KR20160057642A - Quantum dot and π-conjugated molecule hybrids nanoparticle, and molecular electronic devices including the same - Google Patents

Quantum dot and π-conjugated molecule hybrids nanoparticle, and molecular electronic devices including the same Download PDF

Info

Publication number
KR20160057642A
KR20160057642A KR1020140158495A KR20140158495A KR20160057642A KR 20160057642 A KR20160057642 A KR 20160057642A KR 1020140158495 A KR1020140158495 A KR 1020140158495A KR 20140158495 A KR20140158495 A KR 20140158495A KR 20160057642 A KR20160057642 A KR 20160057642A
Authority
KR
South Korea
Prior art keywords
quantum dot
group
nanostructure
compound
organic semiconductor
Prior art date
Application number
KR1020140158495A
Other languages
Korean (ko)
Inventor
이광섭
전수민
박성연
주진수
한윤덕
Original Assignee
한남대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한남대학교 산학협력단 filed Critical 한남대학교 산학협력단
Priority to KR1020140158495A priority Critical patent/KR20160057642A/en
Publication of KR20160057642A publication Critical patent/KR20160057642A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B1/008Nanostructures not provided for in groups B82B1/001 - B82B1/007
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0095Manufacture or treatments or nanostructures not provided for in groups B82B3/0009 - B82B3/009
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0805Chalcogenides
    • C09K11/0811Chalcogenides with zinc or cadmium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Abstract

The present invention relates to a quantum dot-insulation layer-organic semiconductor hybrid nano structure which connects a functional organic semiconductor to a quantum dot, to a molecular electronic device comprising the same, and to a producing method of the nano structure and, more specifically, to a quantum dot-insulation layer-organic semiconductor hybrid nano structure which is a next generation n-ins-p conjugated nano structure using energy and charge transfer phenomenon depending on adjusting the distance between both semiconductors by introducing an insulation layer between an quantum dot which is an n-type semiconductor and a p-type organic semiconductor, to a producing method thereof, and to a molecular electronic device comprising the nano structure.

Description

양자점-절연분자-유기반도체 하이브리드 나노구조체 및 이를 포함하는 분자전자소자{Quantum dot and π-conjugated molecule hybrids nanoparticle, and molecular electronic devices including the same}Quantum dot-insulated molecular-organic semiconductor hybrid nanostructures and molecular electronic devices containing the same - Patents.com

본 발명은 양자점에 절연분자를 중간층으로 하고 이에 기능성 유기반도체를 결합시킨 양자점-절연분자-유기반도체 하이브리드 나노구조체 및 이를 포함하는 분자전자소자와 상기 나노구조체의 제조방법에 관한 것으로, 특히 새로운 광학적 및 전기적 특성을 제공하는 나노구조체에 관한 것이다.
The present invention relates to a quantum dot-insulated molecular-organic semiconductor hybrid nanostructure in which an insulating molecule is used as an intermediate layer in quantum dots and a functional organic semiconductor is bonded to the quantum dot, a molecular electronic device including the same, and a method for manufacturing the nanostructure, To nanostructures providing electrical properties.

첨단 소재 및 소자 기술이 급속도로 발전하면서 상상 속에서만 있었던 “입는 컴퓨터(wearable computer)”와 “유연한 전자신문(flexible electronic newspaper)” 등 전자 혹은 광학적 장비들이 현실화 되고 있다. 인간에 친화적인 광전자 소자들이 새로운 물성을 갖는 첨단 소재를 기반으로 연구, 제작되고 있다.
With the rapid development of advanced materials and device technologies, electronic or optical devices such as "wearable computers" and "flexible electronic newspapers" that have existed only in the imagination are realizing. Human-friendly optoelectronic devices are being studied and fabricated based on advanced materials with new properties.

기존 물질이 가진 광학적, 전기적 한계를 극복하기 위하여 나노 물리학 이론에 입각하여 하이브리드 나노구조체 물질을 만들 경우 물질간의 특정한 효과들로 인해 기존 물질 각각이 가졌던 한계를 뛰어넘는 시너지 효과를 보여주기도 한다. 발광 특성이 우수한 양자점과 발광 및 전도성이 좋은 파이공액결합 구조의 유기반도체를 결합시킬 경우 둘 사이의 에너지 및 전하 전달 현상을 통해서 발광 및 전기 특성을 극대화 시킬 수 있는 이론적 예측이 있었지만 그동안 제작이 어려워 활발한 연구가 진행되지는 못하였다.
In order to overcome the optical and electrical limitations of existing materials, hybrid nanostructured materials based on nanophysical theory show synergistic effects beyond the limitations of existing materials due to specific effects between materials. When a quantum dot having excellent luminescence characteristics and an organic semiconductor having a light-emitting and pie-conjugated structure having good conductivity are combined, there is a theoretical prediction that maximizes luminescence and electric characteristics through energy transfer and charge transfer between the two. However, Research has not been conducted.

특허문헌 1 : 공개특허 10-2011-0117972Patent Document 1: Patent Document 10-2011-0117972 특허문헌 2 : 공개특허 10-2014-0006401Patent Document 2: JP-A-10-2014-0006401 특허문헌 3 : 공개특허 10-2012-0095379Patent Document 3: Japanese Patent Application Laid-Open No. 10-0095379 특허문헌 4 : 공개특허 10-2009-0105755Patent Document 4: Patent Document 10-2009-0105755 특허문헌 5 : WO 2002/048432Patent Document 5: WO 2002/048432

본 발명은 n형 반도체인 양자점과 p형 유기반도체 사이에 절연분자를 도입하여 양자점과 유기반도체의 발광특성을 극대화하고 절연분자의 크기를 조절함으로써 전기적 광학적 특성이 변화되므로, 이에따른 에너지 및 전하전달 현상을 이용하여, n형-절연-p형 (n-ins-p) 반도체 접합 나노구조체인 양자점-절연분자-유기반도체 하이브리드 나노구조체 및 이의 제조방법과 상기 나노구조체를 포함하는 분자전자 소자를 제공하는 것을 목적으로 한다.
In the present invention, by introducing an insulating molecule between a quantum dot which is an n-type semiconductor and a p-type organic semiconductor, the luminescent characteristics of the quantum dots and the organic semiconductor are maximized and the electrical and optical characteristics are changed by controlling the size of the insulating molecule. The present invention relates to a quantum dot-insulated molecular-organic semiconductor hybrid nano structure which is an n-type insulated p-type semiconductor junction nano structure, a method for producing the same, and a molecular electronic device including the nano structure .

수십 나노미터(nm) 이하인 0차원 나노물질인 양자점은 독특한 광학 성질을 지니고 있는데, 무기물 발광 반도체로 양자점을 만들어 빛을 입사시키면 양자점의 크기에 따라 발광색이 변화하는 양자제한효과 (quantum confinement effect)를 지닌다. 크기에 따라 에너지 레벨의 분포와 발광 파장 등의 특성이 변하며 core-shell 형태로 제작할 경우 광 안정성을 갖는다. 따라서 반도체 기반 양자점은 전자소자, 디스플레이, 에너지 소자에 응용될 수 있다. Quantum dots, which are tens of nanometers (nm) or less, have a unique optical property. When a quantum dot is formed by an inorganic light emitting semiconductor, a quantum confinement effect I have. The distribution of the energy level and the characteristics of the emission wavelength are changed depending on the size, and the optical stability is obtained when the core-shell is fabricated. Therefore, semiconductor-based quantum dots can be applied to electronic devices, displays, and energy devices.

반면 파이공액결합을 지닌 유기반도체 화합물은 구성하는 탄소원자의 파이 궤도에 있는 전자들이 교대로 결합하는 구조 때문에 전기전도 특성이 우수하고 자체 발광특성을 보이는 반도체로서 스마트폰 등의 디스플레이 장치에 사용되는 OLED (organic light emitting device) 발광소재로 널리 사용되고 있다. 이러한 파이공액결합 분자와 양자점의 혼성체는 플렉시블 디스플레이 장치에 발광다이오드를 위한 신규한 물질로서 사용될 수 있다. 또한 강화된 전하 전달 효율을 지닌 혼성체는 나노스케일의 광전지 소자로도 사용될 수 있다.
On the other hand, organic semiconducting compounds with pie conjugate bonds have excellent electrical conduction characteristics and self-luminescence characteristics due to the structure in which electrons in the pie orbit of the constituent carbon atoms are alternately bonded. As a semiconductor, OLEDs organic light emitting device). Such a hybrid of a pi conjugated molecule and a quantum dot can be used as a novel material for a light emitting diode in a flexible display device. Hybrid materials with enhanced charge transfer efficiency can also be used as nanoscale photovoltaic devices.

양자점과 파이공액결합 분자 사이에 에너지 전달(energy transfer) 및 전하전달(charge transfer) 효율 조절은 양자점과 파이공액결합 분자 사이의 거리와 스펙트럼의 중첩 정도를 조절할 수 있다. 여기서 에너지 전달(energy transfer) 발광하는 두 분자에서 에너지 갭이 조금 더 큰 물질(donor)의 발광에너지가 가까운 곳에 위치해 있는 에너지 갭이 조금 더 작은 물질(acceptor)로 전달되는 현상을 말한다. 이때 donor의 발광 스펙트럼과 acceptor의 흡수 스펙트럼의 겹침이 좋아야 하는데 이는 donor와 acceptor 분자 사이의 거리를 조절하여 에너지 전달의 정도를 조절하게 되며 거리의 6승에 반비례 하는 경향을 보인다. 즉 에너지 전달에 있어서 한계거리는 1 ~ 10 nm로 1 nm 이하가 되는 경우에는 발광이 소멸하는 quenching 현상이 나타나며 약 10 nm 이상이 되는 경우에는 에너지 전달이 거의 일어나지 않는다.
Controlling the energy transfer and charge transfer efficiency between the quantum dot and the pi conjugated molecule can control the distance between the quantum dot and the pi conjugated molecule and the degree of superposition of the spectrum. Here, energy transfer refers to a phenomenon in which energy gap of a donor whose energy gap is slightly larger in the two molecules emitting light is transferred to an acceptor having a smaller energy gap. At this time, the overlap of the absorption spectrum of the acceptor with the emission spectrum of the donor should be good, which controls the degree of energy transfer by adjusting the distance between donor and acceptor molecules, and tends to be inversely proportional to the sixth power of distance. That is, when the critical distance for energy transfer is 1 to 10 nm, the quenching phenomenon disappears when the thickness is less than 1 nm, and the energy transmission is rarely performed when the distance is about 10 nm or more.

또한, 전하 전달(charge transfer)은 상기한 donor와 acceptor 분자들이 서로 가까이 위치할 때 여기된 물질(donor)의 전하가 다른 물질(acceptor)로 직접 전달되는 현상을 뜻하며, donor와 acceptor의 전자궤도가 겹칠 때 가능하므로 두 물질사이의 거리가 1 nm 이하로 매우 가까울 때 일어난다.
In addition, charge transfer refers to the phenomenon that the charge of an excited donor is directly transferred to another acceptor when the donor and acceptor molecules are located close to each other, and the electron orbit of the donor and the acceptor It is possible when overlapping, so it occurs when the distance between two substances is very close to 1 nm or less.

본 발명은 이러한 현상을 이용하여 양자점을 코어층으로 하고 파이공액결합 구조의 유기반도체 화합물을 셀층으로 하는 나노구조체를 제공하여, 양 물질간의 거리 조절함으로써 나노크기의 분자 광전자 소자의 핵심물질을 제공한다.
Using this phenomenon, the present invention provides a nanostructure comprising a quantum dot as a core layer and an organic semiconductive compound of a pi conjugated structure as a cell layer, thereby adjusting the distance between both materials, thereby providing a core material of a nano-sized molecular optoelectronic device .

본 발명은 상기 목적을 달성하기 위해, 양자점 표면에 기능성 유기반도체를 결합시킨 코어-절연층-쉘(core-shell)구조의 양자점-유기반도체 하이브리드 나노구조체를 제공한다. 상기 구조체는 양자점과 유기반도체 사이에서 에너지와 전하 전달 효율을 조절할 수 있기 때문에 새로운 발광 및 전기 특성을 제공할 수 있다.
In order to achieve the above object, the present invention provides a quantum dot-organic semiconductor hybrid nano structure having a core-shell structure in which a functional organic semiconductor is bonded to the surface of a quantum dot. The structure can control energy and charge transfer efficiency between quantum dots and organic semiconductors, thus providing new luminescence and electrical properties.

기존의 양자점은 발광특성은 우수하나 디스플레이나 태양전지 소재로써 합성 후에 물성 조절과 대면적 코팅을 위한 대량생산의 문제점이 있었다. 또한 OLED에 사용되는 유기반도체 발광소재는 광학적 특성 개선이 필요로 하고 있다.
Conventional quantum dots have excellent luminescence characteristics, but display and solar cell materials have problems in mass production for control of physical properties and large area coating after synthesis. In addition, organic semiconductor light emitting materials used in OLEDs require improvement in optical properties.

이러한 단점들을 극복하기 위해서 본 발명은 유기반도체 끝에 기능기를 부착하여 양자점과 유기반도체가 잘 결합되도록 하여 상호간의 발광특성을 조절할 수 있는 나노구조체를 제공한다.
In order to overcome these drawbacks, the present invention provides a nanostructure capable of controlling mutual luminescence characteristics by attaching functional groups to the ends of organic semiconductors so that quantum dots and organic semiconductors can be bonded well.

양자점과 유기반도체 사이가 절연분자를 통해 상대적으로 멀리 연결되어 있으면(1 ~ 10nm) 발광색을 조절할 수 있었고, 양자점과 유기반도체가 가까이(1 nm 미만) 결합되면 원활한 전하전달로 인해 광전류가 증가하여, 태양전지 나노소재나 디스플레이 소재로 이용할 수 있다.
When the quantum dots and organic semiconductors are close to each other (less than 1 nm), the photocurrent increases due to the smooth charge transfer. As a result, It can be used as solar cell nano material or display material.

본 발명에 따른 나노구조체에서, 양자점-절연층-카바졸 유도체 화합물의 경우 n형-절연층- p형 반도체의 이종접합구조이기 때문에 빛을 받아 생성된 전자와 정공이 이종접합을 통해 잘 전달되는 광전류의 증가는 양자점-유기반도체 사이의 거리와 구조를 조절하여 태양전지 등의 광기전 효과를 이용한 장치에 우수한 효과를 제공할 수 있다.
In the nanostructure according to the present invention, since the quantum dot-insulating layer-carbazole derivative compound is a hetero-junction structure of an n-type insulating layer and a p-type semiconductor, electrons and holes generated by light are well transferred through heterojunction The increase of the photocurrent can control the distance and the structure between the quantum dot and the organic semiconductor to provide an excellent effect to a device using the photoconductive effect such as a solar cell.

도 1은 양자점-절연분자-카바졸 유기반도체 화합물로 이루어진 QD-CB 나노구조체의 화학구조를 나타낸다.
도 2는 QD-CB 혼성 나노구조체의 HR-TEM 이미지를 나타낸다.
도 3은 올레익산(OA)이 결합된 적색 QD 및 혼성 QD-CB 나노구조체의 FT-IR 스펙트럼을 나타낸다.
도 4는 QD-CB 혼성 나노구조체의 Normalized UV-vis 흡수 스팩트럼 및 적색 QD의 용액 광발광(PL) 스팩트럼을 나타낸다.
도 5은 적색 발광 양자점 및 QD-CB 단일 나노구조체의 레이저 공초점 현미경 (LCM) 발광 스팩트럼을 나타낸다.
도 6은 QD-CB(λex = 620 nm)의 전이 흡수(transient absorption: time-resolved absorption differnece) 스펙트럼을 나타낸다.
도 7은 적색 QD 및 QD-CB 나노구조체의 normalized time-resoled 광발광(PL) 감쇄(decay) 곡선을 나타낸다.
도 8a은 단일 QD-CB 나노구조체의 AFM 표면 프로파일을 나타낸다.
도 8b는 단일 QD-CB 나노구조체를 사용하여 광반응 I-V 특성에 대한 CAFM 실험의 개념도를 나타낸다.
도 9는 어두운 상태(dark) 및 밝은 상태(light condition)에서 QD-CB 단일 나노구조체의 전류-전압(I-V ) 특성 곡선을 나타낸다.
1 shows the chemical structure of a QD-CB nanostructure composed of a quantum dot-insulating molecule-carbazole organic semiconductor compound.
Figure 2 shows an HR-TEM image of the QD-CB hybrid nanostructure.
Figure 3 shows FT-IR spectra of red QD and hybrid QD-CB nanostructures bound with oleic acid (OA).
Figure 4 shows a normalized UV-vis absorption spectrum and a QD solution light-emitting (PL) spectrum of a QD-CB hybrid nanostructure.
Figure 5 shows a laser confocal microscope (LCM) luminescence spectrum of a red light emitting quantum dot and a QD-CB single nanostructure.
FIG. 6 shows a transient absorption (time-resolved absorption) difference spectrum of QD-CB (λ ex = 620 nm).
Figure 7 shows a normalized time-resolved photoluminescence (PL) decay curve of the red QD and QD-CB nanostructures.
Figure 8a shows the AFM surface profile of a single QD-CB nanostructure.
FIG. 8B shows a conceptual diagram of a CAFM experiment on photoreaction IV characteristics using a single QD-CB nanostructure.
Figure 9 shows a current-voltage (IV) characteristic curve of a QD-CB single nanostructure in a dark and a light condition.

본 발명은 상술한 과제를 감안하여 이루어진 것으로 양자점으로 이루어진 코어(core)층과 절연분자로 이루어진 절연층, 파이공액결합 구조의 유기반도체인 카바졸 화합물로 이루어진 외부(shell)층을 포함하는 나노구조체를 제공한다.
SUMMARY OF THE INVENTION The present invention has been made in view of the problems described above, and it is an object of the present invention to provide a nanostructure comprising a core layer made of quantum dots and an insulating layer made of insulating molecules, and a shell layer made of a carbazole compound, Lt; / RTI >

본 발명의 구체적인 예에서, 양자점이 CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, HgS, HgSe, HgTe, GaN, GaP, GaAs, InP, InAs로 이루어진 군에서 선택되는 2종의 조합인 것을 특징으로 하는 코어층과 절연분자로 이루어진 절연층, 파이공액결합 구조의 유기반도체인 카바졸 화합물로 이루어진 외부(shell)층을 포함하는 나노구조체를 제공한다.In a specific example of the present invention, the quantum dot is a combination of two species selected from the group consisting of CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, HgS, HgTe, GaN, GaP, GaAs, InP, An insulating layer composed of a core layer and insulating molecules, and a shell layer composed of a carbazole compound, which is an organic semiconductor of a pi conjugated structure.

본 발명의 또 다른 구체적인 예에서, 상기 양자점은 CdSe/ZnS, CdSe/ZnSe, CdS/ZnSe, CdS/ZnS, CdTe/ZnSe, CdTe/ZnS에서 선택되는 것을 특징으로 하는 나노구조체를 제공한다.In another embodiment of the present invention, the quantum dot is selected from the group consisting of CdSe / ZnS, CdSe / ZnSe, CdS / ZnSe, CdS / ZnS, CdTe / ZnSe and CdTe / ZnS.

본 발명의 또 다른 구체적인 예에서, 상기 절연분자로 이루어진 절연층이 결합된 파이공액결합 구조의 유기반도체인 카바졸 화합물은 하기 <화학식 1>로 나타내는 화합물인 것을 특징으로 하는 나노구조체를 제공한다.In another specific example of the present invention, a carbazole compound, which is an organic semiconductor of a pi conjugated structure in which an insulating layer composed of the insulating molecule is bonded, is a compound represented by the following Chemical Formula 1:

<화학식 1>&Lt; Formula 1 >

Figure pat00001
Figure pat00001

(상기 화학식 1에서, ○은 코어층을 나타내고, R1, R2는 서로 동일하거나 상이하며, 서로 독립적으로 수소; 중수소; 할로겐; C6~C60의 아릴기; 플루오렌일기; O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C2~C60의 헤테로고리기; C3~C60의 지방족고리와 C6~C60의 방향족고리의 융합고리기; C1~C20의 알킬기; C2~C20의 알켄일기; C2~C20의 알킨일기; C1~C20의 알콕실기; C6~C30의 아릴옥시기; 로 이루어진 군에서 선택되고, 또는 R1~2은, 상기 q, r이 2 이상인 경우 각각 복수로서 서로 동일하거나 상이하며 복수의 R1끼리 혹은 복수의 R2끼리 서로 결합하여 고리를 형성할 수 있다. 상기 q, r은 0 내지 4의 정수, n은 2 내지 5의 정수를 나타낸다)(In the formula 1, ○ denotes the core layer, R 1, R 2 are the same or different and, independently from each other hydrogen to each other; heavy hydrogen; halogen; aryl group of C 6 ~ C 60; fluorene group; O, N , S, Si and P, at least one group of C 2 ~ containing a hetero atom C 60 heterocyclic group of; C 3 ~ fused ring of an aromatic ring of C 60 of aliphatic rings and C 6 ~ C 60 group; C 1 ~ a C 20 alkyl group; an alkenyl group of C 2 ~ C 20; C 2 ~ alkynyl of C 20; aryloxy of C 6 ~ C 30;; C 1 ~ C 20 alkoxyl group is selected from the group consisting of, or R 1 and R 2 are the same or different from each other when q and r are 2 or more, and a plurality of R 1 s or a plurality of R 2 s may combine with each other to form a ring. 4, and n represents an integer of 2 to 5)

바람직하게는 상기 <화학식 1>에서 n이 2 내지 5의 정수를 나타내는 화합물인 나노구조체를 제공한다. 보다 더 바람직하게는 n이 4의 정수를 나타내고 R1, R2는 수소로 나타내는 카바졸 화합물로서, 탄소가 11개인 절연분자로 이루어진 절연층과 파이공액결합 구조의 유기반도체이 카바졸 화합물로 이루어진 부(shell)층을 포함하는 나노구조체를 특징으로 하는 나노구조체를 제공한다.
Preferably, in the formula 1, n is an integer of 2 to 5. More preferably, n is an integer of 4 and R &lt; 1 > and R &lt; 2 &gt; are hydrogen, and is a carbazole compound having an insulating layer composed of an insulating molecule having 11 carbon atoms and an organic semiconductor having a pi- and a shell layer on the surface of the nanostructure.

본 발명의 또 다른 구체적 예로는, 상기 나노구조체의 직경이 4 내지 11 nm인 나노구조체 및 상기 나노구조체가 n-절연(ins)-p형 이종접합형인 나노구조체를 제공한다.
In another specific example of the present invention, there is provided a nanostructure wherein the nanostructure has a diameter of 4 to 11 nm and the nanostructure is an n-insulated (p-type) heterostructure.

본 발명의 바람직한 구체적 예에서, 양자점으로 이루어진 코어층은 CdSe/ZnS이고, 절연분자로 이루어진 절연층이 결합된 파이공액결합 구조의 유기반도체 카바졸 화합물은 상기 <화학식 1>로 표시되는 화합물 중에 n이 4의 정수를 나타내고, R1, R2는 수소로 나타내는 화합물인 것을 특징으로 하는 나노구조체를 제공한다.
In a preferred specific example of the present invention, the organic semiconducting carbazole compound having a pi-conjugated structure in which a core layer made of quantum dots is CdSe / ZnS and an insulating layer made of insulating molecules are bonded is a compound represented by the formula Is an integer of 4, and R 1 and R 2 are each a hydrogen atom.

본 발명의 또 다른 구체적인 예에서, 양자점으로 이루어진 코어(core)층, 절연분자로 이루어진 절연층, 파이공액결합 구조의 유기반도체 카바졸 화합물로 이루어진 외부(shell)층을 포함하는 나노구조체를 포함하는 분자전자소자를 제공하며, 이 분자전자소자를 포함하는 전자장치 또한 제공한다. 여기서 전자장치는 바람직하게는 태양전지, 디스플레이 또는 조명장치와 이를 제어하는 제어부를 포함하는 전자장치를 예로 들 수 있다.
In another specific example of the present invention, the nanostructure includes a core layer made of quantum dots, an insulating layer made of insulating molecules, and a shell layer made of an organic semiconductor carbazole compound having a pi conjugated structure A molecular electronic device is provided, and an electronic device including the molecular electronic device is also provided. Here, the electronic device is preferably an electronic device including a solar cell, a display or a lighting device and a control unit for controlling the same.

또한 본 발명은 상기 유기반도체 화합물로서 하기 화학식 2으로 나타내는 화합물을 제공한다.The present invention also provides a compound represented by the following general formula (2) as the organic semiconductor compound.

<화학식 2>(2)

Figure pat00002
Figure pat00002

(상기 화학식 2에서, R1, R2는 서로 동일하거나 상이하며, 서로 독립적으로 수소; 중수소; 할로겐; C6~C60의 아릴기; 플루오렌일기; O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C2~C60의 헤테로고리기; C3~C60의 지방족고리와 C6~C60의 방향족고리의 융합고리기; C1~C20의 알킬기; C2~C20의 알켄일기; C2~C20의 알킨일기; C1~C20의 알콕실기; C6~C30의 아릴옥시기; 로 이루어진 군에서 선택되고, 또는 R1~2은, 상기 q, r이 2 이상인 경우 각각 복수로서 서로 동일하거나 상이하며 복수의 R1끼리 혹은 복수의 R2끼리 서로 결합하여 고리를 형성할 수 있다. 상기 q, r은 0 내지 4의 정수, n은 2 내지 5의 정수를 나타낸다)Wherein R 1 and R 2 are the same or different from each other and are independently selected from the group consisting of hydrogen, deuterium, halogen, C 6 to C 60 aryl, fluorenyl, O, N, S, Si and P A C 2 to C 60 heterocyclic group containing at least one heteroatom, a fused ring group of a C 3 to C 60 aliphatic ring and a C 6 to C 60 aromatic ring, a C 1 to C 20 alkyl group, a C 2 to C 20 heterocyclic group, alkynyl of C 2 ~ C 20;; ~ C 20 alkenyl group in the aryloxy group of C 6 ~ C 30;; C 1 ~ C 20 alkoxyl group is selected from the group consisting of, or R 1 ~ 2 are, the q and r are each a multiple of 2 or more and are the same or different from each other, and a plurality of R 1 s or a plurality of R 2 s may combine with each other to form a ring, q and r are integers of 0 to 4, n is 2 To 5 &lt; RTI ID = 0.0 &gt;

보다 바람직하게는, 하기 화학식 3으로 표시되는 화합물을 제공한다.More preferably, a compound represented by the following general formula (3) is provided.

<화학식 3>(3)

Figure pat00003
Figure pat00003

또한, 본 발명은 상기 나노구조체를 제공하기 위한 방법으로서 구체적인 예로서, In addition, the present invention is a method for providing the nanostructure,

a) 2종의 무기 반도체 물질로 코어-쉘 양자점을 제조하는 단계; b) P형 파이공액결합의 유기반도체 카바졸 화합물을 화학적으로 합성하는 단계; c) 상기 유기반도체 화합물에 절연분자를 도입하고 절연분자 말단에 티올기를 도입하는 단계; d) 상기 화합물을 양자점 표면에 도입하는 단계를 포함하는 것을 특징으로 하는, 양자점-절연층-유기반도체 화합물이 코어-절연층-쉘층으로 이루어진 나노구조체의 제조방법을 제공한다.a) fabricating core-shell quantum dots with two inorganic semiconductor materials; b) chemically synthesizing the P-type conjugated organic semiconductor carbazole compound; c) introducing an insulating molecule into the organic semiconductor compound and introducing a thiol group at an end of the insulating molecule; and d) introducing the compound into the surface of the quantum dot. The quantum dot-insulator-organic semiconductor compound comprises a core-insulating layer-shell layer.

여기서, 상기 (c)단계의 화합물은 상기 <화학식 2> 로 표시되는 화합물인 경우의 제조방법이 바람직한 예로 제공된다.
Here, the preparation method in the case where the compound of step (c) is a compound represented by the formula 2 is provided as a preferable example.

또한, 상기 (d)단계는 초음파를 가하여 양자점에 <화학식 2> 로 표시되는 화합물을 리간드 교환방식으로 도입하는 것을 특징으로 하는 제조방법을 제공한다.
In the step (d), a compound represented by Formula 2 is introduced into a quantum dot by an ultrasonic wave in a ligand exchange manner.

이하, 본 발명의 실시예를 참조하여 상세하게 설명한다. 본 발명을 설명함에 있어, 하기 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로서, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 자명할 것이다.
Hereinafter, embodiments of the present invention will be described in detail. It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit or scope of the invention. Will be apparent to those of ordinary skill in the art.

실시예 1 : CdSe-ZnS core-shell Green 양자점의 합성 Example 1: Synthesis of CdSe-ZnS core-shell Green quantum dot

CdO (0.4 mmol)과 zinc acetate (4 mmol), oleic acid (5.5 mL)를 1-octadecene (20 mL)과 함께 반응 기구에 넣고 150 ℃로 가열 한다. Zinc에 oleic acid가 치환되고 불순물로 나온 acetic acid를 제거하기 위해 100 mTorr 의 진공을 20 분간 걸어준다. 그리고 310 ℃의 열을 가해 주면 투명한 색의 혼합물이 된다. 20분간 310 ℃로 유지한 후에 0.1 mmol의 Se powder와 4 mmol의 S powder를 3 mL의 trioctylphosphine에 용해시킨 Se, S solution을 Cd(OA)2, Zn(OA)2 solution이 들어있는 반응 기구에 빠르게 주입한다. 이 혼합물을 310 ℃에서 10분간 성장시킨 후 ice bath를 이용하여 성장을 중단시킨다. Ethanol로 침전시켜 원심분리기를 이용하여 양자점을 분리하고 여분의 불순물은 chloroform과 ethanol을 이용하여 씻어낸다.CdO (0.4 mmol), zinc acetate (4 mmol) and oleic acid (5.5 mL) are added to the reactor together with 1-octadecene (20 mL) and heated to 150 ° C. Oleic acid is substituted for zinc and a vacuum of 100 mTorr is applied for 20 minutes to remove acetic acid, which is an impurity. And when heat of 310 ℃ is applied, it becomes a mixture of transparent color. After maintaining the temperature at 310 ° C for 20 minutes, 0.1 mmol of Se powder and 4 mmol of S powder were dissolved in 3 mL of trioctylphosphine, and the solution of Se and S was added to a reaction apparatus containing Cd (OA) 2 and Zn (OA) Immediately inject. The mixture was grown at 310 ° C for 10 minutes and then stopped by using an ice bath. Ethanol precipitate, and the quantum dots are separated using a centrifuge. The excess impurities are washed off with chloroform and ethanol.

FT-IR (NaCl pellet, cm-1) : 2800-3000 (Alkane C-H), 1617 (C=O)
FT-IR (NaCl pellet, cm -1 ): 2800-3000 (Alkane CH), 1617 (C = O)

실시예 2 : 11-(9H-carbazol-9-yl)undecane-1-thiol의 합성 Example 2: Synthesis of 11- (9H-carbazol-9-yl) undecane-1-thiol

11-Bromo-1-undecene 0.7mL에 tetrahydrofuran (THF) 3mL를 반응기구에 넣고 교반시킨며 75℃로 올린다. 다른 반응기구에는 carbazole 0.5g (3mmol) 과 sodium hydride 0.2g (NaH 8mmol)을 넣고 tetrahydrofuran (THF) 넣고 교반시킨뒤 반응기구에 dropwise시킨 후 24시간 동안 환류시킨다. 증류수를 첨가하여 quenching 시킨 다음에 회전증발기를 이용하여 tetrahydrofuran (THF)를 제거하고 methylene chloride (MC)와 증류수 추출하고 유기층을 MgSO4로 건조시킨 후 회전증발기로 용매를 제거한 뒤 colum chromatography (hexane)을 통하여 물질 9-(undec-10-enyl)-9H-carbazole 얻었다. 얻은 물질 0.57g과 tetrahydrofuran (THF) 30mL를 반응기구에 넣고 thioacetic acid 0.2mL 넣은뒤 azobisisobutyronitrile (AIBN) 0.009g 넣고 60-70℃ 에서 24시간 환류시킨뒤 회전증발기를 이용하여 tetrahydrofuran (THF)를 제거하고 colum chromatography (methylene chlorideHexane=1:1)을 통하여 물질을얻었다. 이렇게 얻어진 물질 S-11-(9H-carbazol-9-yl)undecyl ethanethioate (1.0mmol) 과 acetone (10mL), 3 M의 sodium hydroxide (NaOH 10mL)를 반응기구에 넣은 다음 12시간 교반시킨다. 그 후 1 M hydrochloric acid (HCl) 넣어서 methylene chloride (MC)와 추출하고 유기층을 MgSO4로 건조시킨 후 회전증발기로 용매를 제거한 뒤 colum chromatography (methylene chloride : Hexane = 2 : 8)을 통하여 물질(수율:80-95%)을 얻었다. 3 mL of tetrahydrofuran (THF) is added to 0.7 mL of 11-Bromo-1-undecene, which is stirred and heated to 75 ° C. To the other reaction apparatus, 0.5 g (3 mmol) of carbazole and 0.2 g (NaH 8 mmol) of sodium hydride were added, tetrahydrofuran (THF) was added, and the mixture was dropwise added to the reaction apparatus and refluxed for 24 hours. After removing the tetrahydrofuran (THF) with distilled water and quenching, tetrahydrofuran (THF) was removed using methylene chloride (MC) and distilled water. The organic layer was dried with MgSO 4 and the solvent was removed using a rotary evaporator. To obtain the substance 9- (undec-10-enyl) -9H-carbazole. After adding 0.29 mL of thioacetic acid, add 0.009 g of azobisisobutyronitrile (AIBN), reflux at 60-70 ° C for 24 hours, remove tetrahydrofuran (THF) using a rotary evaporator, add 0.57 g of the obtained compound and 30 mL of tetrahydrofuran The material was obtained through colum chromatography (methylene chloride hexane = 1: 1). The thus obtained substance S-11- (9H-carbazol-9-yl) undecyl ethanethioate (1.0 mmol), acetone (10 mL) and 3 M sodium hydroxide (10 mL of NaOH) are put into a reaction apparatus and stirred for 12 hours. Then, 1 M hydrochloric acid (HCl) was added to extract methylene chloride (MC). The organic layer was dried with MgSO 4 , and the solvent was removed using a rotary evaporator. The solvent was removed by colum chromatography (methylene chloride: hexane = 2: 8) : 80-95%).

Figure pat00004
Figure pat00004

실시예 3 : 8-(9H-carbazol-9-yl)octane-1-thiol의 합성Example 3: Synthesis of 8- (9H-carbazol-9-yl) octane-1-thiol

8-Bromooct-1-ene 0.7mL에 tetrahydrofuran (THF) 3mL를 반응기구에 넣고 교반시킨며 75℃로 올린다. 다른 반응기구에는 carbazole 0.5g (3mmol) 과 sodium hydride 0.2g (NaH 8mmol)을 넣고 tetrahydrofuran (THF) 넣고 교반시킨뒤 반응기구에 dropwise시킨 후 24시간 동안 환류시킨다. 증류수를 첨가하여 quenching 시킨 다음에 회전증발기를 이용하여 tetrahydrofuran (THF)를 제거하고 methylene chloride (MC)와 증류수 추출하고 유기층을 MgSO4로 건조시킨 후 회전증발기로 용매를 제거한 뒤 colum chromatography (hexane)을 통하여 물질 9-(oct-7-enyl)-9H-carbazole 얻었다. 얻은 물질 0.57g과 tetrahydrofuran (THF) 30mL를 반응기구에 넣고 thioacetic acid 0.2mL 넣은 뒤 azobisisobutyronitrile (AIBN) 0.009g 넣고 60-70℃ 에서 24시간 환류시킨뒤 회전증발기를 이용하여 Tetrahydrofuran (THF)를 제거하고 colum chromatography (methylene chlorideHexane=1:1)을 통하여 물질을얻었다. 이렇게 얻어진 물질 9S-8-(9H-carbazol-9-yl)octyl ethanethioate (1.0mmol) 과 acetone (10mL), 3 M의 sodium hydroxide (NaOH 10 mL)를 반응기구에 넣은 다음 12시간 교반시킨다. 그 후 1M hydrochloric acid (HCl) 넣어서 methylene chloride (MC)와 추출하고 유기층을 MgSO4로 건조시킨 후 회전증발기로 용매를 제거한 뒤 colum chromatography (methylene chloride : hexane = 2 : 8)을 통하여 물질(수율: 80-95%)을 얻었다.
To 0.7 mL of 8-Bromooct-1-ene, 3 mL of tetrahydrofuran (THF) was added to the reaction apparatus, stirred and heated to 75 ° C. To the other reaction apparatus, 0.5 g (3 mmol) of carbazole and 0.2 g (NaH 8 mmol) of sodium hydride were added, tetrahydrofuran (THF) was added, and the mixture was dropwise added to the reaction apparatus and refluxed for 24 hours. After removing the tetrahydrofuran (THF) with distilled water and quenching, tetrahydrofuran (THF) was removed using methylene chloride (MC) and distilled water. The organic layer was dried with MgSO 4 and the solvent was removed using a rotary evaporator. (Oct-7-enyl) -9H-carbazole. After adding 0.29 mL of thioacetic acid, add 0.009 g of azobisisobutyronitrile (AIBN), reflux at 60-70 ° C for 24 hours, remove tetrahydrofuran (THF) using a rotary evaporator, add 0.57 g of the obtained compound and 30 mL of tetrahydrofuran The material was obtained through colum chromatography (methylene chloride hexane = 1: 1). The resulting material, 9S-8- (9H-carbazol-9-yl) octyl ethanethioate (1.0 mmol), acetone (10 mL) and 3 M sodium hydroxide (NaOH 10 mL) are added to the reaction apparatus and stirred for 12 hours. Then, 1 M hydrochloric acid (HCl) was added to extract methylene chloride (MC). The organic layer was dried over MgSO 4 , and the solvent was removed by rotary evaporation. The residue was purified by column chromatography (methylene chloride: hexane = 2: 8) 80-95%).

실시예 4 : 4-(9H-carbazol-9-yl)butane-1-thiol의 합성Example 4: Synthesis of 4- (9H-carbazol-9-yl) butane-1-thiol

4-Bromobut-1-ene 0.7mL에 tetrahydrofuran (THF) 3mL를 반응기구에 넣고 교반시킨며 75℃ 로 올린다. 다른 반응기구에는 carbazole 0.5g (3mmol) 과 sodium hydride 0.2g (NaH 8mmol)을 넣고 tetrahydrofuran (THF) 넣고 교반시킨뒤 반응기구에 dropwise시킨 후 24시간 동안 환류시킨다. 증류수를 첨가하여 quenching 시킨 다음에 회전증발기를 이용하여 tetrahydrofuran (THF)를 제거하고 methylene chloride (MC)와 증류수 추출하고 유기층을 MgSO4로 건조시킨 후 회전증발기로 용매를 제거한 뒤 colum chromatography (hexane)을 통하여 물질 9-(but-3-enyl)-9H-carbazole 얻었다. 얻은 물질 0.57g과 tetrahydrofuran (THF) 30mL를 반응기구에 넣고 thioacetic acid 0.2mL 넣은뒤 azobisisobutyronitrile (AIBN) 0.009g 넣고 60-70℃ 에서 24시간 환류시킨뒤 회전증발기를 이용하여 tetrahydrofuran (THF)를 제거하고 colum chromatography (methylene chloride : hexane = 1:1)을 통하여 물질을 얻었다. 이렇게 얻어진 물질 S-4-(9H-carbazol-9-yl)butyl ethanethioate (1.0mmol) 과 acetone (10mL), 3 M의 sodium hydroxide (NaOH 10mL)를 반응기구에 넣은 다음 12시간 교반시킨다. 그 후 1 M hydrochloric acid (HCl) 넣어서 methylene chloride (MC)와 추출하고 유기층을 MgSO4로 건조시킨 후 회전증발기로 용매를 제거한 뒤 colum chromatography (methylene chloride : hexane = 2:8)을 통하여 물질(수율: 80-95%)을 얻었다.
4-Bromobut-1-ene (0.7 mL) was charged with 3 mL of tetrahydrofuran (THF) into the reaction apparatus and stirred. To the other reaction apparatus, 0.5 g (3 mmol) of carbazole and 0.2 g (NaH 8 mmol) of sodium hydride were added, tetrahydrofuran (THF) was added, and the mixture was dropwise added to the reaction apparatus and refluxed for 24 hours. After removing the tetrahydrofuran (THF) with distilled water and quenching, tetrahydrofuran (THF) was removed using methylene chloride (MC) and distilled water. The organic layer was dried with MgSO 4 and the solvent was removed using a rotary evaporator. 9- (but-3-enyl) -9H-carbazole was obtained. After adding 0.29 mL of thioacetic acid, add 0.009 g of azobisisobutyronitrile (AIBN), reflux at 60-70 ° C for 24 hours, remove tetrahydrofuran (THF) using a rotary evaporator, add 0.57 g of the obtained compound and 30 mL of tetrahydrofuran The material was obtained via column chromatography (methylene chloride: hexane = 1: 1). The resulting material, S-4- (9H-carbazol-9-yl) butyl ethanethioate (1.0 mmol), acetone (10 mL) and 3 M sodium hydroxide (10 mL of NaOH) are added to the reaction apparatus and stirred for 12 hours. Then, 1 M hydrochloric acid (HCl) was added to extract methylene chloride (MC). The organic layer was dried over MgSO 4 , and the solvent was removed by rotary evaporation. The product was purified by colum chromatography (methylene chloride: hexane = 2: 8) : 80-95%).

실시예 5 : Carbazole을 포함하는 양자점 합성 Example 5: Quantum dot synthesis involving Carbazole

Oleic acid로 싸인 양자점 5 mg과 11-(9H-carbazol-9-yl)undecane-1- thiol 8-(9H-carbazol-9-yl)octane-1-thiol, 또는 4-(9H-carbazol -9-yl)butane-1-thiol (CB4) 각각 50mg에 5 mL ethanol과 5 mL chloroform을 넣고 3시간 동안 sonication을 통해 ligand를 치환시킨다. 반응이 끝난 후 40 mL의 chloroform을 넣어주면 각각의 카바졸 화합물로 치환된 CdSe/ZnS 양자점의 침전이 생기고 원심분리를 이용해 과량의 리간드를 제거한다. 그후 ethanol과 chloroform을 이용하여 불순물을 제거 한다.
(9H-carbazol-9-yl) undecane-1-thiol 8- (9H-carbazol-9-yl) octane- -yl) butane-1-thiol (CB4) in 5 mL ethanol and 5 mL chloroform, respectively, and the ligand is replaced by sonication for 3 hours. After the reaction, add 40 mL of chloroform to precipitate the CdSe / ZnS quantum dots substituted with the respective carbazole compounds and remove excess ligands by centrifugation. Then, the impurities are removed by using ethanol and chloroform.

Figure pat00005
Figure pat00005

합성식 2. Carbarzole로 쌓여있는 양자점Synthetic formula 2. Qdots piled up by Carbarzole

[시험예][Test Example]

상기와 같이 합성된 절연분자가 도입된 카바졸 화합물을 코어층으로 양자점으로 하고 쉘층으로 형성한 QD-CB 나노구조체의 단면도는 도 1과 같이 형성되었다고 볼 수 있다. The cross-sectional view of the QD-CB nanostructure formed of the shell layer and the carbazole compound into which the insulating molecule synthesized as described above is formed into a quantum dot as a core layer can be considered as shown in FIG.

이와 같은 나노구조체의 HR-TEM 이미지를 살펴보면, QD-CB의 나노구조체의 직경이 약 10 (±1) nm로 측정되었으며, 이는 도1로부터 이론적으로 얻은 값과 매우 유사한 크기라는 것을 알 수 있었다. 또한 여러개의 상기 나노구조체가 상대적으로 비슷한 크기로 분포되어 있다는 것도 관측되었다.Referring to the HR-TEM image of such a nanostructure, the diameter of the QD-CB nanostructure was measured to be about 10 (± 1) nm, which is very similar to the theoretical value obtained from FIG. It has also been observed that several of the nanostructures are distributed in a relatively similar size.

혼성 QD-CB 나노파티클의 FT-IR 스펙트럼을 살펴보면, 2854 및 2925 cm-1에서 대칭 및 비대칭 메칠렌 스트레칭 모드 피크가 측정되었다. C-N 스트레칭 모드는 1324 및 1384 cm-1 에서 측정되었는데 이는 카바졸(CB) 때문이고, 올레익산이 결합된 적색 양자점에서는 관측되지 않았다. 즉 이로부터 양자점 표면에 카바졸이 결합되어 있다는 것을 알 수 있다(도 3 참조).Looking at the FT-IR spectra of the hybrid QD-CB nanoparticles, symmetric and asymmetric stretching mode peaks at 2854 and 2925 cm -1 were measured. The CN stretching mode was measured at 1324 and 1384 cm -1 due to carbazole (CB) and not to the red quantum dots to which oleic acid was bound. That is, it can be seen from this that carbazole is bonded to the surface of the quantum dots (see FIG. 3).

또한 QD-CB의 Normalized UV-vis 흡수 스팩트럼 및 적색 QD의 용액 광발광(PL) 스팩트럼(도 4 참조)에서, p형-작용기화된 CB의 파이(π)-파이(π)* 전이 피크를 359 nm에서 측정되었고, 적색 QD의 PL 피크는 640 nm애서 볼 수 있었다. 양자점에서 카바졸 분자로 에너지 트랜스퍼가 카바졸 분자에서 양자점으로의 에너지 트랜스퍼와 비교할 때 보다 어려운데, 이는 두 스펙트라 사이의 중첩되는 정도 때문이다. QD-CB 나노구조체는 QD와 카바졸 분자 사이에 절연분자인 undecane 분자가 있는데, 이로인해 에너지 트랜스퍼가 상당히 저해된다.
In addition, in the normalized UV-vis absorption spectrum of QD-CB and the solution photoluminescence (PL) spectrum of red QD (see FIG. 4), the pi (pi) - pi 359 nm, and the PL peak of red QD was visible at 640 nm. Energy transfer from a quantum dot to a carbazole molecule is more difficult than when energy transfer from a carbazole molecule to a quantum dot is due to the overlap between the two spectra. QD-CB nanostructures have an undecane molecule between the QD and the carbazole molecule, which results in a significant inhibition of energy transfer.

도 5은 나노스케일 광발광 성질을 관찰하기 위하여, 적색 발광 CaSe/ZnS 양자점 표면에 카바졸 유기반도체가 결합된 QD-CB0 나노구조체를 레이저 공초점 현미경(LCM) 발광(PL) 스팩트라로 측정한 것이다. 이로부터 적색 양자점만 있을 경우 640 nm 광학적 영역에서 상대적으로 높은 LCM PL 피크가 측정되었다. QD-CB 나노구조체의 적색 QD 부분의 LCM PL 피크가 640 nm에서 측정되었고, 상대적으로 약한 어깨 피크가 카바졸 분자 때문에 약 510 nm에서 관찰되었다. QD-CB 나노구조체는 LCM PL에서 적색 QD에 의해 지배되었는데, 이는 적색 양자점이 카바졸 분자로 혼성화된 후에도 감소되지 않는다는 것을 보여준다.이결과는 에너지 및 전하 트랜스퍼가 QD-CB에서 QD와 카바졸 사이에 절연분자로 undecane 사슬의 존재와 스펙트럼 중첩의 결핍 때문에 약하다는 것을 알 수 있다(도 5 참조). FIG. 5 is a graph showing the results of measurement of a QD-CB0 nanostructure in which a carbazole organic semiconductor is bonded to the surface of a red-emitting CaSe / ZnS quantum dot by means of a laser confocal microscope (LCM) emission spectroscopy (PL) will be. From this, relatively high LCM PL peaks were measured in the 640 nm optical region when only red quantum dots were present. The LCM PL peak of the red QD portion of the QD-CB nanostructure was measured at 640 nm and a relatively weak shoulder peak was observed at approximately 510 nm due to the carbazole molecules. The QD-CB nanostructures were dominated by red QDs in LCM PL, indicating that the red quantum dots do not decrease after hybridization to carbazole molecules. This result shows that energy and charge transfer can be achieved between QD-CB and QD- Is weak due to the presence of the undecane chain as an insulating molecule and the lack of spectral overlap (see FIG. 5).

QD-CB 나노구조체는 640 nm에서 약한 퇴색(bleaching) 형태를 보이는데 이는 들뜬 적색 양자점에서 절연분자가 결합된 카바졸로 비효율적인 전하 이동에 의한 것이다.The QD-CB nanostructures exhibit a mild bleaching at 640 nm due to the ineffective charge transfer from the excited red quantum dot to the carbazole to which the insulating molecule is bound.

도 7은 normalized time-resoled 광발광(PL) 감쇄(decay) 곡선을 나타내는 것인데, 이로부터 QD-CB 나노구조체의 엑시톤 수명(exciton lifetime)이 그리 짧아지지 않아 전자이동이 절연성 스페이서에 의하여 막혀지는 것을 뜻한다.FIG. 7 shows a normalized time-resolved photoluminescence (PL) decay curve showing that the exciton lifetime of the QD-CB nanostructure is not so short that the electron migration is blocked by the insulating spacer It means.

또한 QD-CB 단일 나노구조체의 전도성 원자힘 현미경과 레이저 (λex = 488 nm)를 이용한 광반응 전류-전압 특성 곡선(도 8 참조)을 통하여, 나노구조체에서 전하 전달이 잘 일어나지 않고 있다는 것을 알 수 있는데, 이는 QD-CB 나노구조체의 경우 광반응성 전류-전압 특성은 비대칭적 특성 곡선을 보였기 때문이다. 이는 양자점과 CB 유기반도체 사이의 절연분자의 존재로 전하전달이 잘 일어나지 않기 때문이다. n-ins-p 결합 QD-CB 나노구조체는 전류-전압 특성이 매우 비대칭적인데 이는 다이오드 행태와 같다는 것을 나타낸다. 단일 적색 QD와 전류-전압 특성을 대비하여 보면 QD-CB 나노구조체와 적색 QD와 비슷하며, 이는 QD-CB 나노구조체의 전류 대부분이 양자점에서 전달된 것이라는 것을 나타내는 것이다(도 9 참조).Also, through the photocurrent current-voltage characteristic curve (see FIG. 8) using a conductive atomic force microscope and a laser (λ ex = 488 nm) of a QD-CB single nanostructure, it was found that charge transfer in the nanostructure was not occurring well This is because the photoreactive current-voltage characteristic of the QD-CB nanostructure is asymmetric. This is because charge transfer does not occur due to the presence of an insulating molecule between the quantum dot and the CB organic semiconductor. The n-ins-p coupled QD-CB nanostructures show that the current-voltage characteristics are highly asymmetric, which is equivalent to diode behavior. In contrast to the single red QD and the current-voltage characteristics, it is similar to the QD-CB nanostructure and red QD, indicating that most of the current in the QD-CB nanostructure is transferred from the quantum dot (see FIG.

Claims (17)

체양자점으로 이루어진 코어(core)층;
절연분자로 이루어진 절연층;
파이공액결합 구조의 유기반도체 카바졸 화합물로 이루어진 외부(shell)층;
을 포함하는 나노구조체

A core layer made of body quantum dots;
An insulating layer made of insulating molecules;
A shell layer comprising an organic semiconductor carbazole compound of a pi conjugated structure;
&Lt; / RTI &gt;

제1항에 있어서, 상기 양자점은 CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, HgS, HgSe, HgTe, GaN, GaP, GaAs, InP, InAs로 이루어진 군에서 선택되는 2종의 조합인 것을 특징으로 하는 나노구조체
The quantum dot of claim 1, wherein the quantum dot is a combination of two selected from the group consisting of CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, HgS, HgTe, GaN, GaP, GaAs, InP, Nano structure
제2항에 있어서, 상기 양자점은 CdSe/ZnS, CdSe/ZnSe, CdS/ZnSe, CdS/ZnS, CdTe/ZnSe, CdTe/ZnS에서 선택되는 것을 특징으로 하는 나노구조체
3. The nanostructure according to claim 2, wherein the quantum dot is selected from the group consisting of CdSe / ZnS, CdSe / ZnSe, CdS / ZnSe, CdS / ZnS, CdTe / ZnSe,
제1항에 있어서, 상기 유기반도체 카바졸 화합물은 절연분자를 포함한 하기 <화학식 1>로 나타내는 화합물인 것을 특징으로 하는 나노구조체
<화학식 1>
Figure pat00006

(상기 화학식 1에서, ○은 코어층을 나타내고, R1, R2는 서로 동일하거나 상이하며, 서로 독립적으로 수소; 중수소; 할로겐; C6~C60의 아릴기; 플루오렌일기; O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C2~C60의 헤테로고리기; C3~C60의 지방족고리와 C6~C60의 방향족고리의 융합고리기; C1~C20의 알킬기; C2~C20의 알켄일기; C2~C20의 알킨일기; C1~C20의 알콕실기; C6~C30의 아릴옥시기; 로 이루어진 군에서 선택되고, 또는 R1~2은, 상기 q, r이 2 이상인 경우 각각 복수로서 서로 동일하거나 상이하며 복수의 R1끼리 혹은 복수의 R2끼리 서로 결합하여 고리를 형성할 수 있다. 상기 q, r은 0 내지 4의 정수, n은 2 내지 5의 정수를 나타낸다)
2. The nanocomposite according to claim 1, wherein the organic semiconductor carbazole compound is a compound represented by the following formula (1)
&Lt; Formula 1 >
Figure pat00006

(In the formula 1, ○ denotes the core layer, R 1, R 2 are the same or different and, independently from each other hydrogen to each other; heavy hydrogen; halogen; aryl group of C 6 ~ C 60; fluorene group; O, N , S, Si and P, at least one group of C 2 ~ containing a hetero atom C 60 heterocyclic group of; C 3 ~ fused ring of an aromatic ring of C 60 of aliphatic rings and C 6 ~ C 60 group; C 1 ~ a C 20 alkyl group; an alkenyl group of C 2 ~ C 20; C 2 ~ alkynyl of C 20; aryloxy of C 6 ~ C 30;; C 1 ~ C 20 alkoxyl group is selected from the group consisting of, or R 1 and R 2 are the same or different from each other when q and r are 2 or more, and a plurality of R 1 s or a plurality of R 2 s may combine with each other to form a ring. 4, and n represents an integer of 2 to 5)
제4항에 있어서, 나노구조체의 직경은 4 내지 11 nm인 것을 특징으로 하는 나노구조체
5. The nanostructure according to claim 4, wherein the nanostructure has a diameter of 4 to 11 nm
제5항에 있어서, 나노구조체는 n-절연(ins)-p형 이종접합형인 것을 특징으로 하는 나노구조체
6. The nanostructure according to claim 5, wherein the nanostructure is an n-insulated (p-type)
제4항에 있어서, 상기 유기반도체 카바졸 화합물은 <화학식 1>로 나타내는 화합물 중에 n이 2 내지 5의 정수를 나타내는 화합물인 것을 특징으로 하는 나노구조체
5. The nanocomposite according to claim 4, wherein the organic semiconducting carbazole compound is a compound represented by the formula (1) wherein n is an integer of 2 to 5
제4항에 있어서, 상기 유기반도체 카바졸 화합물은 <화학식 1>로 나타내는 화합물 중에 n이 4의 정수를 나타내고, R1, R2는 수소로 나타내는 화합물인 것을 특징으로 하는 나노구조체
The organic semiconductor carbazole compound according to claim 4, wherein the organic semiconducting carbazole compound is a compound represented by the following formula (1) wherein n is an integer of 4 and R 1 and R 2 are each a hydrogen atom.
제4항에 있어서, 상기 양자점은 CdSe/ZnS로 이루어지고 상기 유기반도체 카바졸 화합물은 <화학식 1>로 나타내는 화합물 중에 n이 4의 정수를 나타내고, R1, R2는 수소로 나타내는 화합물인 것을 특징으로 하는 나노구조체
5. The organic electroluminescent device according to claim 4, wherein the quantum dot is made of CdSe / ZnS and the organic semiconductor carbazole compound is a compound represented by the formula (1) wherein n represents an integer of 4 and R 1 and R 2 represent hydrogen Characterized by a nanostructure
제1극과 제2극 사이에 제1항 내지 9항 중 어느 한 항에 따르는 나노구조체를 포함하는 분자전자소자
A molecular electronic device comprising a nanostructure according to any one of claims 1 to 9 between a first pole and a second pole.
제1항 내지 제9항 중 어느 한 항에 따르는 나노구조체를 포함하는 분자전자소자를 포함하는 전자장치
An electronic device comprising a molecular electronic device comprising a nanostructure according to any one of claims 1 to 9
제11항에 있어서, 상기 분자전자소자를 포함하는 태양전지, 디스플레이 또는 조명장치와 이를 제어하는 제어부를 포함하는 전자장치
The electronic device according to claim 11, comprising a solar cell, a display or a lighting device including the molecular electronic device, and a control unit controlling the same
제13항에 있어서, 하기 화학식 3으로 표시되는 화합물
<화학식 3>
Figure pat00007

14. The compound according to claim 13, which is a compound represented by the following formula (3)
(3)
Figure pat00007

a) 2종의 무기 반도체 물질로 코어-쉘 양자점을 제조하는 단계;
b) P형 파이공액결합의 유기반도체 카바졸 화합물을 화학적으로 합성하는 단계;
c) 상기 유기반도체 카바졸 화합물에 절연분자를 도입하고 절연분자 말단에 티올기를 도입하는 단계;
d) 상기 화합물을 양자점 표면에 도입하는 단계를 포함하는 것을 특징으로 하는,
양자점-절연층-유기반도체 카바졸 화합물이 코어-절연층-쉘층으로 이루어진 나노구조체의 제조방법
a) fabricating core-shell quantum dots with two inorganic semiconductor materials;
b) chemically synthesizing the P-type conjugated organic semiconductor carbazole compound;
c) introducing an insulator molecule into the organic semiconductor carbazole compound and introducing a thiol group to the insulator molecule end;
d) introducing the compound into the surface of the quantum dot.
Method for manufacturing a nanostructure comprising a quantum dot-insulating layer-organic semiconductor carbazole compound core-insulating layer-shell layer
제14항에 있어서, 상기 (c)단계에서 화합물은 하기 <화학식 2> 로 표시되는 화합물인 것을 특징으로 하는 제조방법
<화학식 2>
Figure pat00008

15. The method according to claim 14, wherein the compound in step (c) is a compound represented by the following formula
(2)
Figure pat00008

제14항에 있어서, 상기 (d)단계는 초음파를 가하여 양자점에 <화학식 2>로 표시되는 화합물을 리간드 교환방식으로 도입하는 것을 특징으로 하는 제조방법15. The method according to claim 14, wherein the step (d) comprises introducing a compound represented by Formula 2 into a quantum dot by an ultrasonic wave in a ligand exchange manner 제14항에 있어서, 상기 (b)단계에서 <화학식 2>로 표시되는 화합물을 합성하는 단계는, 카바졸 화합물에 절연분자를 도입하는 단계를 포함하는 것을 특징으로 하는 제조방법



The method according to claim 14, wherein the step of synthesizing the compound represented by the formula (2) in the step (b) comprises introducing an insulating molecule into the carbazole compound



KR1020140158495A 2014-11-14 2014-11-14 Quantum dot and π-conjugated molecule hybrids nanoparticle, and molecular electronic devices including the same KR20160057642A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140158495A KR20160057642A (en) 2014-11-14 2014-11-14 Quantum dot and π-conjugated molecule hybrids nanoparticle, and molecular electronic devices including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140158495A KR20160057642A (en) 2014-11-14 2014-11-14 Quantum dot and π-conjugated molecule hybrids nanoparticle, and molecular electronic devices including the same

Publications (1)

Publication Number Publication Date
KR20160057642A true KR20160057642A (en) 2016-05-24

Family

ID=56113787

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140158495A KR20160057642A (en) 2014-11-14 2014-11-14 Quantum dot and π-conjugated molecule hybrids nanoparticle, and molecular electronic devices including the same

Country Status (1)

Country Link
KR (1) KR20160057642A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2568971A (en) * 2017-12-04 2019-06-05 Cambridge Entpr Ltd A photon multiplying material
CN109868139A (en) * 2017-12-01 2019-06-11 Tcl集团股份有限公司 A kind of particle and preparation method thereof
CN109868132A (en) * 2017-12-01 2019-06-11 Tcl集团股份有限公司 A kind of particle and preparation method thereof
CN109868133A (en) * 2017-12-01 2019-06-11 Tcl集团股份有限公司 A kind of particle and preparation method thereof
WO2019209039A1 (en) * 2018-04-26 2019-10-31 고려대학교 산학협력단 Polycyclic aromatic hydrocarbon-based compounds for molecular electronic device and molecular electronic devices comprising same
US11133468B2 (en) 2018-06-25 2021-09-28 Samsung Electronics Co., Ltd. Semiconductor nanocrystal-ligand composite and device including composite
US11737294B2 (en) 2019-09-25 2023-08-22 Samsung Display Co., Ltd. Quantum dot composition, light emitting diode and display device including the light emitting diode
US11859116B2 (en) 2020-09-28 2024-01-02 Samsung Display Co., Ltd. Quantum dot composition and method of manufacturing light-emitting device using the quantum dot composition

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109868139A (en) * 2017-12-01 2019-06-11 Tcl集团股份有限公司 A kind of particle and preparation method thereof
CN109868132A (en) * 2017-12-01 2019-06-11 Tcl集团股份有限公司 A kind of particle and preparation method thereof
CN109868133A (en) * 2017-12-01 2019-06-11 Tcl集团股份有限公司 A kind of particle and preparation method thereof
GB2568971A (en) * 2017-12-04 2019-06-05 Cambridge Entpr Ltd A photon multiplying material
CN111433317A (en) * 2017-12-04 2020-07-17 剑桥企业有限公司 Photon multiplication material
US11286420B2 (en) 2017-12-04 2022-03-29 Cambridge Enterprise Limited Photon multiplying material
WO2019209039A1 (en) * 2018-04-26 2019-10-31 고려대학교 산학협력단 Polycyclic aromatic hydrocarbon-based compounds for molecular electronic device and molecular electronic devices comprising same
US11133468B2 (en) 2018-06-25 2021-09-28 Samsung Electronics Co., Ltd. Semiconductor nanocrystal-ligand composite and device including composite
US11737294B2 (en) 2019-09-25 2023-08-22 Samsung Display Co., Ltd. Quantum dot composition, light emitting diode and display device including the light emitting diode
US11859116B2 (en) 2020-09-28 2024-01-02 Samsung Display Co., Ltd. Quantum dot composition and method of manufacturing light-emitting device using the quantum dot composition

Similar Documents

Publication Publication Date Title
KR20160057642A (en) Quantum dot and π-conjugated molecule hybrids nanoparticle, and molecular electronic devices including the same
Kim et al. High-efficiency Cu–In–S quantum-dot-light-emitting device exceeding 7%
Cao et al. Enhancing the performance of quantum dot light-emitting diodes using room-temperature-processed Ga-doped ZnO nanoparticles as the electron transport layer
Lim et al. Droop-free colloidal quantum dot light-emitting diodes
Liu et al. Light-emitting diodes based on colloidal silicon quantum dots with octyl and phenylpropyl ligands
Lin et al. Nonblinking quantum-dot-based blue light-emitting diodes with high efficiency and a balanced charge-injection process
Ji et al. Highly efficient and low turn-on voltage quantum dot light-emitting diodes by using a stepwise hole-transport layer
Li et al. Solid ligand-assisted storage of air-stable formamidinium lead halide quantum dots via restraining the highly dynamic surface toward brightly luminescent light-emitting diodes
Aleshin et al. Solution-processed field-effect transistors based on polyfluorene–cesium lead halide nanocrystals composite films with small hysteresis of output and transfer characteristics
Rhee et al. Tailoring the electronic landscape of quantum dot light-emitting diodes for high brightness and stable operation
JP2019522873A (en) Quantum dot light emitting device
CN111354853A (en) Organic electroluminescent device comprising dopant material and multiple host materials
Wang et al. CH3NH3PbBr3 quantum dot-induced nucleation for high performance perovskite light-emitting solar cells
Javed et al. Quinoacridine derivatives with one-dimensional aggregation-induced red emission property
Liu et al. Highly sensitive CuInS2/ZnS core–shell quantum dot photodetectors
WO2020040982A1 (en) Quantum dots with charge-transporting ligands
Demir et al. Efficiency enhancement in a single emission layer yellow organic light emitting device: contribution of CIS/ZnS quantum dot
Rathnayake et al. Optimizing OLED Efficacy of 2, 7‐Diconjugated 9, 9‐Dialkylfluorenes by Variation of Periphery Substitution and Conjugation Length
Choudhury et al. Efficient solution-processed hybrid polymer–nanocrystal near infrared light-emitting devices
KR20160057641A (en) Quantum dot and π-conjugated molecule hybrids nanoparticle, and molecular electronic devices including the same
Qiu et al. Performance enhancement of quantum dot light-emitting diodes via surface modification of the emitting layer
Benchaabane et al. Influence of nanocrystal concentration on the performance of hybrid P3HT: TBPO-capped CdSe nanocrystal solar cells
KR101707100B1 (en) Quantum dot and poly(3-hexylthiophene) hybrids nanoparticle, and photovoltaic devices including the same
Zheng et al. Structural Engineering toward High Monochromaticity of Carbon Dots-Based Light-Emitting Diodes
Guchhait et al. Hybrid Core− Shell Nanoparticles: Photoinduced Electron-Transfer for Charge Separation and Solar Cell Applications

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
J201 Request for trial against refusal decision
J301 Trial decision

Free format text: TRIAL NUMBER: 2016101006601; TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20161122

Effective date: 20181130