 TOF MS 487.1
Mass spectrometry TOF MS 487.1

화합물의 물리적 특징Physical properties of compounds 화합물compound 밴드갭
(eV)
Band gap
(eV)
HOMO
준위
(eV)
HOMO
warrant officer
(eV)
LUMO
준위
(eV)
LUMO
warrant officer
(eV)
삼중항
에너지
(eV)
Triplet
energy
(eV)
단일항
에너지
(eV)
Singlet
energy
(eV)
용도Usage 비고Remarks
(a)(a) 3.563.56 -5.62-5.62 -2.06-2.06 2.842.84 2.932.93 녹색 인광 호스트Green phosphorescent host 실시예1Example 1 (b)(b) 3.543.54 -5.67-5.67 -2.13-2.13 2.782.78 2.942.94 녹색 인광 호스트Green phosphorescent host 실시예2Example 2 (c)(c) 3.393.39 -5.64-5.64 -2.25-2.25 2.632.63 3.023.02 녹색 인광 호스트Green phosphorescent host 실시예3Example 3 (d)(d) 3.573.57 -5.67-5.67 -2.10-2.10 2.822.82 2.992.99 녹색 인광 호스트Green phosphorescent host 실시예4Example 4 (e)(e) 3.553.55 -5.64-5.64 -2.09-2.09 2.752.75 2.982.98 녹색 인광 호스트Green phosphorescent host 실시예5Example 5 (f)(f) 3.403.40 -5.64-5.64 -2.24-2.24 2.612.61 3.083.08 녹색 인광 호스트Green phosphorescent host 실시예6Example 6 (g)(g) 3.403.40 -5.64-5.64 -2.24-2.24 2.792.79 2.862.86 녹색 인광 호스트Green phosphorescent host 실시예7Example 7 (h)(h) 3.543.54 -5.67-5.67 -2.13-2.13 2.652.65 2.882.88 녹색 인광 호스트Green phosphorescent host 실시예8Example 8 (i)(i) 3.413.41 -5.65-5.65 -2.24-2.24 2.572.57 2.842.84 녹색 인광 호스트Green phosphorescent host 실시예9Example 9 (j)(j) 3.563.56 -5.64-5.64 -2.08-2.08 2.822.82 2.962.96 녹색 인광 호스트Green phosphorescent host -- (k)(k) 3.543.54 -5.64-5.64 -2.10-2.10 2.752.75 2.962.96 녹색 인광 호스트Green phosphorescent host -- (l)(l) 3.473.47 -5.65-5.65 -2.18-2.18 2.612.61 2.922.92 녹색 인광 호스트Green phosphorescent host -- (m)(m) 3.403.40 -5.68-5.68 -2.28-2.28 2.592.59 3.113.11 적색 인광 호스트Red phosphorescent host -- (n)(n) 3.413.41 -5.67-5.67 -2.26-2.26 2.552.55 2.982.98 적색 인광 호스트Red phosphorescent host -- (o)(o) 3.383.38 -5.69-5.69 -2.31-2.31 2.592.59 3.013.01 적색 인광 호스트Red phosphorescent host --

실시예 1Example 1 : 화합물 (a)를 이용한 녹색인광 소자의 제조 : Preparation of green phosphorescent device using compound (a)

본 발명에서 합성한 화합물 (a)를 녹색 인광소자의 발광 호스트 재료로서 적용하여 녹색인광 소자를 제작하였다. 소자는 배면발광 구조로 적층 하였으며, 사용된 재료는 다음과 같다:The compound (a) synthesized in the present invention was applied as a light emitting host material of a green phosphorescent device to produce a green phosphorescent device. The device was laminated with a back-light-emitting structure, and the materials used were as follows:

