KR20160078315A - Gsr 센서 및 그 형성 방법 - Google Patents

Gsr 센서 및 그 형성 방법 Download PDF

Info

Publication number
KR20160078315A
KR20160078315A KR1020160077597A KR20160077597A KR20160078315A KR 20160078315 A KR20160078315 A KR 20160078315A KR 1020160077597 A KR1020160077597 A KR 1020160077597A KR 20160077597 A KR20160077597 A KR 20160077597A KR 20160078315 A KR20160078315 A KR 20160078315A
Authority
KR
South Korea
Prior art keywords
polymer
core
silver
shell structure
substrate
Prior art date
Application number
KR1020160077597A
Other languages
English (en)
Other versions
KR101698384B1 (ko
Inventor
송재용
박현민
박선화
Original Assignee
한국표준과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국표준과학연구원 filed Critical 한국표준과학연구원
Priority to KR1020160077597A priority Critical patent/KR101698384B1/ko
Publication of KR20160078315A publication Critical patent/KR20160078315A/ko
Application granted granted Critical
Publication of KR101698384B1 publication Critical patent/KR101698384B1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/053Measuring electrical impedance or conductance of a portion of the body
    • A61B5/0531Measuring skin impedance
    • A61B5/0533Measuring galvanic skin response
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/053Measuring electrical impedance or conductance of a portion of the body
    • A61B5/0531Measuring skin impedance
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/044Forming conductive coatings; Forming coatings having anti-static properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/06Coating with compositions not containing macromolecular substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0209Special features of electrodes classified in A61B5/24, A61B5/25, A61B5/283, A61B5/291, A61B5/296, A61B5/053
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0209Special features of electrodes classified in A61B5/24, A61B5/25, A61B5/283, A61B5/291, A61B5/296, A61B5/053
    • A61B2562/0215Silver or silver chloride containing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/12Manufacturing methods specially adapted for producing sensors for in-vivo measurements
    • A61B2562/125Manufacturing methods specially adapted for producing sensors for in-vivo measurements characterised by the manufacture of electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/16Details of sensor housings or probes; Details of structural supports for sensors
    • A61B2562/164Details of sensor housings or probes; Details of structural supports for sensors the sensor is mounted in or on a conformable substrate or carrier

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Dermatology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Laminated Bodies (AREA)

Abstract

본 발명은 피부 저항 변화 측정이 가능한 GSR 센서를 형성하는 방법을 위하여, 염화이온(Cl-)이 포함된 용액의 유무와 농도에 따른 전기적인 특성을 평가하는 GSR 센서를 형성하는 방법으로서, 기판을 제공하는 단계, 상기 기판 상에, 복수의 은 나노선이 코어를 형성하며, 폴리머로 적어도 일부분이 몰딩된, 코어-쉘(core-shell) 구조체를 형성하는 단계 및 상기 코어-쉘 구조체를 상기 기판에서 분리함으로써, 프리스탠딩 ACF(anisotropic conductive flexible)막을 형성하는 단계를 포함하는, GSR 센서 및 그 형성 방법을 제공한다.

Description

GSR 센서 및 그 형성 방법{GSR sensor and method of manufacturing the same}
본 발명은 GSR 센서 기술에 관한 것으로서, 더 상세하게는 GSR 센서 및 그 형성 방법에 관한 것이다.
종래 피부저항측정기술은, 일반적으로 하나의 측정프로브와, 기준점이 되는 기준프로브를 구비해서 피부저항치를 측정하고 있다. 이러한 구성으로 이루어진 종래의 방법은, 기준프로브를 피검사자가 손으로 잡은 상태에서 검사자가 다른 하나의 측정프로브를 측정하고자 하는 피검사자의 인체 피부상의 여러 점에 측정프로브를 옮겨가며 접촉시킨 후, 상기 기준프로브에 소정의 전류를 인가하여, 기준프로브와 측정프로브 사이에 흐르는 미세전류값을 측정하고 있다. 이렇게 해서 측정된 값으로부터 측정점과 기준점 사이의 피부저항을 측정하는 방식이 이용되어진다.
그러나 종래의 피부저항측정방법은, 다음과 같은 문제점을 제시하고 있다. 검사자가 피검사자의 인체 피부상의 여러 점에 하나의 측정프로브를 옮겨가면서 피부 저항값을 측정하기 때문에, 이때 나타나는 시간 지연에 따른 검출오차가 발생되는 문제점이 있었다. 즉, 측정프로브를 통해서 인체로부터 검출되는 미세전류 값은, 시간경과에 따라서 변화가 발생되고, 이러한 변화로부터 검출값에 오차가 발생될 수 있다.
또한, 상기 검출된 피부저항치는, 사람의 비만, 한의학에서 질병 등을 판단하는데 이용되어진다. 그렇기 때문에 상기 발생된 오차는 판단상의 오류를 범하게 하는 문제점을 갖게 하면서 제품에 대한 신뢰도 저하 및 성능의 불만족을 야기시키는 문제점이 있었다. 그리고 인체 피부의 표면 굴곡에 따라 측정프로브와의 접촉이 완벽히 이루어지기 어려워, 측정되는 피부저항이 노이즈를 포함하거나 부정확한 결과를 야기시키는 문제점도 있었다. 게다가 피부저항측정 기기로는 손가락밴드, 팔밴드, 머리띠, 패치 등이 있으나, 웨어러블한 디바이스로 이용하기에 무게와 부피가 큰 문제점이 있었다.
<선행기술 문헌>
1. 한국공개특허 제10-2014-0076268호 (2014.06.20.)
본 발명은 상기와 같은 문제점을 포함하여 여러 문제점들을 해결하기 위한 것으로서, 피부 저항 변화 측정이 가능한 GSR 센서 및 그 형성 방법을 제공하는 것을 목적으로 한다. 그러나 이러한 과제는 예시적인 것으로, 이에 의해 본 발명의 범위가 한정되는 것은 아니다.
본 발명의 일 관점에 따르면, 이방성 전도성을 갖는 복수의 은 나노선 및 상기 복수의 은 나노선 사이의 적어도 일부를 충전하고 가요성을 갖는 폴리머를 포함하는 프리스탠딩 ACF(anisotropic conductive flexible)막과, 상기 복수의 은 나노선의 상기 폴리머로부터 노출된 부분 상에 염화은(AgCl)으로 쉘을 형성하는 코어-쉘(core-shell) 구조체와, 상기 폴리머로부터 노출된 상기 복수의 은 나노선의 적어도 일부 상에 전원부가 연결될 수 있는 전극을 포함하며, 상기 전극을 통해서 상기 프리스탠딩 ACF막 내 상기 복수의 은 나노선과 상기 폴리머로부터 노출된 상기 코어-쉘 구조체를 통해서 전기적인 신호를 측정하고자 하는 피부에 인가하여 피부 저항을 측정하는, GSR(Galvanic Skin Reflex) 센서가 제공된다.
상기 복수의 은 나노선은 상기 폴리머를 관통하여 배치되고, 상기 복수의 은 나노선의 양단부는 상기 폴리머로부터 노출되고, 상기 복수의 은 나노선의 일단부는 측정하고자 하는 피부에 접촉될 수 있고, 타 단부에는 상기 전극이 연결될 수 있다.
본 발명의 다른 관점에 따르면, 기판을 제공하는 단계와, 상기 기판 상에, 이방성 전도성을 갖도록 복수의 은 나노선을 형성하는 단계와, 상기 복수의 은 나노선 사이의 적어도 일부를 가요성을 갖는 폴리머로 충전하는 단계와, 상기 복수의 은 나노선의 상기 폴리머로부터 노출된 부분 상에 염화은(AgCl)으로 쉘을 형성하여 코어-쉘(core-shell) 구조체를 형성하는 단계와, 상기 폴리머가 충전된 상기 코어-쉘 구조체를 상기 기판에서 분리함으로써, 프리스탠딩 ACF(anisotropic conductive flexible)막을 형성하는 단계와, 상기 폴리머로부터 노출된 상기 복수의 은 나노선의 적어도 일부 상에 전원부가 연결될 수 있는 전극을 형성하는 단계를 포함하는, GSR 센서의 형성 방법이 제공된다.
상기 GSR 센서의 형성 방법에 있어서, 상기 기판 상에 복수의 은 나노선이 코어를 형성하고, 상기 코어 상에 금(Au) 또는 염화은(AgCl)이 쉘을 형성하는 복수의 코어-쉘(core-shell) 구조체를 형성하는 단계 및 상기 복수의 코어-쉘 구조체 사이의 적어도 일부를 폴리머로 충전하는 단계는, 상기 폴리머를 포함하는 폴리머 용액을 스핀 코팅을 이용하여, 상기 복수의 은 나노선이 코어를 형성한 상기 기판 상에 분사하는 단계, 상기 폴리머 용액을 경화시켜, 상기 폴리머로 적어도 일부분이 몰딩된 코어-쉘 구조체를 형성하는 단계, 상기 폴리머로 적어도 일부분이 몰딩된 코어-쉘 구조체를 큐어링(curing)하는 단계 및 상기 폴리머로 적어도 일부분이 몰딩된 코어-쉘 구조체를 냉각하는 단계를 포함할 수 있다.
상기 GSR 센서의 형성 방법에 있어서, 상기 폴리머로 적어도 일부분이 몰딩된 코어-쉘 구조체를 냉각하는 단계 이후에, 상기 폴리머로 적어도 일부분이 몰딩된 코어-쉘 구조체를 플라즈마(plasma) 처리하는 단계를 더 포함할 수 있다.
상기 GSR 센서의 형성 방법에 있어서, 상기 플라즈마 처리는 산소 플라즈마(O2 plasma) 처리를 포함할 수 있다.
상기 GSR 센서의 형성 방법에 있어서, 상기 폴리머로 적어도 일부분이 몰딩된 코어-쉘 구조체를 큐어링하는 단계는, 200 ℃ 내지 300℃ 범위의 온도범위를 포함할 수 있다.
상기 GSR 센서의 형성 방법에 있어서, 상기 폴리머는 가요성을 가지며 상기 은 나노선에 비하여 낮은 전기전도성을 가질 수 있다.
상기한 바와 같이 이루어진 본 발명의 일 실시예에 따르면, 피부 저항 변화 측정이 가능한 GSR 센서 및 그 형성 방법을 구현할 수 있다. 물론 이러한 효과에 의해 본 발명의 범위가 한정되는 것은 아니다.
도 1은 본 발명의 실시예들에 따른 GSR 센서의 형성 방법을 개략적으로 도시하는 순서도이다.
도 2는 본 발명의 실시예들에 따른 GSR 센서의 형성 방법을 개략적으로 도시하는 도면이다.
도 3은 본 발명의 실시예들에 따른 폴리머로 적어도 일부분이 몰딩된 코어-쉘 구조체의 형성 방법을 개략적으로 도시하는 순서도이다.
도 4는 본 발명의 따른 GSR 센서에 포함되는 은 나노선을 형성하는 은 나노선 형성 장치를 개략적으로 도시하는 도면이다.
도 5는 본 발명의 일 실시예에 따른 코어-쉘 구조체의 주사전자현미경 사진이다.
도 6은 본 발명의 실시예들에 따른 프리스탠딩 ACF막의 광학적 이미지이다.
도 7은 본 발명의 일 실시예에 따른 폴리머로 적어도 일부분이 몰딩된 코어-쉘 구조체의 형성 방법을 개략적으로 도시하는 순서도이다.
도 8은 본 발명의 일 실시예에 따른 폴리머로 적어도 일부분이 몰딩된 코어-쉘 구조체의 형성 방법을 개략적으로 도시하는 도면이다.
도 9는 본 발명의 일 실시예에 따른 코어-쉘 구조체의 몰딩을 수행하기 전의 주사전자현미경 사진 및 EDS를 이용한 line scan 스펙트럼이다.
도 10은 본 발명의 일 실시예에 따른 폴리머로 적어도 일부분이 몰딩된 코어-쉘 구조체의 주사전자현미경 사진이다.
도 11은 본 발명의 다른 실시예에 따른 폴리머로 적어도 일부분이 몰딩된 코어-쉘 구조체의 형성 방법을 개략적으로 도시하는 순서도이다.
도 12는 본 발명의 다른 실시예에 따른 폴리머로 적어도 일부분이 몰딩된 코어-쉘 구조체의 제조 방법을 개략적으로 도시하는 도면이다.
도 13은 본 발명의 다른 실시예에 따른 폴리머로 적어도 일부분이 몰딩된 코어-쉘 구조체의 주사전자현미경 사진이다.
도 14는 본 발명의 실시예들에 따른 GSR 센서의 전기적인 특성을 평가하는 방법을 개략적으로 도시하는 도면이다.
도 15는 도 14의 전기적인 특성을 기판에 변화에 따라 보여주는 IV curve 그래프이다.
도 16은 본 발명의 실시예들에 따른 GSR 센서의 Cl- 이온의 농도 변화에 따른 전기적인 특성을 평가하는 방법을 개략적으로 도시하는 도면이다.
도 17은 도 16의 Cl- 이온의 농도 변화 따라 나타나는 저항 그래프이다.
이하, 첨부된 도면들을 참조하여 본 발명의 실시예를 상세히 설명하면 다음과 같다. 그러나 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있는 것으로, 이하의 실시예는 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 또한 설명의 편의를 위하여 도면에서는 구성 요소들이 그 크기가 과장 또는 축소될 수 있다.
본 발명의 실시예들에서는, 은 나노선을 포함하는 이방성 프리스탠딩 ACF(anisotropic conductive flexible)막 구조체에 대하여 설명하고 있으나, 이는 예시적이며 다른 물질로 구성된 나노선을 포함하는 경우도 본 발명의 기술적 사상에 포함된다.
일반적으로 GSR(피부전도도:Galvanic Skin Response) 측정은 피부의 전기전도도를 측정하는 것으로서, 신체의 건강상태를 체크하는 생체측정의 일종이며, 특히 사용자의 심리상태를 체크하는 심리학에서 많이 사용되고 있다. 또한, GSR 측정은 피부와 접촉하는 몇 개의 접점을 제공하여 이들 접점 사이에서 통상의 저항 측정회로를 이용하여 측정할 수 있다.
본 발명의 실시예들에 따른 GSR 센서는, 복수의 코어-쉘 구조체와 상기 복수의 코어-쉘 구조체 사이의 적어도 일부를 충전(fill)하는 폴리머를 포함하는 프리스탠딩 ACF(anisotropic conductive flexible)막 및 상기 프리스탠딩 ACF막의 적어도 일부 상에 전원부가 연결될 수 있는 전극을 포함할 수 있다.
또한, 상기 코어-쉘 구조체는 은 나노선이 코어를 형성하고, 상기 코어의 적어도 일부 상에 금(Au) 또는 염화은(AgCl)이 쉘을 형성할 수 있다. 또한, 상기 전원부는 전압 인가부 및/또는 전류 측정부를 포함할 수 있다.
예를 들어, 도 14 및 도 16을 참조하면, 본 발명의 실시예들에 따른 GSR 센서는, 폴리머(40)가 복수의 코어-쉘 구조체(35) 사이의 적어도 일부를 충전하는 프리스탠딩 ACF막(100)을 포함할 수 있다. 또한, 프리스탠딩 ACF막(100)의 적어도 일부 상에 전압 인가부(V) 및/또는 전류 측정부(I)와 연결되는 적어도 하나 이상의 전극(80)을 포함할 수 있다.
예컨대, 도 14와 같이, 전압 인가부(V) 및/또는 전류 측정부(I)는, 프리스탠딩 ACF막(100)의 적어도 일부 상에 위치하는 전극(80)과 측정 대상물 또는 지지기판(10b)와 연결될 수 있도록 형성될 수 있다. 또한, 도 16과 같이, 전압 인가부(V) 및/또는 전류 측정부(I)는 프리스탠딩 ACF막(100)의 적어도 일부 상에 위치하는 제 1 전극(80a)과 제 2 전극(80b)이 연결될 수 있도록 형성될 수 있다. 또한, 지지기판(10b) 상에 포함되는 패브릭(90) 상에 위치할 수 있다.
도 1은 본 발명의 실시예들에 따른 GSR 센서의 형성 방법을 개략적으로 도시하는 순서도이다. 도 2는 본 발명의 실시예들에 따른 GSR 센서의 형성 방법을 개략적으로 도시하는 도면이다. 도 3은 본 발명의 실시예들에 따른 폴리머로 적어도 일부분이 몰딩된 코어-쉘 구조체의 형성 방법을 개략적으로 도시하는 순서도이다.
도 1 내지 도 3을 참조하면, 본 발명의 실시예들에 따른 GSR 센서를 형성하는 방법은, 기판을 제공하는 단계(S100), 기판 상에 폴리머로 적어도 일부분이 몰딩된 코어-쉘 구조체를 형성하는 단계(S200) 및 코어-쉘 구조체를 기판에서 분리하여 프리스탠딩 ACF(anisotropic conductive flexible)막을 형성하는 단계(S300)를 포함할 수 있다.
예를 들어, 기판을 제공하고, 상기 기판 상에, 복수의 은 나노선이 코어를 형성하고 상기 코어 상에 금(Au) 또는 염화은(AgCl)이 쉘을 형성하는 복수의 코어-쉘(core-shell) 구조체를 형성할 수 있다. 그런 다음에, 상기 복수의 코어-쉘 구조체 사이의 적어도 일부를 폴리머로 충전할 수 있다.
그런 다음에, 상기 폴리머로 적어도 일부분이 몰딩된 코어-쉘 구조체를 상기 기판에서 분리함으로써, 프리스탠딩 ACF(anisotropic conductive flexible)막을 형성할 수 있다.
이때, 기판 상에 폴리머로 적어도 일부분이 몰딩된 코어-쉘 구조체를 형성하는 단계(S200)는, 기판 상에 은 나노선을 형성하는 단계(S210), 폴리머 용액을 스핀 코팅을 이용하여 복수의 은 나노선이 코어를 형성한 기판 상에 분사하는 단계(S212), 상기 폴리머 용액을 경화시켜 폴리머로 적어도 일부분이 몰딩된 코어-쉘 구조체를 형성하는 단계(S214), 폴리머로 적어도 일부분이 몰딩된 코어-쉘 구조체를 큐어링(curing)하는 단계(S216) 및 폴리머로 적어도 일부분이 몰딩된 코어-쉘 구조체를 냉각하는 단계(S218)를 포함할 수 있다.
또한, 폴리머로 적어도 일부분이 몰딩된 코어-쉘 구조체를 냉각하는 단계(S218) 이후에, 상기 폴리머로 적어도 일부분이 몰딩된 코어-쉘 구조체를 플라스마(plasma) 처리하는 단계를 더 포함할 수 있다.
구체적인 예를 들어, 도 2의 (a)와 같이, 기판(10) 상에 복수의 은 나노선(20)이 코어를 형성할 수 있다. 이때, 도면에는 도시하지 않았으나, 은 나노선(20)의 적어도 일부분은 금(Au) 또는 염화은(AgCl)으로 도핑되어 쉘을 형성할 수 있다.
그런 다음에, 도 2의 (b)와 같이, 폴리머(40)를 포함하는 폴리머 용액을 스핀 코팅을 이용하여, 복수의 은 나노선(20)이 코어를 형성한 기판(10) 상에 분사한 후, 상기 폴리머 용액을 약 20 ℃ 내지 100 ℃의 온도범위에서 경화시켜, 폴리머(40)로 적어도 일부분이 몰딩된 코어-쉘 구조체(50)를 구현할 수 있다.
이때, 상기 스핀 코팅은, 예를 들어 약 50초 내지 약 200 초 범위 동안 약 1000 rpm 내지 약 5000 rpm 범위의 속도로 수행될 수 있고, 예를 들어, 약 100 초 동안 약 5000 rpm의 속도로 수행될 수 있다. 또한, 상기 스핀 코팅은 1 회 수행되거나 또는 복수 회 수행될 수 있고, 엄격하게는, 5 회 수행될 수 있다. 그러나 본 발명은 이에 한정되지 않으며, 은 나노선(20)의 길이와 두께에 따라 다양하게 변화할 수 있다. 이러한 스핀코팅은 기판(10) 상의 은 나노선(20)에 폴리머(40)를 균일하게 공급할 수 있고, 폴리머(40)가 은 나노선(20) 사이를 균일하게 충전시킬 수 있다.
그런 다음에, 폴리머(40)로 적어도 일부분이 몰딩된 코어-쉘 구조체(50)를 200 ℃ 내지 300 ℃ 범위의 온도범위에서 큐어링 한 후, 냉각할 수 있다. 또한, 폴리머(40)로 적어도 일부분이 몰딩된 코어-쉘 구조체(50)를 냉각 한 후에, 폴리머(40)로 적어도 일부분이 몰딩된 코어-쉘 구조체(50)의 상단 부분의 폴리머(40)가 일부 제외되는 정도로 플라즈마 처리를 수행 할 수 있다. 이때, 플라즈마 처리는, 예컨대, 산소 플라즈마(O2 plasma) 처리를 포함할 수 있다.
그런 다음에, 도 2의 (C)와 같이, 폴리머(40)로 적어도 일부분이 몰딩된 코어-쉘 구조체(50)를 기판(10)에서 분리하여 프리스탠딩 ACF막(100)을 구현할 수 있다. 이때, 프리스탠딩 ACF막(100)을 기판(10)에서 분리하는 공정은, 블레이드, 커터 또는 그라인더 등을 이용하여 수행할 수 있다. 예를 들어, 상기 블레이드나 커터를 이용하여 기판(10)과 폴리머로 적어도 일부분이 몰딩된 코어-쉘 구조체(50) 사이를 절단하여 분리하거나, 또는 그라인더를 이용하여 기판(10)을 연마하여 제거하여 분리할 수 있다.
또한, 프리스탠딩 ACF막(100)의 상면 또는 하면에는, 도 2의 (d)와 같이, 전극(80)이 형성될 수 있다.
본 발명의 실시예들에 따른 프리스탠딩 ACF막(100)은 폴리머(40)로 적어도 일부분이 몰딩된 코어-쉘 구조체(50)에 의하여 형성될 수 있고, 구체적으로 경화된 폴리머(40) 내에 코어를 형성하는 복수의 은 나노선이 위치하는 이방성, 전기전도성, 가요성의 특성을 가지는 막일 수 있다. 은 나노선(20)은 이방성과 전기전도성을 제공하고, 폴리머(40)는 가요성을 제공할 수 있다. 즉, 은 나노선(20)에 의한 이방성 전기적 특성과 폴리머(40)에 의한 가요성 특성을 유지할 수 있다.
또한, 본 발명의 따른 프리스탠딩 ACF막(100)은 간단한 공정을 통하여 형성될 수 있고, 전기전도성을 가지므로 전극으로 사용가능하다. 또한, 가요성을 가지므로 비용절감과 대량 생산을 위한 롤-투-롤(roll-to-roll) 제조 방법에 적용되기 쉬우며, 이방성을 가지므로 미세 피치화에 보다 효과적으로 대응할 수 있다.
폴리머(40)는 복수의 은 나노선(20)의 사이를 충전(fill)할 수 있고, 은 나노선(20)의 외측을 몰딩할 수 있다. 또한, 폴리머(40)는, 예컨대, 액체일 수 있고, 경화되는 경우 고체가 되는 폴리머 용액을 포함할 수 있다. 폴리머(40)는 가요성을 가지고, 은 나노선(20)에 비하여 매우 낮은 전기전도성을 가질 수 있으며, 예를 들어, 폴리이미드(polyimide)를 포함할 수 있다. 엄격하게 예를 들어, 약 5 wt%(중량비) 내지 약 15 wt%의 범위의 폴리이미드를 폴리머(40)로서 포함할 수 있다.
또한, 폴리머(40)는, 예를 들어, 약 20 ℃ 내지 100℃의 온도범위에서 경화될 수 있으며, 엄격하게는, 상온(약 25 ℃)에서 경화되거나, 상기 상온에 비하여 고온에서의 열처리에 의하여 경화될 수 있다. 예컨대, 약 80 ℃온도에서 1 시간 열처리하고, 이어서 약 100 ℃ 온도에서 1 시간 열처리에 의하여 경화될 수 있다. 그러나, 본 발명은 이에 한정되지 않으며, 상기 열처리 온도, 시간, 횟수는 다양하게 변화될 수 있다.
기판(10)은 은 나노선(20)을 코어로 성장시킬 수 있는 물질로 구성될 수 있다. 예를 들어, 실리콘 기판을 포함할 수 있다. 또한, 기판(10)은 은 나노선(20)을 코어로 성장시킬 수 있는 물질로 구성된 성장 유도층을 표면에 포함할 수 있다. 상기 성장 유도층은 금속을 포함할 수 있고, 예컨대, 은(Ag), 은 합금, 금(Au) 또는 금 합금을 포함할 수 있다.
도 4는 본 발명의 따른 GSR 센서에 포함되는 은 나노선을 형성하는 형성 장치를 개략적으로 도시하는 도면이다.
도 4를 참조하면, 나노선 형성 장치(1)는 용기(2), 기준 전극(3)(reference electrode), 상대 전극(4)(counter electrode), 작동 전극(5)(working electrode), 및 정전위 장치(6)를 포함할 수 있다. 용기(2)는 전해 용액(7)을 수용할 수 있고, 전해 용액(7)과 반응하지 않는 물질, 예를 들어, 유리 또는 스테인레스 스틸로 형성될 수 있다.
기준 전극(3), 상대 전극(4), 및 작동 전극(5)은 3전극 시스템을 구성할 수 있다. 기준 전극(3)은, 예를 들어 은/염화은(Ag/AgCl) 전극을 사용할 수 있다. 상대 전극(4)은, 예를 들어 백금(Pt) 선 전극을 사용할 수 있다. 작동 전극(5)은, 예를 들어, 도전성을 가지는 다양한 기판을 사용할 수 있다. 예를 들어, 실리콘 기판 상에 금이 코팅되어 구성될 수 있는 기판(10)이 작동 전극(5)의 기능을 수행할 수 있다. 기준 전극(3), 상대 전극(4), 및 작동 전극(5)은 전해 용액(7) 내에 침지된다.
정전위 장치(6)는 상대 전극(4)과 작동 전극(5) 사이에 전류를 인가하고, 작동 전극(5)에 인가되는 전압은 기준 전극(3)을 0 V로 설정하여 측정될 수 있다. 정전위 장치(6)에 의하여 전해 용액(7)으로부터 원하는 물질이 작동 전극(5)에 증착될 수 있고, 이에 따라 은 나노선이 형성될 수 있다. 또한, 정전위 장치(6)는 작동 전극(5)에 인가되는 전압의 크기와 극성을 변화시킬 수 있다. 분극 측정은 동전압 모드(potentiodynamic mode)를 이용하여 측정될 수 있다.
상기 동전압 모드는, 예를 들어, 500 mHz의 주파수, -18 V/0.5 V의 환원 전압/산화 전압, 50%의 듀티(duty), 4 시간의 지속 시간의 조건들 하에서 수행될 수 있다. 2 셀의 경우에는 500 mHz의 주파수, -40 V/0.5 V의 환원 전압/산화 전압, 50%의 듀티, 4 시간의 지속 시간의 조건들 하에서 수행될 수 있다.
전해 용액(7)은 복수의 은 나노선(20)을 형성하기 위한 물질이 용해된 용액일 수 있고, 은을 포함하는 수용액을 포함할 수 있다. 예를 들어, 전해 용액(7)은 약 0.02 mM의 질산은(AgNO3)과 약 2.11 mM의 수산화암모늄(NH4OH)을 포함하는 혼합 용액일 수 있다.
은 나노선(20)은 피뢰침 효과를 이용하여 기판(10) 상에 성장될 수 있다. 은 나노선(20)의 성장을 상세하게 설명하면, 전해 용액(7) 내에서 작동 전극(5), 즉, 기판(10) 상에 은 나노 입자들이 우선적으로 핵생성되어 은 나노 아일랜드들을 형성한다. 상기 은 나노 아일랜드들의 말단(tip)들에서는 전기장이 국부적으로 증대되며, 이에 따라 계면 이방성이 야기된다. 이러한 계면 이방성에 의하여 은 나노 아일랜드들이 각각 성장하여 은 나노선(20)을 형성한다.
즉, 일단 은 나노 아일랜드들이 핵생성되면, 핵생성 거동의 속도보다는 은 나노 아일랜드들의 성장 거동의 속도가 빨라지게 되어, 결과적으로 일 방향으로 길게 성장된 은 나노선(20)을 형성한다. 이러한 은 나노선(20)의 성장은 피뢰침에 번개가 집중되어 흐르는 것과 유사하므로, 피뢰침 효과(lightening-rod effect)로 지칭될 수 있다. 또한, 이러한 일 방향으로 길게 성장된 은 나노선(20)은 이방성 특징을 제공할 수 있다. 또한, 은 나노선(20)은 은의 금속적 성질에 따라 전기전도성 특징을 제공할 수 있다.
은 나노선(20)은 기판(10)에 대하여 일정한 각도를 가지고 성장될 수 있고, 예를 들어, 기판(10)에 대하여 수직하게 성장될 수 있다. 은 나노선(20)의 직경, 개수 밀도(number density), 길이 등은 다양한 범위로 변화될 수 있다.
또한, 은 나노선(20)은, 성장 조건을 제어함에 따라서, 예컨대, 덴드라이트(dendrite), 침상 또는 판상 등의 다른 형태를 포함할 수 있다.
도 5는 본 발명의 일 실시예에 따른 코어-쉘 구조체의 주사전자현미경 사진이다.
도 5를 참조하면, 도 5의 (a)는 코어-쉘 구조체(35)의 몰딩을 수행하기 전의 주사전자현미경 사진으로, 상기 기판 상에 수직하게 형성된 덴드라이크 구조의 은 나노선을 확인할 수 있었다. 또한 도 5의 (b)는 폴리머로 적어도 일부분이 몰딩된 코어-쉘 구조체의 주사전자현미경 사진으로, 폴리머로 적어도 일부분이 몰딩된 코어-쉘 구조체를 확인할 수 있었으며, 산소 플라스마 처리에 의하여 폴리머가 일부 제외된 것을 확인할 수 있었다.
도 6은 본 발명의 실시예들에 따른 프리스탠딩 ACF막의 광학적 이미지이다.
도 6을 참조하면, 도 6은 상기 기판에서 분리된 프리스탠딩 ACF막의 광학적 이미지로써, 프리스탠딩 ACF막의 가요성을 확인할 수 있었다.
도 7은 본 발명의 일 실시예에 따른 폴리머로 적어도 일부분이 몰딩된 코어-쉘 구조체의 형성 방법을 개략적으로 도시하는 순서도이다. 도 8은 본 발명의 일 실시예에 따른 폴리머로 적어도 일부분이 몰딩된 코어-쉘 구조체의 형성 방법을 개략적으로 도시하는 도면이다.
도 7 및 도 8을 참조하면, 본 발명의 일 실시예에 따른, 기판 상에 폴리머로 적어도 일부분이 몰딩된 코어-쉘 구조체를 형성하는 단계(S200)는, 기판 상에 복수의 은 나노선을 형성하는 단계(S220), 은 나노선 상에 금을 도핑하는 단계(S222) 및 도핑된 은 나노선을 폴리머를 이용하여 몰딩하는 단계(S224)를 포함할 수 있다.
구체적인 예를 들어, 도 8의 (a)와 같이, 금이 증착된 실리콘 기판(10a) 상에, 피뢰침 효과를 이용한 복수의 은 나노선(20)을 수직하게 성장시킬 수 있다.
그런 다음에, 도 8의 (b)와 같이, 은 나노선(20)을 HAuClnH2O 에 침지하여, -1 V를 30 분 동안 인가하여 은 나노선(20)이 코어를 형성하고, 은 나노선(20) 상에 금이 도핑되어 금을 포함하는 쉘(30a)이 형성될 수 있다. 이러한 방법으로 은(Ag)/금(Au) 나노선 코어-쉘(35a)을 구현할 수 있다.
이때, 정전위 전압(potentiostatic voltage)은 -1 V 이하에서 변경될 수 있고, 반응 시간은 2 시간 이하에서 변경될 수 있다.
그런 다음에, 도 8의 (c)와 같이, 은(Ag)/금(Au) 나노선 코어-쉘(35a)이 형성된 실리콘 기판(10a) 상에 폴리이미드를 100 초 동안 5000 rpm에서 스핀 코팅을 1번 수행하여 몰딩할 수 있다. 그런 다음에, 폴리머로 몰딩된 은(Ag)/금(Au) 나노선 코어-쉘 구조체(50a)를 형성할 수 있다. 이때, 은(Ag)/금(Au) 나노선 코어-쉘(35a)의 길이에 따라 상기 폴리이미드의 몰딩되는 양은 변경될 수 있다.
그런 다음에, 핫 플레이트(hot plate)에서 260 ℃ 온도에서 20 동안 처리하여 상기 폴리이미드를 큐어링할 수 있다. 상기 큐어링 온도는 200 ℃ 내지 300 ℃ 온도범위 내에서 변경될 수 있으며, 상기 큐어링 후에 시편을 충분히 냉각시키고, 산소 플라즈마(O2 plasma) 처리를 진행할 수 있다.
또한, 상기 산소 플라즈마 처리 후, 은(Ag)/금(Au) 나노선이 수직적으로 형성된 폴리머로 몰딩된 은(Ag)/금(Au) 나노선 코어-쉘 구조체(50a)를 실리콘 기판(10a)에서 분리하여, 프리스탠딩 ACF막을 구현할 수 있다. 또한, 상기 프리스탠딩 ACF막 상에 금 전극을 형성할 수 있다.
도 9는 본 발명의 일 실시예에 따른 코어-쉘 구조체의 몰딩을 수행하기 전의 주사전자현미경 사진 및 EDS를 이용한 line scan 스펙트럼이다.
도 9를 참조하면, 도 9의 (a)는 몰딩전 은(Ag)/금(Au) 나노선 코어-쉘 구조체(35a)를 옆면에서 촬영한 주사전자현미경사진으로, 은(Ag)/금(Au) 나노선 코어-쉘(35a)이 상기 기판 상에 수직적으로 형성된 것을 확인 할 수 있었다. 또한, 도 9의 (b)는 은(Ag)/금(Au) 나노선 코어-쉘 구조체(35a)의 EDS를 이용한 line scan 스펙트럼으로 (Ag)/금(Au) 나노선 코어-쉘(35a)이 은과 금으로만 이루어진 것을 확인할 수 있었다.
도 10은 본 발명의 일 실시예에 따른 폴리머로 적어도 일부분이 몰딩된 코어-쉘 구조체의 주사전자현미경 사진이다.
도 10을 참조하면, 도 10은 폴리머로 적어도 일부분이 몰딩된 은(Ag)/금(Au) 나노선 코어-쉘 구조체(50a)의 옆면에서의 13도 각도의 경사 및 윗면에서 촬영한 주사전자현미경 사진으로, 폴리머로 적어도 일부분이 몰딩된 상기 은(Ag)/금(Au) 나노선 코어-쉘 구조체(50a)를 확인할 수 있었다. 또한, 산소 플라즈마 처리에 의하여 폴리머가 일부 제외된 것을 확인할 수 있었다.
도 11은 본 발명의 다른 실시예에 따른 폴리머로 적어도 일부분이 몰딩된 코어-쉘 구조체의 형성 방법을 개략적으로 도시하는 순서도이다. 도 12는 본 발명의 다른 실시예에 따른 폴리머로 적어도 일부분이 몰딩된 코어-쉘 구조체의 형성 방법을 개략적으로 도시하는 도면이다.
도 11 및 도 12를 참조하면, 본 발명의 다른 실시예에 따른, 기판 상에 폴리머로 적어도 일부분이 몰딩된 코어-쉘 구조체를 형성하는 단계(S200)는, 기판 상에 복수의 은 나노선을 형성하는 단계(S230), 은 나노선을 폴리머를 이용하여 몰딩하는 단계(S232), 몰딩된 은 나노선 상에 플라즈마 처리하는 단계(S234), 기판을 PVP(polyvinylpyrrolidone) 용액 내에 침지시키는 단계(S236) 및 은 나노선 상에 FeCl3을 주입하는 단계(S238)를 포함할 수 있다.
구체적인 예를 들어, 도 12의 (a)와 같이, 금이 증착된 실리콘 기판(10a) 상에, 피뢰침 효과를 이용한 복수의 은 나노선(20)을 수직하게 성장시킬 수 있다.
그런 다음에, 도 12의 (b)와 같이, 실리콘 기판(10a) 상에 폴리이미드를 100 초 동안 5000 rpm에서 스핀 코팅을 1번 수행하여 몰딩할 수 있다. 이때, 상기 은 나노선(20)의 길이에 따라 상기 폴리이미드의 몰딩되는 양은 변경될 수 있다.
그런 다음에, 도 12의 (c)와 같이, 핫 플레이트(hot plate)에서 260 ℃ 온도에서 20 동안 처리하여 상기 폴리이미드를 큐어링할 수 있다. 상기 큐어링 온도는 200 ℃ 내지 300 ℃ 온도범위 내에서 변경될 수 있으며, 상기 큐어링 후에 시편을 충분히 냉각시키고, 산소 플라즈마(O2 plasma) 처리를 진행할 수 있다.
그런 다음에, 도 12의 (d)와 같이, 15 wt% PVP(P) 용액이 담긴 용기(60) 내에 상기 시편을 침지시킨 후, 20 mM FeCl3을 1 ㎕/min 속도로 주입시킬 수 있다. 이때, PVP(P) 농도는 10 wt% 내지 20 wt% 이내에서 변경될 수 있고, 분자량(molecular weight)은 40,000일 수 있다. 또한, FeCl3의 농도는 1 mM 내지 50 mM 이내에서 변경될 수 있고, 속도는 0.1 ~ 5 ㎕/min 이내로 변경될 수 있다.
그런 다음에, 도 12의 (e)와 같이, 은 나노선(20) 상에 염화은을 포함하는 쉘(30b)이 형성된 은(Ag)/염화은(AgCl) 나노선 코어-쉘 구조체(35b)를 구현할 수 있다. 이에 따르면 도 12의 (e)에 도시된 바와 같이, 염화은의 쉘(30b)은 은 나노선(20)의 폴리머로부터 노출된 부분 상에 형성될 수 있고, 그에 따라 코어-쉘 구조체(35b)는 은 나노선(20)의 폴리머로부터 노출된 부분 상에 형성될 수 있다.
또한, 은(Ag)/염화은(AgCl) 나노선 코어-쉘 구조체(35b)가 수직적으로 형성된 폴리머로 몰딩된 은(Ag)/염화은(AgCl) 나노선 코어-쉘 구조체(50b)를 실리콘 기판(10a)에서 분리하여, 프리스탠딩 ACF막을 구현할 수 있다. 또한, 상기 프리스탠딩 ACF막 상에 금 전극을 형성할 수 있다.
도 13은 본 발명의 다른 실시예에 따른 폴리머로 적어도 일부분이 몰딩된 코어-쉘 구조체의 주사전자현미경 사진이다.
도 12 및 도 13을 참조하면, 본 발명의 다른 실시예에 따른 폴리머로 몰딩된 은(Ag)/염화은(AgCl) 나노선 코어-쉘 구조체(50b)가 형성된 것을 확인할 수 있었다.
도 14는 본 발명의 실시예들에 따른 GSR 센서의 전기적인 특성을 평가하는 방법을 개략적으로 도시하는 도면이다. 도 15는 도 14의 전기적인 특성을 기판에 변화에 따라 보여주는 IV curve 그래프이다.
도 14를 참조하면, 본 발명의 실시예들에 따른 프리스탠딩 ACF막(100)은 상면에 전극(80)을 포함할 수 있고, 하면에 지지기판(10b)을 부착하여 전기적인 특성을 평가할 수 있다. 도 14에 도시된 바와 같이, 전극(80)은 폴리머로부터 노출된 코어-쉘 구조체에 연결될 수 있다. 도 15를 참조하면, 지지기판(10b)의 종류에 따라, I-V 특성은 다르게 측정되었으며, 금 기판(A), 구리 박막기판(B), ITO 유리기판(C) 및 p-type 이 도핑된 실리콘 기판(D) 모두 0 V를 기준으로 양 전위가 인가되는 경우와 음 전위가 인가되는 경우가 거의 대칭에 가까운 I-V 특성을 나타내었다.
또한, p-type 이 도핑된 실리콘 기판(D)의 경우가, 금 기판(A), 구리 박막기판(B) 및 ITO 유리기판(C)보다 가장 큰 기울기를 갖는 I-V 특성을 나타내었다.
도 16은 본 발명의 실시예들에 따른 GSR 센서의 Cl- 이온의 농도 변화에 따른 전기적인 특성을 평가하는 방법을 개략적으로 도시하는 도면이다. 도 17은 도 16의 Cl- 이온의 농도 변화 따라 나타나는 저항 그래프이다.
도 16을 참조하면, 본 발명의 실시예들에 따른 프리스탠딩 ACF막(100)은 제 1 전극(80a) 및 제 2 전극(80b)을 포함하여, 지지기판(10b) 상에 포함되는 패브릭(90) 상에 위치할 수 있으며, 마이크로 피페트(70)을 통하여 패브릭(90)에 주입되는 용액의 Cl- 이온의 농도 변화에 따른 전기적인 특성을 평가할 수 있다. 도 17을 참조하면, 시간에 따른 저항은 패브릭(90)에 주입되는 용액의 Cl- 이온의 농도 변화에 따라 다르게 나타났으며, 물(H2O, 도 17의 ①)의 경우가 가장 큰 저항값을 나타냈으며, 그 다음으로, 1 ㎛의 염화나트륨(NaCl, 도 17의 ②), 1M의 염화나트륨(NaCl, 도 17의 ③) 순으로 나타났다.
상술한 본 발명의 실시예들에 따른 GSR 센서는, 가요성을 갖는 폴리머로 적어도 일부분이 몰딩된 코어-쉘 구조체를 포함하고 있어, 인체 피분의 표면 굴곡에 따라 측정프로브와의 접촉이 쉽게 이루어질 수 있다. 또한, 측정되는 피부저항의 노이즈를 포함하지 않고, 정확한 결과를 측정할 수 있다. 또한, 이러한 상기 GSR 센서는, 피부저항측정 기기로, 예를 들어, 손가락 밴드, 팔 밴드, 머리띠. 패치 등에 포함될 수 있을 뿐만 아니라, 웨어러블 디바이스(wearable device) 등에 포함될 수 있다. 도 12에 도시된 실시에의 경우, GSR 센서는 전극을 통해서 프리스탠딩 ACF막 내 복수의 은 나노선과 폴리머로부터 노출된 코어-쉘 구조체를 통해서 전기적인 신호를 측정하고자 하는 피부에 인가하여 피부 저항을 측정할 수 있다.
본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.
1 나노 구조체의 제조 장치
2: 용기
3: 기준 전극
4: 상대 전극,
5: 작동 전극
6: 정전위 장치
7: 전해 용액
8: 교반기
10: 기판
10a: 실리콘 기판
10b: 지지기판
20: 은 나노선(코어)
30a: 금을 포함하는 쉘
30b: 염화은을 포함하는 쉘
35: 코어-쉘 구조체
35a: 은(Ag)/금(Au) 나노선 코어-쉘 구조체
35b: 은(Ag)/염화은(AgCl) 나노선 코어-쉘 구조체
40: 폴리머
50: 폴리머로 몰딩된 코어-쉘 구조체
50a: 폴리머로 몰딩된 은(Ag)/금(Au) 나노선 코어-쉘 구조체
50b: 폴리머로 몰딩된 은(Ag)/염화은(AgCl) 나노선 코어-쉘 구조체
60: PVP 용액이 담긴 용기
70: 마이크로 피페트
80: 전극
80a: 제 1 전극
80b: 제 2 전극
90: 패브릭

Claims (5)

  1. 이방성 전도성을 갖는 복수의 은 나노선 및 상기 복수의 은 나노선 사이의 적어도 일부를 충전하고 가요성을 갖는 폴리머를 포함하는 프리스탠딩 ACF(anisotropic conductive flexible)막;
    상기 복수의 은 나노선의 상기 폴리머로부터 노출된 부분 상에 염화은(AgCl)으로 쉘을 형성하는 코어-쉘(core-shell) 구조체;
    상기 폴리머로부터 노출된 상기 복수의 은 나노선의 적어도 일부 상에 전원부가 연결될 수 있는 전극;을 포함하며,
    상기 전극을 통해서 상기 프리스탠딩 ACF막 내 상기 복수의 은 나노선과 상기 폴리머로부터 노출된 상기 코어-쉘 구조체를 통해서 전기적인 신호를 측정하고자 하는 피부에 인가하여 피부 저항을 측정하는, GSR(Galvanic Skin Reflex) 센서.
  2. 제 1 항에 있어서,
    상기 복수의 은 나노선은 상기 폴리머를 관통하여 배치되고, 상기 복수의 은 나노선의 양단부는 상기 폴리머로부터 노출되고, 상기 복수의 은 나노선의 일단부는 측정하고자 하는 피부에 접촉될 수 있고, 타 단부에는 상기 전극이 연결된, GSR 센서.
  3. 기판을 제공하는 단계;
    상기 기판 상에, 이방성 전도성을 갖도록 복수의 은 나노선을 형성하는 단계;
    상기 복수의 은 나노선 사이의 적어도 일부를 가요성을 갖는 폴리머로 충전하는 단계;
    상기 복수의 은 나노선의 상기 폴리머로부터 노출된 부분 상에 염화은(AgCl)으로 쉘을 형성하여 코어-쉘(core-shell) 구조체를 형성하는 단계;
    상기 폴리머가 충전된 상기 코어-쉘 구조체를 상기 기판에서 분리함으로써, 프리스탠딩 ACF(anisotropic conductive flexible)막을 형성하는 단계; 및
    상기 폴리머로부터 노출된 상기 복수의 은 나노선의 적어도 일부 상에 전원부가 연결될 수 있는 전극을 형성하는 단계를 포함하는, GSR 센서의 형성 방법.
  4. 제 3 항에 있어서,
    상기 복수의 은 나노선 사이의 적어도 일부를 상기 폴리머로 충전하는 단계 이후에, 상기 코어-쉘 구조체를 플라즈마(plasma) 처리하는 단계;를 더 포함하는, GSR 센서의 형성 방법.
  5. 제 4 항에 있어서,
    상기 플라즈마 처리는 산소 플라즈마(O2 plasma) 처리를 포함하는, GSR 센서의 형성 방법.
KR1020160077597A 2016-06-21 2016-06-21 Gsr 센서 및 그 형성 방법 KR101698384B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160077597A KR101698384B1 (ko) 2016-06-21 2016-06-21 Gsr 센서 및 그 형성 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160077597A KR101698384B1 (ko) 2016-06-21 2016-06-21 Gsr 센서 및 그 형성 방법

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020140109693A Division KR20160023374A (ko) 2014-08-22 2014-08-22 Gsr 센서 및 그 형성 방법

Publications (2)

Publication Number Publication Date
KR20160078315A true KR20160078315A (ko) 2016-07-04
KR101698384B1 KR101698384B1 (ko) 2017-01-20

Family

ID=56501573

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160077597A KR101698384B1 (ko) 2016-06-21 2016-06-21 Gsr 센서 및 그 형성 방법

Country Status (1)

Country Link
KR (1) KR101698384B1 (ko)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110076509A1 (en) * 2009-08-28 2011-03-31 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V. Method for the Synthesis of Metallic Nanotubes and Nanotubes Synthesized by the Method
KR20130116192A (ko) * 2012-04-12 2013-10-23 이화여자대학교 산학협력단 은/할로겐화은 복합체를 포함하는 산소-환원용 전극 촉매, 상기를 포함하는 연료전지, 및 상기의 제조방법
KR101341102B1 (ko) * 2012-11-29 2013-12-12 한국표준과학연구원 수직 정렬 나노선을 포함하는 이방성 투명 전기전도성 가요성 박막 구조체 및 그 제조 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110076509A1 (en) * 2009-08-28 2011-03-31 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V. Method for the Synthesis of Metallic Nanotubes and Nanotubes Synthesized by the Method
KR20130116192A (ko) * 2012-04-12 2013-10-23 이화여자대학교 산학협력단 은/할로겐화은 복합체를 포함하는 산소-환원용 전극 촉매, 상기를 포함하는 연료전지, 및 상기의 제조방법
KR101341102B1 (ko) * 2012-11-29 2013-12-12 한국표준과학연구원 수직 정렬 나노선을 포함하는 이방성 투명 전기전도성 가요성 박막 구조체 및 그 제조 방법

Also Published As

Publication number Publication date
KR101698384B1 (ko) 2017-01-20

Similar Documents

Publication Publication Date Title
CN106983507A (zh) 一种用于人体电信号测量的柔性微电极阵列及制作方法
WO2014052618A1 (en) Conductive nanocrystalline diamond micro-electrode sensors and arrays for in-vivo chemical sensing of neurotransmitters and neuroactive substances and method of fabrication thereof
Zátonyi et al. A softening laminar electrode for recording single unit activity from the rat hippocampus
US20160324435A1 (en) Graphene-passivated implantable electrodes
KR101990193B1 (ko) 스트레인 게이지 및 그 제조방법
Fan et al. Large-scale, all polycrystalline diamond structures transferred onto flexible Parylene-C films for neurotransmitter sensing
US20230133153A1 (en) Composite array electrode, preparation method thereof and use thereof
Graudejus et al. Characterization of an elastically stretchable microelectrode array and its application to neural field potential recordings
Márton et al. Durability of high surface area platinum deposits on microelectrode arrays for acute neural recordings
Yang et al. Carbon nanotube array‐based flexible multifunctional electrodes to record electrophysiology and ions on the cerebral cortex in real time
KR101711785B1 (ko) 식물의 전기전도도 측정용 마이크로 니들 프로브 및 이를 구비한 전기전도도 측정장치
JP6016932B2 (ja) ナノ電極及びその製造方法
Arida Novel pH microsensor based on a thin film gold electrode modified with lead dioxide nanoparticles
JPWO2018163881A1 (ja) 生体情報測定用電極及び生体情報測定用電極の製造方法
KR101698384B1 (ko) Gsr 센서 및 그 형성 방법
CN108034972A (zh) 一种基于多孔金-铂纳米颗粒的硅基电极表面改性方法
KR20160023374A (ko) Gsr 센서 및 그 형성 방법
Bauerdick et al. Substrate-integrated microelectrodes with improved charge transfer capacity by 3-dimensional micro-fabrication
CN109044327B (zh) 一种刺入力度可控的微针干式电极
JP3979574B2 (ja) 生体試料用アレイ電極及びその作製方法
KR100829932B1 (ko) 혈액의 혈전형성율 측정장치 및 방법
KR20200114078A (ko) 생체 신호 측정용 신경전극 및 그 제조방법
Naghian et al. A New Electrochemical Sensor for Determination of Zolpidem by Carbon Paste Electrode Modified with SnS@ SnO2NP
Nurlis et al. Effect of Reducing Agents on The Performance of AgNPs and PANI Flexible Conductive Fabrics.
KR20170051992A (ko) 열전소재를 이용한 gsr 센서 및 그 형성 방법

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant