KR20160032990A - Method for improving fast growth or biomass increase of plant using CBR1 in plants - Google Patents

Method for improving fast growth or biomass increase of plant using CBR1 in plants Download PDF

Info

Publication number
KR20160032990A
KR20160032990A KR1020140123870A KR20140123870A KR20160032990A KR 20160032990 A KR20160032990 A KR 20160032990A KR 1020140123870 A KR1020140123870 A KR 1020140123870A KR 20140123870 A KR20140123870 A KR 20140123870A KR 20160032990 A KR20160032990 A KR 20160032990A
Authority
KR
South Korea
Prior art keywords
cbr1
plant
growth
present
biomass
Prior art date
Application number
KR1020140123870A
Other languages
Korean (ko)
Other versions
KR101631762B1 (en
Inventor
황인환
오영준
Original Assignee
포항공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항공과대학교 산학협력단 filed Critical 포항공과대학교 산학협력단
Priority to KR1020140123870A priority Critical patent/KR101631762B1/en
Publication of KR20160032990A publication Critical patent/KR20160032990A/en
Application granted granted Critical
Publication of KR101631762B1 publication Critical patent/KR101631762B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8273Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/67General methods for enhancing the expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/8247Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified lipid metabolism, e.g. seed oil composition
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0012Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
    • C12N9/0036Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on NADH or NADPH (1.6)
    • C12N9/0038Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on NADH or NADPH (1.6) with a heme protein as acceptor (1.6.2)
    • C12N9/004Cytochrome-b5 reductase (1.6.2.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y106/00Oxidoreductases acting on NADH or NADPH (1.6)
    • C12Y106/02Oxidoreductases acting on NADH or NADPH (1.6) with a heme protein as acceptor (1.6.2)
    • C12Y106/02002Cytochrome-b5 reductase (1.6.2.2)

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Nutrition Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Medicinal Chemistry (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

The present invention relates to a method for promoting plant growth and an increase in an amount of biomass. More specifically, the present invention relates to a method for promoting plant growth or an increase in an amount of biomass by over-expressing cytochrome b5 reductase1 (CBR1). According to the present invention, it has been found that effects of promoting growth and resistance to cold weather or salt stress are improved in a seed or a plant in which CBR1 is over-expressed. Thus, it is anticipated that the method can be useful for improvement of crops of which human can harness.

Description

CBR1을 이용한 식물체의 생장 또는 바이오매스 증가를 촉진시키는 방법{Method for improving fast growth or biomass increase of plant using CBR1 in plants}[0001] The present invention relates to a method for promoting plant growth or biomass growth using CBR1,

본 발명은 식물체의 생장 또는 바이오매스 증가를 촉진시키는 방법으로서, 보다 구체적으로는 CBR1(Cytochrome b5 reductase1)의 발현을 조절하여 식물체의 생장 또는 바이오매스 증가를 촉진시키는 방법 및 이의 식물체에 관한 것이다. The present invention relates to a method for promoting plant growth or biomass increase, and more particularly, to a method for promoting plant growth or biomass increase by regulating the expression of CBR1 (Cytochrome b5 reductase 1) and plant thereof.

고유가 시대가 도래 하면서 식물의 바이오매스는 바이오 에너지를 생성하는 원료로서 그 중요성이 부각되고 있다. 곡물에 존재하는 녹말의 당화 과정을 이용한 1세대 바이오 연료생산은 농작물의 가격 상승, 식량 및 경제난을 초래하였으며 최근 관련 기술 개발이 지양되고 있다. 이에 비해서, 비식용 바이오매스 작물인 억새, 스위치그래스, 포플라 등에 존재하는 목질계의 셀룰로오스를 이용한 2세대 바이오 에너지 연구가 활발히 진행되고 있다. 그러나 실질적으로 화석연료를 대체할 정도의 많은 양의 에너지를 생산하기 위해서는 기본적으로 식물의 바이오매스 생산 양을 증가시키고 지속적으로 유지시키기 위한 노력이 필요할 것이다. As the era of high oil prices has arrived, the importance of biomass as a raw material for generating bioenergy has been emphasized. Production of first-generation biofuels using the saccharification process of starch present in grains has resulted in a rise in prices of crops, food and economic difficulties, and the development of related technologies has been delayed. In contrast, second-generation bioenergy research using wood-based cellulose, which is present in non-edible biomass crops such as Butchers, Switchgrass, and Poplar, is actively under way. However, in order to produce a substantial amount of energy that can replace practically fossil fuels, basically efforts will be needed to increase and sustain the production of biomass in plants.

한편, 냉해와 염해는 식물의 성장과 작물의 생산성을 줄이는 주요한 요인으로 세계에서 냉해를 받는 농경지는 14억 헥타르, 염해 피해를 받는 농경지는 4500만 헥타르에 이르고 있으며, 기상이변 현상의 확산으로 그 피해는 더 커질 것으로 예상되고 있다. 또한, 한국은 옥수수, 밀, 대두 등의 주요 식량 작물을 미국, 중국 등으로부터의 수입에 상당수 의존하고 있으며, 농산물의 수입액은 수출액의 몇 배에 달하는 실정이다. On the other hand, cold weather and salt pollution are the main factors that reduce plant growth and crop productivity, with 1.4 billion hectares of farmland suffering from colds in the world, 45 million hectares of farmland damaged by salt damage, Is expected to be larger. In addition, Korea depends heavily on imports of major food crops such as corn, wheat, and soybeans from the US and China, and imports of agricultural products are several times higher than exports.

이에, 식물유전공학의 발달은 경제적, 농업적 및 원예적 형질이 향상된 작물 또는 식물을 제공하고 있으며, 생장 및 바이오매스가 증가된 형질전환 식물체의 연구 개발은 식량 자원의 공급 감소 문제에 대한 방안이 될 수 있다. 따라서, 지금까지 다양한 식물(옥수수, 콩, 고추, 애기장대, 담배 또는 벼 등) 또는 미생물(Synechocystis, Pseudomonas, Bacillus 또는 Anabaena 등) 유래의 유전자들을 이용한 생장 및 바이오매스가 증가된 다양한 형질전환 식물체 제조에 대한 연구가 이루어지고 있으나 (한국등록특허 제10-0814941), 아직 미비한 실정이다. Thus, the development of plant genetic engineering provides crops or plants with improved economic, agricultural and horticultural traits, and the research and development of transgenic plants with increased growth and biomass is a way to reduce the supply of food resources . Therefore, it is possible to produce various transgenic plants with increased growth and biomass using genes derived from various plants (corn, soybean, pepper, Arabidopsis, tobacco or rice) or microorganisms (Synechocystis, Pseudomonas, Bacillus or Anabaena etc.) (Korean Patent No. 10-0814941), but it is still not enough.

본 발명은 상기와 같은 문제점을 해결하기 위해 안출된 것으로서, 본 발명자들은 CBR1 과발현 종자 또는 식물체의 생장 증진 효과, 냉해 스트레스 저항성, 및 염해 스트레스 저항성 증진효과를 확인하고 이에 기초하여 본 발명을 완성하게 되었다. DISCLOSURE OF THE INVENTION The present invention has been made in order to solve the above-mentioned problems, and the present inventors confirmed the effect of promoting growth, cold stress resistance and salt stress resistance of CBR1 over-expressing seeds or plants, .

이에, 본 발명의 목적은 CBR1(Cytochrome b5 reductase1) 유전자를 포함하는 재조합 벡터를 식물세포에 형질전환시키는 단계; 및 상기 형질전환된 식물체에서 CBR1을 과발현시키는 단계를 포함하는 식물의 생장 또는 바이오매스의 증가를 촉진시키는 방법을 제공하는 것이다.Accordingly, an object of the present invention is to provide a method for producing a plant cell, which comprises transforming a plant cell with a recombinant vector comprising CBR1 (Cytochrome b5 reductase1) gene; And over-expressing CBR1 in the transformed plant. The present invention also provides a method for promoting plant growth or biomass growth.

또한, 본 발명의 다른 목적은 CBR1 유전자를 포함하는 재조합 벡터로 식물세포를 형질전환시키는 단계; 및 상기 형질전환된 식물세포로부터 식물을 재분화하는 단계를 함하는 생장 또는 바이오매스의 증가가 촉진된 형질전환 식물체의 제조 방법을 제공하는 것이다. It is another object of the present invention to provide a method for producing a plant cell, which comprises transforming a plant cell with a recombinant vector comprising the CBR1 gene; And regenerating the plant from the transgenic plant cell. The present invention also provides a method for producing a transgenic plant having increased growth or biomass.

또한, 본 발명의 또 다른 목적은 상기 방법에 의해 제조된 생장 또는 바이오매스의 증가가 촉진된 식물체를 제공하는 것이다.
It is still another object of the present invention to provide a plant in which an increase in growth or biomass produced by the above method is promoted.