기판 및 음극은 인듐틴옥사이드(ITO)가 증착된 유기 기판을 사용하였으며, 정공주입층과 정공 수송층 재료는 폴리-(3,4-에틸렌다이옥시싸이오펜)-폴리스타일렌설포네이트(PEDOT-PSS)와 다이-[4-(N,N-다이톨릴아미노)-페닐]사이클로헥산 (TAPC)를 각각 사용하였다. 발광 도판트 재료는 트리스[2-페닐피리디나토-C2, N](피콜리나토) 이리듐(Ⅲ)(Ir(ppy)3)을 사용하였으며, 전자수송층 재료는 다이페닐포스핀 옥사이드-4-(트리페닐실릴)페닐(TSPO1)을 사용하였다. 양극 재료는 리튬플로라이드(LiF)와 알루미늄(Al)을 사용하였다. 또한, 발광층과 정공수송층 사이에 엑시톤(exciton) 저지층으로 N,N’-다이카바졸일-3,5-벤젠(mCP)를 사용하였으며, 결과적으로, 소자의 구조는 ITO/PEDOT-PSS/TAPC/mCP/화합물(a):Ir(ppy)3/ TSPO1/LiF/Al 이었다.(3,4-ethylenedioxythiophene) -Polystyrenesulfonate (PEDOT-PSS) was used as the hole injection layer and the hole transport layer material, while the substrate and the anode were organic substrate deposited with indium tin oxide (ITO) And di- [4- (N, N-ditolylamino) -phenyl] cyclohexane (TAPC), respectively. The light emitting dopant material used was tris [2-phenylpyridinato-C2, N] (picolinate) iridium (III) (Ir (ppy) 3 ), and the electron transport layer material was diphenylphosphine oxide- (Triphenylsilyl) phenyl (TSPO1) was used. Lithium fluoride (LiF) and aluminum (Al) were used as the cathode material. Further, N, N'-dicarbazolyl-3,5-benzene (mCP) was used as an exciton blocking layer between the light emitting layer and the hole transporting layer. As a result, the structure of the device was ITO / PEDOT-PSS / TAPC / mCP / compound (a): Ir (ppy) 3 / TSPO1 / LiF / Al.

소자의 제작은 다음과 같은 방법으로 수행하였다.The fabrication of the device was performed in the following manner.

ITO 기판은 순수와 이소프로필 알코올을 이용하여 초음파에서 30분간 세정한 후 ITO 기판을 단파장의 자외선을 이용하여 표면처리한 후 1X10-6 torr의 압력하에서 유기물을 진공 증착하였다. 정공주입층 PEDOT-PSS는 스핀코터를 이용하여 60nm의 두께로 코팅하였으며, TAPC, mCP 및 TSPO1은 0.1nm/s의 속도로 증착하여 각각 20nm, 10nm 및 35nm 두께로 증착하였다. 녹색 인광 호스트 재료인 화합물 (a)는 인광 도펀트 재료인 Ir(ppy)3 와 동시에 진공 증착하여 25nm의 두께로 형성시켰으며, 이때 증착속도는 화합물(a)이 0.1 nm/s, Ir(ppy)3 는 0.005nm/s였다. LiF는 0.01 nm/s의 속도로 1nm의 두께로 형성하였고, Al은 0.5 nm/sec의 증착속도로 100nm의 두께로 형성하였다. 소자 형성 후 CaO 흡습제와 유리 커버 글라스를 이용하여 소자를 밀봉하였다.The ITO substrate was cleaned with pure water and isopropyl alcohol for 30 minutes using ultrasound. The ITO substrate was surface-treated with ultraviolet light of short wavelength and vacuum was deposited on the ITO substrate under a pressure of 1 × 10 -6 torr. The hole injection layer PEDOT-PSS was coated to a thickness of 60 nm using a spin coater. TAPC, mCP and TSPO1 were deposited at a rate of 0.1 nm / s to deposit 20 nm, 10 nm, and 35 nm, respectively. The compound (a), which is a green phosphorescent host material, was formed in a thickness of 25 nm by vacuum evaporation at the same time as Ir (ppy) 3 , which is a phosphorescent dopant material. The deposition rate was 0.1 nm / s, Ir (ppy) 3 was 0.005 nm / s. LiF was formed to a thickness of 1 nm at a rate of 0.01 nm / s, and Al was formed to a thickness of 100 nm at a deposition rate of 0.5 nm / sec. After the device was formed, the device was sealed using a CaO wetting agent and a glass cover glass.

상기 화합물 (a)을 녹색인광소자의 발광 호스트 물질로 적용하여 7V의 전압에서 양자효율 25.6%, 전류효율 78.8 Cd/A, 전력효율 39.1 lm/W 및 CIE 1931 색좌표를 기준으로 x=0.29, y=0.62로 나타나 우수한 녹색인광 발광 특성을 보였다. 이 소자의 구동 전압(1000nit 전압)은 7.1V로 측정되었다.
The above compound (a) was applied as a light emitting host material of a green phosphorescent device and quantum efficiency of 25.6%, current efficiency of 78.8 Cd / A, power efficiency of 39.1 lm / W at a voltage of 7 V and x = 0.29, y = 0.62, indicating excellent green phosphorescent emission characteristics. The driving voltage (1000nit voltage) of this device was measured at 7.1V.

실시예 2Example 2 : 화합물 (b)를 이용한 유기전계 발광 소자의 제조 : Preparation of Organic Electroluminescent Device Using Compound (b)

소자의 제작과정은 녹색 호스트 물질에 화합물 (b)를 적용한 것 이외에는 실시예 1과 동일하였다.The manufacturing process of the device was the same as that of Example 1 except that the compound (b) was applied to the green host material.

상기 화합물 (b)을 녹색인광소자의 발광 호스트 물질로 적용하여 7.5V의 전압에서 양자효율 25.4%, 전류효율 77.9 Cd/A, 전력효율 36.1 lm/W 및 CIE 1931 색좌표를 기준으로 x=0.29, y=0.62로 나타나 우수한 녹색인광 발광 특성을 보였다. 이 소자의 구동 전압(1000nit 전압)은 7.6V로 측정되었다.
The above compound (b) was applied as a light emitting host material of a green phosphorescent device and quantum efficiency of 25.4%, current efficiency of 77.9 Cd / A, power efficiency of 36.1 lm / W at a voltage of 7.5 V and x = 0.29, y = 0.62, indicating excellent green phosphorescent emission characteristics. The driving voltage (1000nit voltage) of this device was measured at 7.6V.

실시예 3Example 3 : 화합물 (c)를 이용한 유기전계 발광 소자의 제조 : Preparation of Organic Electroluminescent Device Using Compound (c)

소자의 제작과정은 녹색 호스트 물질에 화합물 (c)를 적용한 것 이외에는 실시예 1과 동일하였다. The manufacturing process of the device was the same as that of Example 1 except that the compound (c) was applied to the green host material.

상기 화합물 (c)을 녹색인광소자의 발광 호스트 물질로 적용하여 5.5V의 전압에서 양자효율 22.5%, 전류효율 71.6 Cd/A, 전력효율 45.2 lm/W 및 CIE 1931 색좌표를 기준으로 x=0.28, y=0.63로 나타나 우수한 녹색인광 발광 특성을 보였다. 이 소자의 구동 전압(1000nit 전압)은 5.6V로 측정되었다.
The above compound (c) was applied as a light emitting host material of a green phosphorescent device and quantum efficiency of 22.5%, current efficiency of 71.6 Cd / A, power efficiency of 45.2 lm / W at a voltage of 5.5 V and x = 0.28 based on CIE 1931 color coordinates, y = 0.63, indicating excellent green phosphorescent emission characteristics. The driving voltage (1000nit voltage) of this device was measured at 5.6V.

실시예 4Example 4 : 화합물 (d)를 이용한 유기전계 발광 소자의 제조 : Preparation of Organic Electroluminescent Device Using Compound (d)

소자의 제작과정은 녹색 호스트 물질에 화합물 (d)를 적용한 것 이외에는 실시예 1과 동일하였다.The manufacturing process of the device was the same as that of Example 1 except that the compound (d) was applied to the green host material.

