KR20160078694A - Mutant corynebacterium ammoniagenes strain with enhanced 5'-inosinic acid production and method for preparing of 5'-inosinic acid using the same - Google Patents

Mutant corynebacterium ammoniagenes strain with enhanced 5'-inosinic acid production and method for preparing of 5'-inosinic acid using the same Download PDF

Info

Publication number
KR20160078694A
KR20160078694A KR1020140188622A KR20140188622A KR20160078694A KR 20160078694 A KR20160078694 A KR 20160078694A KR 1020140188622 A KR1020140188622 A KR 1020140188622A KR 20140188622 A KR20140188622 A KR 20140188622A KR 20160078694 A KR20160078694 A KR 20160078694A
Authority
KR
South Korea
Prior art keywords
strain
corynebacterium ammoniagenes
inosinic acid
imp
glucose
Prior art date
Application number
KR1020140188622A
Other languages
Korean (ko)
Other versions
KR101744958B1 (en
Inventor
박석현
문민우
권희수
한재춘
박동철
Original Assignee
대상 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대상 주식회사 filed Critical 대상 주식회사
Priority to KR1020140188622A priority Critical patent/KR101744958B1/en
Publication of KR20160078694A publication Critical patent/KR20160078694A/en
Application granted granted Critical
Publication of KR101744958B1 publication Critical patent/KR101744958B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • C12P19/28N-glycosides
    • C12P19/30Nucleotides
    • C12P19/32Nucleotides having a condensed ring system containing a six-membered ring having two N-atoms in the same ring, e.g. purine nucleotides, nicotineamide-adenine dinucleotide
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/15Corynebacterium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/8215Microorganisms
    • Y10S435/822Microorganisms using bacteria or actinomycetales
    • Y10S435/843Corynebacterium

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The present invention relates to a method for producing Corynebacterium ammoniagenes mutant strain having the productivity of 5′-inosinic acid (IMP) having reinforced activities of transketolase, transaldolase, glucose-6-phosphate 1-dehydrogenase, hetero multimeric protein, and 6-phosphogluconolactonase, and to a method for producing IMP by using the same. The strain according to the present invention not only reinforces a promoter of a major gene so as to enhance metabolism of a pentose sugar circuit but also preferably reduces an activity of a glucose isomerase of a central metabolism route which is a competition circuit, so IMP productivity is increased compared to Corynebacterium ammoniagenes which is a base strain.

Description

5’-이노신산의 고생성능 코리네박테리움 암모니아게네스 변이 균주 및 이를 이용한 5’-이노신산의 제조 방법{Mutant Corynebacterium ammoniagenes Strain with Enhanced 5’-inosinic acid Production and Method for Preparing of 5’-inosinic acid Using the Same}[0001] The present invention relates to a 5'-inosinic acid, a 5'-inosinic acid, a 5'-inosinic acid, a 5'-inosinic acid, a 5'-inosinic acid, a 5'-inosinic acid, the Same}

본 발명은 5 탄당 회로가 강화된 5’-이노신산(IMP)의 생성능을 가지는 코리네박테리움 암모니아게네스 변이 균주, 이의 제조방법 및 이를 이용한 5’-이노신산(IMP)의 제조 방법에 관한 것이다.
The present invention relates to a Corynebacterium ammoniagenes mutant strain having the ability to produce 5'-inosinic acid (IMP) enhanced in pentose cycle, a process for producing the same, and a process for producing 5'-inosinic acid (IMP) using the same.

5’-이노신산(5’-inosinic acid 또는 inosine monophosphate (IMP))은 핵산 생합성 대사계의 중간물질로서, 동식물의 체내에서 생리적으로 중요한 역할을 수행할 뿐 아니라, 식품, 의약품 및 각종 의료적 이용 등 다방면에 이용되고 있으며, 특히 글루타민산 나트륨과 같이 사용하면 맛의 상승효과가 커서 정미성 조미료로 각광을 받고 있는 핵산계 조미료 중 하나이다.5'-inosinic acid (5'-inosinic acid or inosine monophosphate (IMP)) is an intermediate of the nucleic acid biosynthetic metabolic pathway and plays an important physiological role in the body of plants and animals. And it is one of the nucleic acid-based seasoning which is widely used as a seasoning with high synergy of taste when it is used with sodium glutamate in particular.

5’-이노신산을 제조하는 방법으로는, 효모 세포로부터 추출한 리보핵산을 효소적으로 분해하는 방법(일본 특허 공고 제1614/1957호), 발효에 의해 생산된 이노신을 화학적으로 인산화하는 방법(Agri. Biol. Chem., 36, 1511(1972) 등) 및 5’-이노신산을 생산할 수 있는 미생물을 배양하고 배지에 축적된 5’-이노신산을 회수하는 방법 등이 있다. Examples of the method for producing 5'-inosinic acid include a method of enzymatically degrading ribonucleic acid extracted from yeast cells (Japanese Patent Publication No. 1614/1957), a method of chemically phosphorylating inosine produced by fermentation (Agri. Biol. Chem., 36, 1511 (1972)), and a method of culturing a microorganism capable of producing 5'-inosinic acid and recovering 5'-inosinic acid accumulated in the medium.

이러한 방법 중에서 현재 가장 많이 사용되고 있는 방법이 미생물을 이용하여 5’-이노신산을 생산하는 방법이다. 5’-이노신산을 생산하는데 이용하는 미생물 중 코리네박테리움(Corynebacterium) 속 균주, 예를 들어 코리네박테리움 암모니아게네스(Corynebacterium ammoniagenes)를 발효시킴으로써 제조하는 방법(대한민국 특허공개 제2003-42972호), 또는 글루코오스-6-포스페이트 아이소머라아제(glucose-6-phosphate isomerase)의 활성이 강화된 것을 특징으로 하는 5’-이노신산 생산능을 가지는 코리네박테리움 암모니아게네스(대한민국 특허공개 제2009-0095138호) 등이 공지되어 있다.Of these methods, the most widely used method is the method of producing 5'-inosinic acid by using microorganisms. For example, a method of producing Corynebacterium ammoniagenes by fermentation of a strain of the genus Corynebacterium , which is used for producing 5'-inosine acid (Korean Patent Publication No. 2003-42972) , Or a glucose-6-phosphate isomerase is enhanced in the activity of 5'-inosine acid (Korean Patent Laid-Open Publication No. 2009-0095138 And the like are known.

한편, 이러한 종래의 5’-이노신산(inosine monophosphate; IMP) 고생산 균주는 퓨린 계열 핵산물질 생합성 경로인 드노보 경로의 유전자들을 증폭시켜 최종 산물인 IMP 등의 핵산 생성을 증가시키는 것인데, 이와 같은 핵산 생합성 경로는 5 탄당 회로를 거치는 전구물질 수송단계와 핵산생합성 단계로 크게 나눌 수 있는데 후자의 활성 단계인 종래 기술로는 생산성을 향상시키는 데 한계점에 이르렀으며, 전구물질 공급회로인 5 탄당 생합성 경로의 활성화에 의해 더 진보된 핵산생산 균주 개발이 필요한 실정이다.
Meanwhile, such conventional 5'-inosine monophosphate (IMP) high-producing strains amplify genes of de novo pathway, which is a purine-based nucleic acid material biosynthesis pathway, to increase nucleic acid production such as IMP, which is a final product. The biosynthetic pathway can be roughly divided into a precursor transport step through a 5-cell cycle and a nucleic acid biosynthetic step. The latter, which is the active stage of the latter, has reached a limit in improving productivity, It is necessary to develop more advanced nucleic acid producing strains by activation.

본 명세서 전체에 걸쳐 다수의 논문 및 특허문헌이 참조되고 그 인용이 표시되어 있다. 인용된 논문 및 특허문헌의 개시 내용은 그 전체로서 본 명세서에 참조로 삽입되어 본 발명이 속하는 기술 분야의 수준 및 본 발명의 내용이 보다 명확하게 설명된다.
Numerous papers and patent documents are referenced and cited throughout this specification. The disclosures of the cited papers and patent documents are incorporated herein by reference in their entirety to better understand the state of the art to which the present invention pertains and the content of the present invention.

본 발명자들은 5’-이노신산(IMP)을 효율적으로 생산할 수 있는 코리네박테리움 암모니아게네스 균주를 개발하고자 예의 노력하였다. 그 결과, 5 탄당 회로의 주요 효소인 트랜스케톨레이즈(transketolase), 트랜스알돌레이즈(transaldolase), 글루코오스-6-포스페이트 1-디하이드로게네이즈(glucose-6-phosphate 1-dehydrogenase), 이성 단백질(hetero multimeric protein) 및 6-포스포글루코노락토네이즈(6-phosphogluconolactonase)의 활성을 강화시켜, 5’-이노신산(IMP)의 생성능이 증가될 수 있음을 규명함으로써, 본 발명을 완성하게 되었다.
The present inventors have made efforts to develop a Corynebacterium ammoniagenesis strain capable of efficiently producing 5'-inosinic acid (IMP). As a result, the transketolase, transaldolase, glucose-6-phosphate 1-dehydrogenase, heteromeric protein (hetero- multimeric protein and 6-phosphogluconolactonase to increase the ability to produce 5'-inosinic acid (IMP), thereby completing the present invention.

따라서 본 발명의 목적은 5’-이노신산(IMP)의 생성능을 가지는 코리네박테리움 암모니아게네스 변이 균주를 제공하는 데 있다.Accordingly, an object of the present invention is to provide a Corynebacterium ammoniagenes mutant strain having the ability to produce 5'-inosinic acid (IMP).

