KR20160043213A - Yttria Based Conductive Plasma-resistant Member And Methods Thereof - Google Patents

Yttria Based Conductive Plasma-resistant Member And Methods Thereof Download PDF

Info

Publication number
KR20160043213A
KR20160043213A KR1020140136865A KR20140136865A KR20160043213A KR 20160043213 A KR20160043213 A KR 20160043213A KR 1020140136865 A KR1020140136865 A KR 1020140136865A KR 20140136865 A KR20140136865 A KR 20140136865A KR 20160043213 A KR20160043213 A KR 20160043213A
Authority
KR
South Korea
Prior art keywords
plasma
yttrium oxide
sintering
present
yttria
Prior art date
Application number
KR1020140136865A
Other languages
Korean (ko)
Other versions
KR101633035B1 (en
Inventor
김해두
이재욱
김하늘
김진명
박영조
고재웅
Original Assignee
한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기계연구원 filed Critical 한국기계연구원
Priority to KR1020140136865A priority Critical patent/KR101633035B1/en
Priority to US14/879,789 priority patent/US20160104551A1/en
Publication of KR20160043213A publication Critical patent/KR20160043213A/en
Application granted granted Critical
Publication of KR101633035B1 publication Critical patent/KR101633035B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/14Conductive material dispersed in non-conductive inorganic material
    • H01B1/16Conductive material dispersed in non-conductive inorganic material the conductive material comprising metals or alloys
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • C04B35/505Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds based on yttrium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • C04B2235/3843Titanium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3886Refractory metal nitrides, e.g. vanadium nitride, tungsten nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5284Hollow fibers, e.g. nanotubes
    • C04B2235/5288Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • C04B2235/764Garnet structure A3B2(CO4)3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • C04B2235/9615Linear firing shrinkage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

Disclosed is an electrically conductive plasma-resistant member comprising yttrium oxide. According to the present invention, the plasma-resistant member comprises a matrix phase made of yttrium oxide, and a dispersed phase including at least one kind of metal carbide or nitride selected from the group consisting of Ti, Zr, and Hf. In the present invention, an yttria composite at the level of a semiconductor is provided, and can be used as a plasma-resistant member requiring electric conductivity such as a focus ring.

Description

이트리아 기반 전기전도성 내플라즈마 부재 및 그 제조 방법{Yttria Based Conductive Plasma-resistant Member And Methods Thereof}TECHNICAL FIELD [0001] The present invention relates to a Yttria-based conductive plasma-resistant plasma member,

본 발명은 반도체 및 디스플레이 산업에 사용되는 내플라즈마성 부품에 관한 것으로 보다 상세하게는, 전기 전도성 내플라즈마 부재에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to plasma-resistant components used in the semiconductor and display industries, and more particularly, to an electrically conductive plasma member.

이트리아(Y2O3)는 내플라즈마성이 가장 우수한 물질로 반도체산업 및 디스플레이산업 등에 사용되고 있는 고부가가치 공정장비의 내부 치구용 핵심 소재로 채용되고 있다. Yria (Y 2 O 3 ) has the highest plasma resistance and is used as a core material for internal fixtures of high-value-added process equipment used in the semiconductor industry and the display industry.

한편, 공정장비 내부의 다양한 내플라즈마성 부품 중 포커스 링(focus ring) 등과 같은 일부의 부품은 실리콘 웨이퍼와 유사한 전기전도성을 갖는 소재가 선호되는데, 그 이유는 균일한 플라즈마가 실리콘 웨이퍼 주위에 형성되어 플라즈마 에칭 성능을 향상시키기 때문이다. On the other hand, some of the various plasma components within the process equipment, such as the focus ring, are preferably of a material having electrical conductivity similar to that of a silicon wafer because a uniform plasma is formed around the silicon wafer Thereby improving the plasma etching performance.

일반적으로 모놀리스 이트리아(monolithic yttria)는 완전한 부도체 세라믹스로 알려져 있다.In general, monolithic yttria is known as complete non-conductive ceramics.

그런데, 이트리아 소결 시, +2가 산화물의 일부가 치밀화 및 전기전도성 향상에 유리한 것으로 밝혀졌으며, 그 중 CaO가 가장 효과적인 것으로 알려져 있다. However, in the sintering of yttria, it has been found that a part of the oxide +2 is advantageous for improving the densification and the electric conductivity, and CaO is known to be most effective.

한편, 상압 소결된 0~10 mol% CaO 첨가 이트리아에 대한 고온 전기전도도 측정한 결과, 1000oC에서 10-4 S/cm 정도가 측정되었는데, 상온 측정 결과는 없지만 고온 측정치의 외삽으로 추정하면 전기전도성은 크게 감소하는 것으로 예상된다. On the other hand, as a result of high temperature electrical conductivity measurement of Tria at 0 to 10 mol% CaO added at normal pressure, 10 -4 S / cm was measured at 1000 ° C. Although there is no room temperature measurement result, Electrical conductivity is expected to decrease significantly.

그 밖에 다양한 형태의 카본계를 첨가한 고온가압소결(hot press sintering)의 경우, 상온에서 최대 10-2 S/cm 정도의 전기전도성이 측정되었다는 보고가 있다.In addition, it has been reported that the maximum electric conductivity of 10 -2 S / cm was measured at room temperature in the case of hot press sintering in which various types of carbon-based materials were added.

그러나, 카본계 첨가재는 이트리아 기지상(matrix) 과의 결합이 약하기 때문에 결함으로 작용하여 모노리스 이트리아에 비해 강도는 저하될 것으로 예상된다. 뿐만 아니라, 이트리아 기지상과 카본계 첨가재의 약한 결합력에 기인하여 고온 가압소결과 같은 가혹한 조건이 아닌 상압소결로는 소결 자체가 곤란하다는 문제점을 갖는다.However, it is expected that the carbon-based additive acts as a defect because it is weakly bonded to the yttria matrix and has a lower strength than monolith yttria. In addition, the pressureless sintering furnace, which is not a severe condition such as high temperature sintering due to the weak bonding force between the yttria base and the carbonaceous additive, has a problem that sintering itself is difficult.

(1) K. Katayama et al., J. Mater. Sci., 25 (1990) pp1503-1508(1) K. Katayama et al., J. Mater. Sci., 25 (1990) pp1503-1508 (2) K. Katayama et al., J. Euro. Ceram. Sci., 6 (1990) pp39-45(2) K. Katayama et al., J. Euro. Ceram. Sci., 6 (1990) pp39-45

상기한 종래 기술의 문제점을 해결하기 위하여 본 발명은, 불소계 플라즈마 분위기 하에서 에칭이 되지 않는 화학적 안정성을 갖고 상온 전기 전도성을 갖는 이트리아 기반의 내플라즈마 부재를 제공하는 것을 목적으로 한다.It is an object of the present invention to provide a yttria-based plasma reactor having chemical stability that can not be etched under a fluorine-based plasma atmosphere and room temperature electrical conductivity.

또한 본 발명은 높은 강도 및 상대 밀도를 갖는 전술한 내플라즈마 부재를 제조하는 방법을 제공하는 것을 목적으로 한다. It is also an object of the present invention to provide a method of manufacturing the foregoing plasma resistant member having high strength and relative density.

상기 기술적 과제를 달성하기 위하여 본 발명은, 이트륨 산화물을 포함하는 내플라즈마 부재를 제공한다. 본 발명에서 상기 내플라즈마 부재는 이트륨 산화물로 구성되는 기지상과, Ti, Zr 및 Hf으로 이루어진 그룹 중에서 선택되는 최소한 1종의 금속의 카바이드 또는 나이트라이드를 포함하는 분산상으로 구성된다.In order to accomplish the above object, the present invention provides an inner plasma member comprising yttrium oxide. In the present invention, the inner plasma member is composed of a matrix phase composed of yttrium oxide and a dispersed phase containing carbide or nitride of at least one metal selected from the group consisting of Ti, Zr and Hf.

본 발명에서 상기 이트륨 산화물은 이트리아(Y2O3) 또는 YAG를 포함할 수 있다. 또한, 상기 기지상은 지르코니아 또는 알루미나를 더 포함할 수도 있다. In the present invention, the yttrium oxide may include yttria (Y 2 O 3 ) or YAG. In addition, the matrix may further include zirconia or alumina.

본 발명의 상기 내플라즈마 부재에서 상기 분산상은 10 체적% 이상 포함되는 것이 바람직하다. 또한, 상기 내플라즈마 부재에서 상기 분산상은 30 체적% 미만 바람직하게는 20 중량% 미만 포함되는 것이 바람직하다.In the plasma resistant member of the present invention, it is preferable that the dispersed phase is contained by 10 volume% or more. It is preferable that the dispersed phase in the inner plasma member is contained in an amount of less than 30% by volume, preferably less than 20% by weight.

본 발명의 상기 내플라즈마 부재는 10-7~10-3 S/cm 범위의 전기전도도를 가지며, 95% 이상의 상대 밀도를 갖는다.The plasma resistant member of the present invention has an electrical conductivity in the range of 10 -7 to 10 -3 S / cm and a relative density of 95% or more.

또한 상기 다른 기술적 과제를 달성하기 위하여 본 발명은, 이트륨 산화물과, Ti, Zr 및 Hf으로 이루어진 그룹 중에서 선택되는 최소한 1종의 금속의 카바이드 또는 나이트라이드의 혼합 분말을 제공하는 단계; 상기 혼합 분말을 하소하는 단계; 상기 하소된 혼합 분말을 성형하여 성형체를 제조하는 단계; 및 상기 성형체를 질소 분위기에서 소결하는 단계를 포함하는 이트륨 화합물을 포함하는 내플라즈마 부재의 제조 방법을 제공한다. According to another aspect of the present invention, there is provided a method of manufacturing a semiconductor device, comprising: providing yttrium oxide and a mixed powder of carbide or nitride of at least one metal selected from the group consisting of Ti, Zr, and Hf; Calcining the mixed powder; Molding the calcined mixed powder to produce a molded body; And sintering the molded body in a nitrogen atmosphere. The present invention also provides a method of manufacturing an inner plasma member including a yttrium compound.

본 발명의 방법에서 상기 소결 단계는 상압에서 수행될 수 있다. 또한, 상기 소결 단계는 1700~1900℃에서 수행되는 것이 바람직하다.In the method of the present invention, the sintering step may be performed at normal pressure. Also, the sintering step is preferably performed at 1700 to 1900 ° C.

또한 본 발명은, 이트륨 산화물과, Ti, Zr 및 Hf으로 이루어진 그룹 중에서 선택되는 최소한 1종의 금속의 카바이드 또는 나이트라이드의 혼합 분말을 성형하여 성형체를 제조하는 단계; 및 상기 성형체를 질소 분위기에서 소결하는 단계를 포함하는 이트륨 화합물을 포함하는 내플라즈마 부재의 제조 방법을 제공한다. The present invention also provides a method of manufacturing a molded article, comprising the steps of: preparing a molded body by molding a yttrium oxide and a mixed powder of carbide or nitride of at least one metal selected from the group consisting of Ti, Zr and Hf; And sintering the molded body in a nitrogen atmosphere. The present invention also provides a method of manufacturing an inner plasma member including a yttrium compound.