상기 화합물 (d)을 녹색인광소자의 발광 호스트 물질로 적용하여 6.5V의 전압에서 양자효율 25.3%, 전류효율 78.3 Cd/A, 전력효율 41.8 lm/W 및 CIE 1931 색좌표를 기준으로 x=0.29, y=0.62로 나타나 우수한 녹색인광 발광 특성을 보였다. 이 소자의 구동 전압(1000nit 전압)은 6.6V로 측정되었다.
The above compound (d) was applied as a light emitting host material of a green phosphorescent device and quantum efficiency of 25.3%, current efficiency of 78.3 Cd / A, power efficiency of 41.8 lm / W at a voltage of 6.5 V and x = 0.29, y = 0.62, indicating excellent green phosphorescent emission characteristics. The driving voltage (1000nit voltage) of this device was measured to be 6.6V.

실시예 5Example 5 : 화합물 (e)를 이용한 유기전계 발광 소자의 제조 : Preparation of Organic Electroluminescent Device Using Compound (e)

소자의 제작과정은 녹색 호스트 물질에 화합물 (e)를 적용한 것 이외에는 실시예 1과 동일하였다.The manufacturing process of the device was the same as that of Example 1 except that the compound (e) was applied to the green host material.

상기 화합물 (e)을 녹색인광소자의 발광 호스트 물질로 적용하여 5.5V의 전압에서 양자효율 23.1%, 전류효율 73.9 Cd/A, 전력효율 46.6 lm/W 및 CIE 1931 색좌표를 기준으로 x=0.28, y=0.63로 나타나 우수한 녹색인광 발광 특성을 보였다. 이 소자의 구동 전압(1000nit 전압)은 5.6V로 측정되었다.
The above compound (e) was applied as a light emitting host material of a green phosphorescent device and quantum efficiency of 23.1%, current efficiency of 73.9 Cd / A, power efficiency of 46.6 lm / W at a voltage of 5.5 V and x = 0.28, y = 0.63, indicating excellent green phosphorescent emission characteristics. The driving voltage (1000nit voltage) of this device was measured at 5.6V.

실시예 6Example 6 : 화합물 (f)를 이용한 유기전계 발광 소자의 제조 : Preparation of Organic Electroluminescent Device Using Compound (f)

소자의 제작과정은 녹색 호스트 물질에 화합물 (f)를 적용한 것 이외에는 실시예 1과 동일하였다.The manufacturing process of the device was the same as that of Example 1 except that the compound (f) was applied to the green host material.

상기 화합물 (f)을 녹색인광소자의 발광 호스트 물질로 적용하여 5V의 전압에서 양자효율 18.4%, 전류효율 58.3 Cd/A, 전력효율 40.5 lm/W 및 CIE 1931 색좌표를 기준으로 x=0.31, y=0.62으로 나타났다. 이 소자의 구동 전압(1000nit 전압)은 5.1V로 측정되었다.
The above compound (f) was applied as a light emitting host material of a green phosphorescent device and quantum efficiency of 18.4%, current efficiency of 58.3 Cd / A, power efficiency of 40.5 lm / W at a voltage of 5 V and x = 0.31, y = 0.62. The driving voltage (1000nit voltage) of this device was measured at 5.1V.

실시예 7Example 7 : 화합물 (g)를 이용한 유기전계 발광 소자의 제조 : Preparation of Organic Electroluminescent Device Using Compound (g)

소자의 제작과정은 녹색 호스트 물질에 화합물 (g)를 적용한 것 이외에는 실시예 1과 동일하였다.The manufacturing process of the device was the same as that of Example 1 except that the compound (g) was applied to the green host material.

상기 화합물 (g)을 녹색인광소자의 발광 호스트 물질로 적용하여 8V의 전압에서 양자효율 22.6%, 전류효율 69.5 Cd/A, 전력효율 30.2 lm/W 및 CIE 1931 색좌표를 기준으로 x=0.30, y=0.61로 나타나 우수한 녹색인광 발광 특성을 보였다. 이 소자의 구동 전압(1000nit 전압)은 8.2V로 측정되었다.
The above compound (g) was applied as a light emitting host material of a green phosphorescent device and quantum efficiency of 22.6%, current efficiency of 69.5 Cd / A, power efficiency of 30.2 lm / W at a voltage of 8 V and x = 0.30 and y = 0.61, indicating excellent green phosphorescent emission characteristics. The driving voltage (1000nit voltage) of this device was measured at 8.2V.

실시예 8Example 8 : 화합물 (h)를 이용한 유기전계 발광 소자의 제조 : Preparation of Organic Electroluminescent Device Using Compound (h)

소자의 제작과정은 녹색 호스트 물질에 화합물 (h)를 적용한 것 이외에는 실시예 1과 동일하였다.The manufacturing process of the device was the same as that of Example 1 except that the compound (h) was applied to the green host material.

상기 화합물 (h)을 녹색인광소자의 발광 호스트 물질로 적용하여 8V의 전압에서양자효율 19.6%, 전류효율 60.8 Cd/A, 전력효율 26.4 lm/W 및 CIE 1931 색좌표를 기준으로 x=0.32, y=0.61으로 나타났다. 이 소자의 구동 전압(1000nit 전압)은 7.9V로 측정되었다.
The above compound (h) was applied as a light emitting host material of a green phosphorescent device and quantum efficiency of 19.6%, current efficiency of 60.8 Cd / A, power efficiency of 26.4 lm / W at a voltage of 8 V and x = 0.32, y = 0.61. The driving voltage (1000nit voltage) of this device was measured at 7.9V.

실시예 9Example 9 : 화합물 (i)를 이용한 유기전계 발광 소자의 제조 : Preparation of Organic Electroluminescent Device Using Compound (i)

소자의 제작과정은 녹색 호스트 물질에 화합물 (i)를 적용한 것 이외에는 실시예 1과 동일하였다.The manufacturing process of the device was the same as in Example 1 except that the compound (i) was applied to the green host material.

상기 화합물 (i)을 녹색인광소자의 발광 호스트 물질로 적용하여 8.5V의 전압에서 양자효율 17.9%, 전류효율 55.2 Cd/A, 전력효율 22.5 lm/W 및 CIE 1931 색좌표를 기준으로 x=0.30, y=0.61으로 나타났다. 이 소자의 구동 전압(1000nit 전압)은 8.2V로 측정되었다.
The above compound (i) was applied as a light emitting host material of a green phosphorescent device and quantum efficiency 17.9%, current efficiency 55.2 Cd / A, power efficiency 22.5 lm / W at a voltage of 8.5 V and x = 0.30 based on CIE 1931 color coordinates, y = 0.61. The driving voltage (1000nit voltage) of this device was measured at 8.2V.

비교예Comparative Example : 4,4’-비스(N-카바졸일)-1,1’-바이페닐(CBP)을 이용한 유기전계 발광 소자의 제조 : Preparation of organic electroluminescent device using 4,4'-bis (N-carbazolyl) -1,1'-biphenyl (CBP)

본 발명에서 합성한 화합물의 특성과 비교하기 위해 CBP를 녹색 인광 호스트 재료로서 적용하여 유가전계 발광소자를 제작하였다. 소자의 제작과정은 녹색 호스트 물질에 화합물 CBP를 적용한 것 이외에는 실시예 1과 동일하였다.In order to compare the characteristics of the compounds synthesized in the present invention, CBP was applied as a green phosphorescent host material to fabricate a gas-phase electroluminescent device. The manufacturing process of the device was the same as that of Example 1 except that the compound CBP was applied to the green host material.

상기 CBP를 녹색인광소자의 발광 호스트 물질로 적용하여 6V의 전압에서 양자효율 21.0%, 전류효율 67.5 Cd/A, 전력효율 39.1 lm/W 및 CIE 1931 색좌표를 기준으로 x=0.30, y=0.62로 나타나 우수한 녹색인광 발광 특성을 보였다. 이 소자의 구동 전압(1000nit 전압)은 5.9V로 측정되었다.
The CBP was applied as a light emitting host material of a green phosphorescent device, and quantum efficiency of 21.0%, current efficiency of 67.5 Cd / A, power efficiency of 39.1 lm / W at a voltage of 6 V and x = 0.30 and y = 0.62 based on CIE 1931 color coordinates And showed excellent green phosphorescence characteristics. The driving voltage (1000nit voltage) of this device was measured at 5.9V.

이상으로 본 발명의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.
While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the same is by way of illustration and example only and is not to be construed as limiting the scope of the present invention. Accordingly, the actual scope of the present invention will be defined by the appended claims and their equivalents.

Claims (6)

하기의 화학식 1로 표시되는 유기발광 화합물:
화학식 1
Figure pat00033

상기 화학식에서, X는 O, S, NR4(R4는 수소 또는 C1-C3 알킬) 또는 CR5(R5는 수소 또는 C1-C3 알킬)이고; R1은 독립적으로 수소 또는 13각 내지 19각 고리의 헤테로아릴 페닐이고; 그리고 R2 및 R3는 각각 독립적으로 수소 또는 C1-C5 알킬이거나 또는 R2 및 R3는 함께 6각의 아릴 고리를 이룬다.
An organic luminescent compound represented by the following formula (1):
Formula 1
Figure pat00033

In the above formulas, X is O, S, NR 4 (R 4 is hydrogen or C 1 -C 3 alkyl) or CR 5 (R 5 is hydrogen or C 1 -C 3 alkyl); R < 1 > is independently hydrogen or heteroarylphenyl of from 13 to 19 rings; And R 2 and R 3 are each independently hydrogen or C 1 -C 5 alkyl, or R 2 and R 3 together form a six-membered aryl ring.
제 1 항에 있어서, 상기 화학식 1의 R1은 독립적으로 비치환되거나 C1-C3 알킬로 치환된 카바졸(carbazole) C6-C10 아릴인 것을 특징으로 하는 유기발광 화합물.
The organic electroluminescent compound according to claim 1, wherein R 1 in the formula (1) is independently carbazole C 6 -C 10 aryl which is unsubstituted or substituted with C 1 -C 3 alkyl.
제 2 항에 있어서, 상기 화학식 1의 R1은 각각 독립적으로
Figure pat00034
,
Figure pat00035
,
Figure pat00036
,
Figure pat00037
,
Figure pat00038
,
Figure pat00039
,
Figure pat00040
,
Figure pat00041
,
Figure pat00042
,
Figure pat00043
,
Figure pat00044
,
Figure pat00045
,
Figure pat00046
,
Figure pat00047
또는
Figure pat00048
인 것을 특징으로 하는 유기발광 화합물.
The method of claim 2, wherein, R 1 of Formula 1 are each independently
Figure pat00034
,
Figure pat00035
,
Figure pat00036
,
Figure pat00037
,
Figure pat00038
,
Figure pat00039
,
Figure pat00040
,
Figure pat00041
,
Figure pat00042
,
Figure pat00043
,
Figure pat00044
,
Figure pat00045
,
Figure pat00046
,
Figure pat00047
or
Figure pat00048
≪ / RTI >
제 1 항에 있어서, 상기 화학식 1로 표시되는 유기발광 화합물은 하기의 화학식 2 내지 16으로 표시되는 화합물로 구성된 군으로부터 선택되는 것을 특징으로 하는 유기발광 화합물:
화학식 2 화학식 3
Figure pat00049
Figure pat00050


화학식 4 화학식 5
Figure pat00051
Figure pat00052


화학식 6 화학식 7
Figure pat00053
Figure pat00054


화학식 8 화학식 9
Figure pat00055
Figure pat00056


화학식 10 화학식 11
Figure pat00057
Figure pat00058


화학식 12 화학식 13
Figure pat00059
Figure pat00060


화학식 14 화학식 15
Figure pat00061
Figure pat00062


화학식 16
Figure pat00063

The organic electroluminescent compound according to claim 1, wherein the organic electroluminescent compound represented by Formula 1 is selected from the group consisting of compounds represented by Formulas 2 to 16:
(2)
Figure pat00049
Figure pat00050