본 발명의 다른 목적은 상술한 본 발명의 코리네박테리움 암모니아게네스 변이 균주의 제조방법을 제공하는 데 있다.Another object of the present invention is to provide a method for producing the Corynebacterium ammoniagenes mutant strain of the present invention described above.

본 발명의 또 다른 목적은 5’-이노신산(IMP)의 제조 방법을 제공하는 데 있다.
It is another object of the present invention to provide a process for preparing 5'-inosinic acid (IMP).

본 발명의 다른 목적 및 이점은 하기의 발명의 상세한 설명, 청구범위 및 도면에 의해 보다 명확하게 된다.Other objects and advantages of the present invention will become more apparent from the following detailed description of the invention, claims and drawings.

본 발명의 일 양태에 따르면, 본 발명은 트랜스케톨레이즈(transketolase), 트랜스알돌레이즈(transaldolase), 글루코오스-6-포스페이트 1-디하이드로게네이즈(glucose-6-phosphate 1-dehydrogenase), 이성 단백질(hetero multimeric protein) 및 6-포스포글루코노락토네이즈(6-phosphogluconolactonase)의 활성이 강화된 5’-이노신산(IMP)의 생성능을 가지는 코리네박테리움 암모니아게네스 변이 균주를 제공한다.
According to one aspect of the present invention, there is provided a transketolase, a transaldolase, a glucose-6-phosphate 1-dehydrogenase, a heterologous protein (IMP) having an enhanced activity of 6-phosphogluconolactonase and a heteromultimeric protein capable of producing 5'-inosinic acid (IMP). The present invention also provides a mutant strain of Corynebacterium ammoniagenes.

본 발명자들은 5’-이노신산(IMP)을 효율적으로 생산할 수 있는 코리네박테리움 암모니아게네스 균주를 개발하고자 예의 노력하였다. 그 결과, 5 탄당 회로의 주요 효소인 트랜스케톨레이즈(transketolase), 트랜스알돌레이즈(transaldolase), 글루코오스-6-포스페이트 1-디하이드로게네이즈(glucose-6-phosphate 1-dehydrogenase), 이성 단백질(hetero multimeric protein) 및 6-포스포글루코노락토네이즈(6-phosphogluconolactonase)의 활성을 강화시킴으로써, 5’-이노신산(IMP)의 생성능이 증가될 수 있음을 규명하였다.
The present inventors have made efforts to develop a Corynebacterium ammoniagenesis strain capable of efficiently producing 5'-inosinic acid (IMP). As a result, the transketolase, transaldolase, glucose-6-phosphate 1-dehydrogenase, heteromeric protein (hetero- multinomial protein and 6-phosphogluconolactonase, the productivity of 5'-inosinic acid (IMP) can be increased.

본 발명의 일 구현예에 따르면, 상기 활성은 트랜스케톨레이즈를 코딩하는 tkt 유전자, 트랜스알돌레이즈를 코딩하는 tal 유전자, 글루코오스-6-포스페이트 1-디하이드로게네이즈를 코딩하는 zwf 유전자, 이성 단백질을 코딩하는 opcA 유전자 및 6-포스포글루코노락토네이즈를 코딩하는 pgl 유전자가 각각 발현이 증가되어 강화된다.
According to one embodiment of the present invention, said activity is selected from the group consisting of a tkt gene encoding transketolase, a tal gene encoding transaldolase, a zwf gene encoding glucose-6-phosphate 1-dehydrogenase, Encoding opcA gene and the 6-phosphogluconolactonase-encoding pgl gene, respectively, are enhanced with increased expression.

본 명세서에서 표현 "발현의 증가 "는 유전자의 발현량이 본래의 발현량보다 증가된 것을 말한다. 변이시키기 전의 미생물에 발현을 증가시키고자 하는 유전자가 존재하지 않는 경우에는 하나 이상의 상기 유전자를 상기 미생물에 도입하여 발현을 증가시킬 수 있고, 변이시키기 전의 미생물에 발현을 증가시키고자 하는 유전자가 존재하는 경우에는 같은 방법으로 하나 이상의 유전자를 상기 미생물에 추가로 도입하거나, 기존에 존재하는 유전자의 발현량이 증가하도록 유전공학적으로 조작할 수 있다. 예를 들어, 발현을 증가시키는 유전자가 변이시키고자 하는 미생물 내에 존재하는 경우 상기 유전자의 발현을 작동시키는 고유의 프로모터(native promoter)를 강력 프로모터(strong promoter)로 치환함으로써 상기 유전자의 발현을 증가시킬 수 있다. As used herein, the expression "increase in expression" means that the expression level of the gene is increased over the original expression level. If there is no gene to increase expression in the microorganism prior to mutagenesis, one or more of the genes may be introduced into the microorganism to increase the expression, and a gene to increase expression in the microorganism before mutation is present , One or more genes may be introduced into the microorganism in the same manner or may be genetically engineered so that the expression level of an existing gene is increased. For example, when a gene that increases expression is present in a microorganism to be mutated, the expression of the gene is increased by replacing a native promoter that drives the expression of the gene with a strong promoter .

본 발명의 다른 구현예에 따르면, 상기 발현의 증가는 상기 tkt, tal, zwf, opcA 및 pgl 유전자로 오페론을 구성하고 있는 유전자 클러스터의 프로모터가 슈퍼옥사이드 디스뮤테이즈(superoxide dismutase; sod)를 코딩하는 유전자의 프로모터(sod promoter)로 치환되어 실시된다.
According to another embodiment of the present invention, the increase of the expression is caused by the fact that the promoter of the gene cluster constituting the operon with the tkt, tal, zwf, opcA and pgl genes encodes superoxide dismutase (sod) (Sod promoter).

본 명세서에서 표현 “활성의 약화”는 유전자를 코딩하는 뉴클레오타이드 치환, 삽입, 결실 또는 이들의 조합을 통하여 단백질의 발현을 약화시키는 것을 의미한다.As used herein, the expression " attenuation of activity " means attenuating expression of a protein through nucleotide substitution, insertion, deletion, or a combination thereof that encodes the gene.

본 발명의 또 다른 구현예에 따르면, 상기 균주는 활성이 약화된 글루코오스 아이소머라아제(phosphoglucose isomerase)를 추가적으로 포함하고, 보다 바람직하게는 상기 균주는 글루코오스 아이소머라아제를 코딩하는 유전자인 pgi 뉴클레오타이드 서열의 치환, 삽입, 결실 또는 이들의 조합을 통하여 글루코오스 아이소머라아제의 활성이 약화되며, 보다 더 바람직하게는 상기 균주는 pgi 유전자의 해독 개시코돈이 ATG 에서 GTG로 치환되어 글루코오스 아이소머라아제의 활성이 약화된 균주이다.
According to another embodiment of the present invention, the strain further comprises an activity-impaired glucose isomerase, more preferably the strain is a pgi nucleotide sequence which is a gene encoding glucose isomerase The activity of glucose isomerase is weakened through substitution, insertion, deletion, or a combination thereof. More preferably, the strain has a deletion initiation codon for the pgi gene substituted with GTG in ATG to weaken the activity of glucose isomerase Lt; / RTI >

따라서, 본 발명의 코리네박테리움 암모니아게네스 변이 균주는 5 탄당 회로의 대사흐름 강화를 위한 주요 유전자의 프로모터를 강화시키는 것뿐만 아니라 바람직하게는 경쟁 회로인 중심대사 경로의 pgi 유전자 발현을 약화시키는 단계를 추가하여 핵산 대사의 시작이 되는 5탄당 회로의 흐름을 강화시켰다(도 4).
Therefore, the Corynebacterium ammoniagenesis mutant strain of the present invention not only enhances the promoter of the major gene for enhancing the metabolic flow of the pentose cycle, but also preferably weakens the expression of the pgi gene in the central metabolic pathway, Step was added to enhance the flow of the pentacene circuit, which is the beginning of nucleic acid metabolism (Figure 4).

본 발명의 또 다른 구현예에 따르면, 상기 5 탄당의 주요 효소의 활성이 강화된 균주는 모주인 코리네박테리움 암모니아게네스 균주와 비교하여 5’-이노신산(IMP)의 생산량이 3-15% 증가되고, 보다 바람직하게는 5-10% 증가된다.According to another embodiment of the present invention, the strain having enhanced activity of the 5-valent main enzyme has a yield of 5'-inosinic acid (IMP) of 3-15% as compared with that of the parent strain of Corynebacterium ammoniagenes. , And more preferably by 5-10%.

본 발명의 다른 구현예에 따르면, 상기 5 탄당의 주요 효소의 활성이 강화되고, 경쟁 회로인 중심대사 경로의 글루코오스 아이소머라아제 (phosphoglucose isomerase)의 활성을 약화 시킨 균주는 모주인 코리네박테리움 암모니아게네스 균주와 비교하여 5’-이노신산(IMP)의 생산량이 5-30% 증가되고, 보다 바람직하게는 8-25% 증가되며, 보다 더 바람직하게는 10-20%된다.
According to another embodiment of the present invention, the activity of the pentasaccharide main enzyme is enhanced and the strain which weakens the activity of the glucose oxidase (glucose isomerase) in the central metabolic pathway, which is a competing circuit, is the parent corynebacterium ammonia The production amount of 5'-inosinic acid (IMP) is increased by 5-30%, more preferably by 8-25%, and even more preferably by 10-20%, compared with the genetic strain.