그러나 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.However, the technical problem to be solved by the present invention is not limited to the above-mentioned problems, and other matters not mentioned can be clearly understood by those skilled in the art from the following description.

상기와 같은 본 발명의 목적을 달성하기 위하여, 본 발명은 CBR1(Cytochrome b5 reductase1) 유전자를 포함하는 재조합 벡터를 식물세포에 형질전환시키는 단계; 및 상기 형질전환된 식물체에서 CBR1을 과발현시키는 단계를 포함하는 식물의 생장 또는 바이오매스의 증가를 촉진시키는 방법을 제공한다.In order to accomplish the above object, the present invention provides a method for producing a plant cell, comprising the steps of: transforming a plant cell with a recombinant vector comprising CBR1 (Cytochrome b5 reductase1) gene; And over-expressing CBR1 in the transformed plant. The present invention also provides a method for promoting plant growth or biomass increase.

본 발명의 일 구현예로서, CBR1 유전자는 서열번호 1의 염기서열로 이루어진 것일 수 있다.In one embodiment of the present invention, the CBR1 gene may be composed of the nucleotide sequence of SEQ ID NO: 1.

본 발명은 CBR1 유전자를 포함하는 재조합 벡터로 식물세포를 형질전환시키는 단계; 및 상기 형질전환된 식물세포로부터 식물을 재분화하는 단계를 함하는 생장 또는 바이오매스의 증가가 촉진된 형질전환 식물체의 제조 방법을 제공한다. The present invention relates to a method for transforming a plant cell with a recombinant vector comprising the CBR1 gene; And regenerating the plant from the transformed plant cell. The present invention also provides a method for producing a transgenic plant,

본 발명은 상기 방법에 의해 제조된 생장 또는 바이오매스의 증가가 촉진된 식물체를 제공한다. The present invention provides a plant in which an increase in growth or biomass produced by the above method is promoted.

본 발명의 일 구현예로서, 상기 식물체는 TAG(Triacylglycerol) 또는 미네랄의 함량이 증가된 것일 수 있다. In an embodiment of the present invention, the plant may be one in which the content of TAG (triacylglycerol) or minerals is increased.

본 발명의 다른 구현예로서, 상기 식물체는 냉해 또는 염해 스트레스 저항성이 증진된 것일 수 있다. In another embodiment of the present invention, the plant may be one which is improved in cold weather or salt stress resistance.

본 발명은 후보 물질을 처리한 후, CBR1 과발현 여부를 측정하는 단계를 포함하는, 생장 또는 바이오매스의 증가를 촉진시키는 물질의 스크리닝 방법을 제공한다. The present invention provides a method for screening a substance that promotes growth or biomass increase, comprising treating a candidate substance and then measuring CBR1 overexpression.

본 발명에 따른 식물체의 생장 또는 바이오매스 증가를 촉진시키는 방법은 CBR1을 과발현시키는 단계를 포함하며, 상기와 같이 CBR1을 과발현시킴으로써, 식물체의 생장 증진 효과, 냉해 또는 염해 스트레스 저항성 증진효과를 확인하였는바, CBR1 발현조절을 통해 인류가 이용할 수 있는 작물 등의 개량에 유용하게 활용될 수 있을 것으로 기대된다. The method of promoting plant growth or biomass increase according to the present invention includes the step of overexpressing CBR1. As described above, by overexpressing CBR1 as described above, it has been confirmed that the effect of promoting plant growth, cold damage or stress resistance is improved , And CBR1 expression can be used to improve the crops available to human beings.

도 1은 CBR1 과발현을 유도하기 위한 DNA Construct의 모식도이다.
도 2는 CBR1 과발현 종자(CBR1 OX) 및 야생형인 대조군(WT)의 (A) 전자현미경으로 관찰한 외관, (B) 크기, 및 (C) 무게를 나타낸 결과이다.
도 3은 CBR1 과발현 종자 및 야생형인 대조군의 내부를 전자현미경으로 관찰한 결과이다.
도 4는 CBR1 과발현 종자 및 야생형인 대조군의 (A) 종자 하나당 TAG의 양(nmol), (B) 종자 하나당 TAG에 포함된 지방산 종류별 함유량 (nmol), 및 (C) CBR1 과발현 종자 하나당 TAG(Triacylglycerol)에 포함된 지방산을 상대적인 값(%)으로 나타낸 결과이다.
도 5는 CBR1 과발현 종자 및 야생형인 대조군의 철, 망간, 인, 및 칼슘 함량을 나타낸 결과이다.
도 6은 CBR1 과발현 식물체 및 야생형인 대조군의 (A) 육안으로 확인한 발아상태 및 (B) 5일간의 발아율을 나타낸 결과이다.
도 7은 23℃에서 CBR1 과발현 식물체 및 야생형인 대조군의 (A) 육안으로 확인한 생장상태 및 (B) 생중량 (Fresh weight)을 나타낸 결과이다.
도 8은 6℃에서 CBR1 과발현 식물체 및 야생형인 대조군의 (A) 육안으로 확인한 생장상태 및 (B) 생중량 (Fresh weight)을 나타낸 결과이다.
도 9는 온도변화(0℃, -5℃, -7℃, -9℃)에 의한 CBR1 과발현 식물체 및 야생형인 대조군의 생존률을 나타낸 결과이다.
도 10은 염해(NaCl) 처리에 의한 CBR1 과발현 식물체 및 야생형인 대조군의 (A) 육안으로 확인한 생장상태 및 (B) 생존률을 나타낸 결과이다.
1 is a schematic diagram of a DNA construct for inducing overexpression of CBR1.
2 shows the appearance of the CBR1 overexpressed seed (CBR1 OX) and the wild type control (WT) under the electron microscope (A), (B) size, and (C) weight.
FIG. 3 shows electron microscopic observations of the inside of CBR1 over-expressing seeds and wild type control group.
FIG. 4 is a graph showing the amount (nmol) of TAG per seed (A) of CBR1 overexpressed seed and wild type control, (B) the content (nmol) of each fatty acid species contained in TAG per seed, and (C) the amount of triacylglycerol ) As a relative value (%).
FIG. 5 shows the contents of iron, manganese, phosphorus, and calcium in the CBR1 over-expressing seed and the wild type control group.
Fig. 6 shows the germination state (A) germination state and the germination rate (B) for 5 days of the CBR1 overexpressed and wild-type control groups.
FIG. 7 shows the results of visual observation of (A) growth state and (B) fresh weight of CBR1 overexpressing plants and wild type control at 23 ° C.
FIG. 8 shows the results of visual observation of (A) growth state and (B) fresh weight of CBR1 overexpressing plant and wild type control at 6 ° C.
FIG. 9 shows the survival rates of CBR1-overexpressing plants and wild-type control by temperature changes (0 ° C., -5 ° C., -7 ° C., and -9 ° C.).
Fig. 10 shows the results of visual observation of growth of (a) wild-type and (b) survival rate of CBR1 overexpressed plants and wild-type control by NaCl treatment.

본 발명자들은, CBR1(Cytochrome b5 reductase1) 유전자를 과발현 시킨 종자에서, 무게, 크기, TGA(Triacylglycerol), 미네랄 함량 증가, 및 발아율 증진효과를 확인하였다. 또한, CBR1 유전자를 과발현 시킨 식물체에서, 생장 증진, 냉해 스트레스 저항성, 및 고염 스트레스 저항성 증진 효과를 확인하고, 이에 기초하여 본 발명을 완성하였다.
The present inventors confirmed the effect of increasing weight, size, TGA (triacylglycerol), mineral content, and germination rate in seeds overexpressing CBR1 (Cytochrome b5 reductase1) gene. In addition, the present inventors completed the present invention on the basis of confirming the effects of promoting growth, cold stress resistance, and high salt stress resistance in a plant overexpressing the CBR1 gene.

이하 본 발명을 상세히 설명한다.
Hereinafter, the present invention will be described in detail.

본 발명은 CBR1(Cytochrome b5 reductase1) 유전자를 포함하는 재조합 벡터를 식물세포에 형질전환시키는 단계; 및 상기 형질전환된 식물체에서 CBR1을 과발현시키는 단계를 포함하는 식물의 생장 또는 바이오매스의 증가를 촉진시키는 방법을 제공한다.The present invention relates to a method for producing a plant cell, which comprises transforming a plant cell with a recombinant vector comprising CBR1 (Cytochrome b5 reductase1) gene; And over-expressing CBR1 in the transformed plant. The present invention also provides a method for promoting plant growth or biomass increase.