(4)
Figure pat00051
Figure pat00052


(6)
Figure pat00053
Figure pat00054


(8)
Figure pat00055
Figure pat00056


(10)
Figure pat00057
Figure pat00058


(12)
Figure pat00059
Figure pat00060


(14)
Figure pat00061
Figure pat00062


Formula 16
Figure pat00063

제 1 항 내지 제 4 항 중 어느 한 항의 유기발광 화합물을 포함하는 유기발광 소자.
An organic light-emitting device comprising an organic light-emitting compound according to any one of claims 1 to 4.
제 5 항에 있어서, 상기 유기발광 소자는 청색 또는 녹색 인광 소자인 것을 특징으로 하는 유기발광 소자.The organic light emitting diode according to claim 5, wherein the organic light emitting device is a blue or green phosphorescent device.
KR1020150006855A 2015-01-14 2015-01-14 Carbazole Derivatives and Organic light emitting device Comprising the Same KR20160087959A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150006855A KR20160087959A (en) 2015-01-14 2015-01-14 Carbazole Derivatives and Organic light emitting device Comprising the Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150006855A KR20160087959A (en) 2015-01-14 2015-01-14 Carbazole Derivatives and Organic light emitting device Comprising the Same

Publications (1)

Publication Number Publication Date
KR20160087959A true KR20160087959A (en) 2016-07-25

Family

ID=56616564

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150006855A KR20160087959A (en) 2015-01-14 2015-01-14 Carbazole Derivatives and Organic light emitting device Comprising the Same

Country Status (1)

Country Link
KR (1) KR20160087959A (en)

Similar Documents

Publication Publication Date Title
JP6416169B2 (en) Host materials for phosphorescent OLEDs
JP6219452B2 (en) Triphenylenesilane host
KR101497124B1 (en) Compound for organic electronic element, organic electronic element using the same, and an electronic device thereof
US10651397B2 (en) Organic light emitting compound and organic light emitting device comprising the same
EP2541635B1 (en) Organic electroluminescent element
KR101244599B1 (en) Bipolar triphenylene-based compound and organic electroluminescent device comprising the same
EP2535957B1 (en) Organic electroluminescent element
JP6100368B2 (en) Biscarbazole derivative host material and green light emitter for OLED light emitting region
KR101676102B1 (en) Heterocyclic compound and organic light emitting device using the same
JP5027947B2 (en) Phosphorescent light emitting device material and organic electroluminescent device using the same
JP7273414B2 (en) Organic light-emitting materials containing 6-silyl-substituted isoquinoline ligands
JP7274756B2 (en) Metal complexes containing three different ligands
JP7180900B2 (en) Organic electroluminescent material and its device
US20100253208A1 (en) Bis-phenanthroimidazolyl compound and electroluminescent device using the same
KR101558966B1 (en) Asymmetric ortho-Terphenyl Derivatives and Organic light emitting device Comprising the Same
JP5753658B2 (en) Charge transport material and organic electroluminescent device
KR20160068683A (en) Novel compound and organic electroluminescent device comprising same
CN108779080B (en) Novel compound and organic light-emitting element comprising same
KR101472295B1 (en) Multicyclic aromatic compound and organic light emitting device including the same
KR20190089764A (en) Multicyclic compound and organic light emitting device comprising the same
JP6209242B2 (en) Organic light emitting device with long life characteristics
KR20160112111A (en) Novel organic compounds for organic light-emitting diode and organic light-emitting diode including the same
KR20150058080A (en) Novel electroluminescent compound and organic electroluminescent device comprising same
KR102028503B1 (en) Phosphorescent material and organic light emitting diode device using the same
KR102120916B1 (en) An electroluminescent compound and an electroluminescent device comprising the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application