본 발명의 다른 양태에 따르면, 본 발명은 트랜스케톨레이즈(transketolase), 트랜스알돌레이즈(transaldolase), 글루코오스-6-포스페이트 1-디하이드로게네이즈(glucose-6-phosphate 1-dehydrogenase), 이성 단백질(hetero multimeric protein), 6-포스포글루코노락토네이즈(6-phosphogluconolactonase)의 활성을 강화시키는 단계를 포함하는 5’-이노신산(IMP)의 생성능을 가지는 코리네박테리움 암모니아게네스 변이 균주의 제조방법을 제공한다.
According to another aspect of the present invention, the present invention provides a method for the production of transketolase, transaldolase, glucose-6-phosphate 1-dehydrogenase, (IMP) comprising the step of enhancing the activity of 6-phosphogluconolactonase, which is a heteromultimeric protein, and a method for producing a Corynebacterium ammoniagenes mutant strain having the ability to produce 5'-inosinic acid (IMP) .

본 발명의 5’-이노신산(IMP)의 생성능을 가지는 코리네박테리움 암모니아게네스 변이 균주의 제조방법은 상술한 본 발명의 5’-이노신산(IMP)의 생성능을 가지는 코리네박테리움 암모니아게네스 변이 균주를 제조하는 것이므로, 이 둘 사이에 공통된 내용은 본 명세서의 과도한 복잡성을 피하기 위하여, 그 기재를 생략한다.The method for producing the Corynebacterium ammoniagenesis mutant strains having the ability to produce 5'-inosinic acid (IMP) of the present invention is characterized in that the Corynebacterium ammonia genus strain having the ability to produce 5'-inosinic acid (IMP) Since mutation strains are to be produced, the description common to both is omitted in order to avoid the excessive complexity of the present specification.

본 발명의 다른 구현예에 따르면, 상기 방법은 상기 코리네박테리움 암모니아게네스 변이 균주의 글루코오스 아이소머라아제(phosphoglucose isomerase)의 활성을 약화시키는 단계를 추가적으로 포함한다.According to another embodiment of the present invention, the method further comprises the step of attenuating the activity of the phosphoglucose isomerase of the Corynebacterium ammoniagenes mutant strain.

본 발명의 방법에서 활성의 강화 및 약화 시키는 단계는 공지된 방법을 통하여 실시될 수 있다. 예컨대, CaCl2 방법(Cohen, S.N. et al., Proc. Natl. Acac. Sci. USA, 9:2110-2114(1973)), 하나한 방법 (Cohen, S.N. et al., Proc. Natl. Acac. Sci. USA, 9:2110-2114(1973); 및 Hanahan, D., J. Mol. Biol., 166:557-580(1983)) 및 전기 천공 방법 (Dower, W.J. et al., Nucleic. Acids Res., 16:6127-6145(1988)) 등에 의해 실시될 수 있다.Strengthening and weakening the activity in the method of the present invention can be carried out through known methods. For example, CaCl 2 method (Cohen, SN et al, Proc Natl Acac Sci USA, 9:..... 2110-2114 (1973))..., One method (Cohen, SN et al, Proc Natl Acac. (Dower, WJ et al., Nucleic Acids (1983)), and Hanahan, D., J. Mol. Biol., 166: 557-580 Res., 16: 6127-6145 (1988)).

본 발명의 또 다른 구현예에 따르면, 상기 방법은 형질전환이 되지 않은 코리네박테리움 암모니아게네스 균주로부터 형질전환된 코리네박테리움 암모니아게네스 변이 균주를 분리 및 수득하는 단계를 포함한다.According to another embodiment of the present invention, the method comprises isolating and obtaining the Corynebacterium ammoniagenes mutant strain transformed from the untransformed Corynebacterium ammoniagenes strain.

상기 본 발명에서 형질전환이 되지 않은 코리네박테리움 암모니아게네스 균주로부터 형질전환된 코리네박테리움 암모니아게네스 변이 균주를 분리 및 수득하는 단계를 실시하는데 있어서 선택 표지된 벡터를 이용할 수 있다.In the present invention, a selectively labeled vector may be used in carrying out the step of isolating and obtaining the Corynebacterium ammoniagenes mutant strain transformed from the Corynebacterium ammoniagenesis strain which has not been transformed.

또한, 본 발명에서 이용하는 벡터는 플라스미드 또는 파지(phage)를 포함하나, 이에 제한되지 않는다.In addition, the vector used in the present invention includes, but is not limited to, a plasmid or a phage.

본 발명에서 이용하는 선택표지는 당업계에서 통상적으로 이용되는 항생제 내성 유전자를 포함하며, 예를 들어 암피실린, 겐타마이신, 카베니실린, 클로람페니콜, 스트렙토마이신, 카나마이신, 게네티신, 네오마이신 및 테트라사이클린에 대한 내성 유전자가 있고, 바람직하게는 비용의 측면을 고려하여 암피실린 또는 카나마이신 내성유전자가 있다.
The selectable marker used in the present invention includes an antibiotic resistance gene commonly used in the art and includes, for example, antibiotic resistance genes such as ampicillin, gentamycin, carbenicillin, chloramphenicol, streptomycin, kanamycin, geneticin, neomycin and tetracycline There is a resistance gene for resistance to the disease, preferably a resistance gene for ampicillin or kanamycin in view of cost.

본 발명의 또 다른 양태에 따르면, 본 발명은 다음의 단계를 포함하는 5’-이노신산(IMP)의 제조 방법을 제공한다: (a) 상술한 본 발명의 코리네박테리움 암모니아게네스 변이 균주를 배지에서 배양하는 단계; 및 (b) 상기 배지에서 5’-이노신산(IMP)을 회수하는 단계. According to another aspect of the present invention, the present invention provides a method for producing 5'-inosinic acid (IMP) comprising the steps of: (a) culturing the mutant strain of Corynebacterium ammoniagenes, Culturing in a medium; And (b) recovering 5'-inosinic acid (IMP) from the medium.

본 발명에 이용되는 균주는 공지된 배양방법을 통해 배양할 수 있다. 배지로는 천연배지 또는 합성배지를 사용할 수 있다. 배지의 탄소원으로는 예를 들어, 글루코오스, 수크로오스, 덱스트린, 글리세롤, 녹말 등이 사용될 수 있고, 질소원으로는 펩톤, 육류 추출물, 효모 추출물, 건조된 효모, 대두 케이크, 우레아, 티오우레아, 암모늄염, 나이트레이트 및 기타 유기 또는 무기 질소-함유 화합물이 사용될 수 있으나, 이러한 성분에 한정되는 것은 아니다.The strain used in the present invention can be cultured through a known culture method. As the medium, natural medium or synthetic medium can be used. Examples of the carbon source of the medium include glucose, sucrose, dextrin, glycerol and starch. Examples of the nitrogen source include peptone, meat extract, yeast extract, dried yeast, soybean cake, urea, thiourea, Rate and other organic or inorganic nitrogen-containing compounds may be used, but are not limited to these components.

배지에 포함되는 무기염으로는 마그네슘, 망간, 포타슘, 칼슘, 철 등의 포스페이트, 나이트레이트, 카보네이트, 클로라이드 등이 사용될 수 있으나, 이들에 한정되는 것은 아니다.Examples of inorganic salts contained in the medium include, but are not limited to, phosphates such as magnesium, manganese, potassium, calcium and iron, nitrates, carbonates, chlorides and the like.

상기 탄소원, 질소원 및 무기염의 성분 이외에 아미노산, 비타민, 핵산 및 그와 관련된 화합물들이 배지에 첨가될 수 있다.Amino acids, vitamins, nucleic acids and related compounds may be added to the medium in addition to the carbon source, the nitrogen source and the components of the inorganic salt.

본 발명의 특징 및 이점을 요약하면 다음과 같다:The features and advantages of the present invention are summarized as follows:

(ⅰ) 본 발명은 5’-이노신산(IMP)의 생성능을 가지는 코리네박테리움 암모니아게네스 변이 균주, 이의 제조방법 및 이를 이용한 5’-이노신산(IMP)의 제조 방법을 제공한다.(I) The present invention provides a Corynebacterium ammoniagenes mutant strain having the ability to produce 5'-inosinic acid (IMP), a method for producing the same and a method for producing 5'-inosinic acid (IMP) using the same.

(ii) 본 발명의 코리네박테리움 암모니아게네스 변이 균주는 5 탄당 회로의 대사흐름 강화를 위한 주요 유전자의 프로모터를 강화시키는 것 뿐만 아니라 바람직하게는 경쟁 회로인 중심대사 경로의 글루코오스 아이소머라아제의 활성을 약화 시켜, 야생형 코리네박테리움 암모니아게네스와 비교하여 5’-이노신산(IMP)의 생산량이 증가되었다.(ii) The Corynebacterium ammoniagenes mutant strain of the present invention not only enhances the promoter of the major gene for enhancing the metabolic flow of the pentose cycle, but also preferably enhances the glucose uptake of glucose isomerase of the central metabolic pathway Activity, resulting in increased production of 5'-inosinic acid (IMP) as compared to wild-type Corynebacterium ammoniagenes.

도 1은 본 발명의 일실시예에 따른 플라스미드 pK19mobsacB의 구조를 보여준다.
도 2는 본 발명은 다른 실시예에 따른 플라스미드 pK19msbpgi(A1G)의 구조를 보여준다.
도 3은 본 발명의 또 다른 실시예에 따른 플라스미드 pK19msbPPP의 구조를 보여준다.
도 4는 본 발명의 다른 실시예에 따른 코리네박테리움 암모니아게네스 변이 균주의 5’-이노신산(IMP)의 생성 경로를 보여준다.
Figure 1 shows the structure of the plasmid pK19mobsacB according to an embodiment of the present invention.
2 shows the structure of the plasmid pK19msbpgi (A1G) according to another embodiment of the present invention.
Figure 3 shows the structure of the plasmid pK19msbPPP according to another embodiment of the present invention.
FIG. 4 shows the production route of 5'-inosinic acid (IMP) of Corynebacterium ammoniagenes mutant strain according to another embodiment of the present invention.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.
Hereinafter, the present invention will be described in more detail with reference to Examples. It is to be understood by those skilled in the art that these embodiments are only for describing the present invention in more detail and that the scope of the present invention is not limited by these embodiments in accordance with the gist of the present invention .

아래 실시예에서 특별한 언급이 없는 방법은 일반적으로 사용되는 분자생물학적인 방법을 사용하였다. 예를 들면, 플라스미드 DNA 분리, 제한 효소 처리, 연결(ligation), E. coli의 표준 형질전환 등은 샘브룩(Sambrook) 등의 문헌[참조: Molecular Cloning. A Laboratory Manual (1989) Cold Spring Harbour Laboratories, USA]에 기재되어 있으며, 본 명세서에 참조로서 삽입된다.
In the examples below, methods not specifically mentioned use commonly used molecular biological methods. For example, plasmid DNA isolation, restriction enzyme treatment, ligation, and standard transformation of E. coli are described by Sambrook et al. (Molecular Cloning. A Laboratory Manual (1989) Cold Spring Harbor Laboratories, USA, which is incorporated herein by reference.

실시예Example

실시예 1:Example 1:

1.1 재조합용 pK19msbPPP 벡터 제조1.1 Preparation of pK19msbPPP vector for recombination

핵산 생산 균주인 IP1G 의 게놈 상에서 5탄당 회로의 주요 유전자인 tkt, tal, zwf, opcA, pgl의 발현 강화를 위해 이 유전자들이 오페론으로 존재하는 상부의 네이티브 프로모터(native promoter)를 sod 프로모터로 교체 하였다. 코리네형 세균의 게놈상에서 네이티브 프로모터인 150 bp 부분과 sod 프로모터를 교체하기 위해 sod 프로모터 부분의 유전자 단편을 증폭하여 재조합 벡터인 pK19mobsacB에 클로닝 하였다. 이때 네이티브 프로모터 부분에서 재조합을 위해 양쪽 각 500 bp를 증폭하여 오버레핑(overlapping) PCR 방법으로 sod 프로모터와 연결하여 재조합 벡터에 클로닝하였다.In order to enhance the expression of tkt, tal, zwf, opcA and pgl, the major genes of the pentose cycle on the genome of the nucleic acid producing strain IP1G, the upper native promoter in which these genes exist as operons was replaced by the sod promoter . To replace the native promoter 150 bp and the sod promoter in the genome of coryneform bacteria, the gene fragment of the sod promoter was amplified and cloned into the recombinant vector pK19mobsacB. At this time, 500 bp of each was amplified for the recombination in the native promoter region and cloned into a recombinant vector by overlapping PCR method with the sod promoter.

이 플라스미드를 pK19sodPPPP 라고 명명하고 도 1에 나타내었다. 이 플라스미드를 만들기 위해 각각의 유전자 단편을 아래 표 1에 기재된 프라이머를 사용하여 이하의 조건에 준하는 PCR 방법에 의해 증폭한 후 클로닝 하였다.This plasmid is named pK19sodPPPP and is shown in Fig. To construct this plasmid, each gene fragment was amplified by the PCR method according to the following conditions using the primer shown in Table 1 below and then cloned.

프라이머primer 비고Remarks sodP 단편증폭 프라이머sodP fragment amplification primer 정방향Forward 5’-accctacttagctgccaatt-3’5'-accctacttagctgccaatt-3 ' 제1서열First sequence 역방향Reverse 5’-gttctcctttcgtaggtttc-3’5'-gttctcctttcgtaggtttc-3 ' 제2서열Second sequence 좌측상동암 단편증폭 프라이머Left homologous arm fragment amplification primer 정방향Forward 5’-GAACCAAAGGACGCGCGCGT-3’5'-GAACCAAAGGACGCGCGCGT-3 ' 제3서열Third sequence 역방향Reverse 5’-CTTATACGTAGACAAAAGTT-3’5'-CTTATACGTAGACAAAAGTT-3 ' 제4서열Fourth sequence 우측상동암 단편증폭 프라이머Right homology arm fragment amplification primer 정방향Forward 5’-GTGTCTTCTTCGAACCTCTC-3’5'-GTGTCTTCTTCGAACCTCTC-3 ' 제5서열Fifth sequence 역방향Reverse 5’-TCGCCGGCTGGAGTCTCTGG-3’5'-TCGCCGGCTGGAGTCTCTGG-3 ' 제6서열6th sequence

이상의 프라이머를 이용하여 아래의 조건하에 PCR 반응을 수행하였다. Thermocycler(TP600, TAKARA BIO Inc., JAPAN) 를 이용하여 100 μM 각각의 데옥시뉴클레오타이드 트리포스페이트(dATP, dCTP, dGTP, dTTP)가 첨가된 반응액에 올리고뉴클레오타이드 1 pM, 코리네박테리움 암모니아게네스 ATCC 6872 염색체 DNA 10 ng을 템플레이트로 이용하여 pfu-X DNA 폴리머라제 혼합물(바이오니아) 1 유니트의 존재하에 25~30주기로 수행하였다.The above primers were used to carry out the PCR reaction under the following conditions. (DATP, dCTP, dGTP, dTTP) was added to each 100 μM deoxynucleotide triphosphate using a thermocycler (TP600, TAKARA BIO Inc., JAPAN) 10 ng of ATCC 6872 chromosomal DNA was used as a template in 25-30 cycles in the presence of 1 unit of pfu-X DNA polymerase mixture (bioneer).

PCR 반응은 94℃에서 30초, 54℃에서 30초 및 72℃에서 1분~3분(1kb 당 2분의 중합시간 부여)의 조건에서 실시하였다.The PCR reaction was carried out at 94 ° C for 30 seconds, at 54 ° C for 30 seconds, and at 72 ° C for 1 minute to 3 minutes (giving a polymerization time of 2 minutes per 1 kb).

이와 같이 제조된 유전자단편을 적절한 제한효소를 이용하여 pK19mobsacB에 클로닝한 후 대장균 DH5a에 형질전환 하여 50 ㎍/㎖의 카나마이신을 함유하는 LB-한천 플레이트 상에 도말하여 최종 형성되는 콜로니를 분리하여 삽입물(insert)이 정확히 벡터에 존재하는지 확인한 후 이 벡터를 분리하여 코리네박테리움 암모니아게네스 IP1G 의 재조합에 사용 하였다.
The thus-prepared gene fragment was cloned into pK19mobsacB using appropriate restriction enzymes, transformed into E. coli DH5a, plated on an LB-agar plate containing 50 mu g / ml of kanamycin, and the resulting colonies were separated to obtain inserts insert was precisely present in the vector, this vector was separated and used for the recombination of Corynebacterium ammoniagenes IP1G.

1.2 재조합용 pK19pgi(A1G) 벡터 제조1.2 Preparation of pK19pgi (A1G) vector for recombination

추가로, IP1G 균주의 5 탄당 회로를 강화시키고 중심대사경로(해당과정)를 약화시키기 위해 pgi 유전자의 개시코돈을 ATG 에서 GTG로 치환시키기 위한 재조합 백터를 제조하였다. IP1G 게놈상에서 pgi 유전자 개시코돈 ATG 에서 A를 중심으로 좌측암 500 bp 부분과 우측암 500 bp 부분을 PCR로 증폭하여 오버레핑 PCR 방법으로 연결한 후 재조합 백터인 pK19mobsacB에 클로닝 하였다. 이 플라스미드를 pK19msbpgi(A1G) 라고 명명하고 도 2에 나타내었다. 이 플라스미드를 만들기 위해 각각의 유전자 단편을 아래 표 2의 프라이머를 사용하여 이하의 조건에 준하는 PCR 방법에 의해 증폭한 후 클로닝 하였다.In addition, a recombinant vector was prepared to replace the initiation codon of the pgi gene with GTG in ATG to enhance the pentose cycle of the IP1G strain and attenuate the central metabolic pathway (corresponding process). On the IP1G genome, the 500 bp region of the left arm and the 500 bp region of the right arm were amplified by PCR using an over-repetition PCR method and cloned into a recombinant vector pK19mobsacB. This plasmid is named pK19msbpgi (A1G) and is shown in Fig. To construct this plasmid, each gene fragment was amplified by the PCR method according to the following conditions using the primer shown in Table 2 below and then cloned.

프라이머primer 비고Remarks pK19mobsacB 벡터 증폭 프라이머pK19mobsacB vector amplification primer 정방향Forward 5’-gggcggttttatggacagcaagcga-3’5'-gggcggttttatggacagcaagcga-3 ' 제7서열Seventh sequence 역방향Reverse 5’-ggcgagcggtatcagctcactcaaa-3’5'-ggcgagcggtatcagctcactcaaa-3 ' 제8서열Eighth sequence pgi 좌측상동암 단편 증폭 프라이머
(개시코돈 치환)
pgi left homology arm fragment amplification primer
(Initiation codon substitution)
정방향Forward 5’-aaccgtattaccgcctttgagtgagctgatacc
gctcgccAGGCGGCCGCGGCCGCAGCG-3’
5'-aaccgtattaccgcctttgagtgagctgatacc
gctcgccAGGCGGCCGCGGCCGCAGCG-3 '
제9서열Ninth sequence
역방향Reverse 5’-GGTTGTTGCGTTATTTCCACGATTGACCTTT
CGATACCAG-3’
5'-GGTTGTTGCGTTATTTCCACGATTGACCTTT
CGATACCAG-3 '
제10서열Tenth sequence
pgi 우측상동암 단편 증폭 프라이머
(개시코돈 치환)
pgi right homology arm fragment amplification primer
(Initiation codon substitution)
정방향Forward 5’-GTGGAAATAACGCAACAACC-3’5'-GTGGAAATAACGCAACAACC-3 ' 제11서열Eleventh sequence
역방향Reverse 5’-gctggcaattccggttcgcttgctgtccataaaa
ccgccc/CTGCGCAGTGCCTGGGCTGC-3’
5'-gctggcaattccggttcgcttgctgtccataaaa
ccgccc / CTGCGCAGTGCCTGGGCTGC-3 '
제12서열12th sequence

이상의 프라이머를 이용하여 아래의 조건하에 PCR 반응을 수행하였다. Thermocycler(TP600, TAKARA BIO Inc., JAPAN)를 이용하여 100 μM 각각의 데옥시뉴클레오타이드 트리포스페이트(dATP, dCTP, dGTP, dTTP)가 첨가된 반응액에 올리고뉴클레오타이드 1 pM, 코리네박테리움 암모니아게네스 ATCC 6872 염색체 DNA 10 ng을 템플레이트로 이용하여 pfu-X DNA 폴리머라제 혼합물(솔젠트社) 1 유니트의 존재하에 25~30주기로 수행하였다.The above primers were used to carry out the PCR reaction under the following conditions. (DATP, dCTP, dGTP, dTTP) was added to each 100 μM deoxynucleotide triphosphate using a thermocycler (TP600, TAKARA BIO Inc., JAPAN) 10 ng of ATCC 6872 chromosomal DNA was used as a template in 25-30 cycles in the presence of 1 unit of pfu-X DNA polymerase mixture (Solgent).

PCR 반응은 94℃에서 30초, 54℃에서 30초 및 72℃에서 1분~2분(1kb 당 2분의 중합시간 부여)의 조건에서 실시하였다.PCR was carried out under conditions of 30 seconds at 94 ° C, 30 seconds at 54 ° C, and 1 minute to 2 minutes at 72 ° C (giving a polymerization time of 2 minutes per 1 kb).

이와 같이 제조된 유전자단편을 적절한 제한효소를 이용하여 pK19mobsacB에 클로닝한 후 대장균 DH5a 에 형질전환 하여 50 ㎍/㎖의 카나마이신을 함유하는 LB-한천 플레이트 상에 도말하여 최종 형성되는 콜로니를 분리하여 삽입물(insert)이 정확히 벡터에 존재하는지 확인한 후 이 벡터를 분리하여 코리네박테리움 암모니아게네스 IP1G 의 재조합에 사용 하였다.
The thus-prepared gene fragment was cloned into pK19mobsacB using appropriate restriction enzymes, transformed into E. coli DH5a, plated on an LB-agar plate containing 50 mu g / ml of kanamycin, and the resulting colonies were separated to obtain inserts insert was precisely present in the vector, this vector was separated and used for the recombination of Corynebacterium ammoniagenes IP1G.

상기 방법에서 공통적으로 진행된 과정으로써 해당 유전자들의 증폭은 코리네박테리움 암모니아게네스(C. ammoniagenes) ATCC 6872 genomic DNA로부터 PCR 방법으로 증폭하여 전략(strategy)에 따라 적합한 제한효소로 절단한 후 pK19mobsacB에 삽입하여 E. coli top10F’혹은 JM110에서 선별하였다. 경우에 따라서 클로닝 시 Gibson 어셈블리 클로닝 키트(NEB)를 이용하여 pK19mobsacB에 클로닝 하였다. Chromosomal site direct mutagenesis(base substitution, promoter switch)는 각각 단편(fragment)의 유전자를 개별 증폭하여 오버레핑(overlapping) PCR 법으로 목적 DNA 단편을 제조하였다. 유전자 조작 시 PCR 증폭효소로는 Ex Taq 중합효소 (Takara), Pfu 중합효소(Solgent)를 이용하였고, 각종 제한효소 및 DNA modifying 효소는 NEB 제품을 사용하였으며 공급된 버퍼 및 프로토콜에 따라 사용하였다.
As a common procedure in the above method, the amplification of the corresponding genes was amplified by PCR method from C. ammoniagenes ATCC 6872 genomic DNA, digested with appropriate restriction enzymes according to the strategy, and then amplified by pK19mobsacB And selected from E. coli top10F 'or JM110. Optionally, cloning was performed in pK19mobsacB using the Gibson Assembly Cloning Kit (NEB). Chromosomal site direct mutagenesis (base substitution, promoter switch) was performed by individually amplifying the fragment gene and preparing a target DNA fragment by an overlapping PCR method. Ex Taq Polymerase (Takara) and Pfu Polymerase (Solgent) were used as PCR amplification enzymes. Various restriction enzymes and DNA modifying enzymes were used according to the supplied buffer and protocols.

실시예 2:Example 2:

2.1 균주 IP2G의 제조2.1 Preparation of strain IP2G

이상과 같이 언급된 pk19msbPPP 벡터를 이용하여, IP2G 균주를 제조하였다. 이 벡터 최종농도 1 ug/ul 이상 되도록 준비하여 코리네박테리움 암모니아게네스 IP1G 균주에 전기천공법(FEMS Microbiology lettes. 123: 343-347. 1994)을 사용하여 1차 재조합을 유도 하였다. 이때 전기천공한 균주를 가나마이신(kanamycin)이 20 ug/ul 포함되는 LB 한천플레이트에 도말하여 콜로니를 분리한 후 게놈상의 유도한 위치에 적절히 삽입되었는지 PCR 및 염기서열 분석을 통해 확인하였다. 이렇게 분리된 균주는 다시 2차 재조합을 유도하기 위해 10% 수크로오스(sucrose) 를 함유한 LB 한천액체배지에 하룻밤 배양하여 동일 농도의 수크로오스 한천플레이트에 도말하여 콜로니를 분리하였다. 최종 분리된 콜로니 중 항생제 가나마이신(kanamycin) 내성 여부를 확인한 후 항생제 내성이 없는 균주들 중 sod 프로모터가 원하는 위치에 대체(replacement) 되었는지 염기서열 분석을 통해 확인하였다 [참조: Gene, 145 (1994) 69-73].
The IP2G strain was prepared using the pk19 msbPPP vector mentioned above. This vector was prepared to have a final concentration of 1 ug / ul or more, and primary recombination was induced in Corynebacterium ammoniagenes IP1G strain by electroporation (FEMS Microbiology Lettes. 123: 343-347, 1994). At this time, the electroporated strain was plated on an LB agar plate containing 20 ug / ul of kanamycin, and the colonies were separated and confirmed by PCR and sequencing analysis to confirm that they were properly inserted into the genome-derived site. The thus-isolated strain was further cultured overnight in a LB agar medium containing 10% sucrose to induce secondary recombination, and the colonies were isolated on a sucrose agar plate of the same concentration. After confirming the resistance of the antibiotic kanamycin among the finally isolated colonies, it was confirmed by nucleotide sequencing that the sod promoter was replaced at a desired position among strains without antibiotic resistance (Gene, 145 (1994) 69-73].

2.2 균주 IP3G의 제조2.2 Preparation of strain IP3G

최종 확인된 IP2G의 균주에 위 방법과 동일한 과정을 거처 IP3G 균주를 제조하였다. Pk19msbpgi(A1G) 벡터를 이용하여 최종농도 1 ug/ul 이상 되도록 준비하고 코리네박테리움 암모니아게네스 IP2G 균주에 전기천공법(FEMS Microbiology lettes. 123: 343-347. 1994)을 사용하여 1차 재조합을 유도 하였다. 이때 전기천공한 균주를 20 ug/ul 되는 LB 한천플레이트에 도말하여 콜로니를 분리한 후 게놈상의 유도한 위치에 적절히 삽입되었는지 PCR 및 염기서열 분석을 통해 확인하였다. 이렇게 분리된 균주는 다시 2차 재조합을 유도하기 위해 10% 수크로오스를 함유한 LB 한천액체배지에 하룻밤 배양하여 동일 농도의 수크로오스를 포함하는 LB 한천플레이트에 도말하여 콜로니를 분리하였다. 최종 분리된 콜로니 중 항생제 가나마이신(kanamycin) 내성 여부를 확인한 후 항생제 내성이 없는 균주들 중 pgi 유전자의 개시코돈인 ATG가 GTG로 치환(subsititution) 되었는지 염기서열 분석을 통해 확인한다[참조: Gene, 145 (1994) 69-73].
IP3G strains were prepared by the same procedure as above for the final confirmed strain of IP2G. Pk19msbpgi (A1G) vector to a final concentration of 1 ug / ul or more, and then subjected to electroporation (FEMS Microbiology Lettes. 123: 343-347, 1994) on Corynebacterium ammoniagenes IP2G strain to obtain a first recombinant Lt; / RTI > At this time, the electroporated strain was plated on an LB agar plate at 20 ug / ul and the colonies were separated and confirmed by PCR and sequencing analysis that they were properly inserted into the genome-derived site. The thus isolated strain was further cultured overnight in an LB agar medium containing 10% sucrose to induce secondary recombination, and the colonies were separated by streaking on an LB agar plate containing sucrose at the same concentration. After confirming the resistance of the antibiotic kanamycin among the finally isolated colonies, it was confirmed by nucleotide sequencing that ATG, which is the initiation codon of pgi gene, was subsitituted by GTG among strains without antibiotic resistance (Gene, 145 (1994) 69-73.

실시예 3:Example 3:

3.1 5’-이노신산의 제조 3.1 Preparation of 5'-Inosine Acid

실시예 2.1에서 수득한 코리네박테리옴 암모니아게네스 IP2G 를 5’-이노신산 제조능의 향상 여부를 판단하기 위해 생산성 향상 여부를 측정하였다. 이를 위해 한천 플레이트에서 코리네박테리옴 암모니아게네스 IP3G 균주를 24 시간 동안 배양하고 이를 예비배양액(씨드배지)에 씨딩하였다(10 ml 액량/100 ml 삼각플라스크).In order to determine the improvement of the ability to produce 5'-inosinic acid, the productivity of the Corynebacterium ammoniagenes IP2G obtained in Example 2.1 was measured. To this end, Corynebacterium ammoniagenes IP3G strain was cultured on an agar plate for 24 hours and seeded in a preliminary culture medium (seed medium) (10 ml liquid amount / 100 ml Erlenmeyer flask).

예비 배양물을 회전식 진탕기에서 180 rpm 으로 30℃에서 20시간 동안 배양하였다. 미리 준비해둔 주 배지에 예비 배양물을 1 ml 옮겨 접종하였다. 이때 주 배지도 동일한 100 ml 배플 플라스크에 9 ml 배지를 준비하여 접종 비율이 10% 되도록 하였다(1 ml/9 ml). 이상 예비배지 및 생산배지는 표 3에 나타내었다. 주 배양물을 동일한 회전식 진탕기에서 180 rpm으로 30℃에서 48시간 동안 배양한다. 최종적으로 배양물의 상등액에서 5’-이노신산의 함량을 측정하였다. 실험 결과는 표 4에 나타내었다.The preliminary cultures were cultured in a rotary shaker at 180 rpm at 30 DEG C for 20 hours. 1 ml of the preliminary culture was transferred to the main medium prepared in advance and inoculated. At this time, 9 ml medium was prepared in the same 100 ml baffle flask so that the inoculation ratio was 10% (1 ml / 9 ml). The ideal preliminary medium and the production medium are shown in Table 3. The main culture is cultured in the same rotary shaker at 180 rpm at 30 DEG C for 48 hours. Finally, the content of 5'-inosinic acid in the supernatant of the culture was measured. The experimental results are shown in Table 4.

실시예 2.2에서 수득한 코리네박테리옴 암모니아게네스 IP3G의 5’-이노신산 제조능의 향상 여부를 판단하기 위한 방법도 위 IP2G의 생산성 측정과 동일한 과정으로 수행되었으며 그 실험 결과는 표 5에 나타내었다.The method for determining whether the 5'-inosinic acid production ability of the Corynebacterium ammoniagenes IP3G obtained in Example 2.2 was improved was also performed in the same manner as in the measurement of the productivity of the above IP2G, and the results of the experiment are shown in Table 5 .

성분ingredient 씨드(예비)배지함량Seed (reserve) medium content 주(생산)배지함량Main (production) medium content H3PO4(75%)H 3 PO 4 (75%) 5 g/L5 g / L 11.71 g/L11.71 g / L KOH(45%)KOH (45%) 5 g/L5 g / L 12.89 g/L12.89 g / L NaOH(33%)NaOH (33%) 3 g/L3 g / L 6.97 g/L6.97 g / L 포도당glucose 40 g/L40 g / L 50 g/L50 g / L 과당fruit sugar -- 50 g/L50 g / L 옥수수 침지액Corn dip 5 g/L5 g / L 3 %(w/v)3% (w / v) (NH4)2SO4 (NH 4) 2 SO 4 -- 2 g/L2 g / L UreaUrea 1 g/L1 g / L 2.5 g/L2.5 g / L L-CysteineL-Cysteine 15 mg/L15 mg / L 20 mg/L20 mg / L β-Alanineβ-Alanine 15 mg/L15 mg / L 20 mg/L20 mg / L Thi-HClThi-HCl 5 mg5 mg 5 mg5 mg Nicotinic acidNicotinic acid 15 mg15 mg 5 mg5 mg BiotinBiotin 60 ug60 ug 50 ug50 ug Mono-sodium glutamateMono-sodium glutamate -- 1 g/L1 g / L CaCl2 CaCl 2 1g1g 100 mg/L100 mg / L MgSO4 MgSO 4 5 mg/L5 mg / L 5 g/L5 g / L MnSO4 MnSO 4 5 mg/L5 mg / L 10mg/L10 mg / L ZnSO4 ZnSO 4 1 mg/L1 mg / L 10mg/L10 mg / L FeSO4 FeSO 4 -- 5 mg/L5 mg / L AdenineAdenine 100 mg/L100 mg / L 85 mg/L85 mg / L GuanineGuanine 100 mg/L100 mg / L 45 mg/L45 mg / L KOH(45%)KOH (45%) 5 g/L5 g / L 12.89 g/L12.89 g / L CaCO3 CaCO 3 -- 5 g/L5 g / L

균주Strain OD610OD610 5' 이노신산 (g/L)5 'inosine (g / L) IP1GIP1G 64.1 64.1 19.2 19.2 IP2GIP2G 65.2 65.2 20.4 20.4

균주Strain OD610OD610 5' 이노신산 (g/L)5 'inosine (g / L) IP1GIP1G 62.8 62.8 19.5 19.5 IP2GIP2G 64.8 64.8 20.8 20.8 IP3GIP3G 71.2 71.2 22.6 22.6

이상으로 본 발명의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현 예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.
While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the same is by way of illustration and example only and is not to be construed as limiting the scope of the present invention. Accordingly, the actual scope of the present invention will be defined by the appended claims and their equivalents.

<110> DAESANG Corporation <120> Mutant Corynebacterium ammoniagenes Strain with Enhanced 5’-inosinic acid Production and Method for Preparing of 5’-inosinic acid Using the Same <130> PN140607 <160> 12 <170> KopatentIn 2.0 <210> 1 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for amplifying sodP fragment <400> 1 accctactta gctgccaatt 20 <210> 2 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for amplifying sodP fragment <400> 2 gttctccttt cgtaggtttc 20 <210> 3 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for amplifying left homology arm fragment <400> 3 gaaccaaagg acgcgcgcgt 20 <210> 4 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for amplifying left homology arm fragment <400> 4 cttatacgta gacaaaagtt 20 <210> 5 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for amplifying right homology arm fragment <400> 5 gtgtcttctt cgaacctctc 20 <210> 6 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for amplifying right homology arm fragment <400> 6 tcgccggctg gagtctctgg 20 <210> 7 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for amplifying pK19mobsacB vector <400> 7 gggcggtttt atggacagca agcga 25 <210> 8 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for amplifying pK19mobsacB vector <400> 8 ggcgagcggt atcagctcac tcaaa 25 <210> 9 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for amplifying pgi left homology arm fragment <400> 9 aaccgtatta ccgcctttga gtgagctgat accgctcgcc aggcggccgc ggccgcagcg 60 60 <210> 10 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for amplifying pgi left homology arm fragment <400> 10 ggttgttgcg ttatttccac gattgacctt tcgataccag 40 <210> 11 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for amplifying pgi right homology arm fragment <400> 11 gtggaaataa cgcaacaacc 20 <210> 12 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for amplifying pgi right homology arm fragment <400> 12 gctggcaatt ccggttcgct tgctgtccat aaaaccgccc ctgcgcagtg cctgggctgc 60 60 <110> DAESANG Corporation <120> Mutant Corynebacterium ammoniagenes Strain with Enhanced          5'-inosinic acid Production and Method for Preparing          5'-inosinic acid Using the Same <130> PN140607 <160> 12 <170> Kopatentin 2.0 <210> 1 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for amplifying sodP fragment <400> 1 accctactta gctgccaatt 20 <210> 2 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for amplifying sodP fragment <400> 2 gttctccttt cgtaggtttc 20 <210> 3 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for amplifying left homology arm fragment <400> 3 gaaccaaagg acgcgcgcgt 20 <210> 4 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for amplifying left homology arm fragment <400> 4 cttatacgta gacaaaagtt 20 <210> 5 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for amplifying right homology arm fragment <400> 5 gtgtcttctt cgaacctctc 20 <210> 6 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for amplifying right homology arm fragment <400> 6 tcgccggctg gagtctctgg 20 <210> 7 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for amplifying pK19mobsacB vector <400> 7 gggcggtttt atggacagca agcga 25 <210> 8 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for amplifying pK19mobsacB vector <400> 8 ggcgagcggt atcagctcac tcaaa 25 <210> 9 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for amplifying pgi left homology arm fragment <400> 9 aaccgtatta ccgcctttga gtgagctgat accgctcgcc aggcggccgc ggccgcagcg 60                                                                           60 <210> 10 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for amplifying pgi left homology arm fragment <400> 10 ggttgttgcg ttatttccac gattgacctt tcgataccag 40 <210> 11 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for amplifying pgi right homology arm fragment <400> 11 gtggaaataa cgcaacaacc 20 <210> 12 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for amplification <400> 12 gctggcaatt ccggttcgct tgctgtccat aaaaccgccc ctgcgcagtg cctgggctgc 60                                                                           60

Claims (9)

트랜스케톨레이즈(transketolase), 트랜스알돌레이즈(transaldolase), 글루코오스-6-포스페이트 1-디하이드로게네이즈(glucose-6-phosphate 1-dehydrogenase), 이성 단백질(hetero multimeric protein) 및 6-포스포글루코노락토네이즈(6-phosphogluconolactonase)의 활성이 강화된 5’-이노신산(IMP)의 생성능을 가지는 코리네박테리움 암모니아게네스(Corynebacterium ammoniagenes) 변이 균주.
Transketolase, transaldolase, glucose-6-phosphate 1-dehydrogenase, heteromimeric protein, and 6-phosphoglucono A mutant strain of Corynebacterium ammoniagenes having the ability to produce 5'-inosinic acid (IMP) enhanced in activity of 6-phosphogluconolactonase.
제 1 항에 있어서, 상기 활성은 트랜스케톨레이즈를 코딩하는 tkt 유전자, 트랜스알돌레이즈를 코딩하는 tal 유전자, 글루코오스-6-포스페이트 1-디하이드로게네이즈를 코딩하는 zwf 유전자, 이성 단백질을 코딩하는 opcA 유전자 및 6-포스포글루코노락토네이즈를 코딩하는 pgl 유전자가 각각 발현이 증가되어 강화되는 것을 특징으로 하는 코리네박테리움 암모니아게네스 변이 균주.
The method of claim 1, wherein the activity is selected from the group consisting of a tkt gene encoding transketolase, a tal gene encoding transaldolase, a zwf gene encoding glucose-6-phosphate 1-dehydrogenase, opcA And the pgl gene encoding the 6-phosphogluconolactonase are each enhanced by increased expression, and the Corynebacterium ammoniagenes mutant strain.
제 1 항에 있어서, 상기 발현의 증가는 상기 tkt, tal, zwf, opcA 및 pgl 유전자로 오페론을 구성하고 있는 유전자 클러스터의 프로모터가 슈퍼옥사이드 디스뮤테이즈(superoxide dismutase; sod)를 코딩하는 유전자의 프로모터로 치환되어 실시되는 것을 특징으로 하는 코리네박테리움 암모니아게네스 변이 균주.
2. The method according to claim 1, wherein the increase of the expression is caused by a promoter of a gene cluster constituting the operon with the tkt, tal, zwf, opcA and pgl genes being a promoter of a gene encoding superoxide dismutase (sod) Wherein the amino acid sequence of the Corynebacterium ammoniagenes mutant strain is the amino acid sequence of SEQ ID NO:
제 1 항에 있어서, 상기 균주는 활성이 약화된 글루코오스 아이소머라아제(phosphoglucose isomerase)를 추가적으로 포함하는 것을 특징으로 하는 코리네박테리움 암모니아게네스 변이 균주.
2. The Corynebacterium ammoniagenes mutant strain according to claim 1, wherein the strain further comprises glucose-isomerase (glucose-isomerase) whose activity is weakened.
제 4 항에 있어서, 상기 균주는 글루코오스 아이소머라아제를 코딩하는 pgi의 뉴클레오타이드 서열의 치환, 삽입, 결실 또는 이들의 조합을 통하여 글루코오스 아이소머라아제의 활성이 약화된 것을 특징으로 하는 코리네박테리움 암모니아게네스 변이 균주.
5. The method according to claim 4, wherein the strain is selected from the group consisting of Corynebacterium ammonia, which is weakened in activity of glucose isomerase through substitution, insertion, deletion, or a combination of nucleotide sequences of pgi coding for glucose isomerase Geneis mutant strains.
제 5 항에 있어서, 상기 균주는 pgi 유전자의 해독 개시코돈이 ATG 에서 GTG로 치환되어 글루코오스 아이소머라아제의 활성이 약화된 균주인 것을 특징으로 하는 코리네박테리움 암모니아게네스 변이 균주.
[Claim 6] The Corynebacterium ammoniagenes mutant strain according to claim 5, wherein the strain is a strain in which the detoxification initiation codon of the pgi gene is replaced with GTG in ATG to weaken the activity of glucose isomerase.
제 1 항에 있어서, 상기 균주는 모주인 코리네박테리움 암모니아게네스 균주와 비교하여 5’-이노신산(IMP)의 생산량이 3-15% 증가된 것을 특징으로 하는 코리네박테리움 암모니아게네스 변이 균주.
The method according to claim 1, wherein the strain has an increased production of 5'-inosinic acid (IMP) by 3-15% as compared to a parent strain of Corynebacterium ammoniagenes. Strain.
제 4 항에 있어서, 상기 균주는 모주인 코리네박테리움 암모니아게네스 균주와 비교하여 5’-이노신산(IMP)의 생산량이 5-30% 증가된 것을 특징으로 하는 코리네박테리움 암모니아게네스 변이 균주.
5. The method according to claim 4, wherein the strain has an increased production of 5'-inosinic acid (IMP) by 5-30% as compared to that of the parent strain of Corynebacterium ammoniagenes (Corynebacterium ammoniagenes) Strain.
다음의 단계를 포함하는 5’-이노신산(IMP)의 제조 방법:
(a) 상기 제 1 항의 코리네박테리움 암모니아게네스 변이 균주를 배지에서 배양하는 단계; 및
(b) 상기 배지에서 5’-이노신산(IMP)을 회수하는 단계.
A process for preparing 5'-inosinic acid (IMP) comprising the steps of:
(a) culturing the Corynebacterium ammoniagenes mutant strain of claim 1 in a medium; And
(b) recovering 5'-inosinic acid (IMP) from the medium.
KR1020140188622A 2014-12-24 2014-12-24 Mutant Corynebacterium ammoniagenes Strain with Enhanced 5’-inosinic acid Production and Method for Preparing of 5’-inosinic acid Using the Same KR101744958B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140188622A KR101744958B1 (en) 2014-12-24 2014-12-24 Mutant Corynebacterium ammoniagenes Strain with Enhanced 5’-inosinic acid Production and Method for Preparing of 5’-inosinic acid Using the Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140188622A KR101744958B1 (en) 2014-12-24 2014-12-24 Mutant Corynebacterium ammoniagenes Strain with Enhanced 5’-inosinic acid Production and Method for Preparing of 5’-inosinic acid Using the Same

Publications (2)

Publication Number Publication Date
KR20160078694A true KR20160078694A (en) 2016-07-05
KR101744958B1 KR101744958B1 (en) 2017-06-12

Family

ID=56501864

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140188622A KR101744958B1 (en) 2014-12-24 2014-12-24 Mutant Corynebacterium ammoniagenes Strain with Enhanced 5’-inosinic acid Production and Method for Preparing of 5’-inosinic acid Using the Same

Country Status (1)

Country Link
KR (1) KR101744958B1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101869642B1 (en) * 2017-02-22 2018-06-20 대상 주식회사 Mutant strain with enhanced l-glutamine production via reduced flux of nucleic acid and method for preparing of l-glutamine using the same
KR101956510B1 (en) * 2018-07-27 2019-03-08 씨제이제일제당 (주) Novel inosine-5'-monophosphate dehydrogenase and method for producing 5'-inosine monophosphate using the same
WO2019117398A1 (en) * 2017-12-15 2019-06-20 씨제이제일제당 (주) Microorganism producing 5'-inosine monophosphate and method for producing 5'-inosine monophosphate by using same
CN109929016A (en) * 2017-12-15 2019-06-25 Cj第一制糖株式会社 Novel polypeptide and the method for producing IMP using it
RU2733422C1 (en) * 2018-01-04 2020-10-01 СиДжей ЧеилДжеданг Корпорейшн Novel polypeptide and a method for producing imp using said polypeptide
KR102254633B1 (en) * 2021-01-15 2021-05-21 씨제이제일제당 주식회사 Novel 3D-(3,5/4)-trihydroxycyclohexane-1,2-dione acylhydrolase variant and a method for producing IMP using the same
KR102254634B1 (en) * 2021-01-15 2021-05-21 씨제이제일제당 주식회사 Novel formamidopyrimidine-DNA glycosylase variant and a method for producing IMP using the same
KR102254630B1 (en) * 2021-01-15 2021-05-21 씨제이제일제당 주식회사 Novel Selenide, water dikinase variant and a method for producing IMP using the same
KR102277409B1 (en) * 2021-04-29 2021-07-14 씨제이제일제당 주식회사 Novel bifunctional phosphoribosylaminoimidazolecarboxamide formyltransferase/IMP cyclohydrolase variant and a method for producing IMP using the same
KR102277410B1 (en) * 2021-04-29 2021-07-14 씨제이제일제당 주식회사 Novel bifunctional pyr operon transcriptional regulator/uracil phosphoribosyltransferase variant and a method for producing IMP using the same
KR102277408B1 (en) * 2021-04-29 2021-07-14 씨제이제일제당 주식회사 Novel formate-dependent phosphoribosylglycinamide formyltransferase variant and a method for producing IMP using the same
KR102279137B1 (en) * 2021-04-29 2021-07-19 씨제이제일제당 주식회사 Novel adenine phosphoribosyltransferase variant and a method for producing IMP using the same
KR102288396B1 (en) * 2021-01-18 2021-08-10 씨제이제일제당 주식회사 Novel anaerobic coproporphyrinogen Ⅲ oxidase variant and a method for producing IMP using the same
WO2022225075A1 (en) * 2021-04-20 2022-10-27 씨제이제일제당 (주) Novel variant, and method for producing xmp or gmp using same
WO2022231037A1 (en) * 2021-04-29 2022-11-03 씨제이제일제당 (주) Novel variant, and method for producing imp using same
KR102614733B1 (en) * 2023-04-06 2023-12-19 대상 주식회사 Novel variant of phosphoenolpyruvate caboxylase and method for producing 5'-inosinic acid using the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11180754B2 (en) 2017-12-15 2021-11-23 Cj Cheiljedang Corporation Polypeptide and method of producing IMP using the same
KR101916635B1 (en) 2018-06-19 2018-11-07 씨제이제일제당 (주) Novel polypeptide and method of producing IMP using the same
KR102158642B1 (en) 2020-05-08 2020-09-22 주식회사 한국야쿠르트 Strain of Lactococcus lactis expressing glutamic acid highly and use thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6830903B1 (en) 1999-07-23 2004-12-14 Archer-Daniels-Midland Company Methods for producing L-amino acids using a corynebacterium glutamicum with a disrupted pgi gene
KR101166027B1 (en) 2009-04-01 2012-07-19 씨제이제일제당 (주) Microorganism belonging to the genus Corynebacterium having enhaced 5'-inosinic acid productivity and method for producing 5'-inosinic acid using the same

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101869642B1 (en) * 2017-02-22 2018-06-20 대상 주식회사 Mutant strain with enhanced l-glutamine production via reduced flux of nucleic acid and method for preparing of l-glutamine using the same
WO2019117398A1 (en) * 2017-12-15 2019-06-20 씨제이제일제당 (주) Microorganism producing 5'-inosine monophosphate and method for producing 5'-inosine monophosphate by using same
CN109929016A (en) * 2017-12-15 2019-06-25 Cj第一制糖株式会社 Novel polypeptide and the method for producing IMP using it
CN110249054A (en) * 2017-12-15 2019-09-17 Cj第一制糖股份有限公司 The method for generating the microorganism of IMP and generating IMP using it
CN110343150A (en) * 2017-12-15 2019-10-18 Cj第一制糖股份有限公司 Novel polypeptide and the method for generating IMP using it
RU2733422C1 (en) * 2018-01-04 2020-10-01 СиДжей ЧеилДжеданг Корпорейшн Novel polypeptide and a method for producing imp using said polypeptide
US11066687B2 (en) 2018-07-27 2021-07-20 Cj Cheiljedang Corporation 5′-inosinic acid dehydrogenase and method of preparing 5′-inosinic acid using the same
KR101956510B1 (en) * 2018-07-27 2019-03-08 씨제이제일제당 (주) Novel inosine-5'-monophosphate dehydrogenase and method for producing 5'-inosine monophosphate using the same
WO2020022547A1 (en) * 2018-07-27 2020-01-30 씨제이제일제당 (주) Novel 5'-inosine monophosphate dehydrogenase and 5'-inosine monophosphate production method using same
CN111183218A (en) * 2018-07-27 2020-05-19 Cj第一制糖股份有限公司 Novel 5 '-inosinic acid dehydrogenase and method for producing 5' -inosinic acid using the same
RU2728334C1 (en) * 2018-07-27 2020-07-29 СиДжей ЧеилДжеданг Корпорейшн Novel dehydrogenase of 5'-inosinic acid and method of producing 5'-inosinic acid using thereof
WO2022154184A1 (en) * 2021-01-15 2022-07-21 씨제이제일제당 (주) Novel selenide, water dikinase variant and method for producing imp using same
WO2022154177A1 (en) * 2021-01-15 2022-07-21 씨제이제일제당 (주) Novel 3d-(3,5/4)-trihydroxycyclohexane-1,2-dione acylhydrolase variant and method for producing imp using same
WO2022154180A1 (en) * 2021-01-15 2022-07-21 씨제이제일제당 (주) Novel formamidopyrimidine-dna glycosylase variant, and method for producing imp using same
KR102254633B1 (en) * 2021-01-15 2021-05-21 씨제이제일제당 주식회사 Novel 3D-(3,5/4)-trihydroxycyclohexane-1,2-dione acylhydrolase variant and a method for producing IMP using the same
KR102254630B1 (en) * 2021-01-15 2021-05-21 씨제이제일제당 주식회사 Novel Selenide, water dikinase variant and a method for producing IMP using the same
KR102254634B1 (en) * 2021-01-15 2021-05-21 씨제이제일제당 주식회사 Novel formamidopyrimidine-DNA glycosylase variant and a method for producing IMP using the same
KR102288396B1 (en) * 2021-01-18 2021-08-10 씨제이제일제당 주식회사 Novel anaerobic coproporphyrinogen Ⅲ oxidase variant and a method for producing IMP using the same
WO2022154178A1 (en) * 2021-01-18 2022-07-21 씨제이제일제당 (주) Novel anaerobic coproporphyrinogen iii oxidase variant and method for producing imp using same
WO2022225075A1 (en) * 2021-04-20 2022-10-27 씨제이제일제당 (주) Novel variant, and method for producing xmp or gmp using same
KR102279137B1 (en) * 2021-04-29 2021-07-19 씨제이제일제당 주식회사 Novel adenine phosphoribosyltransferase variant and a method for producing IMP using the same
KR102277408B1 (en) * 2021-04-29 2021-07-14 씨제이제일제당 주식회사 Novel formate-dependent phosphoribosylglycinamide formyltransferase variant and a method for producing IMP using the same
KR102277410B1 (en) * 2021-04-29 2021-07-14 씨제이제일제당 주식회사 Novel bifunctional pyr operon transcriptional regulator/uracil phosphoribosyltransferase variant and a method for producing IMP using the same
KR102277409B1 (en) * 2021-04-29 2021-07-14 씨제이제일제당 주식회사 Novel bifunctional phosphoribosylaminoimidazolecarboxamide formyltransferase/IMP cyclohydrolase variant and a method for producing IMP using the same
WO2022231369A1 (en) * 2021-04-29 2022-11-03 씨제이제일제당 (주) Novel formate-dependent phosphoribosylglycinamide formyltransferase variant and method for producing imp using same
WO2022231037A1 (en) * 2021-04-29 2022-11-03 씨제이제일제당 (주) Novel variant, and method for producing imp using same
WO2022231067A1 (en) * 2021-04-29 2022-11-03 씨제이제일제당 (주) Novel bifunctional pyr operon transcriptional regulator/uracil phosphoribosyltransferase variant, and method for producing imp using same
WO2022231064A1 (en) * 2021-04-29 2022-11-03 씨제이제일제당 (주) Novel adenine phosphoribosyltransferase variant, and method for producing imp using same
WO2022231370A1 (en) * 2021-04-29 2022-11-03 씨제이제일제당 (주) Novel bifunctional phosphoribosylaminoimidazolecarboxamide formyltransferase/imp cyclohydrolase variant and method for producing imp using same
KR102614733B1 (en) * 2023-04-06 2023-12-19 대상 주식회사 Novel variant of phosphoenolpyruvate caboxylase and method for producing 5'-inosinic acid using the same

Also Published As

Publication number Publication date
KR101744958B1 (en) 2017-06-12

Similar Documents

Publication Publication Date Title
KR101744958B1 (en) Mutant Corynebacterium ammoniagenes Strain with Enhanced 5’-inosinic acid Production and Method for Preparing of 5’-inosinic acid Using the Same
US11041181B2 (en) Promoter and method for producing purine nucleotide using the same
KR102013873B1 (en) A microorganism of the genus Corynebacterium producing purine nucleotide and method for producing purine nucleotide using the same
KR100789271B1 (en) - - A microorganism of corynebacterium genus having enhanced L-lysine productivity and a method of producing L-lysine using the same
JP4541345B2 (en) Corynebacterium microorganism having improved L-lysine production ability and method for producing L-lysine using the same
US20200248217A1 (en) A novel promoter and a method for producing l-amino acid using the same
EP2115120B1 (en) Microorganism producing inosine and method of producing inosine using the same
JP7372329B2 (en) Microorganisms that produce purine nucleotides and methods for producing purine nucleotides using the same
KR101851467B1 (en) Mutant strain with enhanced amino acid production via reduced flux of nucleic acid and method for preparing of amino acid using the same
KR101869642B1 (en) Mutant strain with enhanced l-glutamine production via reduced flux of nucleic acid and method for preparing of l-glutamine using the same
EP4310179A1 (en) A microorganism of corynebacterium genus having enhanced l-arginine or l-citrulline productivity and a method for producing l-arginine or l-citrulline using the same
EP4056675A1 (en) Mutant of corynebacterium glutamicum with enhanced l-lysine productivity and method for preparing l-lysine using the same
US20240175064A1 (en) Mutant of corynebacterium glutamicum with enhanced l-lysine productivity and method for preparing l-lysine using the same
KR100694427B1 (en) Microorganisms of corynebacterium and processes of preparing 5&#39;-inosinic acid using same
EP3964572A1 (en) Mutant of corynebacterium glutamicum with enhanced l-lysine productivity and method for preparing l-lysine using the same
EP4332229A1 (en) Corynebacterium glutamicum variant having improved l-lysine production ability, and method for producing l-lysine using same
KR100547585B1 (en) Microorganisms of Corynebacterium and Preparation Method of 5&#39;-inosinic Acid Using the Same
EP4083197A1 (en) Corynebacterium glutamicum mutant strain having enhanced l-lysine productivity and method of producing l-lysine using the same
EP4310180A1 (en) A microorganism of corynebacterium genus having enhanced l-arginine or l-citrulline productivity and a method for producing l-arginine or l-citrulline using the same
KR102668767B1 (en) Mutant of Corynebacterium glutamicum with enhanced L-lysine productivity and method for preparing L-lysine using the same
KR100964078B1 (en) Corynebacterium ammoniagenes having enhanced 5&#39;-inosinic acid productivity and method of producing 5&#39;-inosinic acid using the same
EP4306644A1 (en) Corynebacterium glutamicum variant having improved l-lysine production ability, and method for producing l-lysine by using same
CA3052138C (en) Promoter and method for producing purine nucleotide using the same
KR20220126610A (en) Mutant of Corynebacterium glutamicum with enhanced L-lysine productivity and method for preparing L-lysine using the same
KR20230053351A (en) Mutant of Corynebacterium glutamicum with enhanced L-lysine productivity and method for preparing L-lysine using the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20200224

Year of fee payment: 4