본 발명에서 과발현시키는 CBR1(Cytochrome b5 reductase1)은 전자 전달계에서 Flavin adenine dinucleotide (FAD) 그룹을 이용해 NADH의 전자를 cytochrome b5로 이동시키는 강력한 환원력을 가지므로 혈액 내에서 메트헤모글로빈을 헤모글로빈으로 전환시키는 기능을 수행하며, 쥐의 경우에는 myristoylation에 의해 mitochondria 막과 Endoplasmic reticulum 막의 이동을 조절한다고 알려져 있다. 본 발명에서는 CBR1 유전자의 발현과 식물체의 생장, 냉해 또는 염해 스트레스간의 연관성을 규명하였으며, 이에, 본 발명은 CBR1을 과발현시킴으로써, 식물체의 생장 또는 바이오매스 증가를 촉진시키는 것을 특징으로 한다. 또한, 본 발명의 CBR1 유전자는 바람직하게는 서열번호 1의 염기서열로 이루어져 있으며, CBR1 단백질은 바람직하게는 서열번호 2의 아미노산 서열로 이루어질 수 있으나, 이에 제한되는 것은 아니다. In the present invention, CTV1 (Cytochrome b5 reductase 1) overexpressing in the present invention has a strong reducing ability to transfer electrons of NADH to cytochrome b5 by using Flavin adenine dinucleotide (FAD) group in the electron transport system, thereby converting methemoglobin into hemoglobin in the blood In mice, myristoylation is known to regulate the migration of mitochondrial membrane and endoplasmic reticulum membrane. In the present invention, the relationship between the expression of CBR1 gene and plant growth, cold weather or salt stress has been clarified. Thus, the present invention is characterized by promoting plant growth or biomass growth by overexpressing CBR1. In addition, the CBR1 gene of the present invention preferably comprises the nucleotide sequence of SEQ ID NO: 1, and the CBR1 protein preferably comprises the amino acid sequence of SEQ ID NO: 2, but is not limited thereto.

본 발명에서 사용되는 용어, "생장"은 식물에서 여러 가지 기관이 양적으로 증대하는 것을 일컫는 용어로서, 특히 식물세포의 경우에는 세포분열 없이 세포의 크기만 증가하며, 이때 건조 중량의 큰 증가 없이 액포에 물이 차서 세포가 커지게 된다. 또한, 본 발명에서 사용되는 용어, "바이오매스"는 에너지로 전용할 수 있거나 특정 공정을 통해 에너지를 생산하는 농작물, 폐기물, 목재, 생물 등을 총칭하는 것으로서, 본 발명의 방법에 따라 CBR1을 과발현시킴으로써 식물체의 생장 또는 바이오매스 증가를 촉진시켜 생산량이 증진된 작물을 생산할 수 있다. As used herein, the term "growth" refers to the quantitative increase of various organs in plants. In particular, in the case of plant cells, the cell size only increases without cell division, And the cell becomes larger. The term "biomass " as used in the present invention refers collectively to crops, wastes, woods, organisms and the like which can be converted into energy or produce energy through a specific process. In accordance with the method of the present invention, Thereby promoting plant growth or biomass growth and producing crops with increased yields.

본 발명의 일 실시예에서는 CBR1 과발현 식물체의 제조하여(실시예 1 참조), CBR1 과발현 종자의 크기, 무게, TAG, 미네랄 함량 증가(실시예 2 내지 5 참조), 및 발아율 증진효과를 확인하였다(실시예 6 참조). 또한, CBR1 과발현 식물체의 냉해 또는 염해 스트레스에 대한 저항성이 매우 우수한 바(실시예 7 및 8 참조), 생장 또는 바이오매스 증가가 촉진된 식물체를 제조할 수 있음을 확인하였다. In one embodiment of the present invention, an increase in the size, weight, TAG, mineral content (see Examples 2 to 5) and germination rate of CBR1 over-expressing seeds were confirmed by preparing CBR1 overexpressing plants (see Example 1) See Example 6). In addition, it was confirmed that plants resistant to cold or salt stress of CBR1 overexpressing plants are excellent (see Examples 7 and 8), and plants capable of promoting growth or biomass increase can be produced.

이에, 본 발명은 CBR1 유전자를 포함하는 재조합 벡터로 식물세포를 형질전환시키는 단계; 및 상기 형질전환된 식물세포로부터 식물을 재분화하는 단계를 포함하는 생장 또는 바이오매스의 증가가 촉진된 형질전환 식물체의 제조 방법을 제공한다.Accordingly, the present invention provides a method for producing a plant cell, which comprises transforming a plant cell with a recombinant vector comprising the CBR1 gene; And regenerating the plant from the transgenic plant cell. The present invention also provides a method for producing a transgenic plant,

또한, 본 발명의 다른 측면에 있어서, 상기 방법에 의해 제조된 생장 또는 바이오매스의 증가가 촉진된 식물체를 제공한다.Further, in another aspect of the present invention, there is provided a plant in which an increase in growth or biomass produced by the above method is promoted.

본 발명에 따른 CBR1 과발현 종자 또는 식물체는 TAG(Triacylglycerol), 철(Fe), 망간(Mn), 인(P), 칼슘(Ca)의 함량이 증진되어 있으며, 냉해 또는 염해 스트레스 저항성 증진되어 있는바, 바이오매스 및 생장이 촉진된 개량 작물을 인류에 제공할 수 있을 것으로 기대된다.The amount of triacylglycerol, iron (Fe), manganese (Mn), phosphorus (P) and calcium (Ca) is increased in the CBR1 overexpressing seeds or plants according to the present invention and the resistance to cold weather or salt stress is improved , Biomass, and improved crops that are promoted to grow.

본 발명에 따른 식물체는 벼, 밀, 보리, 옥수수, 콩, 감자, 팥, 귀리, 수수를 포함하는 식량작물류; 애기장대, 배추, 무, 고추, 딸기, 토마토, 수박, 오이, 양배추, 참외, 호박, 파, 양파, 당근을 포함하는 채소작물류; 인삼, 담배, 목화, 참깨, 사탕수수, 사탕무우, 들깨, 땅콩, 유채를 포함하는 특용작물류; 사과나무, 배나무, 대추나무, 복숭아, 양다래, 포도, 감귤, 감, 자두, 살구, 바나나를 포함하는 과수류; 장미, 글라디올러스, 거베라, 카네이션, 국화, 백합, 튤립을 포함하는 화훼류; 및 라이그라스, 레드클로버, 오차드그라스, 알파알파, 톨페스큐, 페레니얼라이그라스를 포함하는 사료작물류 등일 수 있으며, 바람직하게는 애기장대(Arabidopsis)일 수 있으나, 이에 한정되는 것은 아니다.The plant according to the present invention is a food crop including rice, wheat, barley, corn, soybean, potato, red bean, oats, sorghum; Vegetable crops including Arabidopsis, cabbage, radish, red pepper, strawberry, tomato, watermelon, cucumber, cabbage, melon, squash, onions, onions and carrots; Special crops including ginseng, tobacco, cotton, sesame seed, sugar cane, beet, perilla, peanut, and rapeseed; Fruit trees including apple trees, pears, jujube trees, peaches, sheep grapes, grapes, citrus fruits, persimmons, plums, apricots, and bananas; Roses, gladiolus, gerberas, carnations, chrysanthemums, lilies, tulips; And feed crops including ragras, red clover, orchardgrass, alpha-alpha, tall fescue, perenniallaigrus, and the like, preferably Arabidopsis , but are not limited thereto.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 하기 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.
Hereinafter, preferred embodiments of the present invention will be described in order to facilitate understanding of the present invention. However, the following examples are provided only for the purpose of easier understanding of the present invention, and the present invention is not limited by the following examples.

