KR20160057641A - Quantum dot and π-conjugated molecule hybrids nanoparticle, and molecular electronic devices including the same - Google Patents

Quantum dot and π-conjugated molecule hybrids nanoparticle, and molecular electronic devices including the same Download PDF

Info

Publication number
KR20160057641A
KR20160057641A KR1020140158494A KR20140158494A KR20160057641A KR 20160057641 A KR20160057641 A KR 20160057641A KR 1020140158494 A KR1020140158494 A KR 1020140158494A KR 20140158494 A KR20140158494 A KR 20140158494A KR 20160057641 A KR20160057641 A KR 20160057641A
Authority
KR
South Korea
Prior art keywords
compound
organic semiconductor
quantum dot
nanostructure
formula
Prior art date
Application number
KR1020140158494A
Other languages
Korean (ko)
Inventor
이광섭
전수민
박성연
주진수
한윤덕
Original Assignee
한남대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한남대학교 산학협력단 filed Critical 한남대학교 산학협력단
Priority to KR1020140158494A priority Critical patent/KR20160057641A/en
Publication of KR20160057641A publication Critical patent/KR20160057641A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B1/008Nanostructures not provided for in groups B82B1/001 - B82B1/007
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/04Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0805Chalcogenides
    • C09K11/0811Chalcogenides with zinc or cadmium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Abstract

The present invention relates to a quantum dot-organic semiconductor hybrid nano structure which connects a functional organic semiconductor to a quantum dot, to a molecular electronic device comprising the same, and to a producing method of the nano structure and, more specifically, to a quantum dot-organic semiconductor hybrid nano structure which is a next generation n-p conjugated nano structure using energy and charge transfer phenomenon between an quantum dot which is an n-type semiconductor and a p-type organic semiconductor, to a producing method thereof, and to a molecular electronic device comprising the nano structure.

Description

양자점-유기반도체 하이브리드 나노구조체 및 이를 포함하는 분자전자소자{Quantum dot and π-conjugated molecule hybrids nanoparticle, and molecular electronic devices including the same}Quantum dot-organic semiconductor hybrid nanostructures and molecular electronic devices containing the same are well known in the art, including quantum dots and π-conjugated molecule hybrids nanoparticles,

본 발명은 양자점에 기능성 유기반도체를 결합시킨 양자점-유기반도체 하이브리드 나노구조체 및 이를 포함하는 분자전자소자와 상기 나노구조체의 제조방법에 관한 것으로, 특히 새로운 광학적 및 전기적 특성을 제공하는 나노구조체에 관한 것이다.
TECHNICAL FIELD The present invention relates to a quantum dot-organic semiconductor hybrid nanostructure in which a functional organic semiconductor is bonded to a quantum dot, a molecular electronic device including the nanostructure, and a method for producing the nanostructure, and more particularly, to a nanostructure providing new optical and electrical properties .

첨단 소재 및 소자 기술이 급속도로 발전하면서 상상 속에서만 있었던 “입는 컴퓨터(wearable computer)”와 “유연한 전자신문(flexible electronic newspaper)” 등 전자 혹은 광학적 장비들이 현실화 되고 있다. 인간에 친화적인 광전자 소자들이 새로운 물성을 갖는 첨단 소재를 기반으로 연구, 제작되고 있다.
With the rapid development of advanced materials and device technologies, electronic or optical devices such as "wearable computers" and "flexible electronic newspapers" that have existed only in the imagination are realizing. Human-friendly optoelectronic devices are being studied and fabricated based on advanced materials with new properties.

기존 물질이 가진 광학적, 전기적 한계를 극복하기 위하여 나노 물리학 이론에 입각하여 하이브리드 나노구조체 물질을 만들 경우 물질간의 특정한 효과들로 인해 기존 물질 각각이 가졌던 한계를 뛰어넘는 시너지 효과를 보여주기도 한다. 발광 특성이 우수한 양자점과 발광 및 전도성이 좋은 파이공액결합 구조의 유기반도체를 결합시킬 경우 둘 사이의 에너지 및 전하 전달 현상을 통해서 발광 및 전기 특성을 극대화 시킬 수 있는 이론적 예측이 있었지만 그동안 제작이 어려워 활발한 연구가 진행되지는 못하였다.
In order to overcome the optical and electrical limitations of existing materials, hybrid nanostructured materials based on nanophysical theory show synergistic effects beyond the limitations of existing materials due to specific effects between materials. When a quantum dot having excellent luminescence characteristics and an organic semiconductor having a light-emitting and pie-conjugated structure having good conductivity are combined, there is a theoretical prediction that maximizes luminescence and electric characteristics through energy transfer and charge transfer between the two. However, Research has not been conducted.

특허문헌 1 : 공개특허 10-2011-0117972Patent Document 1: Patent Document 10-2011-0117972 특허문헌 2 : 공개특허 10-2014-0006401Patent Document 2: JP-A-10-2014-0006401 특허문헌 3 : 공개특허 10-2012-0095379Patent Document 3: Japanese Patent Application Laid-Open No. 10-0095379 특허문헌 4 : 공개특허 10-2014-0043951Patent Document 4: JP-A-10-2014-0043951 특허문헌 5 : 공개특허 10-2010-0086197Patent Document 5: JP-A-10-2010-0086197 특허문헌 6 : WO 2011/131280Patent Document 6: WO 2011/131280 특허문헌 7 : WO 2012/119551Patent Document 7: WO 2012/119551

본 발명은 n형 반도체인 양자점과 p형 유기반도체 사이의 에너지 및 전하전달 현상을 이용하여, 이를 기반으로 한 차세대 n-p 접합 나노구조체인 양자점-유기반도체 하이브리드 나노구조체 및 이의 제조방법과 상기 나노구조체를 포함하는 분자전자 소자를 제공하는 것을 목적으로 한다.
The present invention relates to a quantum dot-organic semiconductor hybrid nano structure which is a next generation np junction nanostructure based on the energy and charge transfer phenomenon between a quantum dot which is an n-type semiconductor and a p-type organic semiconductor, a method for producing the same, The present invention also provides a molecular electronic device comprising the same.

양자점은 지름이 수십 나노미터(nm) 이하인 0차원 나노물질이다. 무기물 발광 반도체로 양자점을 만들어 빛을 입사시키면 양자점의 크기에 따라 발광색이 변화하는 양자제한효과 (quantum confinement effect)가 관찰된다. 크기에 따라 에너지 레벨의 분포와 발광 파장 등의 특성이 변하며 core-shell 형태로 제작할 경우 광 안정성을 갖는다. 따라서 반도체 기반 양자점은 전자소자, 디스플레이, 에너지 소자에 응용될 수 있다. Quantum dots are zero-dimensional nanomaterials with diameters below tens of nanometers (nm). When quantum dots are formed by inorganic light emitting semiconductors, quantum confinement effect is observed in which the emission color changes depending on the size of the quantum dots. The distribution of the energy level and the characteristics of the emission wavelength are changed depending on the size, and the optical stability is obtained when the core-shell is fabricated. Therefore, semiconductor-based quantum dots can be applied to electronic devices, displays, and energy devices.

반면 파이공액결합을 지닌 유기반도체 화합물은 구성하는 탄소원자의 파이 (π) 궤도에 있는 전자들이 교대로 결합하는 구조 때문에 전기전도 특성이 우수하고 자체 발광특성을 보이는 반도체로서 스마트폰 등의 디스플레이 장치에 사용되는 OLED (organic light emitting device) 발광소재로 널리 사용되고 있다. 이러한 파이공액결합 분자와 양자점의 혼성체는 플렉시블 디스플레이 장치에 발광다이오드를 위한 신규한 물질로서 사용될 수 있다. 또한 강화된 전하 전달 효율을 지닌 혼성체는 나노스케일의 광전지 소자로도 사용될 수 있다.
On the other hand, an organic semiconductor compound having a pie conjugate bond has an excellent electric conduction characteristic due to a structure in which electrons in a pie (π) orbit of a constituent carbon atom are alternately combined, and exhibits self-luminescence characteristics. OLED (organic light emitting device) light emitting material. Such a hybrid of a pi conjugated molecule and a quantum dot can be used as a novel material for a light emitting diode in a flexible display device. Hybrid materials with enhanced charge transfer efficiency can also be used as nanoscale photovoltaic devices.

양자점과 파이공액결합 분자 사이에 에너지 전달(energy transfer) 및 전하전달(charge transfer) 효율 조절은 양자점과 파이공액결합 분자 사이의 거리와 스펙트럼의 중첩 정도를 조절할 수 있다. 여기서 에너지 전달(energy transfer) 발광하는 두 분자에서 에너지 갭이 조금 더 큰 물질(donor)의 발광에너지가 가까운 곳에 위치해 있는 에너지 갭이 조금 더 작은 물질(acceptor)로 전달되는 현상을 말한다. 이때 donor의 발광 스펙트럼과 acceptor의 흡수 스펙트럼의 겹침이 좋아야 하는데 이는 donor와 acceptor 분자 사이의 거리를 조절하여 에너지 전달의 정도를 조절하게 되며 거리의 6승에 반비례 하는 경향을 보인다. 즉 에너지 전달에 있어서 한계거리는 1 ~ 10 nm로 1 nm 이하가 되는 경우에는 발광이 소멸하는 quenching 현상이 나타나며 약 10 nm 이상이 되는 경우에는 에너지 전달이 거의 일어나지 않는다.
Controlling the energy transfer and charge transfer efficiency between the quantum dot and the pi conjugated molecule can control the distance between the quantum dot and the pi conjugated molecule and the degree of superposition of the spectrum. Here, energy transfer refers to a phenomenon in which energy gap of a donor whose energy gap is slightly larger in the two molecules emitting light is transferred to an acceptor having a smaller energy gap. At this time, the overlap of the absorption spectrum of the acceptor with the emission spectrum of the donor should be good, which controls the degree of energy transfer by adjusting the distance between donor and acceptor molecules, and tends to be inversely proportional to the sixth power of distance. That is, when the critical distance for energy transfer is 1 to 10 nm, the quenching phenomenon disappears when the thickness is less than 1 nm, and the energy transmission is rarely performed when the distance is about 10 nm or more.

또한, 전하 전달(charge transfer)은 상기한 donor와 acceptor 분자들이 서로 가까이 위치할 때 여기된 물질(donor)의 전하가 다른 물질(acceptor)로 직접 전달되는 현상을 뜻하며, donor와 acceptor의 전자궤도가 겹칠 때 가능하므로 두 물질사이의 거리가 1 nm 이하로 매우 가까울 때 일어난다.
In addition, charge transfer refers to the phenomenon that the charge of an excited donor is directly transferred to another acceptor when the donor and acceptor molecules are located close to each other, and the electron orbit of the donor and the acceptor It is possible when overlapping, so it occurs when the distance between two substances is very close to 1 nm or less.

본 발명은 이러한 현상을 이용하여 양자점을 코어층으로 하고 파이공액결합 구조의 유기반도체 화합물을 셀층으로 하는 나노구조체를 제공하여, 양 물질간의 거리 조절함으로써 나노크기의 분자 광전자 소자의 핵심물질을 제공한다.
Using this phenomenon, the present invention provides a nanostructure comprising a quantum dot as a core layer and an organic semiconductive compound of a pi conjugated structure as a cell layer, thereby adjusting the distance between both materials, thereby providing a core material of a nano-sized molecular optoelectronic device .

본 발명에 따른 나노구조체에서, 양자점-폴리티오펜 유도체 화합물의 경우 n형과 p형 반도체의 직접 접합구조이기 때문에 빛을 받아 생성된 전자와 정공이 이종접합을 통해 잘 전달되는 광전류의 증가는 양자점-유기반도체 사이의 거리와 구조를 조절하여 태양전지 등의 광기전 효과를 이용한 장치에 우수한 효과를 제공할 수 있다.
In the nanostructure according to the present invention, since the quantum dot-polythiophene derivative compound has a direct bonding structure of the n-type and the p-type semiconductor, the increase of the photocurrent, in which electrons and holes generated by light are transmitted through the heterojunction, - By controlling the distance and structure between organic semiconductors, it is possible to provide an excellent effect to a device using a photovoltaic effect such as a solar cell.

도 1은 양자점-P3000 유기반도체 화합물로 이루어진 나노구조체의 화학구조를 나타낸다.
도 2는 단일 QD-P3000 및 일부의 HR-TEM 이미지를 나타낸다.
도 3은 OA-결합된 녹색 QD 및 혼성 QD-P3000 나노파티클의 FT-IR 스펙트럼을 나타낸다.
도 4는 P3000과 QD-P3000의 Normalized UV-vis 흡수 스팩트럼 및 녹색 QD의 용액 광발광(PL) 스팩트럼을 나타낸다.
도 5는 녹색 발광 CdSe/ZnS 양자점 표면에 P3000 유기반도체가 결합된 QD-P3000 나노구조체의 레이저 공초점 현미경(LCM) 발광 스팩트럼을 나타낸다(오른쪽 삽입그림은 양자점만 있는 경우의 컬러 CCD사진(위)과 QD-P3000 나노구조체의 컬러 CCD 사진(아래)이다).
도 6은 QD-P3000(λex = 510 nm)의 전이 흡수(transient absorption: time-resolved absorption differnece) 스펙트럼을 나타낸다.
도 7은 녹색 QD 및 QD-P3000 나노구조체의 normalized time-resolved 광발광(PL) 감쇄(decay) 곡선을 나타낸다.
도 8은 QD-P3000 단일 나노구조체의 레이저 (λex = 488 nm)를 이용한 광반응 전류-전압 특성 곡선을 나타낸다.
Figure 1 shows the chemical structure of a nanostructure composed of a quantum dot-P3000 organic semiconductor compound.
Figure 2 shows a single QD-P3000 and some HR-TEM images.
Figure 3 shows the FT-IR spectrum of OA-bound green QD and hybrid QD-P3000 nanoparticles.
Figure 4 shows a normalized UV-vis absorption spectrum of P3000 and QD-P3000 and a solution photoluminescence (PL) spectrum of green QD.
5 shows a laser confocal microscope (LCM) emission spectrum of a QD-P3000 nanostructure in which a P3000 organic semiconductor is bonded to the surface of a green luminescent CdSe / ZnS quantum dot (the right inset shows a color CCD image in the case of only quantum dots) And a color CCD image of the QD-P3000 nanostructure (below)).
6 shows a transient absorption (time-resolved absorption) difference spectrum of QD-P3000 (λ ex = 510 nm).
Figure 7 shows normalized time-resolved photoluminescence (PL) decay curves of green QD and QD-P3000 nanostructures.
8 shows a photoreaction current-voltage characteristic curve using a laser ( ex = 488 nm) of a QD-P3000 single nanostructure.

본 발명은 상기 목적을 달성하기 위해, 양자점 표면에 기능성 유기반도체를 결합시킨 코어-쉘(core-shell)구조의 양자점-유기반도체 하이브리드 나노구조체를 제공한다. 상기 구조체는 양자점과 유기반도체 사이에서 에너지와 전하 전달 효율을 조절할 수 있기 때문에 새로운 발광 및 전기 특성을 제공할 수 있다. In order to achieve the above object, the present invention provides a quantum dot-organic semiconductor hybrid nano structure having a core-shell structure in which a functional organic semiconductor is bonded to the surface of a quantum dot. The structure can control energy and charge transfer efficiency between quantum dots and organic semiconductors, thus providing new luminescence and electrical properties.

기존의 양자점은 발광특성은 우수하나 디스플레이나 태양전지 소재로써 합성 후에 물성 조절과 대면적 코팅을 위한 대량생산의 문제점이 있었다. 또한 OLED에 사용되는 유기반도체 발광소재는 광학적 특성 개선이 필요로 하고 있다. Conventional quantum dots have excellent luminescence characteristics, but display and solar cell materials have problems in mass production for control of physical properties and large area coating after synthesis. In addition, organic semiconductor light emitting materials used in OLEDs require improvement in optical properties.

이러한 단점들을 극복하기 위해서 본 발명은 유기반도체 끝에 기능기를 부착하여 양자점과 유기반도체가 잘 결합되도록 하여 상호간의 발광특성을 조절할 수 있는 나노구조체를 제공한다. In order to overcome these drawbacks, the present invention provides a nanostructure capable of controlling mutual luminescence characteristics by attaching functional groups to the ends of organic semiconductors so that quantum dots and organic semiconductors can be bonded well.

양자점과 유기반도체 사이가 절연분자를 통해 상대적으로 멀리 연결되어 있으면(1 ~ 10nm) 발광색을 조절할 수 있었고, 양자점과 유기반도체가 가까이(1 nm 미만) 결합되면 원활한 전하전달로 인해 광전류가 증가하여, 태양전지 나노소재나 디스플레이 소재로 이용할 수 있다.When the quantum dots and organic semiconductors are close to each other (less than 1 nm), the photocurrent increases due to the smooth charge transfer. As a result, It can be used as solar cell nano material or display material.

본 발명은 상술한 과제를 감안하여 이루어진 것으로 양자점으로 이루어진 코어(core)층과 파이공액결합 구조의 유기반도체 화합물로 이루어진 외부(shell)층을 포함하는 나노구조체를 제공한다. SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and provides a nanostructure comprising a core layer made of quantum dots and a shell layer made of an organic semiconductor compound having a pi conjugated structure.

본 발명의 구체적인 예에서, 양자점이 CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, HgS, HgSe, HgTe, GaN, GaP, GaAs, InP, InAs로 이루어진 군에서 선택되는 2종의 조합인 것을 특징으로 하는 코어층과 파이공액결합 구조의 유기반도체 화합물로 이루어진 외부(shell)층을 포함하는 나노구조체를 제공한다. In a specific example of the present invention, the quantum dot is a combination of two species selected from the group consisting of CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, HgS, HgTe, GaN, GaP, GaAs, InP, And a shell layer made of an organic semiconductor compound of a pi conjugated structure.

본 발명의 또 다른 구체적인 예에서, 상기 양자점은 CdSe/ZnS, CdSe/ZnSe, CdS/ZnSe, CdS/ZnS, CdTe/ZnSe, CdTe/ZnS에서 선택되는 것을 특징으로 하는 나노구조체를 제공한다.In another embodiment of the present invention, the quantum dot is selected from the group consisting of CdSe / ZnS, CdSe / ZnSe, CdS / ZnSe, CdS / ZnS, CdTe / ZnSe and CdTe / ZnS.

본 발명의 또 다른 구체적인 예에서, 상기 파이공액결합 구조의 유기반도체 화합물은 하기 <화학식 1>로 나타내는 화합물인 것을 특징으로 하는 나노구조체를 제공한다.In another specific example of the present invention, the present invention provides a nanostructure characterized in that the organic semiconducting compound of the pi conjugated structure is represented by the following formula (1).

<화학식 1>&Lt; Formula 1 >

Figure pat00001
Figure pat00001

(상기 화학식 1에서,

Figure pat00002
은 코어층을 나타내고, R은 치환기로 치환되거나 치환되지 않은 C1-C20 알킬, 치환기로 치환되거나 치환되지 않은 C2-20 알케닐, 치환기로 치환되거나 치환되지 않은 C2-20 알키닐기, 치환기로 치환되거나 치환되지 않은 C1-20의 알콕시기, 또는 치환기로 치환되거나 치환되지 않은 C6-30의 아릴옥시기로 이루어진 그룹에서 선택되고, 상기 치환기는 C1-C20 알킬, 할로겐, C1-C20 알콕시, OH, 중수소로 이루어진 그룹에서 선택되며, n은 1 내지 20의 정수를 나타낸다). (In the formula 1,
Figure pat00002
Wherein R represents a core layer, R is C1-C20 alkyl optionally substituted with a substituent, C2-20 alkenyl optionally substituted with a substituent, C2-20 alkynyl optionally substituted with a substituent, An unsubstituted C1-20 alkoxy group or an unsubstituted C6-30 aryloxy group, and the substituent is selected from the group consisting of C1-C20 alkyl, halogen, C1-C20 alkoxy, OH, deuterium And n represents an integer of 1 to 20).

바람직하게는 상기 <화학식 1>에서 R은 C1-C20의 알킬인 화합물인 나노구조체를 제공한다. 보다 더 바람직하게는 R이 C5-C10의 알킬인 파이공액결합 구조의 유기반도체 화합물로 이루어진 외부(shell)층을 포함하는 나노구조체를 특징으로 하는 나노구조체를 제공한다.Preferably, in the above formula (1), R is a C1-C20 alkyl. Even more preferably, a nanostructure comprising a shell layer composed of an organic semiconductor compound of a pi-conjugated structure in which R is C5-C10 alkyl.

본 발명의 또 다른 구체적 예로는, 상기 나노구조체의 직경이 30 내지 20 nm인 것인 나노구조체 및 상기 나노구조체가 n-p 접합형인 나노구조체를 제공한다. Another specific example of the present invention provides a nanostructure wherein the nanostructure has a diameter of 30 to 20 nm and a nanostructure wherein the nanostructure is an n-p junction type.

본 발명의 바람직한 구체적 예에서, 양자점으로 이루어진 코어층은 CdSe/ZnS이고, 파이공액결합 구조의 유기반도체 화합물은 상기 <화학식 1>로 표시되는 화합물 중에 R이 C8H17인 화합물인 것을 특징으로 하는 나노구조체를 제공한다. In a preferred specific example of the present invention, the core layer made of quantum dots is CdSe / ZnS, and the organic semiconductive compound having a pi conjugated structure is a compound wherein R is C 8 H 17 in the compound represented by the formula 1 Lt; / RTI &gt; nanostructures.

본 발명의 또 다른 구체적인 예에서, 양자점으로 이루어진 코어(core)층, 파이공액결합 구조의 유기반도체 화합물로 이루어진 외부(shell)층을 포함하는 나노구조체를 포함하는 분자전자소자를 제공하며, 이 분자전자소자를 포함하는 전자장치 또한 제공한다. 여기서 전자장치는 바람직하게는 태양전지, 디스플레이 또는 조명장치와 이를 제어하는 제어부를 포함하는 전자장치를 예로 들 수 있다. In another specific example of the present invention, there is provided a molecular electronic device comprising a nanostructure including a core layer made of quantum dots and a shell layer made of an organic semiconductor compound of a pi conjugated structure, An electronic device including an electronic device is also provided. Here, the electronic device is preferably an electronic device including a solar cell, a display or a lighting device and a control unit for controlling the same.

또한 본 발명은 상기 유기반도체 화합물로서 하기 화학식 2으로 나타내는 화합물을 제공한다. The present invention also provides a compound represented by the following general formula (2) as the organic semiconductor compound.

<화학식 2>(2)

Figure pat00003
Figure pat00003

(R은 치환기로 치환되거나 치환되지 않은 C1-C20 알킬, 치환기로 치환되거나 치환되지 않은 C2-20 알케닐, 치환기로 치환되거나 치환되지 않은 C2-20 알키닐기, 치환기로 치환되거나 치환되지 않은 C1-20의 알콕시기, 또는 치환기로 치환되거나 치환되지 않은 C6-30의 아릴옥시기로 이루어진 그룹에서 선택되고, 상기 치환기는 C1-C20 알킬, 할로겐, C1-C20 알콕시, OH, 중수소로 이루어진 그룹에서 선택되며, n은 1 내지 20의 정수를 나타낸다)(Wherein R is C1-C20 alkyl substituted with a substituent, C2-20 alkenyl optionally substituted with a substituent, C2-20 alkynyl optionally substituted with a substituent, C1- C20 alkyl, halogen, C1-C20 alkoxy, OH, deuterium, and the substituent is selected from the group consisting of halogen, C1-C20 alkoxy, , and n represents an integer of 1 to 20)

따라서 본 발명은 상기 나노구조체를 제공하기 위한 방법으로 구체적인 예로서, Accordingly, the present invention provides a method for providing the nanostructure,

a) 2종의 무기 반도체 물질로 코어-쉘 양자점을 제조하는 단계;a) fabricating core-shell quantum dots with two inorganic semiconductor materials;

b) P형 파이공액결합의 유기반도체 화합물을 화학적으로 합성하는 단계;b) chemically synthesizing the P-type conjugated organic semiconductor compound;

c) 상기 유기반도체 화합물의 말단에 작용기를 도입하는 단계;c) introducing a functional group into the terminal of the organic semiconductor compound;

d) 상기 화합물을 양자점 표면에 도입하는 단계를 포함하는 것을 특징으로 하는, 양자점과 유기반도체 화합물이 코어-쉘층으로 이루어진 나노구조체의 제조방법을 제공한다. and d) introducing the compound into the surface of a quantum dot. The present invention also provides a method for producing a nanostructure comprising a quantum dot and an organic semiconductor compound core-shell layer.

여기서, 상기 (c)단계의 화합물은 상기 <화학식 2> 로 표시되는 화합물인 제조방법이 바람직한 예로 제공된다. Here, the compound of the step (c) is a compound represented by the formula (2).

또한, 상기 (d)단계는 초음파를 가하여 양자점에 <화학식 2> 로 표시되는 화합물을 리간드 교환방식으로 도입하는 것을 특징으로 하는 제조방법을 제공한다. In the step (d), a compound represented by Formula 2 is introduced into a quantum dot by an ultrasonic wave in a ligand exchange manner.

이하, 본 발명의 실시예를 참조하여 상세하게 설명한다. 본 발명을 설명함에 있어, 하기 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로서, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 자명할 것이다.
Hereinafter, embodiments of the present invention will be described in detail. It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit or scope of the invention. Will be apparent to those of ordinary skill in the art.

실시예 1 : CdSe-ZnS core-shell Green 양자점의 합성 Example 1: Synthesis of CdSe-ZnS core-shell Green quantum dot

CdO (0.4 mmol)과 zinc acetate (4 mmol), oleic acid (5.5 mL)를 1-octadecene (20 mL)과 함께 반응 기구에 넣고 150 °C로 가열 한다. Zinc에 oleic acid가 치환되고 불순물로 나온 acetic acid를 제거하기 위해 100 mTorr 의 진공을 20 분간 걸어준다. 그리고 310 ℃의 열을 가해 주면 투명한 색의 혼합물이 된다. 20분간 310 ℃로 유지한 후에 0.1 mmol의 Se powder와 4 mmol의 S powder를 3 mL의 trioctylphosphine에 용해시킨 Se, S solution을 Cd(OA)2, Zn(OA)2 solution이 들어있는 반응 기구에 빠르게 주입한다. 이 혼합물을 310 ℃에서 10분간 성장시킨 후 ice bath를 이용하여 성장을 중단시킨다. Ethanol로 침전시켜 원심분리기를 이용하여 양자점을 분리하고 여분의 불순물은 chloroform과 ethanol을 이용하여 씻어낸다.CdO (0.4 mmol), zinc acetate (4 mmol) and oleic acid (5.5 mL) are added to the reaction apparatus together with 1-octadecene (20 mL) and heated at 150 ° C. Oleic acid is substituted for zinc and a vacuum of 100 mTorr is applied for 20 minutes to remove acetic acid, which is an impurity. And when heat of 310 ℃ is applied, it becomes a mixture of transparent color. The one in which Se, S solution dissolving S powder in 0.1 mmol of Se powder and 4 mmol in 3 mL trioctylphosphine after maintained at 310 ℃ 20 minutes to Cd (OA) 2, Zn ( OA) reaction containing 2 solution mechanism Immediately inject. The mixture was grown at 310 ° C for 10 minutes and then stopped by using an ice bath. Ethanol precipitate, and the quantum dots are separated using a centrifuge. The excess impurities are washed off with chloroform and ethanol.

FT-IR (NaCl pellet, cm-1) : 2800-3000 (Alkane C-H), 1617 (C=O)
FT-IR (NaCl pellet, cm -1 ): 2800-3000 (Alkane CH), 1617 (C = O)

실시예 2 : Thiophene-3-carbonyl chloride (3-TCCl)의 합성 Example 2 Synthesis of Thiophene-3-carbonyl chloride (3-TCCl)

5 g (0.04 mol)의 thiophene-3-carboxylic acid(3-TCA)을 넣고 진공 건조한다. 건조된 3-TCA은 질소기류하에서 8 mL의 methylene chloride에 녹인 후 얼음물 중탕 용기를 이용하여 냉각시킨 후 6.7 mL (78 mmol)의 oxalyl chloride을 천천히 넣어준 후 온도를 천천히 상온으로 올려 24시간 반응 한다. 반응 종결 후, 반응에 사용한 용매를 제거하고 13 mL의 methylene chloride에 녹인다.5 g (0.04 mol) of thiophene-3-carboxylic acid (3-TCA) is added and vacuum dried. The dried 3-TCA was dissolved in 8 mL of methylene chloride under a nitrogen stream, cooled with ice-water bath, 6.7 mL (78 mmol) of oxalyl chloride was slowly added, and the temperature was slowly raised to room temperature for 24 hours . After completion of the reaction, remove the solvent used in the reaction and dissolve in 13 mL of methylene chloride.

Figure pat00004
Figure pat00004

실시예 3 : N,N-Diethylthiophene-3-carboxamid (3-TCDA)의 합성Example 3: Synthesis of N, N-Diethylthiophene-3-carboxamid (3-TCDA)

얼음물 중탕 용기에 플라스크를 넣어 냉각시킨 후 8.2 mL (78 mmol)의 diethylamine과 12 mL의 methylene chloride을 넣어 준다. 합성한 상기 3-TCCl ㅇ요용액을 플라스크에 천천히 넣은 후, 상온에서 30분간 반응한다. 반응물을 dichloromethane과 H2O를 넣어 추출한 뒤 유기 층을 무수 MgSO4로 건조 후 감압 여과한다. 용매를 제거하고 진공 증류하여 6 g (수득률: 83 %)의 노란색 액체 3-TCCl을 얻었다.Place the flask in an ice water bath, cool, and add 8.2 mL (78 mmol) of diethylamine and 12 mL of methylene chloride. The synthesized 3-TCCl solution was slowly added to the flask and reacted at room temperature for 30 minutes. The reaction mixture is extracted with dichloromethane and H 2 O. The organic layer is dried over anhydrous MgSO 4 and filtered under reduced pressure. The solvent was removed and vacuum distillation yielded 6 g (yield: 83%) of yellow liquid 3-TCCl.

1H-NMR (CDCl3, 300 Mhz) : δ(ppm) = 7.48 (s, 1H), 7.32 (d, 1H), 7.20 (d, 1H), 3.41 (d, 1H), 1.19 (t, 6H) 1 H-NMR (CDCl 3, 300 Mhz): δ (ppm) = 7.48 (s, 1H), 7.32 (d, 1H), 7.20 (d, 1H), 3.41 (d, 1H), 1.19 (t, 6H )

실시예 4 : 4,8-Dihydrobenzo[1,2-b:4,5-b']dithiophene-4,8-dione (4,8-BDTO)의 합성Example 4 Synthesis of 4,8-Dihydrobenzo [1,2-b: 4,5-b '] dithiophene-4,8-dione (4,8-BDTO)

2.5 g (13.6 mmol)의 3-TCDA에 70mL의 tetrahydrofuran(THF)을 넣은 후 얼음물 중탕 용기를 이용하여 냉각 시킨다. 냉각된 solution에 8.52 mL (13.6 mmol)의 n-BuLi을 천천히 적가하고 30분간 상온에서 반응 한다. 반응 후 과량의 얼음물을 넣고 4시간 교반 시켜준 후, 감압 여과한다. 여과된 노란색의 물질을 과량의 water, methanol, hexane 순으로 씻어주어 2.1 g (수득률: 71 %)의 노란색 4,8-BDTO을 얻었다.Add 2.5 mL (13.6 mmol) of 3-TCDA in 70 mL of tetrahydrofuran (THF) and cool with ice water bath. Add 8.52 mL (13.6 mmol) of n-BuLi to the cooled solution slowly and react at room temperature for 30 minutes. After the reaction, excess ice water is added and stirred for 4 hours, followed by filtration under reduced pressure. The filtered yellow material was washed with excess water, methanol, and hexane, and 2.1 g (yield: 71%) of yellow 4,8-BDTO was obtained.

1H-NMR (CDCl3, 300 Mhz) : δ(ppm) = 7.70 (d, 2H), 7.65 (d, 2H) 1 H-NMR (CDCl 3, 300 Mhz): δ (ppm) = 7.70 (d, 2H), 7.65 (d, 2H)

실시예 5 : 4,8-Dioctyloxybenzo[1,2-b:4,5-b']dithiophene(DO-BDT)의 합성 Example 5 Synthesis of 4,8-Dioctyloxybenzo [1,2-b: 4,5-b '] dithiophene (DO-BDT)

2 g (9.1 mmol)의 4,8-BDTO와 1.3 g (20 mmol)의 zinc powder를 넣고 28 mL의 water를 넣어준다. 여기에 5.45 g의 NaOH을 넣은 후 120 °C에서 한 시간 동안 환류한다. 반응물의 색이 노란색에서 붉은색을 거쳐 오렌지색으로 변화하면 4.74 mL (27 mmol)의 1-bromo-octane과 미량의 tetrabutylammonium bromided를 넣어준 후, 두 시간 반응한다. 반응 후 색깔이 노란색 또는 오렌지색으로 (만약 변하지 않고 붉은색 또는 검붉은색을 유지하면 0.6 g (9.1 mmol)의 zinc powder을 더 넣어준다.) 변하면 dichloromethane과 H2O를 넣고 추출한 뒤, 유기층을 magnesium sulfate로 건조한 후, 용매를 제거하고, ethyl alcohol을 이용하여 두 차례 재결정을 실시하여 2 g (수득률: 50 %)의 흰색 DO-BDTO을 얻었다.Add 2 g (9.1 mmol) of 4,8-BDTO and 1.3 g (20 mmol) of zinc powder and add 28 mL of water. 5.45 g of NaOH is added thereto, and the mixture is refluxed at 120 ° C for one hour. When the color of the reaction changes from yellow to red to orange, 4.74 mL (27 mmol) of 1-bromo-octane and a small amount of tetrabutylammonium bromided are added and reacted for two hours. After the reaction, the color changes to yellow or orange (if the color remains red or dark red, add 0.6 g (9.1 mmol) of zinc powder). After changing the dichloromethane and H 2 O, sulfate. The solvent was removed, and the product was recrystallized twice using ethyl alcohol to obtain 2 g (yield: 50%) of white DO-BDTO.

1H-NMR (CDCl3, 300 Mhz) : δ(ppm) = 7.48 (d, 2H), 7.32 (d, 2H), 4.27 (t, 4H), 1.9 (m, 4H), 1.33 (m, 20H), 0.9 (t, 6H) 1 H-NMR (CDCl 3, 300 Mhz): δ (ppm) = 7.48 (d, 2H), 7.32 (d, 2H), 4.27 (t, 4H), 1.9 (m, 4H), 1.33 (m, 20H ), 0.9 (t, 6H)

실시예 6 : 2,6-Bis(trimethyltin)-4,8-dioctyloxybenzo[1,2-b:4,5-b']dithiophene(DT-BDT)의 합성Example 6 Synthesis of 2,6-Bis (trimethyltin) -4,8-dioctyloxybenzo [1,2-b: 4,5-b '] dithiophene (DT-BDT)

1 g (2.2 mmol)의 DO-BDT을 10 mL의 THF에 깨끗이 녹인 후 -78 °C로 냉각시킨다. 냉각된 DO-BDT에 2.7 mL (6.7 mmol, 2.5 M)의 n-BuLi을 천천히 적가한 후 한 시간 동안 교반한다. 6.7 mL (6.7 mmol, 1 M)의 trimeyltin chloride을 넣은 후 -78 ℃에서 30분간 교반한 뒤 상온으로 올려 24시간 동안 반응한다. Dichloromethane과 H2O를 넣고 추출한 뒤, 유기층을 magnesium sulfate로 건조한 후, 용매를 제거하고, isopropanol을 이용하여 두 차례 재결정을 실시하면 1.4 g (수득률: 81 %)의 흰색 DO-BDS를 얻었다.1 g (2.2 mmol) of DO-BDT is dissolved in 10 mL of THF and cooled to -78 ° C. 2.7 mL (6.7 mmol, 2.5 M) of n-BuLi is slowly added dropwise to the cooled DO-BDT and stirred for one hour. Add 6.7 mL (6.7 mmol, 1 M) of trimeyltin chloride, stir at -78 ° C for 30 minutes, raise to room temperature and incubate for 24 hours. Dichloromethane and H 2 O were added and extracted. The organic layer was dried with magnesium sulfate, the solvent was removed, and recrystallization was performed twice with isopropanol to obtain 1.4 g (yield: 81%) of white DO-BDS.

1H-NMR (CDCl3, 300 Mhz) : δ(ppm) = 7.51 (s, 2H), 4.3 (t, 4H), 1.9 (m, 4H), 1.33 (m, 20H), 0.9 (t, 6H), 0.4 (s, 18H) 1 H-NMR (CDCl 3 , 300 MHz):? (Ppm) = 7.51 (s, 2H), 4.3 (t, 4H), 1.9 (m, ), 0.4 (s, 18H)

실시예 7 : 2,5-Dibromo-3-hexylthiophene (DB-3HT)의 합성 Example 7 Synthesis of 2,5-Dibromo-3-hexylthiophene (DB-3HT)

3-Hexylthiophene (15 g, 89.1 mmol)와 acetic acid (180 mL), n-bromosuccinimide (34.8 g, 196.0 mmol)을 넣고 30분간 교반한 후 물을 넣고 10분간 더 교반한다. Ether와 물로 추출한 후 유기층을 모아 MgSO4로 수분을 제거하여 투명한 액체 ( 21.0 g, 수득률: 75%)를 얻었다.3-Hexylthiophene (15 g, 89.1 mmol), acetic acid (180 mL) and n-bromosuccinimide (34.8 g, 196.0 mmol) were added and stirred for 30 minutes. Water was added and stirring was continued for 10 minutes. After extraction with ether and water, the organic layer was collected and the water was removed with MgSO 4 to obtain a transparent liquid (21.0 g, yield: 75%).

1H-NMR (CDCl3, ppm) : δ(ppm)= 7.17 (d, 1H), 6.80 (d, 1H), 2.59 (t, 2H), 1.60 (m, 2H), 1.35 (m, 10H), 0.93 (t, 3H) 1 H-NMR (CDCl 3, ppm): δ (ppm) = 7.17 (d, 1H), 6.80 (d, 1H), 2.59 (t, 2H), 1.60 (m, 2H), 1.35 (m, 10H) , 0.93 (t, 3H)

Figure pat00005
Figure pat00005

실시예 8 : 4-Bromo-benzyl thiol (4Br-BT)의 합성Example 8 Synthesis of 4-Bromo-benzyl thiol (4Br-BT)

Thiourea (7.8 g, 102 mmol)을 50 mL의 ethanol에 넣고 가열하며 녹인다. 여기에 4-bromo-benzyl chloride (20.5 g, 100 mmol)을 넣고 10분간 환류시킨다. 용액의 용매를 제거한 후 NaOH 7 g을 녹인 수용액 60 mL을 넣은 후 한시간 동안 교반한 다. Metylene chloride와 물로 추출한 후 유기층을 모아 MgSO4로 수분을 제거하여 투명한 액체 ( 11.8 g, 수득률: 95%)를 얻었다.Thiourea (7.8 g, 102 mmol) is dissolved in 50 mL of ethanol and heated. 4-bromo-benzyl chloride (20.5 g, 100 mmol) was added thereto and refluxed for 10 minutes. After removing the solvent of the solution, add 60 mL of the aqueous solution containing 7 g of NaOH and stir for one hour. After extraction with water, the organic layer was collected and the water was removed with MgSO 4 to obtain a transparent liquid (11.8 g, yield: 95%).

1H-NMR (CDCl3, ppm) : δ(ppm) = 7.44 (d, 2H), 7.21 (d, 2H), 3.69 (d, 2H), 1.75 (t, 1H) 1 H-NMR (CDCl 3, ppm): δ (ppm) = 7.44 (d, 2H), 7.21 (d, 2H), 3.69 (d, 2H), 1.75 (t, 1H)

Figure pat00006
Figure pat00006

실시예 9 : QD-P의 합성Example 9: Synthesis of QD-P

0.3 g (0.39 mmol)의 DO-BDS와 0.13 g (0.39 mmol)의 DB-3HT을 넣은 후 진공 건조한다. 건조 후 15 mL의 무수 toluene을 넣고 Ar 기류 하에 30분간 교반한다. 0.04 g (0.04 mmol)의 Pd(PPh3)4을 넣고 120 ℃에서 24시간 반응한다. GPC를 통하여 분자량을 확인한 후 반응용기에 4Br-BT를 과량으로 넣고 12시간 반응한다. 온도를 상온으로 낮추어 반응을 종결하고 규조토로 짧게 필터하여 촉매를 제거한다. 이렇게 얻어진 BT-P를 양자점과 1:3 (양자점:BT-P)의 비율로 바이알에 넣고 chloroform에 분산 시켜 sonication을 통해 양자점과 결합시킨다.0.3 g (0.39 mmol) of DO-BDS and 0.13 g (0.39 mmol) of DB-3HT are added and vacuum dried. After drying, add 15 mL of anhydrous toluene and stir for 30 minutes under an Ar stream. Put 0.04 g Pd (PPh 3) a (0.04 mmol) 4 to 24 hours at 120 ℃. After confirming the molecular weight by GPC, excess 4Br-BT is added to the reaction vessel and reacted for 12 hours. The reaction is terminated by reducing the temperature to room temperature and the catalyst is removed by short filtering with diatomaceous earth. The BT-P thus obtained is put into a vial at a ratio of 1: 3 (quantum dot: BT-P) to a quantum dot, dispersed in chloroform, and bound to the quantum dot through sonication.

Figure pat00007
Figure pat00007

Figure pat00008
Figure pat00008

합성식. QD-P의 합성Synthetic expression. Synthesis of QD-P

[시험예][Test Example]

도 2는 본 발명의 실시예에 의해 제조된 나노구조체의 HR-TEM 이미지를 나타내는 것으로, QD-P3000의 나노구조체의 직경이 약 25 (±5)nm 측정되었으며, 상대적으로 비슷한 크기의로 분포되었다는 것을 볼 수 있었다.Figure 2 shows HR-TEM images of the nanostructures prepared according to the embodiments of the present invention, wherein the diameter of the nanostructures of QD-P3000 was measured to be about 25 (± 5) nm and was distributed in a relatively similar size I could see that.

도 3에서 올레익산이 결합된 녹색 QD 및 혼성 QD-P3000 나노파티클의 FT-IR 스펙트럼에서 C-S 스트레칭 피크를 967 및 950 cm-1에서 볼 수 있었다. 또한 P3000과 QD-P3000의 Normalized UV-vis 흡수 스팩트럼 및 녹색 QD의 용액 광발광(PL) 스팩트럼(도 4 참조)에서, P3000의 π-π* 전이 피크를 390 nm에서, 살짝 올라간 피크를 지닌 약 460 nm에서 볼 수 있었다. QD-P3000의 흡수 스펙트럼은 P3000보다 다소 완만함을 보였고, 녹색 QD의 광발광(PL) 피크는 530 nm에서 나타났다. 녹색 QD의 방출 스펙트럼과 QD-P3000 나노구조체의 흡수 스펙트럼이 부분적으로 약 26.7% 중첩되는 것을 볼 수 있는데, 이는 n-타입 QD부터 p-타입 P3000까지 두 시스템이 충분히 가까울 때 에너지 전달(energy transfer)이 일어난다고 예견할 수 있는 것이다. In FIG. 3, the FT-IR spectra of green QD and hybrid QD-P3000 nanoparticles coupled with oleic acid showed CS stretching peaks at 967 and 950 cm -1 . In addition, in the normalized UV-vis absorption spectrum of P3000 and QD-P3000 and the solution photoluminescence (PL) spectrum of green QD (see FIG. 4), the π- π * transition peak of P3000 was measured at 390 nm, It was visible at 460 nm. The absorption spectrum of QD-P3000 was somewhat milder than that of P3000, and the photoluminescence (PL) peak of green QD appeared at 530 nm. It can be seen that the emission spectrum of the green QD overlaps the absorption spectrum of the QD-P3000 nanostructure partially by about 26.7%, which is the energy transfer when the two systems are sufficiently close from the n-type QD to the p-type P3000, It can be foreseen that this will happen.

도 5는 나노스케일 광발광 성질을 관찰하기 위하여, 녹색 발광 CdSe/ZnS 양자점 표면에 P3000 유기반도체가 결합된 QD-P3000 나노구조체를 레이저 공초점 현미경(LCM) 발광(PL) 스팩트라로 측정한 것이다. 이로부터 양자점만 있을 경우 530 nm 광학적 영역에서 매우 밝은 녹색발광이 관찰되었으나 QD-P3000 나노구조체의 경우 양자점의 발광은 감소하고 P3000의 발광이 살아나는 현상을 관찰할 수 있었다.FIG. 5 shows a QD-P3000 nanostructure in which a P3000 organic semiconductor is bonded to the surface of a green light emitting CdSe / ZnS quantum dot by using a laser confocal microscope (LCM) light emission (PL) spectrophotometer to observe the nanoscale photoluminescence property . The QD-P3000 nanostructure showed a decrease in luminescence of QD-P3000 and a luminescence of P3000 in the QD-P3000 nanostructure.

도 6은 510 nm 파장의 레이저 펌핑(laser pumping) 후 0.3 ps에서 각 나노구조체의 전이 흡수(transient absorption: time-resolved absorption differnece) 스펙트럼을 나타내는 것인데, 이로부터 양자점이 컨쥬게이트된 분자들과 매우 잘 혼성화되었다는 것을 알 수 있었다.Figure 6 shows transient absorption (time-resolved absorption) spectra of each nanostructure at laser pumping after laser pumping at a wavelength of 510 nm from which the quantum dot conjugated molecules Hybridization.

녹색 QD 및 QD-P3000 나노구조체의 normalized time-resolved 광발광(PL) 감쇄(decay) 곡선(도 7 참조)으로 엑시톤 수명(exciton lifetime)을 알 수 있었다. QD-P3000에서는 전하이동 현상으로 인하여 엑시톤 수명이 급격히 짧아지는 것을 확인할 수 있었다. Exciton lifetime was determined by the normalized time-resolved photoluminescence (PL) decay curve (see FIG. 7) of the green QD and QD-P3000 nanostructures. In QD-P3000, it was confirmed that the exciton lifetime shortens sharply due to the charge transfer phenomenon.

또한 QD-P3000 단일 나노구조체의 전도성 원자힘 현미경과 레이저 (λex = 488 nm)를 이용한 광반응 전류-전압 특성 곡선(도 8 참조)을 통하여, 나노구조체에서 전하 전달이 잘 일어나고 있다는 것을 알 수 있었다. 특히 외부 광 인가에 따른 광전류의 증가가 관찰되어서 나노 태양전지 개발을 위한 광기전(photovoltaic) 특성 소재로도 응용 가능성이 있음을 보인다.
Also, it can be seen that the charge transfer is occurring well in the nanostructure through the photocurrent current-voltage characteristic curve (see FIG. 8) using the conductive atomic force microscope and the laser (λ ex = 488 nm) of the QD-P3000 single nanostructure there was. Especially, increase of photocurrent due to external light application is observed, and it is possible to apply it as photovoltaic characteristic material for development of nano solar cell.

Claims (17)

양자점으로 이루어진 코어(core)층;
파이공액결합 구조의 유기반도체 화합물로 이루어진 외부(shell)층;
을 포함하는 나노구조체
A core layer made of quantum dots;
A shell layer made of an organic semiconductor compound having a pi-conjugated structure;
&Lt; / RTI &gt;
제1항에 있어서, 상기 양자점은 CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, HgS, HgSe, HgTe, GaN, GaP, GaAs, InP, InAs로 이루어진 군에서 선택되는 2종의 조합인 것을 특징으로 하는 나노구조체
The quantum dot of claim 1, wherein the quantum dot is a combination of two selected from the group consisting of CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, HgS, HgTe, GaN, GaP, GaAs, InP, Nano structure
제2항에 있어서, 상기 양자점은 CdSe/ZnS, CdSe/ZnSe, CdS/ZnSe, CdS/ZnS, CdTe/ZnSe, CdTe/ZnS에서 선택되는 것을 특징으로 하는 나노구조체
3. The nanostructure according to claim 2, wherein the quantum dot is selected from the group consisting of CdSe / ZnS, CdSe / ZnSe, CdS / ZnSe, CdS / ZnS, CdTe / ZnSe,
제1항에 있어서, 상기 유기반도체 화합물은 하기 <화학식 1>로 나타내는 화합물인 것을 특징으로 하는 나노구조체
<화학식 1>
Figure pat00009

(상기 화학식 1에서,
Figure pat00010
은 코어층을 나타내고, R은 치환기로 치환되거나 치환되지 않은 C1-C20 알킬, 치환기로 치환되거나 치환되지 않은 C2-20 알케닐, 치환기로 치환되거나 치환되지 않은 C2-20 알키닐기, 치환기로 치환되거나 치환되지 않은 C1-20의 알콕시기, 또는 치환기로 치환되거나 치환되지 않은 C6-30의 아릴옥시기로 이루어진 그룹에서 선택되고, 상기 치환기는 C1-C20 알킬, 할로겐, C1-C20 알콕시, OH, 중수소로 이루어진 그룹에서 선택되며, n은 1 내지 20의 정수를 나타낸다)
2. The nanostructure according to claim 1, wherein the organic semiconductor compound is a compound represented by the following formula (1)
&Lt; Formula 1 >
Figure pat00009

(In the formula 1,
Figure pat00010
Wherein R represents a core layer, R is C1-C20 alkyl optionally substituted with a substituent, C2-20 alkenyl optionally substituted with a substituent, C2-20 alkynyl optionally substituted with a substituent, An unsubstituted C1-20 alkoxy group or an unsubstituted C6-30 aryloxy group, and the substituent is selected from the group consisting of C1-C20 alkyl, halogen, C1-C20 alkoxy, OH, deuterium And n represents an integer of 1 to 20,
제4항에 있어서, 나노구조체의 직경은 30 내지 20 nm인 것을 특징으로 하는 나노구조체
5. The nanostructure according to claim 4, wherein the nanostructure has a diameter of 30 to 20 nm
제5항에 있어서, 나노구조체는 n-p 접합형인 것을 특징으로 하는 나노구조체
The nanostructure according to claim 5, wherein the nanostructure is an np junction type
제4항에 있어서, 상기 유기반도체 화합물은 <화학식 1>로 나타내는 화합물 중에 R은 C1-C20의 알킬인 화합물인 것을 특징으로 하는 나노구조체
The organic semiconductor compound according to claim 4, wherein the organic semiconductor compound is a compound represented by Formula 1 wherein R is C1-C20 alkyl.
제4항에 있어서, 상기 유기반도체 화합물은 <화학식 1>로 나타내는 화합물 중에 R은 C5-C10의 알킬인 화합물인 것을 특징으로 하는 나노구조체
The organic semiconductor compound according to claim 4, wherein the organic semiconductor compound is a compound represented by Formula 1 wherein R is C5-C10 alkyl.
제4항에 있어서, 상기 양자점은 CdSe/ZnS로 이루어지고 상기 유기반도체 화합물은 <화학식 1>로 표시되는 화합물 중에 R이 C8H17인 화합물인 것을 특징으로 하는 나노구조체
The method of claim 4, wherein the quantum dots are nanostructures, characterized in that R is C 8 H 17 in the compound comprise a CdSe / ZnS represented by the organic semiconductor compound is <Formula 1> compound
제1극과 제2극 사이에 제1항 내지 9항 중 어느 한 항에 따르는 나노구조체를 포함하는 분자전자소자
A molecular electronic device comprising a nanostructure according to any one of claims 1 to 9 between a first pole and a second pole.
제1항 내지 제9항 중 어느 한 항에 따르는 나노구조체를 포함하는 분자전자소자를 포함하는 전자장치
An electronic device comprising a molecular electronic device comprising a nanostructure according to any one of claims 1 to 9
제11항에 있어서, 상기 분자전자소자를 포함하는 태양전지, 디스플레이 또는 조명장치와 이를 제어하는 제어부를 포함하는 전자장치
The electronic device according to claim 11, comprising a solar cell, a display or a lighting device including the molecular electronic device, and a control unit controlling the same
하기 화학식 2로 나타내는 화합물
<화학식 2>
Figure pat00011

(상기 화학식 2에서 R, n은 제4항에서 정의한 것과 동일하다)
A compound represented by the following formula (2)
(2)
Figure pat00011

(Wherein R and n are the same as defined in claim 4)
제13항에 있어서, R은 C8H17로 표시되는 화합물
14. The compound according to claim 13, wherein R is a compound represented by C8H17
a) 2종의 무기 반도체 물질로 코어-쉘 양자점을 제조하는 단계;
b) P형 파이공액결합의 유기반도체 화합물을 화학적으로 합성하는 단계;
c) 상기 유기반도체 화합물의 말단에 작용기를 도입하는 단계;
d) 상기 화합물을 양자점 표면에 도입하는 단계를 포함하는 것을 특징으로 하는, 양자점과 유기반도체 화합물이 코어-쉘층으로 이루어진 나노구조체의 제조방법
a) fabricating core-shell quantum dots with two inorganic semiconductor materials;
b) chemically synthesizing the P-type conjugated organic semiconductor compound;
c) introducing a functional group into the terminal of the organic semiconductor compound;
d) introducing the compound into a surface of a quantum dot, wherein the quantum dot and the organic semiconductor compound are in the form of a core-shell layer.
제15항에 있어서, 상기 (c)단계에서 화합물은 하기 <화학식 2> 로 표시되는 화합물인 것을 특징으로 하는 제조방법
<화학식 2>
Figure pat00012

The method according to claim 15, wherein the compound in step (c) is a compound represented by the following formula (2)
(2)
Figure pat00012

제16항에 있어서, 상기 (d)단계는 초음파를 가하여 양자점에 <화학식 2> 로 표시되는 화합물을 리간드 교환방식으로 도입하는 것을 특징으로 하는 제조방법


[17] The method according to claim 16, wherein the step (d) comprises introducing a compound represented by Formula 2 into a quantum dot by an ultrasonic wave in a ligand exchange manner


KR1020140158494A 2014-11-14 2014-11-14 Quantum dot and π-conjugated molecule hybrids nanoparticle, and molecular electronic devices including the same KR20160057641A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140158494A KR20160057641A (en) 2014-11-14 2014-11-14 Quantum dot and π-conjugated molecule hybrids nanoparticle, and molecular electronic devices including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140158494A KR20160057641A (en) 2014-11-14 2014-11-14 Quantum dot and π-conjugated molecule hybrids nanoparticle, and molecular electronic devices including the same

Publications (1)

Publication Number Publication Date
KR20160057641A true KR20160057641A (en) 2016-05-24

Family

ID=56113786

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140158494A KR20160057641A (en) 2014-11-14 2014-11-14 Quantum dot and π-conjugated molecule hybrids nanoparticle, and molecular electronic devices including the same

Country Status (1)

Country Link
KR (1) KR20160057641A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107082446A (en) * 2017-05-07 2017-08-22 苏州市皎朝纳米科技有限公司 A kind of cadmium sulfide/cadmium telluride hetero-junctions nanometer rods and preparation method thereof
GB2568971A (en) * 2017-12-04 2019-06-05 Cambridge Entpr Ltd A photon multiplying material
CN109868132A (en) * 2017-12-01 2019-06-11 Tcl集团股份有限公司 A kind of particle and preparation method thereof
CN109868133A (en) * 2017-12-01 2019-06-11 Tcl集团股份有限公司 A kind of particle and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107082446A (en) * 2017-05-07 2017-08-22 苏州市皎朝纳米科技有限公司 A kind of cadmium sulfide/cadmium telluride hetero-junctions nanometer rods and preparation method thereof
CN109868132A (en) * 2017-12-01 2019-06-11 Tcl集团股份有限公司 A kind of particle and preparation method thereof
CN109868133A (en) * 2017-12-01 2019-06-11 Tcl集团股份有限公司 A kind of particle and preparation method thereof
GB2568971A (en) * 2017-12-04 2019-06-05 Cambridge Entpr Ltd A photon multiplying material
CN111433317A (en) * 2017-12-04 2020-07-17 剑桥企业有限公司 Photon multiplication material
US11286420B2 (en) 2017-12-04 2022-03-29 Cambridge Enterprise Limited Photon multiplying material

Similar Documents

Publication Publication Date Title
Liu et al. Light-emitting diodes based on colloidal silicon quantum dots with octyl and phenylpropyl ligands
Kim et al. High-efficiency Cu–In–S quantum-dot-light-emitting device exceeding 7%
Cao et al. Enhancing the performance of quantum dot light-emitting diodes using room-temperature-processed Ga-doped ZnO nanoparticles as the electron transport layer
Locklin et al. Conjugated oligothiophene-dendron-capped CdSe nanoparticles: Synthesis and energy transfer
JP7068199B2 (en) Quantum dot light emitting device
Ananthakumar et al. Cesium lead halide (CsPbX 3, X= Cl, Br, I) perovskite quantum dots-synthesis, properties, and applications: a review of their present status
KR20160057642A (en) Quantum dot and π-conjugated molecule hybrids nanoparticle, and molecular electronic devices including the same
Li et al. Solid ligand-assisted storage of air-stable formamidinium lead halide quantum dots via restraining the highly dynamic surface toward brightly luminescent light-emitting diodes
JP3880574B2 (en) Organic light-emitting devices based on condensed conjugated compounds
Prabhakaran et al. Quantum dots (QDs) for photonic applications
WO2013157494A1 (en) Organic electroluminescent element
EP3478652A1 (en) Organic ligand and preparation method thereof, quantum dot structure material, quantum-dot-containing layer, and light emitting diode
WO2006097717A1 (en) Highly branched dendrimers
KR20160057641A (en) Quantum dot and π-conjugated molecule hybrids nanoparticle, and molecular electronic devices including the same
Wang et al. CH3NH3PbBr3 quantum dot-induced nucleation for high performance perovskite light-emitting solar cells
Nazim et al. Effective DAD type chromophore of fumaronitrile-core and terminal alkylated bithiophene for solution-processed small molecule organic solar cells
Stalder et al. Variable-gap conjugated oligomers grafted to CdSe nanocrystals
KR101695260B1 (en) Organic photovoltaic cells including metal nanoclusters and Its preparation method
Javed et al. Quinoacridine derivatives with one-dimensional aggregation-induced red emission property
Zhang et al. Substituent effect on photophysical properties, crystal structures and mechanochromism of D-π-A phenothiazine derivatives
US20110045628A1 (en) Method of thermocleaving a polymer layer
Ananthakrishnan et al. White light emitting polymers from a luminogen with local polarity induced enhanced emission
Wang et al. Carbon dot based multicolor electroluminescent LEDs with nearly 100% exciton utilization efficiency
Nazim et al. Asymmetric, efficient π-conjugated organic semiconducting chromophore for bulk-heterojunction organic photovoltaics
Zhao et al. Alkyl chain length dependent morphology and emission properties of the organic micromaterials based on fluorinated quinacridone derivatives

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application