본 발명에 따르면, 이트리아 기반의 내플라즈마 부재를 제공할 수 있다. 본 발명에 따른 이트리아 복합체는 반도체급의 전기 전도성을 제공할 수 있어, 포커스 링과 같은 전기전도성을 요하는 내플라즈마 부재로 사용 가능하다. 또한, 본 발명에 따르면, 10-14 S/cm 오더의 부도체인 모놀리스 이트리아에 비해 10-4 S/cm 오더의 반도체급 이트리아 복합체의 제조가 가능하게 된다. 물론, 전도성 첨가재의 함량에 따라 전기전도성의 추가적인 향상이나 제어가 가능하다. According to the present invention, it is possible to provide an yttria-based plasma resistant member. The yttria composite according to the present invention can provide semiconductor-grade electrical conductivity and can be used as an inner plasma member requiring electrical conductivity such as a focus ring. Further, according to the present invention, it is possible to manufacture a semiconductor-assisted yttria composite having an order of 10 -4 S / cm compared to monolith yttria, which is an inductor of 10 -14 S / cm order. Of course, further enhancement or control of the electrical conductivity is possible depending on the content of the conductive additive.

또한, 본 발명에 따르면, 전술한 내플라즈마 부재를 가압 소결이 아닌 통상의 상압소결(질소 1기압)에 의해 치밀화가 달성 가능하게 된다. Further, according to the present invention, densification can be achieved by ordinary pressure sintering (1 atm of nitrogen) instead of pressurizing and sintering of the above-described inner plasma member.

또한, 본 발명에 따른 내플라즈마 부재는 모놀리스 Y2O3의 강도에 비해 높은 강도를 나타낼 수 있고, 이것은 내플라즈마성 Y2O3 소재의 시급한 보완점 중 하나인 슬로우 크랙 성장(slow crack growth) 문제를 해결하는 데 도움이 될 수 있다.In addition, the inner plasma member according to the present invention can exhibit high strength compared to the strength of monolith Y 2 O 3 , which is one of the urgent complements of the plasma-resistant Y 2 O 3 material, slow crack growth, It can help you solve the problem.

도 1은 본 발명의 예시적인 소결 스케쥴을 도시한 도면이다.
도 2는 본 발명의 일실시예에 따라 밀링 후 입도 분포를 측정하여 나타낸 그래프이다.
도 3의 (a)는 하소를 거친 분말(Cal)과 하소를 거치지 않은 분말(NC)을 진공소결한 후의 소결체 상대밀도, 무게 변화 및 수축율을 측정 결과를 나타낸 그래프이다.
도 4는 혼합 분말의 하소 전후 XRD 분석 결과를 나타낸 그래프이다.
도 5는 하소 분말의 질소 상압 소결 후의 XRD 분석 결과를 나타낸 그래프이다.
도 6은 본 발명의 실시예에 따른 질소 상압소결체의 전기전도도 측정 결과를 나타낸 그래프이다.
도 7은 본 발명의 실시예에 따른 질소 상압 소결체의 전자현미경 사진이다.
1 is a diagram illustrating an exemplary sintering schedule of the present invention.
2 is a graph illustrating particle size distribution after milling according to an embodiment of the present invention.
Fig. 3 (a) is a graph showing the result of measurement of sintered body relative density, weight change and shrinkage ratio after calcined powder (Cal) and uncalcined powder (NC) were vacuum-sintered.
4 is a graph showing the XRD analysis results of the mixed powder before and after calcination.
5 is a graph showing the results of XRD analysis of the calcined powder after sintering under nitrogen pressure.
FIG. 6 is a graph showing the electrical conductivity measurement results of the nitrogen gas pressure sintered body according to the embodiment of the present invention.
7 is an electron micrograph of a nitrogen pressure atmospheric pressure sintered body according to an embodiment of the present invention.

이하 본 발명의 바람직한 실시예를 설명함으로써 본 발명을 상술한다.BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail with reference to preferred embodiments of the present invention.

본 발명의 내플라즈마 부재는 이트륨 산화물 및 상기 이트륨 산화물의 전도성을 개선하기 위한 전기 전도성 첨가재를 포함하여 구성된다. The inner plasma member of the present invention comprises yttrium oxide and an electrically conductive additive for improving the conductivity of the yttrium oxide.

본 발명의 내플라즈마 부재를 구성하는 상기 이트륨 산화물은 순수한 이트리아로 구성되거나, 이트륨 알루미늄 가넷(YAG)과 같은 산화물 형태의 화합물로 구성될 수 있다. 물론, 상기 이트륨 산화물은 이트리아나 YAG의 화합물일 수도 있다. The yttrium oxide constituting the inner plasma member of the present invention may be composed of pure yttria or may be composed of a compound in the form of an oxide such as yttrium aluminum garnet (YAG). Of course, the yttrium oxide may be a compound of triazine YAG.

본 발명에서 상기 이트륨 산화물은 소결 조제로서 지르코니아, 알루미나 또는 이들의 조합을 포함할 수 있다. In the present invention, the yttrium oxide may include zirconia, alumina or a combination thereof as a sintering aid.

이트리아에 포함되는 전기 전도성 첨가재는 높은 전기전도성과 동시에 불소계 플라즈마 분위기 하에서 에칭이 되지 않는 안정성이 요구된다. The electrically conductive additive contained in the yttria is required to have high electrical conductivity and stability not to be etched in a fluorine plasma atmosphere.

아래 표 1은 카바이드계 및 나이트라이드계 전기 전도성 첨가재의 주요 후보 물질의 전기저항(Ωm) 및 해당 물질의 불화물의 융점(℃)을 나타낸 표이다. Table 1 below is a table showing the electric resistivity (Ωm) and the melting point (캜) of the fluoride of the main candidate material of the carbide-based and the nitride-based electrically conductive additive.

물질matter 저항(Ωm)Resistance (Ωm) 불화물 융점(℃)Fluoride melting point (캜) SiSi 102 10 2 -90.2-90.2 Y2O3 Y 2 O 3 1012 10 12 11501150 Al2O3 Al 2 O 3 1014 10 14 22502250 TiC, TiNTiC, TiN 10-7~10-6 10 -7 to 10 -6 284284 ZrC, ZrNZrC, ZrN 932932 HfC, HfNHfC, HfN 970970 TaCTaC 9595 WCWC 22

전기 전도성 첨가재가 불소와 반응하여 만들 수 있는 불화물의 융점이 에칭공정 시의 온도보다 높을수록 에칭에 대해 안정할 것으로 예상된다. 공정장비의 냉각 시스템을 작동시킬 경우 치구 부품의 최대 온도는 100℃ 이하로 알려져 있으므로 TiC, TiN, ZrC, ZrN, HfC, HfN 등은 유효한 첨가재 후보군으로 판단된다. It is expected that the higher the melting point of the fluoride that can be formed by the reaction of the electrically conductive additive with fluorine is higher than the temperature during the etching process, the more stable it is for etching. TiC, TiN, ZrC, ZrN, HfC, and HfN are considered to be effective additive candidates because the maximum temperature of fixture components is less than 100 ℃ when the process equipment cooling system is operated.

한편, CNT, 그래핀, 입자상 카본 등의 카본계 첨가재는 전기전도성의 향상에는 유리하지만 강도를 저하시키는 단점이 있다. 반면, 카바이드(carbide)계 및 나이트라이드(nitride)계 세라믹스는 이트리아 기지상과의 강한 결합력 뿐만 아니라, 제너(Zener) 효과에 의한 입자성장 억제 기능이 발현될 경우 모노리스 이트리아와 비교하여 강도 향상도 예상할 수 있다.
On the other hand, carbon-based additives such as CNT, graphene, and particulate carbon are advantageous for improving electrical conductivity, but have a disadvantage of lowering their strength. On the other hand, the carbide-based and nitride-based ceramics exhibit not only a strong binding force with the yttria base phase but also a strength enhancement as compared with the monolith yttria when the particle growth inhibition function by the zener effect is exhibited Can be expected.

<실시예><Examples>

Y2O3 (d50=1.2 ㎛)에 ZrO2 (<100 nm)를 소결 조제로 하고, 전기전도성 첨가재로 TiC (<100 nm)를 혼합하였다. Y 2 O 3 were mixed (d 50 = 1.2 ㎛) TiC (<100 nm) as the ZrO 2 (<100 nm) as a sintering aid, and an electrically conductive additive to.

혼합비는 기본적인 조성을 Y2O3 + 1 at% ZrO2로 하고, 이 조성에 대해 10 vol% 및 20 vol%의 TiC를 첨가하였다. 퍼콜레이션 이론(percolation theory)에 따르면, 부도체의 전기전도성 부여를 위해 10 vol%는 경계치이고, 20 vol%는 안정치로 알려져 있다. 한편, 분산 효과를 관찰하기 위해 PEG를 첨가한 조성도 준비하였다. 아래 표 2는 본 실시예의 각 시편의 배합비를 나타낸 표이다. The basic composition was Y 2 O 3 + 1 at% ZrO 2 , and 10 vol% and 20 vol% TiC were added to the composition. According to the percolation theory, 10 vol% is the threshold value for insulator conduction, and 20 vol% is known to be stable. On the other hand, to observe the dispersing effect, a composition containing PEG was also prepared. Table 2 below shows the mixing ratios of the respective specimens in this embodiment.

시편Psalter Y2O3(g)Y2O3 (g) ZrO2(g)ZrO2 (g) TiC(g)TiC (g) PEG(g)PEG (g) 10%4h10% 4h 89.3089.30 0.980.98 9.729.72 10%4hP10% 4hP 89.3089.30 0.980.98 9.729.72 1.01.0 20%4h20% 4h 79.6179.61 0.880.88 19.5119.51 20%4hP20% 4hP 79.6179.61 0.880.88 19.5119.51 1.01.0 20%24h20% 24h 79.6179.61 0.880.88 19.5119.51 20%24hP20% 24hP 79.6179.61 0.880.88 19.5119.51 1.01.0

비교를 위하여, TiC를 첨가하지 않은 Y2O3 + 1 at% ZrO2도 준비하였다. For comparison, Y 2 O 3 + 1 at% ZrO 2 without TiC was also prepared.

표 2의 조성에 따라 출발 물질을 혼합하여, 4~24시간 유성 밀링(ZrO2 볼 및 쟈, 무수 에탄올, 100 rpm)한 후, 70℃의 로터리 증발기(rotary evaporator)에서 건조하였다. The starting materials were mixed according to the composition shown in Table 2, and subjected to oil milling (ZrO 2 balls and anhydrous ethanol, 100 rpm) for 4 to 24 hours, followed by drying in a rotary evaporator at 70 ° C.

건조된 분말을 700℃에서 1시간 하소하였다. 하소의 영향을 관찰하기 위하여 20%4h 및 20%4hP 시편의 경우 하소 과정을 생략한 분말도 준비하였다. The dried powder was calcined at 700 ° C for 1 hour. In order to observe the effect of calcination, 20% 4h and 20% 4hP specimens were also prepared by omitting the calcination process.

이어서, 직경 15 mm인 몰드를 사용하여 정수압 성형한 후, 카본도가니 내에 Y2O3 분위기 분말을 충진하고 분위기 분말 내부에 시편을 묻어서 진공 소결 및 질소 1기압 상압 소결하였다. 소결 온도는 1800℃로 하였고, 소결 시간은 3 시간 유지하였다. 도 1은 본 발명의 예시적인 소결 스케쥴을 도시한 도면이다. Subsequently, a mold having a diameter of 15 mm was subjected to hydrostatic molding, the Y 2 O 3 atmosphere powder was filled in the carbon crucible, the specimen was buried in the atmosphere powder, and vacuum sintered and nitrogen was sintered under a pressure of 1 atm. The sintering temperature was 1800 ℃ and the sintering time was maintained for 3 hours. 1 is a diagram illustrating an exemplary sintering schedule of the present invention.

소결된 시편을 주사전자현미경을 미세구조를 관찰하였고, XRD 상분석, 전기전도성 및 이축 강도를 측정하였다.
Sintered specimens were observed by scanning electron microscope for microstructure, XRD phase analysis, electrical conductivity and biaxial strength were measured.

도 2는 밀링 후 입도 분포를 측정하여 나타낸 그래프이다.2 is a graph showing particle size distribution after milling.

도 2로부터 모든 조성이 바이모달 분포를 나타내며, 24시간 밀링의 경우는 작은 입자 크기 분포(주로 TiC)에 속하는 입자가 다수이나 4시간 밀링의 경우는 큰 입자 크기 분포(주로 Y2O3) 에 속하는 입자가 다수를 나타내었다. PEG 첨가 유무는 입도분포에 미치는 영향이 미미하였다.From FIG. 2, all the compositions show a bimodal distribution. In the case of 24-hour milling, many particles belong to a small particle size distribution (mainly TiC), whereas in the case of 4-hour milling, large particle size distribution (mainly Y 2 O 3 ) A large number of particles belonging to it were shown. The effect of PEG addition on the particle size distribution was negligible.

도 3의 (a)는 하소를 거친 분말(Cal)과 하소를 거치지 않은 분말(NC)을 진공소결한 후의 소결체 상대밀도, 무게 변화 및 수축율을 측정 결과를 나타낸 그래프이다. Fig. 3 (a) is a graph showing the result of measurement of sintered body relative density, weight change and shrinkage ratio after calcined powder (Cal) and uncalcined powder (NC) were vacuum-sintered.

하소 여부에 무관하게 소결체의 상대밀도는 96-98%로 유사하지만, 무게 변화 및 수축률은 하소 유무에 따라 큰 차이를 나타냄을 알 수 있다. 즉, 하소 분말의 경우 8-9%의 무게감소와 21-23%의 큰 수축률이 측정된 반면, 무하소 분말은 12-14%의 무게증가와 13-15%의 작은 수축률이 측정되었다. 고온에서의 소결 시 무게감소는 일반적이지만 무게증가는 통상적이지 않은 현상이다. 그러므로, 무하소 분말의 경우에는 본 발명의 적용에 부적한 것으로 취급된다. Regardless of the calcination, the relative density of the sintered body is similar to 96-98%, but the weight change and shrinkage ratio show a large difference depending on the calcination condition. That is, in the case of calcined powders, weight loss of 8-9% and large shrinkage rate of 21-23% were measured, whereas weightless increase of powder was 12-14% and small shrinkage rate of 13-15% was measured. Sintering at high temperature is a general decrease in weight, but the increase in weight is uncommon. Therefore, in the case of the calcined powder, it is deemed unsuitable for the application of the present invention.

하소를 거치는 경우 하소시 TiC의 일부가 TiO2로 산화되는데, 상압 질소 분위기 소결을 적용하면 TiO2가 TiN으로 질화되므로 TiO2에 의한 전기전도성 저하의 영향은 없을 것으로 예측된다. In case of calcination, a part of TiC is oxidized to TiO2 during calcination. It is expected that the application of atmospheric pressure nitrogen atmosphere sintering will nitridation of TiO2 to TiN, so that there is no influence of decrease in electrical conductivity due to TiO2.

도 4는 혼합 분말의 하소 전후 XRD 분석 결과를 나타낸 그래프이다. 4 is a graph showing the XRD analysis results of the mixed powder before and after calcination.

도 4로부터 첨가한 TiC의 일부가 TiO2로 산화되었음을 확인할 수 있다.It can be seen from FIG. 4 that a part of the TiC added is oxidized to TiO 2 .

한편, 하소를 거친 분말을 질소 상압 소결한 결과, 조성에 무관하게 상대밀도 97-99% 수준의 치밀화 소결 가능하였다. 아래 표 3은 질소 상압 소결 후 상대밀도를 나타낸 표이다. On the other hand, as a result of sintering the calcined powders by nitrogen pressure sintering, densification sintering was possible at a relative density of 97-99% regardless of the composition. Table 3 below shows the relative density after nitrogen gas pressure sintering.

specimenspecimen %TD% TD AverageAverage 10%4h10% 4h 96.5696.56 97.9197.91 97.2397.23 10%4hP10% 4hP 98.3198.31 99.2099.20 98.7798.77 20%4h20% 4h 99.1699.16 98.6398.63 98.9098.90 20%4hP20% 4hP 98.5498.54 98.5498.54 98.5498.54 20%24h20% 24h 98.7598.75 98.7598.75 98.7598.75 20%24hP20% 24hP 98.8298.82 98.4698.46 98.6498.64

TiC의 첨가에 의해 입계이동을 방해하는 제너 효과(Zener effect)에 의해 상압소결로는 치밀화가 어려울 것으로 예상되었으나 고밀도의 소결체의 제조가 가능하였다. 또한, TiC의 첨가량 및 PEG 첨가 유무에 의한 소결밀도 차이는 미미함을 알 수 있다. The densification of the pressureless sintering furnace was expected to be difficult due to the Zener effect which interferes with the grain boundary movement by the addition of TiC, but it was possible to manufacture a high density sintered body. Also, the difference in sintered density due to the addition amount of TiC and the presence or absence of PEG addition is small.

도 5는 하소 분말의 질소 상압 소결 후의 XRD 분석 결과를 나타낸 그래프이다. 5 is a graph showing the results of XRD analysis of the calcined powder after sintering under nitrogen pressure.

상분석 결과 TiC 이외에 TiN이 검출됨을 확인할 수 있다. 즉, 하소과정에서 산화반응으로 생성된 TiO2는 질소 분위기 소결 중 질화되어 TiN을 형성함을 알 수 있다. 또한, TiC, TiN 모두 전기전도성이 높은 물질이므로, 전술한 제조 공정은 소결체의 전기전도성을 향상함을 알 수 있다. As a result of the phase analysis, it can be confirmed that TiN is detected in addition to TiC. That is, it can be seen that the TiO 2 produced by the oxidation reaction in the calcination process is nitrided during the nitrogen atmosphere sintering to form TiN. In addition, since both TiC and TiN have high electrical conductivity, it can be seen that the above-described manufacturing process improves the electrical conductivity of the sintered body.

도 6은 질소 상압소결체의 전기전도도 측정 결과를 나타낸 그래프이다.6 is a graph showing the results of electrical conductivity measurement of the nitrogen gas pressure sintered body.

도 6을 참조하면, 소결체 시편은 전기전도도가 1.5*10-7~9.3*10-4 S/cm 정도의 범위를 나타내는데, 모노리스 이트리아의 전기 전도도인 1.0*10-14 S/cm과 대비하면 반도체급의 전기전도성을 갖는 것을 알 수 있다. 6, the electrical conductivity of the sintered body specimen is in the range of about 1.5 * 10 -7 to 9.3 * 10 -4 S / cm. In contrast to 1.0 * 10 -14 S / cm, which is the electrical conductivity of monolith yttria It can be seen that it has a semiconductor-grade electrical conductivity.

한편, TiC의 첨가량이 증가할 경우 전기전도도 값이 증가하는데, 10 vol%인 경우 10-7 오더의 전기전도도, 20 vol%인 경우 10-4 오더가 측정된다. 그러므로, TiC의 함량을 20 vol% 이상으로 증가 시킬 경우 전기전도도는 비례하여 증가할 것으로 예상된다. On the other hand, in the electric conductivity value it is increased if the addition amount of TiC increased, and the measurement order when the electrical conductivity of 10-4, 20 vol% of the 10-7 order if 10 vol%. Therefore, when the content of TiC is increased to 20 vol% or more, the electric conductivity is expected to increase proportionally.

도 7은 Y2O3-TiC 소결체의 전자현미경 사진이다. 7 is an electron micrograph of a Y 2 O 3 -TiC sintered body.

도 7에는 토포그래피 위주의 SE 모드 사진(a,b)과 원자번호 콘트라스트가 반영되는 BSE 모드 사진(c,d)을 동시에 나타내었다. Fig. 7 simultaneously shows the topography-oriented SE mode photographs (a, b) and the BSE mode photographs (c, d) reflecting the atomic number contrast.

BSE 모드 사진에서 회색 부분은 원자번호가 높은 Y2O3, 검은색 부분은 원자번호가 낮은 TiC를 각각 나타낸다. 즉, 조립의 부도성 Y2O3 메트릭스에 미립의 전도성 TiC가 균일하게 분산되어 있음을 알 수 있다. In the BSE mode photograph, the gray part represents Y 2 O 3 with high atomic number and the black part represents TiC with low atomic number. In other words, it can be seen that the conductive TiC particles are uniformly dispersed in the subbing Y 2 O 3 matrix of the assembly.

제조된 Y2O3-TiC 소결체의 2축 강도를 측정하였다. 측정은 piston-on-3ball 시험법에 의하여 측정하였다.The biaxial strength of the Y 2 O 3 -TiC sintered body was measured. Measurements were made by the piston-on-3ball test.

측정 결과, 20 vol% TiC 첨가 조성의 강도가 가장 높았으며 최대강도는 193 MPa로 나타났다. 모노리스 이트리아의 강도는 163 MPa 정도인 것을 고려하면, TiC 분산에 의해 전기전도성이 향상되는 것과 동시에 강도도 증가함을 알 수 있다. 이것은 카본계 첨가재에 의한 강도 저하와 비교하여 우수한 복합체를 제조할 수 있음을 보여준다.
As a result, the strength of 20 vol% TiC added composition was the highest and the maximum strength was 193 MPa. Considering that the strength of the monolith yttria is about 163 MPa, it can be seen that the electrical conductivity is improved and the strength is increased by the dispersion of TiC. This shows that a composite excellent in strength can be produced compared to the strength reduction by the carbon-based additive.

Claims (12)

이트륨 산화물을 포함하는 내플라즈마 부재에 있어서,
상기 내플라즈마 부재는,
이트륨 산화물로 구성되는 기지상과, Ti, Zr 및 Hf으로 이루어진 그룹 중에서 선택되는 최소한 1종의 금속의 카바이드 또는 나이트라이드를 포함하는 분산상으로 구성되는 것을 특징으로 하는 이트륨 화합물을 포함하는 내플라즈마 부재.
In an inner plasma member containing yttrium oxide,
The plasma-
And a dispersed phase comprising a gaseous phase composed of yttrium oxide and a carbide or nitride of at least one metal selected from the group consisting of Ti, Zr and Hf, and a yttrium compound.
제1항에 있어서,
상기 이트륨 산화물은 이트리아(Y2O3)를 포함하는 것을 특징으로 하는 내플라즈마 부재.
The method according to claim 1,
The yttrium oxide is plasma-member comprises a yttria (Y 2 O 3).
제1항에 있어서,
상기 이트륨 산화물은 YAG를 포함하는 것을 특징으로 하는 내플라즈마 부재.
The method according to claim 1,
Wherein said yttrium oxide comprises YAG.
제2항 또는 제3항에 있어서,
상기 기지상은 지르코니아 또는 알루미나를 더 포함하는 것을 특징으로 하는 내플라즈마 부재.
The method according to claim 2 or 3,
Characterized in that the matrix further comprises zirconia or alumina.
제1항에 있어서,
상기 내플라즈마 부재에서 상기 분산상은 10 체적% 이상 포함되는 것을 특징으로 하는 내플라즈마 부재.
The method according to claim 1,
Wherein the dispersed phase in the inner plasma member is contained in an amount of 10 vol% or more.
제1항에 있어서,
상기 내플라즈마 부재에서 상기 분산상은 20 체적% 미만 포함되는 것을 특징으로 하는 내플라즈마 부재.
The method according to claim 1,
Wherein the dispersed phase in the inner plasma member is less than 20% by volume.
제1항에 있어서,
상기 내플라즈마 부재는 10-7~10-3 S/cm 범위의 전기전도도를 갖는 것을 특징으로 하는 내플라즈마 부재.
The method according to claim 1,
Wherein the inner plasma member has an electrical conductivity in the range of 10 &lt; -7 &gt; to 10 &lt; -3 &gt; S / cm.
제1항에 있어서,
상기 내플라즈마 부재는 95% 이상의 상대 밀도를 갖는 것을 특징으로 하는 내플라즈마 부재.
The method according to claim 1,
Wherein the inner plasma member has a relative density of 95% or more.
이트륨 산화물과, Ti, Zr 및 Hf으로 이루어진 그룹 중에서 선택되는 최소한 1종의 금속의 카바이드 또는 나이트라이드의 혼합 분말을 제공하는 단계;
상기 혼합 분말을 하소하는 단계;
상기 하소된 혼합 분말을 성형하여 성형체를 제조하는 단계; 및
상기 성형체를 질소 분위기에서 소결하는 단계를 포함하는 이트륨 화합물을 포함하는 내플라즈마 부재의 제조 방법.
Providing yttrium oxide and a mixed powder of carbide or nitride of at least one metal selected from the group consisting of Ti, Zr and Hf;
Calcining the mixed powder;
Molding the calcined mixed powder to produce a molded body; And
And sintering the molded body in a nitrogen atmosphere.
제1항에 있어서,
상기 소결 단계는 상압에서 수행되는 것을 특징으로 하는 이트륨 화합물을 포함하는 내플라즈마 부재의 제조 방법.
The method according to claim 1,
Wherein the sintering step is performed at atmospheric pressure. &Lt; RTI ID = 0.0 &gt; 11. &lt; / RTI &gt;
제1항에 있어서,
상기 소결 단계는 1700~1900℃에서 수행되는 것을 특징으로 하는 내플라즈마 부재의 제조 방법.
The method according to claim 1,
Wherein the sintering step is performed at 1700 to 1900 ° C.
이트륨 산화물과, Ti, Zr 및 Hf으로 이루어진 그룹 중에서 선택되는 최소한 1종의 금속의 카바이드 또는 나이트라이드의 혼합 분말을 성형하여 성형체를 제조하는 단계; 및
상기 성형체를 질소 분위기에서 소결하는 단계를 포함하는 이트륨 화합물을 포함하는 내플라즈마 부재의 제조 방법.
Preparing a molded body by molding a mixed powder of yttrium oxide and carbide or nitride of at least one metal selected from the group consisting of Ti, Zr and Hf; And
And sintering the molded body in a nitrogen atmosphere.
KR1020140136865A 2014-10-10 2014-10-10 Yttria Based Conductive Plasma-resistant Member And Methods Thereof KR101633035B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020140136865A KR101633035B1 (en) 2014-10-10 2014-10-10 Yttria Based Conductive Plasma-resistant Member And Methods Thereof
US14/879,789 US20160104551A1 (en) 2014-10-10 2015-10-09 Yttria based conductive plasma-resistant member and methods thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140136865A KR101633035B1 (en) 2014-10-10 2014-10-10 Yttria Based Conductive Plasma-resistant Member And Methods Thereof

Publications (2)

Publication Number Publication Date
KR20160043213A true KR20160043213A (en) 2016-04-21
KR101633035B1 KR101633035B1 (en) 2016-06-24

Family

ID=55655916

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140136865A KR101633035B1 (en) 2014-10-10 2014-10-10 Yttria Based Conductive Plasma-resistant Member And Methods Thereof

Country Status (2)

Country Link
US (1) US20160104551A1 (en)
KR (1) KR101633035B1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106747434B (en) * 2017-02-28 2020-04-21 安徽拓吉泰新型陶瓷科技有限公司 Wear-resistant zirconia ceramic and preparation method thereof
CN110015895A (en) * 2019-04-01 2019-07-16 中国有色桂林矿产地质研究院有限公司 A kind of aluminium oxide-zirconium oxide-yttrium oxide-titanium nitride nano composite ceramic material and preparation method thereof
JP2023056147A (en) * 2021-10-07 2023-04-19 日本特殊陶業株式会社 Yttrium oxide sintered body and components for semiconductor manufacturing apparatus
KR102609182B1 (en) 2023-06-14 2023-12-01 백승욱 Method for manufacturing sintered body for semiconductor processing equipment having plasma resistance
KR102600456B1 (en) 2023-06-14 2023-11-10 주식회사 코닉스 Yttria alumina ceramic bonding type window for semiconductor etching process and manufacturing apparatus of the yttria alumina ceramic bonding type window for semiconductor etching process

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006069843A (en) * 2004-09-02 2006-03-16 Ibiden Co Ltd Ceramic member for semiconductor manufacturing apparatus
JP2009221028A (en) * 2008-03-13 2009-10-01 Ngk Insulators Ltd Yttrium oxide material, and member for semiconductor manufacturing apparatus
JP2010261069A (en) * 2009-04-30 2010-11-18 Sumitomo Osaka Cement Co Ltd Spray deposit film and method for manufacturing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4499431B2 (en) * 2003-07-07 2010-07-07 日本碍子株式会社 Aluminum nitride sintered body, electrostatic chuck, conductive member, member for semiconductor manufacturing apparatus, and method for manufacturing aluminum nitride sintered body
JP5363132B2 (en) * 2008-02-13 2013-12-11 日本碍子株式会社 Yttrium oxide material, member for semiconductor manufacturing apparatus, and method for manufacturing yttrium oxide material
JP5330518B2 (en) * 2008-08-29 2013-10-30 アクティエボラゲット・エスコーエッフ Method for manufacturing ceramic parts
KR101678085B1 (en) * 2010-02-09 2016-11-21 스미토모 오사카 세멘토 가부시키가이샤 Sintered objects, processes for producing same and high-frequency transmission material
JP6032022B2 (en) * 2013-01-16 2016-11-24 住友大阪セメント株式会社 Dielectric material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006069843A (en) * 2004-09-02 2006-03-16 Ibiden Co Ltd Ceramic member for semiconductor manufacturing apparatus
JP2009221028A (en) * 2008-03-13 2009-10-01 Ngk Insulators Ltd Yttrium oxide material, and member for semiconductor manufacturing apparatus
JP2010261069A (en) * 2009-04-30 2010-11-18 Sumitomo Osaka Cement Co Ltd Spray deposit film and method for manufacturing the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
(1) K. Katayama et al., J. Mater. Sci., 25 (1990) pp1503-1508
(2) K. Katayama et al., J. Euro. Ceram. Sci., 6 (1990) pp39-45

Also Published As

Publication number Publication date
KR101633035B1 (en) 2016-06-24
US20160104551A1 (en) 2016-04-14

Similar Documents

Publication Publication Date Title
US7744780B2 (en) Yttrium oxide material, member for use in semiconductor manufacturing apparatus, and method for producing yttrium oxide material
KR101633035B1 (en) Yttria Based Conductive Plasma-resistant Member And Methods Thereof
TWI540635B (en) Corrosion resistant member for semiconductor manufacturing apparatus and method for making the same
TWI433825B (en) Yttrium oxide-containing material, component of semiconductor manufacturing equipment, and method of producing yttrium oxide-containing material
KR101794410B1 (en) Sintered silicon nitride having high thermal conductivity and Manufacturing method thereof
TWI447088B (en) Alumina sintered body and its preparation method
JP2005314215A (en) Dense cordierite sintered body and method of manufacturing the same
TWI570090B (en) Composite ceramic and semiconductor manufacturing device components
KR20140116015A (en) Ceramic member and member for semiconductor manufacturing equipment
JP4424659B2 (en) Aluminum nitride material and member for semiconductor manufacturing equipment
US7915189B2 (en) Yttrium oxide material, member for semiconductor-manufacturing apparatus, and method for producing yttrium oxide material
JP5406565B2 (en) Aluminum oxide sintered body, manufacturing method thereof, and semiconductor manufacturing apparatus member
JP2003055052A (en) Low volume resistivity material, aluminum nitride sintered compact and member for manufacturing semiconductor
KR101652336B1 (en) LOW RESISTIVITY SiC CERAMICS MATERIALS USING PRESSURELESS SINTERING AND MANUFACTURING METHOD
Unlu et al. The spark plasma sintering of silicon carbide ceramics using alumina
JP2006232659A (en) Silicon carbide sintered body and its manufacturing method
JP5303345B2 (en) Conductive zirconia sintered body
JP2024501484A (en) Multilayer sintered ceramic body
JP2008266069A (en) Conductive alumina sintered compact
KR101723675B1 (en) Composition used for preparing electrically conductive SiC-BN composite ceramic and method for preparing electrically conductive SiC-BN composite ceramic using the same
KR102432509B1 (en) Composite sintered body, semiconductor manufacturing apparatus member, and manufacturing method of composite sintered body
JP4429742B2 (en) Sintered body and manufacturing method thereof
CN111484333A (en) Aluminum nitride ceramic with high thermal conductivity and high strength and preparation method thereof
KR101925215B1 (en) Polycrystal zirconia compounds and preparing method of the same
KR101961836B1 (en) Pure monoclinic sintered zirconia material and method of manufacturing

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190311

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20200309

Year of fee payment: 5