실시예Example 1.  One. CBR1CBR1 과발현 식물체의 제조  Manufacture of overexpressed plants

CBR1(Cytochrome b5 reductase1)의 기능을 조사하기 위해서, CBR1 과발현 식물체를 제조하였다. 우선, CBR1 DNA는 primer Forward 5-CCGCTCGAGATGGATACCGAGTTTCTCCGA-3(서열번호 4), primer Reverse 5-GGGGTACCGAACTGGAATTGCATCTCC-3(서열번호 5)를 이용하여 애기장대 cDNA library (leaf tissue)에서 PCR를 통해 확보하였다. 또한, XhoI과 KpnI 제한 효소를 처리한 후, XhoI과 BamHI을 처리한 CaMV 35S promoter, sGFP, Nos terminator를 포함한 pUC-GFP vector와 ligation하였다. Binary vector로 sub-cloning을 위해, 다시 XhoI과 EcoRI처리를 해 얻은 CBR1:sGFP DNA를 같은 제한효소를 처리 한 pBIB121 (hygromycin) binary vector와 ligation하였다. 이렇게 얻은 DNA construct를 electroporation로 Agrobacterium tumefaciens에 넣었다. Vacuum-infiltration 방법을 통해 애기장대 형질 전환체를 만들었고, 50 mg L1 hygromycin이 포함된 Gamborg B5 배지 (Duchefa; G0210.0050)를 통해 형질 전환체를 확인하였다. 이후, 4세대 전환체에서 homo-line을 선택하여 실험에 사용하였다.
To investigate the function of CBR1 (Cytochrome b5 reductase1), CBR1 overexpressed plants were prepared. First, CBR1 DNA was obtained by PCR in Arabidopsis cDNA library (leaf tissue) using primer Forward 5-CCGCTCGAGATGGATACCGAGTTTCTCCGA-3 (SEQ ID NO: 4) and primer Reverse 5-GGGGTACCGAACTGGAATTGCATCTCC-3 (SEQ ID NO: 5). After treatment with XhoI and KpnI restriction enzymes, ligation was performed with a pUC-GFP vector containing CaMV 35S promoter, sGFP, and Nos terminator treated with XhoI and BamHI. For subcloning with a binary vector, CBR1: sGFP DNA obtained by XhoI and EcoRI treatment was ligated with a restriction vector pBIB121 (hygromycin) binary vector. The DNA construct thus obtained was introduced into Agrobacterium tumefaciens by electroporation. Arabidopsis transformants were prepared by the vacuum-infiltration method and transformants were identified through Gamborg B5 medium (Duchefa; G0210.0050) containing 50 mg L1 hygromycin. Then, the homo-line was selected in the fourth-generation switchgear and used for the experiment.

실시예Example 2.  2. CBR1CBR1 과발현 종자의 표현형 분석 Phenotypic analysis of overexpressed seeds

CBR1 과발현에 따른 표현형의 변화를 확인하기 위해서, 야생형인 대조군과 CBR1 과발현 종자간의 크기 및 무게를 비교하였다. In order to confirm phenotypic changes due to overexpression of CBR1, the size and weight of wild type control and CBR1 overexpressed seeds were compared.

종자의 크기는 14개씩 3세트를 가로와 세로의 길이를 측정해서 평균을 냈다. OLYMPUS SZ61 현미경을 통해 사진을 찍고, iSolution Lite 프로그램을 통해 길이를 측정하였다. 한 개의 종자의 무게는 500개의 씨를 한 세트로 해서 3세트의 무게를 재고, 무게 값의 평균을 500으로 나눈 값으로 양자간 무게를 비교하였다.
The size of the seeds was measured by measuring the lengths of the horizontal and vertical three sets of 14 seeds. Photographs were taken on an OLYMPUS SZ61 microscope and the length was measured using the iSolution Lite program. One seed weighed three sets of 500 seeds, and weighed the two weights by dividing the average of the weights by 500.

도 2에 나타낸 바와 같이, CBR1 과발현 종자(CBR1 OX)은 야생형인 대조군(WT)에 비해 통통한 형태의 모양을 나타냈다. 또한, 정량적인 측정을 통해서 확인한 결과, CBR1 과발현 종자는 크기와 무게에 있어서, 야생형인 대조군과 비교하여 각각 9.5%와 17.5% 증가함을 확인하였다.
As shown in Fig. 2, the CBR1 overexpressed seed (CBR1 OX) showed a chunky morphology compared to the wild type control (WT). In addition, quantitative measurements confirmed that the size and weight of CBR1 overexpressed seeds increased by 9.5% and 17.5%, respectively, compared with the wild type control.

실시예Example 3.  3. CBR1CBR1 과발현 종자의 전자현미경 분석 Electron microscopic analysis of overexpressed seeds

CBR1 과발현 종자의 무게 증가 이유를 조사하기 위해서 종자 내부를 현미경을 통하여 확인하였다. To investigate the reason for the increase in weight of CBR1 overgrown seed, the inside of the seed was examined under a microscope.

우선, 종자를 razor blade로 절반을 잘라 전처리가 잘 되도록 하였다. 2 % paraformaldehyde, 2% glutaraldehyde, 0.05M sodium cacodylate buffer (pH 7.2)를 사용하여 종자를 4℃에서 20시간 동안 고정 작업을 하였다. 0.05M sodium cacodylate buffer (pH 7.2)를 이용해 세 번 샘플을 씻어낸 후, 두 번째 고정을 1% osmium tetroxide, 0.05M sodium cacodylate buffer (pH 7.2)를 이용하여 4℃에서 2시간 동안 하였다. 물로 두 번 씻어낸 후, 4℃ 서 30분 동안 0.5% uranyl acetate로 염색을 했다. 30, 50, 70, 80, 90, 100, 100, 100% 에탄올을 이용해 각각 6시간씩 탈수 처리를 하고, propylene oxide와 Spurrs resin mixture를 5일 동안 처리하였다. 70℃에서 24시간 동안 샘플 polymerization과정을 거쳐, Ultramicrotome (MT-X, RMC, Tucson, AZ, USA)을 이용하여 절편을 만들었다. 2% uranylacetate를 7분, Reynolds lead citrate를 2분간 염색 후, TEM (JEM-1011, JEOL, Tokyo, Japan)을 이용하여 샘플을 관찰하였다.
First, the seeds were cut in half with a razor blade to ensure a good pre-treatment. The seeds were fixed at 4 ° C for 20 hours using 2% paraformaldehyde, 2% glutaraldehyde and 0.05M sodium cacodylate buffer (pH 7.2). The sample was washed three times with 0.05M sodium cacodylate buffer (pH 7.2), and the second fixation was performed at 4 ° C for 2 hours using 1% osmium tetroxide and 0.05M sodium cacodylate buffer (pH 7.2). Washed twice with water, and stained with 0.5% uranyl acetate at 4 ° C for 30 minutes. 30, 50, 70, 80, 90, 100, 100, 100% ethanol for 6 hours each, and propylene oxide and Spurrs resin mixture were treated for 5 days. The sample was polymerized at 70 ° C for 24 hours and sectioned using Ultramicrotome (MT-X, RMC, Tucson, AZ, USA). 2% uranylacetate was stained for 7 minutes, Reynolds lead citrate was stained for 2 minutes, and the sample was observed using a TEM (JEM-1011, JEOL, Tokyo, Japan).

도 3에 나타낸 바와 같이, CBR1 과발현 종자는 대조군에 비하여, oil body가 더 촘촘하게 채워져 있어 세포내의 공극을 줄이는 형태를 갖는다는 것을 확인하였다.
As shown in FIG. 3, it was confirmed that CBR1 overexpressed seeds had a form in which the oil body was filled more densely than the control group, thereby reducing the pore size in the cells.

실시예Example 4.  4. CBR1CBR1 과발현 종자의  Overexpressed seed TAGTAG 추출과 동정  Extraction and identification

상기 실시예 3의 CBR1 과발현 종자의 전자현미경상 형태학적 특징은 종래 보고된 TAG를 증가시키는 oleosin, AtABCA9 transporter 과발현체에서도 관찰되었다는 점에 착안하여, CBR1 과발현 종자의 TAG의 양을 측정하였다.The amount of TAG of the CBR1 over-expressing seeds was measured in consideration of the fact that the electron microscopic morphological characteristics of the CBR1 overexpressed seeds of Example 3 were also observed in the overexpressed oleosin and AtABCA9 transporter which increase the TAG reported above.

500개 종자를 유리 튜브에 2mL isopropanol과 함께 넣어 80℃, 10분간 끓였다. Ice로 차게 식힌 후, 2mL chloroform를 넣고 Polytron homogenizer (Hitachi Koki)를 이용해 종자를 갈았다. TAG spot은 silica gel TLC plate를 통해 분리되었고, 90℃, 45분 동안 3mL 2.5% sulfuric acid를 포함한 methanol에서 transmethylation시켰다. 전체 TAG에서 지방산 조성 분석은 GC/MS (SHIMADZU GC-2010, HP-INOWAX capillary column, 30m, 0.25mm)를 통해 이루어졌다.
500 seeds were placed in a glass tube with 2 mL of isopropanol and boiled at 80 ° C for 10 minutes. After cooling with ice, 2 mL of chloroform was added and the seeds were ground with a Polytron homogenizer (Hitachi Koki). TAG spots were separated on a silica gel TLC plate and were subjected to transmethylation in methanol containing 2.5% sulfuric acid (3 mL) at 90 ° C for 45 min. The fatty acid composition of the whole TAG was analyzed by GC / MS (SHIMADZU GC-2010, HP-INOWAX capillary column, 30m, 0.25mm).

도 4에 나타낸 바와 같이, CBR1 과발현 종자는 TAG 양이 대조군에 비해 19.4%가 증가되었다. TAG의 양의 증가를 좀 더 규명하기 위해서 lipid의 fatty acid 의 종류를 확인한 결과, CBR1 과발현체는 18:1, 18:2, 18:3 불포화 지방산의 양이 획기적으로 증가되어 있다는 것을 확인하였다.
As shown in FIG. 4, the amount of TAG of the CBR1 over-expressing seeds was increased by 19.4% as compared with that of the control. In order to further elucidate the increase in the amount of TAG, it was confirmed that the amount of unsaturated fatty acids of 18: 1, 18: 2 and 18: 3 in CBR1 overexpressed material was significantly increased by checking the kinds of fatty acids of lipid.

실시예Example 5.  5. CBR1CBR1 과발현 종자의  Overexpressed seed 미네량Minute amount 함량 분석 Content analysis

CBR1 과발현 종자의 mineral 함량을 측정하기 위하여, 종자 50개를 120℃에서 60% 질산에 6시간 동안 녹였다. 이를 100배 희석한 후, Inductively coupled plasma spectrometry (ICP) (iCAP6300 DUO ICO-OES; Thermo Electron Corporation)를 통해 각 mineral의 양을 동정하였다.
To determine the mineral content of CBR1 overexpressed seeds, 50 seeds were dissolved in 60% nitric acid at 120 ° C for 6 hours. The amount of each mineral was identified through inductively coupled plasma spectrometry (ICP) (iCAP6300 DUO ICO-OES; Thermo Electron Corporation).

도 5에 나타낸 바와 같이, CBR1 과발현 종자에서 철(Fe), 망간(Mn), 인(P), 칼슘(Ca)이 각각 19.9%, 54.6%, 29.7%, 23.6% 증가됨을 확인하였다. 이는 종자의 mineral 함량을 늘려 인간 건강 증진을 도모할 수 있는 적용점이 될 수 있다.
5, it was confirmed that iron (Fe), manganese (Mn), phosphorus (P) and calcium (Ca) were increased by 19.9%, 54.6%, 29.7% and 23.6% in the CBR1 overexpressed seeds, respectively. This can be an application point for promoting human health by increasing mineral content of seeds.

실시예Example 6.  6. CBR1CBR1 과발현 형질 전환 식물체의 발아율 분석 Analysis of germination rate of transgenic transgenic plants

CBR1 과발현 종자의 발아율을 측정하기 위하여, 야생형 애기장대(Arabidopsis thaliana: (Colombia ecotype)) 및 CBR1 과발현 종자를 40% 습도, 16시간 낮/8시간 밤 사이클(장일 조건), 22.5℃로 설정한 챔버의 1% 수크로오스가 보충된 1/2 MS 배지에서 발아시켰다.
To determine the germination rate of CBR1 over-expressing seeds, wild-type Arabidopsis ( Arabidopsis thaliana : (Colombia ecotype)) and CBR1-overgrown seeds were germinated in 1/2 MS medium supplemented with 1% sucrose in a chamber set at 40% humidity, 16 hours day / 8 hour night cycle (long day condition) .

도 6에 나타낸 바와 같이, CBR1 과발현 종자의 발아율이 대조군과 비교하여 12.5% 증가됨을 확인하였다. 이는 식물이 발아 시점에서 TAG를 에너지원으로 사용하기 때문에, CBR1 과발현체의 TAG 양의 증가가 발아율을 증진시킬 수 있음을 의미한다.
As shown in FIG. 6, it was confirmed that the germination rate of the CBR1 over-expressing seed was increased by 12.5% as compared with the control. This means that since the plant uses TAG as an energy source at the time of germination, an increase in the amount of TAG of the overexpressed CBR1 can increase the germination rate.

실시예Example 7.  7. CBR1CBR1 과발현 식물체의 냉해 스트레스 저항성 Cold stress stress resistance of overexpressed plants

CBR1 과발현이 냉해 스트레스에 대한 저항성의 증진 여부를 규명하기 위하여, CBR1 과발현 식물체(OX1, OX2)와 야생형 대조군간의 온도변화에 따른 생장상태, 생중량(Fresh weight), 및 영하의 기온에서의 생존률을 비교하였다. In order to investigate the enhancement of CBR1 overexpression resistance to cold stress, the growth state, fresh weight, and survival rate at subzero temperature of CBR1 overexpressed plant (OX1, OX2) Respectively.

우선, 저온 처리를 위해 2주간 1/2 MS, 1% sucrose 배지에서 키우고 흙으로 옮긴 후, 6℃, 장일 조건에서 2주간을 관찰하였다. 영하의 온도에서의 관찰은 암 처리 후, 흙의 온도도 같이 내리기 위해 2일 동안 4℃ 저온처리를 하였으며, 사용한 포트는 얼음 칩 위에 올려놓음으로써 흙의 온도를 내리는 과정을 도왔다. 이 후, 두 시간에 1℃씩 온도를 떨어뜨려 원하는 영하의 온도까지 도달하게 하였다. 원하는 영하의 온도에서 물을 골고루 분사하여 식물 상층부에 냉해를 고르게 받게 하고, 서리효과를 내었다. 이 상태로 2시간을 유지한 후, 다시 6℃까지 한 시간에 1℃씩 올려 온도를 회복시켰다. 6℃에서 하루를 incubation 후에, 22.5℃, 장일 조건으로 옮겨 식물체의 5일 후의 생존률을 일주일 동안 기록하였다.
First, for low-temperature treatment, the cells were grown in 1/2 MS, 1% sucrose medium for 2 weeks and then transferred to soil and observed at 6 ° C for 2 weeks. Observations at subzero temperatures were followed by cold treatment at 4 ° C for 2 days to reduce the soil temperature after the rock treatment, and helped the soil temperature to be lowered by placing the used pots on ice chips. Thereafter, the temperature was lowered by 1 [deg.] C for two hours to reach the desired subzero temperature. The water was evenly sprayed at the desired subzero temperature to cool the upper part of the plant evenly and to obtain a frost effect. After maintaining the state for 2 hours in this state, the temperature was restored by raising the temperature by 1 ° C in one hour to 6 ° C again. After one day incubation at 6 ° C, the cells were transferred to 22.5 ° C, long-day conditions, and the survival rate of the plants after 5 days was recorded for one week.

도 7 내지 도 8에 나타낸 바와 같이, CBR1 과발현 식물체는 정상 조건(23℃)에서 대조군보다 크기가 컸고, 12.8%의 fresh weight 증가를 보였으며, 정상적인 성장 조건(23℃)에서 키운 후 6℃로 처리한 경우, 대조군에 비해서 45%의 fresh weight의 증가를 보였다. As shown in FIGS. 7 to 8, the CBR1 overexpressed plants were larger than the control group at normal temperature (23 ° C) and showed a fresh weight increase of 12.8%, and grown at normal growth conditions (23 ° C) When treated, the fresh weight was increased by 45% compared to the control.

또한, 도 9에 나타낸 바와 같이, -5℃에서는 CBR1의 과발현 식물과 대조군은 비슷하게 89%의 생존률을 보였으나, 더 낮은 온도인 -7℃와 -9℃ 에서는 대조군에 대해서 22% 및 11% 정도의 높은 생존률을 보였다. 이를 통해서, CBR1 과발현은 종자뿐만 아니라, 식물의 생장에도 영향을 미치며, CBR1의 과발현이 저온 및 freezing stress에 대한 저항성의 증진을 유도할 수 있다는 것을 확인하였다.
As shown in FIG. 9, at -5 ° C, over-expressing plants of CBR1 showed a similar survival rate of 89%, whereas at lower temperatures of -7 ° C and -9 ° C, 22% and 11% Respectively. These results indicate that CBR1 overexpression affects not only the seed but also the plant growth, and that overexpression of CBR1 can induce resistance to low temperature and freezing stress.

실시예Example 8.  8. CBR1CBR1 과발현 형질 전환 식물체의 냉해 스트레스 저항성 Cold-stress Stress Resistance of Over-expressing Transgenic Plants

CBR1 과발현이 염 스트레스에 대한 저항성의 증진 여부를 규명하기 위하여, CBR1 과발현 식물체(OX1, OX2)와 야생형 대조군을 정상적인 성장을 유도하는 토양에서 성장시켰으며(14days), 토양의 염도를 점차적으로 증가시켜 고농도의 염에 노출 시킨 후 (300 mM NaCl, 15 days), 황백화 정도 및 생존률을 확인하였다CBR1 overexpression plants (OX1, OX2) and wild-type controls were grown in normal growth inducing soil (14days) to gradually increase the salinity of the soil After exposure to high concentrations of salt (300 mM NaCl, 15 days), the degree of yellowing and the survival rate were determined

도 10에 나타낸 바와 같이, CBR1의 과발현 식물은 대조군과 비교하여, 낮은 황백화 현상을 보였으며, 22 % 더 높은 생존률 보였다. 이를 통해서 CBR1의 과발현이 염 스트레스에 대한 저항성의 증진을 유도할 수 있다는 것을 확인하였다.
As shown in Fig. 10, overexpressed plants of CBR1 showed a low yellowing phenomenon and 22% higher survival rate compared to the control group. It was confirmed that overexpression of CBR1 could induce increased resistance to salt stress.

전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.It will be understood by those skilled in the art that the foregoing description of the present invention is for illustrative purposes only and that those of ordinary skill in the art can readily understand that various changes and modifications may be made without departing from the spirit or essential characteristics of the present invention. will be. It is therefore to be understood that the above-described embodiments are illustrative in all aspects and not restrictive.

<110> POSTECH ACADEMY-INDUSTRY FOUNDATION <120> Method for improving fast growth or biomass increase of plant using CBR1 in plants <130> P2014204-01-KR_PB14-12199 <160> 5 <170> KopatentIn 2.0 <210> 1 <211> 834 <212> DNA <213> Artificial Sequence <220> <223> Cytochrome b5 reductase DNA sequence <400> 1 atggataccg agtttctccg aaccctagat cgtcagattc ttttgggtgt cttcgttgct 60 ttcgtcgccg ttggtgctgg tgctgcttat tttcttacat cctccaagaa acgcagagtg 120 tgtttggtcc gagaatttca aggagttcaa gcttgttaag agacatcagc ttagtcacaa 180 tgtggccaag ttcgtttttg aactcccaac ttctacttct gtgttgggtc ttcccattgg 240 acaacacatc agtgcaggga aaggatggtc aaggagagga tgttattaag ccatacaccc 300 cgactacgtt agactctgac gttggacgtt tcgaacttgt cattaagatg tatccgcaag 360 gacggatgtc tcatcattta gggaatgcgt gttggagacc atcttgccgt aaagggacca 420 aagggtaggt tcaagtatca accaggtcag tttagggcat ttggaatgct tgctggaggt 480 tcaggcatca ctcccatgtt ccaagggcca ggcaattcta gaaaacccaa cagacaagac 540 aaaggtgcat ctcatttacg ccaacgtcac atacgacgac attctcttga aggaagaatt 600 ggagggtctt actaccaatt accctgaaca attaaaattt ctatgttttg aaccagcctc 660 cggaagtatg ggatggtggt gttggatttg tatcaaagga aatgattcag actcattgcc 720 ctgcacctgc atctgatatt cagatcctaa gatgcggcca ccgccatgaa caaggccatg 780 gctgcaaacc ttgaagctct gggatactct ccggagatgc aattccagtt ctga 834 <210> 2 <211> 279 <212> PRT <213> Artificial Sequence <220> <223> Cytochrome b5 reductase protein sequence <400> 2 Met Asp Thr Glu Phe Leu Arg Thr Leu Asp Arg Gln Ile Leu Leu Gly 1 5 10 15 Val Phe Val Ala Phe Val Ala Val Gly Ala Gly Ala Ala Tyr Phe Leu 20 25 30 Thr Ser Ser Lys Lys Arg Arg Val Cys Leu Asp Pro Glu Asn Phe Lys 35 40 45 Glu Phe Lys Leu Val Lys Arg His Gln Leu Ser His Asn Val Ala Lys 50 55 60 Phe Val Phe Glu Leu Pro Thr Ser Thr Ser Val Leu Gly Leu Pro Ile 65 70 75 80 Gly Gln His Ile Ser Cys Arg Gly Lys Asp Gly Gln Gly Glu Asp Val 85 90 95 Ile Lys Pro Tyr Thr Pro Thr Thr Leu Asp Ser Asp Val Gly Arg Phe 100 105 110 Glu Leu Val Ile Lys Met Tyr Pro Gln Gly Arg Met Ser His His Glu 115 120 125 Met Arg Val Gly Asp His Leu Ala Val Lys Gly Pro Lys Gly Arg Phe 130 135 140 Lys Tyr Gln Pro Gly Gln Phe Arg Ala Phe Gly Met Leu Ala Gly Gly 145 150 155 160 Ser Gly Ile Thr Pro Met Phe Gln Val Ala Arg Ala Ile Leu Glu Asn 165 170 175 Pro Thr Asp Lys Thr Lys Val His Leu Ile Tyr Ala Asn Val Thr Tyr 180 185 190 Asp Asp Ile Leu Leu Lys Glu Glu Leu Glu Gly Leu Thr Thr Asn Tyr 195 200 205 Pro Glu Gln Phe Lys Ile Phe Tyr Val Leu Asn Gln Pro Pro Glu Val 210 215 220 Trp Asp Gly Gly Val Gly Phe Val Ser Lys Glu Met Ile Gln Thr His 225 230 235 240 Cys Pro Ala Pro Ala Ser Asp Ile Gln Ile Leu Arg Cys Gly Pro Pro 245 250 255 Pro Met Asn Lys Ala Met Ala Ala Asn Leu Glu Ala Leu Gly Tyr Ser 260 265 270 Pro Glu Met Gln Phe Gln Phe 275 <210> 3 <211> 2692 <212> DNA <213> Artificial Sequence <220> <223> CaMV 35S promoter: CBR1: sGFP: NOS terminator DNA sequence <400> 3 agattagcct tttcaatttc agaaagaatg ctaacccaca gatggttaga gaggcttacg 60 cagcaggtct catcaagacg atctacccga gcaataatct ccaggaaatc aaataccttc 120 ccaagaatta aagatgcagt caaaagattc aggactaact gcatcaagaa cacagagaaa 180 gatatatttc tcaagatcag aagtactatt ccagtatgga cgattcaagg cttgcttcac 240 aaaccaaggc aagatagaga ttggagtctc taaaaaggta gttcccactg aatcaaaggc 300 catggagtca aagattcaaa tagaggacct aacagaactc gccgtaaaga ctggcgaaca 360 gttcatacag agtctcttag atcaatgaca agaagaaaat cttcgtcaac atggtggagc 420 acgacacact tgtctactcc aaaaatatca aagatacagt ctcagaagac caaagggcaa 480 ttgagacttt tcaacaaagg gtaattccga aacctcctcg gattccattg cccagctatc 540 tgtcacttta ttgtgaagat agtggaaaag gaaggtggct cctacaaatg ccatcattgc 600 gataaaggaa aggccatcgt tgaagatgcc ttgccacagt ggtcccaaag atggaccccc 660 acccacgagg agcatcgtgg aaaaagaaga cgttccaacc acgtcttcaa agcaagtgga 720 ttgatgtgat atctccactg acgtaaggga tgacgcaaat ccactatcct tcgcaagacc 780 cttcctctat ataaggaagt tcatttcatt tggagagaac acgggggact ctagaggatc 840 tcgagatgga taccgagttt ctccgaaccc tagatcgtca gatcttttgg gtgtcttcgt 900 tgctttcgtc gccgttggtg ctggtgctgc ttattttctt acatcctcca agaaacgcag 960 agtgtgtttg gaccagagaa tttcaaggag ttcaagcttg ttaagagact cagcttagtc 1020 acaatgtggc caagttcgtt tttgaactcc caacttctac ttctgtgttg ggtcttccca 1080 ttggacaaca catcagttga ggggaaagga tggtcaagga gaggatgtta ttaagcatac 1140 accccgacta cgttagactc tgacgttgga cgtttcgaac ttgtcattaa gatgtatccg 1200 caaggacgga tgtctcatca tttcaggaga tgcgtgttgg agaccatctt gccgtaaagg 1260 gccaaagggt aggttcaagt atcaaccagg tcagtttagg gcatttggaa tgcttgctgg 1320 aggttcaggc atcactccca tgttccaagt ggcagagcaa ttctagaaaa cccaacagac 1380 aagacaaggt gcatctcatt tacgccaacg tcacatacga cgacattctc ttgaaggaag 1440 aattggaggg tcttactacc aattaccctg aacaatttaa atcttctatg ttttgaacca 1500 gcctccggaa gtagggatgg tggtgttgga tttgtatcaa aggaaatgat tcagactcat 1560 tgccctgcac ctgcatctga tattcagatc ctaagatgcg gaccacccca atgaacaagg 1620 ccatggctgc aaaccttgag ctctgggata ctctccggag atgcaattcc agttcggatc 1680 catggtgagc aagggcgagg agctgttcac cggggtggtg cccatcctgg tcgagctgga 1740 cggcgacgta aacggccaca agttcacgtg tccggcgagg gcgagggcga tgccacctac 1800 ggcaagctac cctgaagttc atctgcacca ccggcaagct gcccgtgccc tggcccaccc 1860 tcgtgaccac cttcacctac ggcgtgcagt gctcagccgc taccccgacc acatgaagca 1920 gcacgacttc ttcaatccgc catgcccgaa ggctacgtcc aggagcgcac catcttcttc 1980 aaggacgacg gcaactacaa gacccgcgcc gaggtgaatt cgagggcgac accctggtga 2040 accgcatcga gctgaagggc atgacttcaa ggaggacggc aacatcctgg ggcacaagct 2100 ggagtacaac tacaacagcc acaacgtcta tatcatggcc gacagcagaa gaacggcatc 2160 aaggtgaact tcaagatccg ccacaacatg aggacggcag cgtgcagctc gccgaccact 2220 accagcagaa cacccccatc ggcgacggcc ccgtgctgct gcccgacaac actacctgag 2280 cacccagtcc gccctgagca aagaccccaa cgagaacgcg atcacatggt cctgctggag 2340 ttcgtgaccg ccgccgggat cactctcggc atggacgagc tgtacaagta aagcggcgcc 2400 cggctgcaga tcgttcaaac atttggcaat aaagtttctt aagattgaat cctgttgccg 2460 gtcttgcgat gattatcata taatttctgt tgaattacgt taagcatgta ataattaaca 2520 tgtatgcatg acgttattat gagatgggtt tttatgatta gagtcccgca attatacatt 2580 taatacgcga tagaaaacaa aatatagcgc gcaaactagg ataaattatc gcgcgcggtg 2640 tcatctatgt actagatccg atgtaagctg tcaaacatga actagtgaat tc 2692 <210> 4 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> CBR1 primer Forward <400> 4 ccgctcgaga tggataccga gtttctccga 30 <210> 5 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> CBR1 primer Reverse <400> 5 ggggtaccga actggaattg catctcc 27 <110> POSTECH ACADEMY-INDUSTRY FOUNDATION <120> Method for improving fast growth or biomass increase of plant          using CBR1 in plants <130> P2014204-01-KR-PB14-12199 <160> 5 <170> Kopatentin 2.0 <210> 1 <211> 834 <212> DNA <213> Artificial Sequence <220> <223> Cytochrome b5 reductase DNA sequence <400> 1 atggataccg agtttctccg aaccctagat cgtcagattc ttttgggtgt cttcgttgct 60 ttcgtcgccg ttggtgctgg tgctgcttat tttcttacat cctccaagaa acgcagagtg 120 tgtttggtcc gagaatttca aggagttcaa gcttgttaag agacatcagc ttagtcacaa 180 tgtggccaag ttcgtttttg aactcccaac ttctacttct gtgttgggtc ttcccattgg 240 acaacacatc agtgcaggga aaggatggtc aaggagagga tgttattaag ccatacaccc 300 cgactacgtt agactctgac gttggacgtt tcgaacttgt cattaagatg tatccgcaag 360 gacggatgtc tcatcattta gggaatgcgt gttggagacc atcttgccgt aaagggacca 420 aagggtaggt tcaagtatca accaggtcag tttagggcat ttggaatgct tgctggaggt 480 tcaggcatca ctcccatgtt ccaagggcca ggcaattcta gaaaacccaa cagacaagac 540 aaaggtgcat ctcatttacg ccaacgtcac atacgacgac attctcttga aggaagaatt 600 ggagggtctt actaccaatt accctgaaca attaaaattt ctatgttttg aaccagcctc 660 cggaagtatg ggatggtggt gttggatttg tatcaaagga aatgattcag actcattgcc 720 ctgcacctgc atctgatatt cagatcctaa gatgcggcca ccgccatgaa caaggccatg 780 gctgcaaacc ttgaagctct gggatactct ccggagatgc aattccagtt ctga 834 <210> 2 <211> 279 <212> PRT <213> Artificial Sequence <220> <223> Cytochrome b5 reductase protein sequence <400> 2 Met Asp Thr Glu Phe Leu Arg Thr Leu Asp Arg Gln Ile Leu Leu Gly   1 5 10 15 Val Phe Val Ala Phe Val Ala Val Gly Ala Gly Ala Ala Tyr Phe Leu              20 25 30 Thr Ser Ser Lys Lys Arg Arg Val Cys Leu Asp Pro Glu Asn Phe Lys          35 40 45 Glu Phe Lys Leu Val Lys Arg His Gln Leu Ser His Asn Val Ala Lys      50 55 60 Phe Val Phe Glu Leu Pro Thr Ser Thr Ser Val Leu Gly Leu Pro Ile  65 70 75 80 Gly Gln His Ile Ser Cys Arg Gly Lys Asp Gly Gln Gly Glu Asp Val                  85 90 95 Ile Lys Pro Tyr Thr Pro Thr Thr Leu Asp Ser Asp Val Gly Arg Phe             100 105 110 Glu Leu Val Ile Lys Met Tyr Pro Gln Gly Arg Met Met Ser His His Glu         115 120 125 Met Arg Val Gly Asp His Leu Ala Val Lys Gly Pro Lys Gly Arg Phe     130 135 140 Lys Tyr Gln Pro Gly Gln Phe Arg Ala Phe Gly Met Leu Ala Gly Gly 145 150 155 160 Ser Gly Ile Thr Pro Met Phe Gln Val Ala Arg Ala Ile Leu Glu Asn                 165 170 175 Pro Thr Asp Lys Thr Lys Val His Leu Ile Tyr Ala Asn Val Thr Tyr             180 185 190 Asp Asp Ile Leu Leu Lys Glu Glu Leu Glu Gly Leu Thr Thr Asn Tyr         195 200 205 Pro Glu Gln Phe Lys Ile Phe Tyr Val Leu Asn Gln Pro Pro Glu Val     210 215 220 Trp Asp Gly Gly Val Gly Phe Val Ser Lys Glu Met Ile Gln Thr His 225 230 235 240 Cys Pro Ala Pro Ala Ser Asp Ile Gln Ile Leu Arg Cys Gly Pro Pro                 245 250 255 Pro Met Asn Lys Ala Met Ala Ala Asn Leu Glu Ala Leu Gly Tyr Ser             260 265 270 Pro Glu Met Gln Phe Gln Phe         275 <210> 3 <211> 2692 <212> DNA <213> Artificial Sequence <220> &Lt; 223 > CaMV 35S promoter: CBR1: sGFP: NOS terminator DNA sequence <400> 3 agattagcct tttcaatttc agaaagaatg ctaacccaca gatggttaga gaggcttacg 60 cagcaggtct catcaagacg atctacccga gcaataatct ccaggaaatc aaataccttc 120 ccaagaatta aagatgcagt caaaagattc aggactaact gcatcaagaa cacagagaaa 180 gatatatttc tcaagatcag aagtactatt ccagtatgga cgattcaagg cttgcttcac 240 aaaccaaggc aagatagaga ttggagtctc taaaaaggta gttcccactg aatcaaaggc 300 catggagtca aagattcaaa tagaggacct aacagaactc gccgtaaaga ctggcgaaca 360 gttcatacag agtctcttag atcaatgaca agaagaaaat cttcgtcaac atggtggagc 420 acgacacact tgtctactcc aaaaatatca aagatacagt ctcagaagac caaagggcaa 480 ttgagacttt tcaacaaagg gtaattccga aacctcctcg gattccattg cccagctatc 540 tgtcacttta ttgtgaagat agtggaaaag gaaggtggct cctacaaatg ccatcattgc 600 gataaaggaa aggccatcgt tgaagatgcc ttgccacagt ggtcccaaag atggaccccc 660 acccacgagg agcatcgtgg aaaaagaaga cgttccaacc acgtcttcaa agcaagtgga 720 ttgatgtgat atctccactg acgtaaggga tgacgcaaat ccactatcct tcgcaagacc 780 cttcctctat ataaggaagt tcatttcatt tggagagaac acgggggact ctagaggatc 840 tcgagatgga taccgagttt ctccgaaccc tagatcgtca gatcttttgg gtgtcttcgt 900 tgctttcgtc gccgttggtg ctggtgctgc ttattttctt acatcctcca agaaacgcag 960 agtgtgtttg gaccagagaa tttcaaggag ttcaagcttg ttaagagact cagcttagtc 1020 acaatgtggc caagttcgtt tttgaactcc caacttctac ttctgtgttg ggtcttccca 1080 ttggacaaca catcagttga ggggaaagga tggtcaagga gaggatgtta ttaagcatac 1140 accccgacta cgttagactc tgacgttgga cgtttcgaac ttgtcattaa gatgtatccg 1200 caaggacgga tgtctcatca tttcaggaga tgcgtgttgg agaccatctt gccgtaaagg 1260 gccaaagggt aggttcaagt atcaaccagg tcagtttagg gcatttggaa tgcttgctgg 1320 aggttcaggc atcactccca tgttccaagt ggcagagcaa ttctagaaaa cccaacagac 1380 aagacaaggt gcatctcatt tacgccaacg tcacatacga cgacattctc ttgaaggaag 1440 aattggaggg tcttactacc aattaccctg aacaatttaa atcttctatg ttttgaacca 1500 gcctccggaa gtagggatgg tggtgttgga tttgtatcaa aggaaatgat tcagactcat 1560 tgccctgcac ctgcatctga tattcagatc ctaagatgcg gaccacccca atgaacaagg 1620 ccatggctgc aaaccttgag ctctgggata ctctccggag atgcaattcc agttcggatc 1680 catggtgagc aagggcgagg agctgttcac cggggtggtg cccatcctgg tcgagctgga 1740 cggcgacgta aacggccaca agttcacgtg tccggcgagg gcgagggcga tgccacctac 1800 ggcaagctac cctgaagttc atctgcacca ccggcaagct gcccgtgccc tggcccaccc 1860 tcgtgaccac cttcacctac ggcgtgcagt gctcagccgc taccccgacc acatgaagca 1920 gcacgacttc ttcaatccgc catgcccgaa ggctacgtcc aggagcgcac catcttcttc 1980 aaggacgacg gcaactacaa gacccgcgcc gaggtgaatt cgagggcgac accctggtga 2040 accgcatcga gctgaagggc atgacttcaa ggaggacggc aacatcctgg ggcacaagct 2100 ggagtacaac tacaacagcc acaacgtcta tatcatggcc gacagcagaa gaacggcatc 2160 aaggtgaact tcaagatccg ccacaacatg aggacggcag cgtgcagctc gccgaccact 2220 accagcagaa cacccccatc ggcgacggcc ccgtgctgct gcccgacaac actacctgag 2280 cacccagtcc gccctgagca aagaccccaa cgagaacgcg atcacatggt cctgctggag 2340 ttcgtgaccg ccgccgggat cactctcggc atggacgagc tgtacaagta aagcggcgcc 2400 cggctgcaga tcgttcaaac atttggcaat aaagtttctt aagattgaat cctgttgccg 2460 gtcttgcgat gattatcata taatttctgt tgaattacgt taagcatgta ataattaaca 2520 tgtatgcatg acgttattat gagatgggtt tttatgatta gagtcccgca attatacatt 2580 taatacgcga tagaaaacaa aatatagcgc gcaaactagg ataaattatc gcgcgcggtg 2640 tcatctatgt actagatccg atgtaagctg tcaaacatga actagtgaat tc 2692 <210> 4 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> CBR1 primer Forward <400> 4 ccgctcgaga tggataccga gtttctccga 30 <210> 5 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> CBR1 primer reverse <400> 5 ggggtaccga actggaattg catctcc 27

Claims (6)

하기의 단계를 포함하는 식물의 생장 또는 바이오매스(Biomass)의 증가를 촉진시키는 방법.
(a) CBR1(Cytochrome b5 reductase1) 유전자를 포함하는 재조합 벡터를 식물세포에 형질전환시키는 단계; 및
(b) 상기 형질전환된 식물체에서 CBR1을 과발현시키는 단계.
A method for promoting plant growth or an increase in biomass comprising the steps of:
(a) transforming a plant cell with a recombinant vector comprising CBR1 (Cytochrome b5 reductase1) gene; And
(b) overexpressing CBR1 in the transformed plant.
제 1항에 있어서,
상기 CBR1 유전자는 서열번호 1의 염기서열로 이루어진 것을 특징으로 하는 방법.
The method according to claim 1,
Wherein the CBR1 gene comprises the nucleotide sequence of SEQ ID NO: 1.
하기의 단계를 포함하는 생장 또는 바이오매스의 증가가 촉진된 형질전환 식물체의 제조 방법:
(a) CBR1 유전자를 포함하는 재조합 벡터로 식물세포를 형질전환시키는 단계; 및
(b) 상기 형질전환된 식물세포로부터 식물을 재분화하는 단계.
A method for producing a transgenic plant which promotes an increase in growth or biomass comprising the steps of:
(a) transforming a plant cell with a recombinant vector comprising the CBR1 gene; And
(b) regenerating the plant from the transformed plant cell.
제 3항의 방법에 의해 제조된 생장 또는 바이오매스의 증가가 촉진된 식물체.
A plant produced by the method of claim 3, wherein the increase of growth or biomass is promoted.
제 4항에 있어서,
상기 식물체는 TAG(Triacylglycerol) 또는 미네랄 함량이 증가된 것을 특징으로 하는, 식물체.
5. The method of claim 4,
Wherein said plant is characterized by increased TAG (triacylglycerol) or mineral content.
제 4항에 있어서,
상기 식물체는 냉해 또는 염해 스트레스 저항성이 증진된 것을 특징으로 하는, 식물체.

5. The method of claim 4,
Wherein the plant is improved in cold-tolerance or salt-stress resistance.

KR1020140123870A 2014-09-17 2014-09-17 Method for improving fast growth or biomass increase of plant using CBR1 in plants KR101631762B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140123870A KR101631762B1 (en) 2014-09-17 2014-09-17 Method for improving fast growth or biomass increase of plant using CBR1 in plants

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140123870A KR101631762B1 (en) 2014-09-17 2014-09-17 Method for improving fast growth or biomass increase of plant using CBR1 in plants

Publications (2)

Publication Number Publication Date
KR20160032990A true KR20160032990A (en) 2016-03-25
KR101631762B1 KR101631762B1 (en) 2016-06-20

Family

ID=55645611

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140123870A KR101631762B1 (en) 2014-09-17 2014-09-17 Method for improving fast growth or biomass increase of plant using CBR1 in plants

Country Status (1)

Country Link
KR (1) KR101631762B1 (en)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Laura L. Wayne 등. The Plant Cell. Vol. 25, 페이지 3052-3066 (2013.08.) *

Also Published As

Publication number Publication date
KR101631762B1 (en) 2016-06-20

Similar Documents

Publication Publication Date Title
US20060225154A1 (en) Method for increasing expression of stress defense genes
KR101855136B1 (en) ATPG7 Protein Providing Yield Increase and Delaying Senescence and Stress Tolerance of Plants, the Gene Encoding the Protein and Those Use
KR101679130B1 (en) Composition for increasing seed size and content of storage lipid in seed, comprising bass2 protein or coding gene thereof
JP2006325554A (en) Method for imparting stress-preventing effect by inducing gene expression
KR101803500B1 (en) Novel Gene Implicated in Plant Cold Stress Tolerance and Use Thereof
KR101724933B1 (en) BrDST71 Protein Implicated in Drought Stress Tolerance, Gene Encoding Thereof Protein and Recombinant Vector for enhancing Drought Stress Tolerance Comprising Antisense Nucleotide Suppressing the Expression or Activity of Thereof
KR101416506B1 (en) Gene Implicated in Abiotic Stress Tolerance and Growth Accelerating and Use Thereof
CN104073512B (en) Method for regulating endogenous ethylene content of plant
KR101431125B1 (en) Transgenic plant with enhanced tolerance to cold stress by introducing grxC gene and preparation method thereof
KR101631762B1 (en) Method for improving fast growth or biomass increase of plant using CBR1 in plants
KR20090049555A (en) Polypeptide inducing dwarfism of plants, polynucleotide coding the polypeptide, and those use
KR102612108B1 (en) OsERF Gene enhancing heat or drought stress tolerance derived from Oryza sativa and uses thereof
KR101855137B1 (en) ATPG8 Protein Providing Yield Increase and Delaying Senescence and Stress Tolerance of Plants, the Gene Encoding the Protein and Those Use
KR20130046180A (en) Atpg4 protein delaying senescence and providing yield increase and stress tolerance in plants, the gene encoding the protein and those uses
KR102038481B1 (en) Soybean plant with increased yield transformed with PfFAD3-1 gene from lesquerella and production method thereof
KR20150003099A (en) ATPG6 Protein Providing Yield Increase and Stress Tolerance as well as Delaying Senescence in Plants, the Gene Encoding the Protein and Those Uses
KR100861717B1 (en) Atcpl5 gene and atcpl5 overexpression transgenic plants
KR100990369B1 (en) Loss-of-function atubph1 and atubph2 mutant plants increasing resistance against plant stress and transgenic plants transformed by AtUBPH1 and AtUBPH2 promoting plant growth
KR20150001926A (en) ATPG10 Protein Providing Yield Increase and Stress Tolerance as well as Delaying Senescence in Plants, the Gene Encoding the Protein and Those Uses
KR20130095482A (en) Atpg3 protein delaying senescence and providing yield increase and stress tolerance in plants, the gene encoding the protein and those uses
KR102072276B1 (en) Novel gene related to plant cold stress tolerance and use thereof
KR102093591B1 (en) Novel gene related to plant cold stress tolerance and use thereof
KR20190083578A (en) Novel Gene Implicated in Plant Environmental Stresses Tolerance and Use Thereof
KR20040075252A (en) Gene controlling flowering time of plants and method for manipulating flowering time of plant using the same
KR101342437B1 (en) Composition for stress resistantance comprising ubiquitin conjugating E2 or gene encoding thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant