KR20160031814A - Photopolymerizable composition for nanoimprint and method of preparing nanopatterned film using the same - Google Patents

Photopolymerizable composition for nanoimprint and method of preparing nanopatterned film using the same Download PDF

Info

Publication number
KR20160031814A
KR20160031814A KR1020140122008A KR20140122008A KR20160031814A KR 20160031814 A KR20160031814 A KR 20160031814A KR 1020140122008 A KR1020140122008 A KR 1020140122008A KR 20140122008 A KR20140122008 A KR 20140122008A KR 20160031814 A KR20160031814 A KR 20160031814A
Authority
KR
South Korea
Prior art keywords
nanoimprint
photopolymerizable composition
formula
chemical formula
present
Prior art date
Application number
KR1020140122008A
Other languages
Korean (ko)
Other versions
KR101650740B1 (en
Inventor
조성윤
이영철
강영훈
이창진
김동욱
강영구
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Priority to KR1020140122008A priority Critical patent/KR101650740B1/en
Publication of KR20160031814A publication Critical patent/KR20160031814A/en
Application granted granted Critical
Publication of KR101650740B1 publication Critical patent/KR101650740B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F230/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • C08F230/04Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal
    • C08F230/08Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/102Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/103Esters of polyhydric alcohols or polyhydric phenols of trialcohols, e.g. trimethylolpropane tri(meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/104Esters of polyhydric alcohols or polyhydric phenols of tetraalcohols, e.g. pentaerythritol tetra(meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/12Esters of phenols or saturated alcohols
    • C08F222/18Esters containing halogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F230/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • C08F230/02Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/442Block-or graft-polymers containing polysiloxane sequences containing vinyl polymer sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances

Abstract

The present invention relates to a photopolymerizable composition for nanoimprint which is made photopolymerizable by introducing an acrylate functional group to an end based on siloxane and phosphorous; and a preparation method of a micropattern film using the same. The photopolymerizable composition for nanoimprint in the present invention has excellent releasing properties from a mold, excellent hardening properties, excellent etching resistance, excellent pattern transcription ability, excellent adhesion to a substrate, excellent chemical resistance, excellent durability, excellent transparency, etc., and thus can be usefully used for preparing a micropattern film. The photopolymerizable composition of the present invention includes at least one compound selected from the group consisting of compounds represented by chemical formula 1 to 3.

Description

나노임프린트용 광중합성 조성물 및 이를 이용한 미세패턴 박막의 제조방법{Photopolymerizable composition for nanoimprint and method of preparing nanopatterned film using the same}TECHNICAL FIELD The present invention relates to a photopolymerizable composition for a nanoimprint and a method for manufacturing a nanopatterned thin film using the same.

본 발명은 실록산과 포스포러스를 기반으로 말단에 작용기로 아크릴레이트를 도입하여 광경화가 가능하도록 한 나노임프린트용 광중합성 조성물 및 이를 이용한 미세패턴 박막의 제조방법에 관한 것이다.
The present invention relates to a photopolymerizable composition for a nanoimprint in which acrylate is introduced as a functional group on the basis of siloxane and phosphorus to enable photocuring, and a method for producing a fine patterned thin film using the same.

최근 디스플레이용 편광막의 편광율 및 투과율 개선을 위해 나노임프린트 기술을 이용한 편광막의 제조가 주목을 끌고 있다. 특히 우수한 편광 효율 구현을 위해 100 nm 이하의 피치(Pitch)특성을 갖는 나노임프린트 공정 기술 및 소재 개발에 대한 관심이 커지고 있다. 이러한 100 nm 이하 급의 임프린트 기술 구현을 위해서는 미세 패턴형성이 가능하며 경화성, 패턴 이형성, 점도 등의 요구 조건을 충족시키는 경화 소재의 개발이 필수적이며, 일반적인 마이크로 또는 수백 나노급 임프린트용 경화 소재와 비교하여 월등히 우수한 패턴 특성이 요구된다.
Recently, the production of a polarizing film using a nanoimprint technique has been attracting attention for improving the polarization ratio and transmittance of polarizing films for displays. Particularly, in order to realize excellent polarization efficiency, there is a growing interest in nanoimprint process technology and material development having a pitch characteristic of 100 nm or less. In order to realize the imprinting technology of the sub-100 nm class, it is necessary to develop a curing material which can form a fine pattern and satisfy requirements such as hardenability, pattern releasing property and viscosity, and it is necessary to compare with a curing material for a general micro or several hundred nano- So that excellent pattern characteristics are required.

임프린트 기술이란 기판상에 형성하고자 하는 패턴에 대응하는 패턴의 요철을 갖는 금형을 사용하는 기판 표면에 형성된 필름을 형성하여 원하는 패턴을 기판 표면에 전사하는 기술이다. 이와 같은 임프린트 기술을 사용함으로써 나노단위의 미세한 패턴을 형성할 수 있다. 임프린트 기술 중에서도 수백 또는 수나노미터의 미세한 패턴을 형성하는 기술을 나노임프린트 기술이라 하며, 특허문헌 1에 나노임프린트 공정에 대하여 개시되어 있다.
The imprint technique is a technique for forming a film on a surface of a substrate using a metal mold having irregularities of a pattern corresponding to a pattern to be formed on a substrate, and transferring a desired pattern onto the surface of the substrate. By using such an imprint technique, a minute pattern of nano unit can be formed. Among the imprint techniques, a technique of forming a fine pattern of several hundreds or nanometers is called a nanoimprint technique, and Patent Document 1 discloses a nanoimprint process.

나노임프린트 리소그래피는 1996년 미국 프린스턴 대학의 Stephen Y. Chou 교수에 의해 도입된 미세 패턴을 만드는 미세패턴 가공기술이다. 미세패턴 기술은 여러 산업분야의 기반이 되는 기반기술로서 전자소자, 광학소자, 마이크로전자기계시스템(MEMS), 최근에는 바이오 소자에 이르기까지 다양한 분야에서 사용되는 핵심기술이다. 나노임프린트 리소그래피 기술의 핵심은 전자빔 리소그래프와 같은 기술을 이용하여 나노 스케일의 구조를 가지는 마스터몰드를 제작하고, 그 마스터몰드를 고분자 박막에 각인하여 패턴이 형성된 레플리카 몰드를 제작한다. 제작된 레플리카 몰드는 스탬프형식으로 반복적으로 사용이 가능하다. 나노임프린트는 성형방법에 따라 UV를 이용한 UV-나노임프린트와 열을 이용한 열-나노임프린트로 나뉜다.
Nanoimprint lithography is a micropatterning technology that creates fine patterns introduced by Professor Stephen Y. Chou of Princeton University in 1996. Micro pattern technology is a key technology used in various fields ranging from electronic devices, optical devices, microelectromechanical systems (MEMS), and recently to biotechnology, which is an underlying technology for various industries. At the core of the nanoimprint lithography technology, a master mold having a nanoscale structure is manufactured using a technique such as electron beam lithography, and the master mold is stamped on the polymer thin film to produce a replica mold having a pattern. The produced replica mold can be repeatedly used in the form of a stamp. Nanoimprint is divided into UV-nanoimprint using UV and heat-nanoimprint using heat according to molding method.

열-나노임프린트는 poly(methylmethacrylate), PMMA와 같은 열가소성 재질의 폴리머 레진이 도포된 기판표면을 유리전이온도 이상의 고온으로 온도를 가열한 후 가압하여 형성을 성형한 뒤 온도를 냉각시켜 분리하여 성형을 한다. 열-나노임프린트는 온도를 제어해야 하고, 패턴을 형성하기 위해서는 높은 압력으로 가압하여야 하기에 공정시간이 긴 문제점이 있다.
The thermo-nanoimprint is formed by heating the substrate surface coated with a thermoplastic polymer resin such as poly (methylmethacrylate) or PMMA at a temperature higher than the glass transition temperature, forming the molding by pressurization, cooling the temperature, do. The heat-nanoimprint has a long process time because it needs to control the temperature and pressurize it at a high pressure in order to form a pattern.

반면 UV-나노임프린트는 UV 소스를 이용하여 패턴을 형성하며, 몰드를 제거하고 RIE(Reaction Ion Etching)와 같은 공정을 이용하여 잔류 고분자층을 제거하면 원하는 패턴을 구현할 수 있다. UV-나노임프린트는 수초에서 수십 초 동안의 시간에서 공정이 진행되며, 또한 UV가 투과되어야 하는 레플리카 몰드를 사용하므로 패턴의 일치성에서도 우수하다. 저 점도의 고분자 레진을 사용하여 공정 후 형성되는 고분자 잔류 층을 최소화할 수 있는 장점도 있다.
On the other hand, the UV-nanoimprint forms a pattern using a UV source, and a desired pattern can be realized by removing the mold and removing the residual polymer layer by using a process such as RIE (Reaction Ion Etching). UV-nanoimprinting is performed at a time of a few seconds to several tens of seconds, and also uses a replica mold to transmit UV, which is also excellent in pattern consistency. There is also an advantage that the polymer residual layer formed after the process can be minimized by using the polymer resin having a low viscosity.

미세패턴 가공기술의 주류를 이루는 기술은 광을 이용한 감광기술로서, 패턴의 정확성과 일치성 등을 강점으로 하나의 몰드를 경화성 고분자로 복제하여 만든 몰드를 이용하여 경제적으로 미세패턴을 만들 수 있다는 장점을 지니고 있다. 저가형 고분자를 이용하여 하나의 몰드에서 다수의 복제 몰드를 만들 수 있으므로, 고가의 가공비용이 들어간 원판의 손상을 근본적으로 피할 수 있다.
The main technology of fine patterning technology is light-based photolithography technology. With the advantage of pattern accuracy and consistency, it is possible to make fine patterns economically using a mold made by duplicating one mold with a hardenable polymer. . Since a plurality of duplicate molds can be made in one mold by using a low-priced polymer, it is possible to fundamentally avoid the damage of the original plate containing expensive processing costs.

UV-나노임프린트 공정은 경제성 있는 공정이 가능하고, 하나의 몰드만 확보되면 다양한 연구목적에 맞게 미세구조를 가공할 수 있다. 이러한 나노임프린트 기술에 사용되는 UV 경화수지는 몰드와의 이형성, 빠른 경화 거동, 우수한 에칭 저항성, 패턴 전사성 등의 여러 공정조건을 만족시켜야 한다. 특히 나노 수준의 임프린트 공정의 경우 이러한 임프린트 공정 조건을 충족시키는 경화 수지의 개발은 매우 중요하다.
The UV-nanoimprint process enables economical processes, and if one mold is available, the microstructure can be processed for various research purposes. The UV curable resin used in such nanoimprint technology must satisfy various process conditions such as mold releasability, fast curing behavior, excellent etching resistance, and pattern transfer property. The development of cured resins that meet these imprint process conditions is especially important for nano-level imprint processes.

이에, 본 발명자들은 나노수준의 임프린트 공정에 적합한 광경화성 조성물을 개발하기 위하여 연구하던 중, 본 발명에 따른 나노임프린트용 광중합성 조성물이 우수한 몰드와의 이형성, 경화성, 에칭 저항성, 패턴 전사성, 기판과의 밀착성, 내화학성, 내구성 및 투과성이 있음을 확인하고 본 발명을 완성하였다.
Accordingly, the present inventors have conducted studies to develop a photocurable composition suitable for a nano-level imprint process, and have found that the photopolymerizable composition for a nanoimprint according to the present invention is excellent in mold releasability, curability, etching resistance, Adhesion, chemical resistance, durability and permeability, and the present invention has been completed.

한국 특허문헌 10-2007-0093667호Korean Patent Document No. 10-2007-0093667

본 발명의 목적은 나노임프린트용 광중합성 조성물을 제공하는 것이다.
It is an object of the present invention to provide a photopolymerizable composition for nanoimprint.

본 발명의 다른 목적은 상기 나노임프린트용 광중합성 조성물을 포함하는 미세패턴 박막의 제조방법을 제공하는 것이다.
Another object of the present invention is to provide a method for producing a fine patterned thin film comprising the photopolymerizable composition for nanoimprint.

본 발명의 또 다른 목적은 상기 나노임프린트용 광중합성 조성물을 포함하는 미세패턴 박막을 제공하는 것이다.
It is still another object of the present invention to provide a fine patterned thin film comprising the photopolymerizable composition for the nanoimprint.

상기 목적을 달성하기 위하여, 본 발명은 하기 화학식 1-3으로 표시되는 화합물로 이루어지는 군으로부터 선택되는 1종 이상의 화합물을 포함하는 나노임프린트용 광중합성 조성물을 제공한다.In order to achieve the above object, the present invention provides a photopolymerizable composition for a nanoimprint comprising at least one compound selected from the group consisting of compounds represented by the following general formulas (1-3).

[화학식 1][Chemical Formula 1]

Figure pat00001
Figure pat00001

(상기 화학식 1에서,(In the formula 1,

R1은 -(CH2)m-, 또는 -CH2(CF2OCF2)nCH2-이고,R 1 is - (CH 2 ) m -, or -CH 2 (CF 2 OCF 2 ) n CH 2 -

m 및 n은 독립적으로 0-5의 정수이다).
and m and n are independently 0-5.

[화학식 2](2)

Figure pat00002
Figure pat00002

(상기 화학식 2에서,(In the formula (2)

R2는 -(CH2)p-, 또는 -(CF2CF2OCF2CF2)q-이고,R 2 is - (CH 2 ) p -, or - (CF 2 CF 2 OCF 2 CF 2 ) q -

p 및 q는 독립적으로 0-5의 정수이다).
p and q are independently integers of 0-5.

[화학식 3](3)

Figure pat00003
Figure pat00003

(상기 화학식 3에서,(3)

R3는 -CH2O(CH2CH2O)kCH2-, 또는 -(CF2OCF2)j-이고,R 3 is -CH 2 O (CH 2 CH 2 O) k CH 2 -, or - (CF 2 OCF 2 ) j -

k 및 j는 독립적으로 0-5의 정수이다).
k and j are independently an integer of 0-5.

또한, 본 발명은 기판상에 상기 나노임프린트용 광중합성 조성물을 도포하는 단계(단계 1);The present invention also provides a method for manufacturing a nanoimprint lithographic printing plate comprising the steps of: (1) applying a photopolymerizable composition for a nanoimprint onto a substrate;

상기 단계 1의 나노임프린트용 광중합성 조성물이 도포된 기판상에 패턴이 형성된 투명 몰드를 가압하여 성형하는 단계(단계 2);Pressing the transparent mold having the pattern formed on the substrate coated with the photopolymerizable composition for nanoimprint of step 1 (step 2);

광을 조사하여 나노임프린트용 광중합성 조성물을 경화시킨 후, 몰드를 이형시키는 단계(단계 3); 및Irradiating light to cure the photopolymerizable composition for nanoimprint and releasing the mold (step 3); And

식각 부위에 잔류하는 상기 나노임프린트용 광중합성 조성물을 에칭하는 단계(단계 4);를 포함하는 미세패턴 박막의 제조방법을 제공한다.
And etching the photopolymerizable composition for the nanoimprint that remains at the etching site (step 4).

나아가, 본 발명은 상기 나노임프린트용 광중합성 조성물을 포함하는 미세패턴 박막을 제공한다.
Further, the present invention provides a fine patterned thin film comprising the photopolymerizable composition for nanoimprint.

본 발명에 따른 나노임프린트용 광중합성 조성물은 몰드와의 이형성, 경화성, 에칭 저항성, 패턴 전사성, 기판과의 밀착성, 내화학성, 내구성, 투과성 등이 우수하므로 이를 포함하는 미세패턴 박막의 제조에 유용하게 사용될 수 있다.
The photopolymerizable composition for a nanoimprint according to the present invention is excellent in mold releasability, curability, etching resistance, pattern transferability, adhesion to a substrate, chemical resistance, durability and permeability, Lt; / RTI >

도 1은 본 발명에 따른 나노임프린트용 광중합성 조성물을 이용하여 자외선 나노임프린트 공정을 통해 제작된 100 nm 피치(Pitch)의 형상을 SEM(Scanning Electron Microscope)을 이용하여 관찰한 이미지이고,
도 2는 본 발명에 따른 나노임프린트용 광중합성 조성물을 이용하여 자외선 나노임프린트 공정을 통해 제작된 100 nm 피치(Pitch)의 패턴 단면을 SEM(Scanning Electron Microscope)을 이용하여 관찰한 이미지이고,
도 3은 본 발명에 따른 나노임프린트용 광중합성 조성물의 에칭 저항성을 평가한 그래프이다.
1 is an image obtained by observing a shape of a 100 nm pitch fabricated by a UV nanoimprint process using a photopolymerizable composition for a nanoimprint according to the present invention using a scanning electron microscope (SEM)
FIG. 2 is an image obtained by observing a pattern section of a 100 nm pitch produced by an ultraviolet nanoimprint process using a photopolymerizable composition for a nanoimprint according to the present invention, using an SEM (Scanning Electron Microscope)
3 is a graph showing the etching resistance of the photopolymerizable composition for a nanoimprint according to the present invention.

이하 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 하기 화학식 1-3으로 표시되는 화합물로 이루어지는 군으로부터 선택되는 1종 이상의 화합물을 포함하는 나노임프린트용 광중합성 조성물을 제공한다.The present invention provides a photopolymerizable composition for a nanoimprint comprising at least one compound selected from the group consisting of compounds represented by the following general formula (1-3).

[화학식 1][Chemical Formula 1]

Figure pat00004
Figure pat00004

상기 화학식 1에서,In Formula 1,

R1은 -(CH2)m-, 또는 -CH2(CF2OCF2)nCH2-이고,R 1 is - (CH 2 ) m -, or -CH 2 (CF 2 OCF 2 ) n CH 2 -

m 및 n은 독립적으로 0-5의 정수이다.
m and n are independently an integer of 0-5.

[화학식 2](2)

Figure pat00005
Figure pat00005

상기 화학식 2에서,In Formula 2,

R2는 -(CH2)p-, 또는 -(CF2CF2OCF2CF2)q-이고,R 2 is - (CH 2 ) p -, or - (CF 2 CF 2 OCF 2 CF 2 ) q -

p 및 q는 독립적으로 0-5의 정수이다.
p and q are independently an integer of 0-5.

[화학식 3](3)

Figure pat00006
Figure pat00006

상기 화학식 3에서,In Formula 3,

R3는 -CH2O(CH2CH2O)kCH2-, 또는 -(CF2OCF2)j-이고,R 3 is -CH 2 O (CH 2 CH 2 O) k CH 2 -, or - (CF 2 OCF 2 ) j -

k 및 j는 독립적으로 0-5의 정수이다.
k and j are independently 0-5 integers.

보다 구체적으로, 상기 화학식 1로 표시되는 화합물은 하기 화학식 4 또는 화학식 5로 표시되는 화합물이고,More specifically, the compound represented by the formula (1) is a compound represented by the following formula (4) or (5)

[화학식 4][Chemical Formula 4]

Figure pat00007

Figure pat00007

[화학식 5][Chemical Formula 5]

Figure pat00008

Figure pat00008

상기 화학식 2로 표시되는 화합물은 하기 화학식 6 또는 화학식 7로 표시되는 화합물이고,The compound represented by the formula (2) is a compound represented by the following formula (6) or (7)

[화학식 6][Chemical Formula 6]

Figure pat00009

Figure pat00009

[화학식 7](7)

Figure pat00010

Figure pat00010

상기 화학식 3으로 표시되는 화합물은 하기 화학식 8 또는 화학식 9로 표시되는 화합물이다.The compound represented by the formula (3) is a compound represented by the following formula (8) or (9).

[화학식 8][Chemical Formula 8]

Figure pat00011

Figure pat00011

[화학식 9][Chemical Formula 9]

Figure pat00012

Figure pat00012

상기 화학식 1(화학식 4 또는 화학식 5) 및 화학식 2(화학식 6 또는 화학식 7)로 표시되는 실록산계 화합물은 본 발명에 따른 나노임프린트용 광중합성 조성물의 우수한 에칭 저항성과 패턴 전사성 기능을 제공한다.The siloxane-based compound represented by Formula 1 (Formula 4 or 5) and Formula 2 (Formula 6 or 7) provides excellent etching resistance and pattern transferability of the photopolymerizable composition for nanoimprint according to the present invention.

또한, 상기 화학식 3(화학식 8 또는 화학식 9)으로 표시되는 포스포러스 화합물은 본 발명에 따른 나노임프린트용 광중합성 조성물의 우수한 경화 속도와 경화시 발생하는 수축 감소 기능을 제공한다.In addition, the phosphorus compound represented by Formula 3 (Formula 8 or 9) provides a good curing rate and a shrinkage reduction function during curing of the photopolymerizable composition for nanoimprint according to the present invention.

나아가, 플루오린이 도입된 화합물(화학식 5, 화학식 7, 또는 화학식 9)은 플루오린이 갖는 특유의 화학적 특이성, 즉 낮은 표면장력으로 인한 발수 및 발유 성능과 함께 저마찰계수의 표면특성으로 인하여 본 발명에 따른 나노임프린트용 광중합성 조성물의 우수한 몰드와의 이형성 기능을 제공한다.
Furthermore, the compounds (5, 7 or 9) in which fluorine is introduced have specific water-repellency and oil-repellency performance due to the specific chemical specificity of fluorine, namely low surface tension, Provides a mold releasing function with an excellent mold of the photopolymerizable composition for a nanoimprint.

또한, 상기 나노임프린트용 광중합성 조성물은 하기 화학식 10 내지 13으로 이루어지는 화합물 군으로부터 선택되는 1종 이상의 첨가제를 더 포함할 수 있다.The photopolymerizable composition for nanoimprint may further comprise at least one additive selected from the group consisting of compounds represented by the following formulas (10) to (13).

[화학식 10][Chemical formula 10]

Figure pat00013

Figure pat00013

[화학식 11](11)

Figure pat00014

Figure pat00014

[화학식 12][Chemical Formula 12]

Figure pat00015

Figure pat00015

[화학식 13][Chemical Formula 13]

Figure pat00016
Figure pat00016

상기 화학식 13에서,In Formula 13,

g는 1-20의 정수이고, 바람직하게는 5-15의 정수이고, 가장 바람직하게는 13(분자량이 약 700g/mol)의 정수이다.
g is an integer of 1-20, preferably an integer of 5-15, and most preferably an integer of 13 (molecular weight about 700 g / mol).

상기 첨가제는 본 발명에 따른 나노임프린트용 광중합성 조성물에 포함된 실록산계 화합물, 또는 포스포러스 화합물이 갖는 다관능 아크릴계가 도입되어 있으므로, 상기 조성물의 경화가 우수하게 유도될 수 있도록 돕는 역할을 수행한다. 즉, 이로 인하여 제조되는 수지는 가교(크로스링킹) 구조를 갖게 되어 경화 밀도가 증가하므로 내화학성 및 내구성이 향상된다.
Since the siloxane-based compound contained in the photopolymerizable composition for nanoimprinting according to the present invention or the polyfunctional acrylic-based compound contained in the phosphorus compound is introduced, the additive helps the curing of the composition to be excellently induced . That is, the resin thus produced has a crosslinking (cross linking) structure to increase the hardening density, so that the chemical resistance and the durability are improved.

나아가, 상기 나노임프린트용 광중합성 조성물은 광 개시제인 Darocur MBF(BASF, pehnyl glyoxylic acid methyl ester), Darocur 1173(BASF, 2-hydroxy-2-methyl-1-phenyl-1-propane), Irgacure 184(BASF, 1-hydroxy-cyclohexyl-phenyl-ketone), Irgacure 127(BASF, 2-hydroxy-1-{4-[4-(2-hydroxy-2-methyl-propionyl)-benzyl]-phenyl}-2-methyl-propan-1-one) 등을 포함할 수 있으며, 바람직하게는 Darocur MBF(BASF, pehnyl glyoxylic acid methyl ester)를 포함할 수 있다.Further, the photopolymerizable composition for the nanoimprint includes a photoinitiator Darocur MBF (BASF, pehnyl glyoxylic acid methyl ester), Darocur 1173 (BASF, 2-hydroxy-2-methyl-1-phenyl-1-propane), Irgacure 184 (BASF, 1-hydroxy-cyclohexyl phenyl ketone), Irgacure 127 (BASF, 2-hydroxy-1- {4- [4- (2-hydroxy- methyl-propan-1-one), and preferably Darocur MBF (BASF, pehnyl glyoxylic acid methyl ester).

여기서, 상기 광 개시제는 본 발명에 따른 나노임프린트용 광중합성 조성물의 전체 함량에 대하여 1-4 중량%를 사용하는 것이 바람직하다. 상기 광 개시제가 본 발명에 따른 나노임프린트용 광중합성 조성물의 전체 함량에 대하여 1 중량% 미만일 경우 광 조사를 통한 경화가 용이하게 유도되지 못하는 문제점이 있고, 4 중량% 초과일 경우 광 조사를 통한 경화가 용이하게 유도되기에 충분한 양 이상을 나노임프린트용 광중합성 조성물이 포함하게 되어 경화성이 감소하는 문제점이 있다.
It is preferable that the photoinitiator is used in an amount of 1 to 4% by weight based on the total amount of the photopolymerizable composition for a nanoimprint according to the present invention. When the amount of the photoinitiator is less than 1% by weight based on the total amount of the photopolymerizable composition for nanoimprint according to the present invention, there is a problem in that curing by light irradiation is not easily induced. When the amount exceeds 4% by weight, And the curing property is reduced because the photopolymerizable composition for nanoimprint is contained in an amount more than the amount sufficient for easy induction.

또한, 상기 나노임프린트용 광중합성 조성물은 용매인 글리세롤, 디메틸설폭사이드, 디메틸포름아마이드, N-메틸피롤리돈, 피리딘 퍼플루오로트리부틸아민, 퍼플루오로데칼린, 2-부타논, 메틸렌카보네이트, 프로필렌카보네이트, 알코올류, 에테르류, 에스테르류, 에틸렌글리콜알킬에테르아세테이트류, 에틸렌글리콜알킬에테르프로피오네이트류, 에틸렌글리콜모노알킬에테르류, 디에틸렌글리콜알킬에테르류, 프로필렌글리콜알킬에테르아세테이트류, 프로필렌글리콜알킬에테르프로피오네이트류, 프로필렌글리콜모노알킬에테르류, 디프로필렌글리콜알킬에테르류, 부틸렌글리콜모노메틸에테르류, 디부틸렌글리콜알킬에테르류 등을 1종 이상 포함할 수 있으며, 바람직하게는 디프로필렌글리콜 디메틸 에테르를 포함할 수 있다. 상기 용매의 함량을 조절함에 따라, 본 발명에 따른 나노임프린트용 광중합성 조성물의 점도를 조절할 수 있다.
In addition, the photopolymerizable composition for nanoimprint can be prepared by using a solvent such as glycerol, dimethylsulfoxide, dimethylformamide, N-methylpyrrolidone, pyridine perfluorotributylamine, perfluorodecalin, 2-butanone, methylene carbonate, propylene Examples of the solvent include alcohols, ethers, esters, ethylene glycol alkyl ether acetates, ethylene glycol alkyl ether propionates, ethylene glycol monoalkyl ethers, diethylene glycol alkyl ethers, propylene glycol alkyl ether acetates, propylene glycol Alkyl ether propionates, propylene glycol monoalkyl ethers, dipropylene glycol alkyl ethers, butylene glycol monomethyl ethers, dibutylene glycol alkyl ethers, and the like, preferably di Propylene glycol dimethyl ether. By adjusting the content of the solvent, the viscosity of the photopolymerizable composition for a nanoimprint according to the present invention can be controlled.

본 발명에 따른 나노임프린트용 광중합성 조성물은 25℃에서 3-200 cp(centi-poise)의 점도를 갖고, 바람직하게는 3-120 cp의 점도를 갖는다. 본 발명에 따른 나노임프린트용 광중합성 조성물의 점도가 3 cp 미만일 경우 기판상에서 조성물이 흘러내리는 문제점이 있고, 상기 조성물의 점도가 200 cp 초과일 경우 몰드의 패턴대로 상기 나노임프린트용 광중합성 조성물이 성형되기 어려운 문제점이 있다.The photopolymerizable composition for nanoimprint according to the present invention has a viscosity of 3-200 cp (centi-poise) at 25 ° C, preferably 3-120 cp. When the viscosity of the photopolymerizable composition for nanoimprint according to the present invention is less than 3 cp, there is a problem that the composition flows down on the substrate. When the viscosity of the composition exceeds 200 cp, the photopolymerizable composition for nanoimprinting .

상기 나노임프린트용 광중합성 조성물이 바람직한 점도 범위에 있을 경우, 유동성이 우수하기 때문에 몰드의 캐비티 내 상기 조성물이 빈틈없이 흘러들기 쉽고 버블에 의한 결함을 일으키지 않으므로, 몰드로 인한 잔사가 남지 않아 가공적으로 우수한 장점을 갖게 된다.
When the photopolymerizable composition for nanoimprinting is in a preferable range of viscosity, since the fluidity is excellent, the composition in the cavity of the mold tends to flow smoothly and does not cause defects due to bubbles. Therefore, It has advantages.

나아가, 본 발명에 따른 나노임프린트용 광중합성 조성물은 경화 전에 있어서 투과성이 높으므로, 광을 조사하였을 때 조성물의 외부뿐만 아니라 내부까지 광이 조사되므로 전체적으로 균일하게 경화가 유도되는 장점이 있다.
Further, since the photopolymerizable composition for nanoimprint according to the present invention has a high permeability before curing, light is irradiated not only to the outside but also to the inside of the composition upon irradiation with light, so that the composition is uniformly cured.

또한, 본 발명은 기판상에 상기 나노임프린트용 광중합성 조성물을 도포하는 단계(단계 1);The present invention also provides a method for manufacturing a nanoimprint lithographic printing plate comprising the steps of: (1) applying a photopolymerizable composition for a nanoimprint onto a substrate;

상기 단계 1의 나노임프린트용 광중합성 조성물이 도포된 기판상에 패턴이 형성된 투명 몰드를 가압하여 성형하는 단계(단계 2);Pressing the transparent mold having the pattern formed on the substrate coated with the photopolymerizable composition for nanoimprint of step 1 (step 2);

광을 조사하여 나노임프린트용 광중합성 조성물을 경화시킨 후, 몰드를 이형시키는 단계(단계 3); 및Irradiating light to cure the photopolymerizable composition for nanoimprint and releasing the mold (step 3); And

식각 부위에 잔류하는 상기 나노임프린트용 광중합성 조성물을 에칭하는 단계(단계 4);를 포함하는 미세패턴 박막의 제조방법을 제공한다.
And etching the photopolymerizable composition for the nanoimprint that remains at the etching site (step 4).

이하, 본 발명에 따른 미세패턴 박막의 제조방법을 단계별로 상세히 설명한다.
Hereinafter, a method for manufacturing a micropatterned thin film according to the present invention will be described in detail.

본 발명에 따른 미세패턴 박막의 제조방법에 있어서, 상기 단계 1은 기판상에 상기 나노임프린트용 광중합성 조성물을 도포하는 단계이다.In the method for manufacturing a fine patterned thin film according to the present invention, the step 1 is a step of applying the photopolymerizable composition for nanoimprint onto a substrate.

여기서, 상기 나노임프린트용 광중합성 조성물의 점도가 3 cp 미만일 경우 기판상에 도포할 때 점도가 낮아 흘러내리는 문제점이 발생할 수 있으므로 25℃에서 3-200 cp(centi-poise)의 점도를 갖는 것이 바람직하고, 3-120 cp의 점도를 갖는 것이 더욱 바람직하다.
When the viscosity of the photopolymerizable composition for nanoimprinting is less than 3 cp, the viscosity of the photopolymerizable composition for nanoimprinting may be lowered when it is applied on a substrate. Therefore, it is preferable to have a viscosity of 3-200 cp (centi-poise) at 25 ° C And more preferably 3 to 120 cp.

본 발명에 따른 미세패턴 박막의 제조방법에 있어서, 상기 단계 2는 상기 단계 1의 나노임프린트용 광중합성 조성물이 도포된 기판상에 패턴이 형성된 투명 몰드를 가압하여 성형하는 단계이다.In the method for manufacturing a fine patterned thin film according to the present invention, the step 2 is a step of pressing a transparent mold having a pattern formed on a substrate coated with the photopolymerizable composition for a nanoimprint of the step 1, by pressing.

여기서, 상기 몰드는 광이 통과하여 나노임프린트용 광중합성 조성물에 도달할 수 있도록 투명한 몰드를 사용하는 것이 바람직하다.Here, it is preferable that the mold is made of a transparent mold so that light can pass therethrough and reach the photopolymerizable composition for nanoimprint.

또한, 상기 나노임프린트용 광중합성 조성물의 점도가 200 cp 초과일 경우 몰드의 패턴대로 상기 나노임프린트용 광중합성 조성물이 성형되기 어려운 문제점이 발생할 수 있으므로 25℃에서 3-200 cp(centi-poise)의 점도를 갖는 것이 바람직하고, 3-120 cp의 점도를 갖는 것이 더욱 바람직하다.
When the viscosity of the photopolymerizable composition for nanoimprint is more than 200 cp, the photopolymerizable composition for the nanoimprint may not be formed as a pattern of the mold. Therefore, a viscosity of 3-200 cp (centi-poise) at 25 ° C It is more preferable to have a viscosity of 3-120 cp.

본 발명에 따른 미세패턴 박막의 제조방법에 있어서, 상기 단계 3은 광을 조사하여 나노임프린트용 광중합성 조성물을 경화시킨 후, 몰드를 이형시키는 단계이다.In the method for producing a fine patterned thin film according to the present invention, the step 3 is a step of curing the photopolymerizable composition for nanoimprint by irradiating light and releasing the mold.

여기서, 상기 광은 자외선(ultraviolet rays, UV), 감마선, 전자선 등을 사용할 수 있으며, 자외선을 사용하는 것이 바람직하다.
Here, the light may be ultraviolet rays (UV), gamma rays, electron beams, or the like, and ultraviolet rays are preferably used.

본 발명에 따른 미세패턴 박막의 제조방법에 있어서, 상기 단계 4는 식각 부위에 잔류하는 상기 나노임프린트용 광중합성 조성물을 에칭하는 단계이다.In the method of manufacturing a fine patterned thin film according to the present invention, the step 4 is a step of etching the photopolymerizable composition for nanoimprint remaining on the etching site.

여기서, 상기 에칭은 플라즈마 에칭, 웨트 에칭, 드라이 에칭 등을 할 수 있으며, 플라즈마 에칭을 수행하는 것이 바람직하다.
Here, the etching may be plasma etching, wet etching, dry etching, or the like, and plasma etching is preferably performed.

또한, 본 발명은 상기 나노임프린트용 광중합성 조성물을 포함하는 미세패턴 박막을 제공한다.
The present invention also provides a fine patterned thin film comprising the photopolymerizable composition for nanoimprint.

본 발명에 따른 나노임프린트용 광중합성 조성물은, 이를 구성하는 각각의 구성요소가 갖는 기능들이 복합되어 결과적으로 몰드와의 이형성, 경화성, 에칭 저항성, 패턴 전사성, 기판과의 밀착성, 내화학성, 내구성, 투과성 등이 우수할 것이라 예상된다.
The photopolymerizable composition for a nanoimprint according to the present invention is characterized in that the functions of the respective constituent elements constituting the nanoimprint are mixed and as a result, the photopolymerizable composition for a nanoimprint results in mold releasability, curability, etching resistance, pattern transferability, , Permeability, etc. are expected to be excellent.

이에, 본 발명에 따른 나노임프린트용 광중합성 조성물의 광경화 속도를 평가하기 위하여 실험을 수행한 결과, 본 발명에 따른 나노임프린트용 광중합성 조성물은 우수한 경화 속도를 갖는 것으로 나타났다(실험예 1의 표 6 참조).
As a result, the photopolymerizable composition for a nanoimprint according to the present invention was tested to evaluate the photocuring speed, and as a result, the photopolymerizable composition for a nanoimprint according to the present invention showed an excellent curing speed (Table 1 in Experimental Example 1 6).

또한, 본 발명에 따른 나노임프린트용 광중합성 조성물의 패턴 전사성 및 이형성을 평가하기 위하여 실험을 수행한 결과, 본 발명에 따른 나노임프린트용 광중합성 조성물을 이용하여 자외선 나노임프린트 공정을 통해 제작된 패턴은 우수한 몰드와의 이형성 및 패턴 전사성을 갖는 것으로 나타났다(실험예 2의 도 1 및 도 2 참조).
As a result of conducting an experiment to evaluate the pattern transferability and releasability of the photopolymerizable composition for a nanoimprint according to the present invention, it was found that the pattern formed by the ultraviolet nanoimprinting process using the photopolymerizable composition for nanoimprint according to the present invention (See Fig. 1 and Fig. 2 of Experimental Example 2). ≪ tb >< TABLE >

나아가, 본 발명에 따른 나노임프린트용 광중합성 조성물의 에칭 저항성을 평가하기 위하여 실험을 수행한 결과, 실시예 19 및 실시예 21에서 제조한 나노임프린트용 광중합성 조성물은 플라즈마 처리 시간대비 두께 감소가 정도가 비교예 1과 비교하여 현저히 줄어든 것으로 확인되므로, 에칭 저항성이 우수한 것으로 나타났다(실험예 3의 도 3 참조).
Further, as a result of conducting an experiment to evaluate the etching resistance of the photopolymerizable composition for nanoimprint according to the present invention, the photopolymerizable composition for nanoimprint prepared in Example 19 and Example 21 showed a decrease in thickness with respect to the plasma treatment time Was found to be remarkably reduced as compared with Comparative Example 1, and thus the etching resistance was excellent (see FIG. 3 of Experimental Example 3).

따라서, 본 발명에 따른 나노임프린트용 광중합성 조성물을 이용하여 자외선 나노임프린트 공정을 통해 제작된 패턴은 디스플레이용 박막, 반도체 분야, 홀로그램, 미디어용 구조체, 정밀 센서, 기계 부품 등의 미세 구조화된 분야에 유용하게 사용될 수 있으며, 바람직하게는 디스플레이용 편광막 제조에 유용하게 사용될 수 있다.
Therefore, the pattern produced by the ultraviolet nanoimprinting process using the photopolymerizable composition for nanoimprint according to the present invention can be applied to a microstructured field of a thin film for display, a semiconductor field, a hologram, a structure for media, a precision sensor, Can be usefully used, and can be preferably used for producing a polarizing film for a display.

이하, 본 발명을 실시예 및 실험예에 의하여 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to Examples and Experimental Examples.

단, 하기 실시예 및 실험예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 이에 한정되는 것은 아니다.
However, the following examples and experimental examples are illustrative of the present invention, and the present invention is not limited thereto.

<< 제조예Manufacturing example 1>  1> 실록산계Siloxane system 화합물의 제조 1 Preparation of compounds 1

Figure pat00017
Figure pat00017

3구 플라스크에 1,1,3,3-테트라메틸디실록산(2.53 g, 18.33 mmol)을 톨루엔(20 mL)에 용해시킨 후 Pt 촉매(1.5 mL)를 넣고 30분 동안 교반하였다. 화합물 2-아릴옥시에탄올(5 g, 48.95 mmol)을 톨루엔 (20 mL)에 녹여 반응물에 천천히 적하하였다. 질소 분위기에서 60℃로 15시간 동안 반응시킨 후, 실온으로 냉각시켜 반응을 종결시키고 목탄을 첨가하여 교반하였다. 목탄 침전물을 여과한 후 감압하여 용매를 제거한 후, 컬럼 크로마토그래피로 분리하여 무색의 액체(D2OH)를 수득율 58%로 얻었다.1,1,3,3-tetramethyldisiloxane (2.53 g, 18.33 mmol) was dissolved in toluene (20 mL), and Pt catalyst (1.5 mL) was added to the three-necked flask and stirred for 30 minutes. Compound 2-aryloxyethanol (5 g, 48.95 mmol) was dissolved in toluene (20 mL) and slowly added dropwise to the reaction. The mixture was allowed to react in a nitrogen atmosphere at 60 DEG C for 15 hours, and then cooled to room temperature to terminate the reaction. Charcoal was added and stirred. The charcoal precipitate was filtered off, and the solvent was removed under reduced pressure, followed by separation by column chromatography to obtain a colorless liquid (D2OH) at a yield of 58%.

3구 플라스크에 D2OH (1.2 g, 3.55 mmol)를 테트라하이드로퓨란에 녹인 후 0℃로 냉각시켰다. 반응 용액에 트리에틸아민(1.51 g, 14.88 mmol)을 천천히 적하하여 30분 동안 교반한 후, 아크릴로일 클로라이드(1.29 g, 14.2 mmol)를 천천히 적하하고 상온에서 15시간 반응시켰다. 침전물을 여과한 후, 에틸아세테이트로 추출하여 얻어진 유기층을 황산마그네슘으로 건조시키고 컬럼 크로마토그래피로 분리하여 목적 화합물을 66% 수득률로 무색의 액체 형태로 얻었다.D2OH (1.2 g, 3.55 mmol) was dissolved in tetrahydrofuran in a three necked flask and cooled to 0 &lt; 0 &gt; C. Triethylamine (1.51 g, 14.88 mmol) was slowly added dropwise to the reaction solution and stirred for 30 minutes. Then, acryloyl chloride (1.29 g, 14.2 mmol) was slowly added dropwise and reacted at room temperature for 15 hours. The precipitate was filtered, and the organic layer was extracted with ethyl acetate. The organic layer was dried over magnesium sulfate and then separated by column chromatography to obtain the desired compound in the form of a colorless liquid at a yield of 66%.

1H NMR (300 MHz, CDCl3) : ppm 6.42-6.35 (d, 1H), 6.16-6.12 (q, 1H), 5.81-5.77 (d, 1H), 4.27-4.24 (t, 2H), 3.64-3.62 (t, 2H), 3.41-3.38 (t, 2H), 0.47-0.41 (m, 2H), 0.00 (s, 6H).
1H NMR (300 MHz, CDCl 3 ): ppm 6.42-6.35 (d, 1H), 6.16-6.12 (q, 1H), 5.81-5.77 (d, 1H), 4.27-4.24 (t, 2H), 3.64-3.62 (t, 2H), 3.41-3.38 (t, 2H), 0.47-0. 41 (m, 2H), 0.00 (s, 6H).

<< 제조예Manufacturing example 2>  2> 실록산계Siloxane system 화합물의 제조 2 Preparation of compounds 2

Figure pat00018
Figure pat00018

3구 플라스크에 2,4,6,8-테트라메틸싸이클로테트라실록산(2 g, 8.33 mmol)을 톨루엔(20 mL)에 용해시킨 후 Pt 촉매(1.5 mL)를 넣고 30분 동안 교반시켰다. 화합물 2-아릴옥시에탄올(6.81 g, 66.64 mmol)을 톨루엔(20 mL)에 녹여 반응물에 천천히 적하하였다. 질소 분위기에서 60℃로 15시간 동안 반응시킨 후, 실온으로 냉각시켜 반응을 종결시키고 목탄을 첨가하여 교반하였다. 목탄 침전물을 여과한 후 감압하여 용매를 제거한 후 컬럼 크로마토그래피로 분리하여 무색의 액체(D4OH)를 수득율 61%로 얻었다.2,4,6,8-tetramethylcyclotetrasiloxane (2 g, 8.33 mmol) was dissolved in toluene (20 mL), and Pt catalyst (1.5 mL) was added to the three-necked flask and stirred for 30 minutes. Compound 2-aryloxyethanol (6.81 g, 66.64 mmol) was dissolved in toluene (20 mL) and slowly added dropwise to the reaction. The mixture was allowed to react in a nitrogen atmosphere at 60 DEG C for 15 hours, and then cooled to room temperature to terminate the reaction. Charcoal was added and stirred. The charcoal precipitate was filtered off and the solvent was removed under reduced pressure. The solvent was separated by column chromatography to obtain a colorless liquid (D4OH) in a yield of 61%.

3구 플라스크에 D4OH(1.5 g, 2.36 mmol)를 테트라하이드로퓨란에 녹인 후 0℃로 냉각시켰다. 반응 용액에 트리에틸아민(0.72 g, 7.08 mmol)을 천천히 적하하여 30분 동안 교반한 후 아크릴로일클로라이드 (1.28 g, 14.16 mmol)을 천천히 적하한 후 상온에서 15시간 반응시켰다. 침전물을 여과한 후 에틸 아세테이트로 추출하여 얻어진 유기층을 황산마그네슘으로 건조시킨 후 컬럼 크로마토그래피로 분리하여 목적 화합물을 42% 수득률로 무색의 액체 형태로 얻었다.D4OH (1.5 g, 2.36 mmol) was dissolved in tetrahydrofuran in a three-necked flask and cooled to 0 占 폚. Triethylamine (0.72 g, 7.08 mmol) was slowly added dropwise to the reaction solution and stirred for 30 minutes. Acrylyl chloride (1.28 g, 14.16 mmol) was slowly added dropwise thereto and reacted at room temperature for 15 hours. The precipitate was filtered and extracted with ethyl acetate. The obtained organic layer was dried over magnesium sulfate and then separated by column chromatography to obtain the desired compound in the form of a colorless liquid at a yield of 42%.

1H NMR (300 MHz, CDCl3) : ppm 6.38-6.32 (d, 1H), 6.12-6.03 (q, 1H), 5.78-5.74 (d, 1H), 4.24-4.21 (t, 2H), 3.60-3.57 (t, 2H), 3.37-3.32 (t, 2H), 0.46-0.40 (m, 2H), 0.00 (s, 3H).
1H NMR (300 MHz, CDCl 3 ): ppm 6.38-6.32 (d, 1H), 6.12-6.03 (q, 1H), 5.78-5.74 (d, 1H), 4.24-4.21 (t, 2H), 3.60-3.57 (t, 2H), 3.37-3.32 (t, 2H), 0.46-0.40 (m, 2H), 0.00 (s, 3H).

<< 제조예Manufacturing example 3>  3> 포스포러스계Phosphorous system 화합물의 제조 1 Preparation of compounds 1

Figure pat00019
Figure pat00019

3구 플라스크에 트리에틸렌글리콜(30 g, 199.77 mmol)을 테트라하이드로퓨란(80 mL)에 용해시킨 후 0℃로 냉각시켰다. 트리에틸아민(4 g, 40 mmol)을 천천히 적하하여 30분 동안 교반한 후, 아크릴로일클로라이드(9.04 g, 99.89 mmol)를 천천히 적하하고, 상온에서 15시간 교반 반응하였다. 침전물을 여과한 후 에틸아세테이트로 추출하여 얻어진 유기층을 황산마그네슘으로 건조시킨 후 컬럼 크로마토그래피로 분리하여 무색의 액체(PaOH)를 수득율 44%로 얻었다. Triethylene glycol (30 g, 199.77 mmol) was dissolved in tetrahydrofuran (80 mL) and cooled to 0 占 폚 in a three-necked flask. Triethylamine (4 g, 40 mmol) was slowly added dropwise and stirred for 30 minutes. Acrylyl chloride (9.04 g, 99.89 mmol) was slowly added dropwise and stirred at room temperature for 15 hours. The precipitate was filtered and extracted with ethyl acetate. The organic layer was dried over magnesium sulfate and then separated by column chromatography to obtain a colorless liquid (PaOH) with a yield of 44%.

3구 플라스크에 PaOH(5 g, 24.48 mmol)를 메틸렌클로라이드에 녹인 후 트리에틸아민(4.95 g, 48.48 mmol)을 천천히 적하한 후 1시간 동안 교반하였다. 나트륨으로 정제된 포스포러스 옥시클로라이드(1.3 g, 8.08 mmol)를 천천히 적하한 후 질소 분위기에서 55℃에서 12시간 동안 반응시킨 후 냉각시켰다. 침전물을 여과한 후 컬럼 크로마토그래피로 분리하여 목적 화합물을 62% 수득률로 무색의 액체 형태로 얻었다.PaOH (5 g, 24.48 mmol) was dissolved in methylene chloride, and triethylamine (4.95 g, 48.48 mmol) was slowly added dropwise to the three-necked flask, followed by stirring for 1 hour. Phosphorus oxychloride (1.3 g, 8.08 mmol) purified with sodium was slowly added dropwise and reacted at 55 ° C for 12 hours in a nitrogen atmosphere, followed by cooling. The precipitate was filtered off and then separated by column chromatography to obtain the desired compound in the form of a colorless liquid at a yield of 62%.

1H NMR (300 MHz, CDCl3) : ppm 6.42-6.21 (d, 1H), 6.17-6.12 (q, 1H), 5.87-5.83 (d, 1H), 4.35-4.32 (t, 2H), 3.75-3.63 (m, 10H).
1H NMR (300 MHz, CDCl 3 ): ppm 6.42-6.21 (d, 1H), 6.17-6.12 (q, 1H), 5.87-5.83 (d, 1H), 4.35-4.32 (t, 2H), 3.75-3.63 (m, 10H).

<< 제조예Manufacturing example 4>  4> 실록산계Siloxane system 화합물의 제조 3 Preparation of compounds 3

Figure pat00020
Figure pat00020

3구 플라스크에 플루오리네이티드 트리에틸렌글리콜(3 g, 10.2 mmol)과 수산화나트륨(0.298 g, 7.14 mmol)을 테트라하이드로퓨란에 녹인 후 알릴브로마이드(0.86 g, 7.14 mmol)를 천천히 적하하였다. 50℃, 질소 분위기에서 2시간 반응 후 침전물을 여과한 후 에틸아세테이트로 추출하여 얻어진 유기층을 황산마그네슘으로 건조시킨 후 컬럼 크로마토그래피로 분리하여 무색의 액체(FBr)를 수득율 25%로 얻었다. Fluorinated triethylene glycol (3 g, 10.2 mmol) and sodium hydroxide (0.298 g, 7.14 mmol) were dissolved in tetrahydrofuran and then allyl bromide (0.86 g, 7.14 mmol) was slowly added dropwise to the three-necked flask. After reacting in a nitrogen atmosphere at 50 ° C for 2 hours, the precipitate was filtered, and the organic layer was extracted with ethyl acetate. The organic layer was dried over magnesium sulfate and then separated by column chromatography to obtain a colorless liquid (FBr) with a yield of 25%.

3구 플라스크에 1,1,3,3-테트라메틸디실록산(0.5 g, 3.72 mmol)을 톨루엔(20 mL)에 용해시킨 후 Pt 촉매(1 mL)를 넣고 30분 동안 교반시켰다. 화합물 FBr(2.98 g, 8.93 mmol)을 톨루엔(20 mL)에 녹여 반응물에 천천히 적하하였다. 질소 분위기에서 60℃로 15시간 동안 반응시킨 후, 실온으로 냉각시켜 반응을 종결시키고 목탄을 첨가하여 교반하였다. 목탄 침전물을 여과한 후 감압하여 용매를 제거한 후 컬럼 크로마토그래피로 분리하여 무색의 액체(DF2OH)를 수득율 48%로 얻었다.1,1,3,3-tetramethyldisiloxane (0.5 g, 3.72 mmol) was dissolved in toluene (20 mL), and Pt catalyst (1 mL) was added to the three-necked flask and stirred for 30 minutes. Compound FBr (2.98 g, 8.93 mmol) was dissolved in toluene (20 mL) and slowly added dropwise to the reaction product. The mixture was allowed to react in a nitrogen atmosphere at 60 DEG C for 15 hours, and then cooled to room temperature to terminate the reaction. Charcoal was added and stirred. The charcoal precipitate was filtered, and the solvent was removed under reduced pressure. The solvent was separated by column chromatography to obtain a colorless liquid (DF2OH) at a yield of 48%.

3구 플라스크에 DF2OH(3 g, 3.82 mmol)를 테트라하이드로퓨란에 녹인 후 0℃로 냉각시켰다. 반응 용액에 트리에틸아민(1.16 g, 11.46 mmol)을 천천히 적하하여 30분 동안 교반한 후 아크릴로일클로라이드 (1.03 g, 11.46mmol)을 천천히 적하한 후 상온에서 15시간 반응시켰다. 침전물을 여과한 후 에틸아세테이트로 추출하여 얻어진 유기층을 황산마그네슘으로 건조시킨 후 컬럼 크로마토그래피로 분리하여 목적 화합물을 52% 수득률로 무색의 액체 형태로 얻었다.DF 2 OH (3 g, 3.82 mmol) was dissolved in tetrahydrofuran in a three-necked flask and cooled to 0 ° C. Triethylamine (1.16 g, 11.46 mmol) was slowly added dropwise to the reaction solution and stirred for 30 minutes. Acrylyl chloride (1.03 g, 11.46 mmol) was slowly added dropwise thereto and reacted at room temperature for 15 hours. The precipitate was filtered and extracted with ethyl acetate. The obtained organic layer was dried over magnesium sulfate, and then separated by column chromatography to obtain the desired compound in the form of a colorless liquid at a yield of 52%.

1H NMR (300 MHz, CDCl3) : ppm 6.49-6.43 (d, 1H), 6.17-6.12 (q, 1H), 5.94-5.09 (d, 1H), 4.49-4.29 (t, 2H), 3.74-3.62 (t, 2H), 3.47-3.36 (t, 2H), 1.57-1.41 (t, 2H), 0.48-0.42 (m, 2H), 0.00 (s, 6H).
1H NMR (300 MHz, CDCl 3 ): ppm 6.49-6.43 (d, 1H), 6.17-6.12 (q, 1H), 5.94-5.09 (d, 1H), 4.49-4.29 (t, 2H), 3.74-3.62 (t, 2H), 3.47-3.36 (t, 2H), 1.57-1.41 (t, 2H), 0.48-0.42 (m, 2H), 0.00 (s, 6H).

<< 제조예Manufacturing example 5>  5> 실록산계Siloxane system 화합물의 제조 4 Preparation of compound 4

Figure pat00021
Figure pat00021

3구 플라스크에 플루오리네이티드 트리에틸렌클리콜(3 g, 10.2 mmol)과 수산화나트륨(0.298 g, 7.14 mmol)을 테트라하이드로퓨란에 녹인 후 알릴브로마이드(0.86 g, 7.14 mmol)을 천천히 적하시킨다. 50℃, 질소 분위기에서 2시간 반응 후 침전물을 여과한 후 에틸아세테이트로 추출하여 얻어진 유기층을 황산마그네슘으로 건조시킨 후 컬럼 크로마토그래피로 분리하여 무색의 액체(FBr)를 수득율 25%로 얻었다. Fluorinated triethylene glycol (3 g, 10.2 mmol) and sodium hydroxide (0.298 g, 7.14 mmol) were dissolved in tetrahydrofuran and then allyl bromide (0.86 g, 7.14 mmol) was slowly added dropwise to the three-necked flask. After reacting in a nitrogen atmosphere at 50 ° C for 2 hours, the precipitate was filtered, and the organic layer was extracted with ethyl acetate. The organic layer was dried over magnesium sulfate and then separated by column chromatography to obtain a colorless liquid (FBr) with a yield of 25%.

3구 플라스크에 2,4,6,8-테트라메틸싸이클로테트라실록산(1 g, 4.16 mmol)을 톨루엔(20 mL)에 용해시킨 후 Pt 촉매(1.5 mL)를 넣고 30분 동안 교반시켰다. 화합물 FBr(6.13 g, 18.33 mmol)을 톨루엔(20 mL)에 녹여 반응물에 천천히 적하하였다. 질소 분위기에서 60℃, 15시간 반응 후 실온으로 냉각시켜 반응을 종결시킨 후 목탄을 첨가하여 교반하였다. 목탄 침전물을 여과한 후 감압하여 용매를 제거한 후 컬럼 크로마토그래피로 분리하여 무색의 액체(DF4OH)를 수득율 38%로 얻었다.2,4,6,8-tetramethylcyclotetrasiloxane (1 g, 4.16 mmol) was dissolved in toluene (20 mL), and Pt catalyst (1.5 mL) was added to the three-necked flask and stirred for 30 minutes. Compound FBr (6.13 g, 18.33 mmol) was dissolved in toluene (20 mL) and slowly added dropwise to the reaction product. After the reaction was carried out at 60 ° C for 15 hours in a nitrogen atmosphere, the reaction was terminated by cooling to room temperature, and then charcoal was added and stirred. The charcoal precipitate was filtered, and the solvent was removed under reduced pressure. The solvent was separated by column chromatography to obtain a colorless liquid (DF4OH) with a yield of 38%.

3구 플라스크에 DF4OH(2 g, 1.31 mmol)를 테트라하이드로퓨란에 녹인 후 0℃로 냉각시켰다. 반응 용액에 트리에틸아민(0.8 g, 7.87 mmol)을 천천히 적하하여 30분 동안 교반한 후 아크릴로일클로라이드 (0.71 g, 7.87 mmol)을 천천히 적하한 후 상온에서 15시간 반응시켰다. 침전물을 여과한 후 에틸아세테이트로 추출하여 얻어진 유기층을 황산마그네슘으로 건조시킨 후 컬럼 크로마토그래피로 분리하여 목적 화합물을 48% 수득률로 무색의 액체 형태로 얻었다.DF4OH (2 g, 1.31 mmol) was dissolved in tetrahydrofuran in a three-necked flask and cooled to 0 占 폚. Triethylamine (0.8 g, 7.87 mmol) was slowly added dropwise to the reaction solution and stirred for 30 minutes. Acrylyl chloride (0.71 g, 7.87 mmol) was slowly added dropwise thereto and reacted at room temperature for 15 hours. The precipitate was filtered and extracted with ethyl acetate. The obtained organic layer was dried over magnesium sulfate, and then separated by column chromatography to obtain the desired compound in the form of a colorless liquid at a yield of 48%.

1H NMR (300 MHz, CDCl3) : ppm 6.46-6.40 (d, 1H), 6.14-6.04 (q, 1H), 5.94-5.86(d, 1H), 4.49-4.29 (t, 2H), 3.74-3.62 (t, 2H), 3.47-3.36 (t, 2H), 1.54-1.51 (t, 2H), 0.48-0.42 (m, 2H), 0.00 (s, 6H).
1H NMR (300 MHz, CDCl 3 ): ppm 6.46-6.40 (d, 1H), 6.14-6.04 (q, 1H), 5.94-5.86 (d, 1H), 4.49-4.29 (t, 2H), 3.74-3.62 (t, 2H), 3.47-3.36 (t, 2H), 1.54-1.51 (t, 2H), 0.48-0.42 (m, 2H), 0.00 (s, 6H).

<< 제조예Manufacturing example 6>  6> 포스포러스계Phosphorous system 화합물의 제조 2 Preparation of compounds 2

Figure pat00022
Figure pat00022

3구 플라스크에 플루오린네이티드 트리에틸렌글리콜(10 g, 34.01 mmol)을 테트라하이드로퓨란(80 mL)에 용해시킨 후 0℃로 냉각시켰다. 트리에틸아민(2.4 g, 23.8 mmol)을 천천히 적하하여 30분 동안 교반한 후 아크릴로일클로라이드(2.15 g, 23.8 mmol)을 천천히 적하하였다. 이 용액을 상온에서 6시간 교반 반응하였다. 침전물을 여과한 후 에틸아세테이트로 추출하여 얻어진 유기층을 황산마그네슘으로 건조시킨 후 컬럼 크로마토그래피로 분리하여 무색의 액체(PaFOH)를 수득율 44%로 얻었다. In a three-necked flask, fluorinated triethylene glycol (10 g, 34.01 mmol) was dissolved in tetrahydrofuran (80 mL) and cooled to 0 占 폚. Triethylamine (2.4 g, 23.8 mmol) was slowly added dropwise and stirred for 30 minutes, then acryloyl chloride (2.15 g, 23.8 mmol) was slowly added dropwise. This solution was stirred and reacted at room temperature for 6 hours. The precipitate was filtered and extracted with ethyl acetate. The obtained organic layer was dried over magnesium sulfate and then separated by column chromatography to obtain a colorless liquid (PaFOH) at a yield of 44%.

3구 플라스크에 PaFOH(7.76 g, 22.29 mmol)를 메틸렌클로라이드에 녹인 후 트리에틸아민(2.26 g, 22.29 mmol)을 천천히 적하한 후 1시간 동안 교반하였다. 나트륨으로 정제된 포스포러스 옥시클로라이드(0.68 g, 4.46 mmol)를 천천히 적하한 후 질소 분위기에서 55℃에서 5시간 동안 반응시킨 후 냉각시켰다. 침전물을 여과한 후 컬럼 크로마토그래피로 분리하여 목적 화합물을 62% 수득률로 무색의 액체 형태로 얻었다.PaFOH (7.76 g, 22.29 mmol) was dissolved in methylene chloride and then triethylamine (2.26 g, 22.29 mmol) was slowly added dropwise to the three-necked flask, followed by stirring for 1 hour. Phosphorus oxychloride (0.68 g, 4.46 mmol) purified with sodium was slowly added dropwise and reacted at 55 ° C for 5 hours in a nitrogen atmosphere, followed by cooling. The precipitate was filtered off and then separated by column chromatography to obtain the desired compound in the form of a colorless liquid at a yield of 62%.

1H NMR (300 MHz, CDCl3) : ppm 6.56-6.50 (d, 1H), 6.23-6.14 (t, 1H), 6.00-5.97(d, 1H), 4.62-4.52 (m, 2H), 3.97-3.88 (m, 2H).
1H NMR (300 MHz, CDCl 3 ): ppm 6.56-6.50 (d, 1H), 6.23-6.14 (t, 1H), 6.00-5.97 (d, 1H), 4.62-4.52 (m, 2H), 3.97-3.88 (m, 2H).

<< 실시예Example 1-6> 비 불소계  1-6> Non-fluorine 나노임프린트용For nanoimprint 조성물 제조 Composition manufacturing

상기 제조예 1-3에서 얻은 화합물을 하기 표 1의 비율로 혼합한 후, 균질한 용액을 얻기 위하여 상온에서 1시간 동안 교반하여 조성물을 제조하였다.The compounds obtained in Preparation Example 1-3 were mixed in the ratios shown in Table 1 below and then stirred at room temperature for 1 hour to obtain a homogeneous solution.

실시예Example AA BB CC DD 제조예1Production Example 1 제조예2Production Example 2 제조예3Production Example 3 개시제Initiator 용매menstruum 1One 1515 1010 2020 2020 1515 -- 77 33 1010 22 2020 55 2020 2020 1515 -- 77 33 1010 33 1515 1010 2020 2020 -- 1515 77 33 1010 44 2020 55 2020 2020 -- 1515 77 33 1010 55 1515 1010 2020 2020 7.57.5 7.57.5 77 33 1010 66 2020 55 2020 2020 7.57.5 7.57.5 77 33 1010

상기 표 1에서,In Table 1,

단위는 중량%이고,The unit is weight%

A는 헥산디올 디아크릴레이트(Hexanediol diacrylate)이고,A is Hexanediol diacrylate,

B는 펜타에리스리톨 트리아크릴레이트(Pentaerythritol triacrylate)이고,B is pentaerythritol triacrylate,

C는 퍼플루오로헥실 디아크릴레이트(Perfluorohexyl diacrylate)이고,C is perfluorohexyl diacrylate,

D는 폴리에틸렌 글리콜 디아크릴레이트(Polyethylene glycol diacrylate)이고,D is polyethylene glycol diacrylate,

개시제는 Darocur MBF(BASF, pehnyl glyoxylic acid methyl ester)이고,The initiator is Darocur MBF (BASF, pehnyl glyoxylic acid methyl ester)

용매는 디프로필렌글리콜 디메틸 에테르(Dipropyleneglycol dimethyl ether)이다.
The solvent is dipropyleneglycol dimethyl ether.

<< 실시예Example 7-12> 불소계  7-12> Fluorine 나노임프린트용For nanoimprint 조성물 제조 Composition manufacturing

상기 제조예 4-6에서 얻은 화합물을 하기 표 2의 비율로 혼합한 후, 균질한 용액을 얻기 위하여 상온에서 1시간 동안 교반하여 조성물을 제조하였다.The compounds obtained in Preparation Example 4-6 were mixed in the ratios shown in Table 2 below and then stirred at room temperature for 1 hour to obtain a homogeneous solution.

실시예Example AA BB CC DD 제조예4Production Example 4 제조예5Production Example 5 제조예6Production Example 6 개시제Initiator 용매menstruum 77 1515 1010 2020 2020 1515 -- 77 33 1010 88 2020 55 2020 2020 1515 -- 77 33 1010 99 1515 1010 2020 2020 -- 1515 77 33 1010 1010 2020 55 2020 2020 -- 1515 77 33 1010 1111 1515 1010 2020 2020 7.57.5 7.57.5 77 33 1010 1212 2020 55 2020 2020 7.57.5 7.57.5 77 33 1010

상기 표 2에서,In Table 2,

단위는 중량%이고,The unit is weight%

A는 헥산디올 디아크릴레이트(Hexanediol diacrylate)이고,A is Hexanediol diacrylate,

B는 펜타에리스리톨 트리아크릴레이트(Pentaerythritol triacrylate)이고,B is pentaerythritol triacrylate,

C는 퍼플루오로헥실 디아크릴레이트(Perfluorohexyl diacrylate)이고,C is perfluorohexyl diacrylate,

D는 폴리에틸렌 글리콜 디아크릴레이트(Polyethylene glycol diacrylate)이고,D is polyethylene glycol diacrylate,

개시제는 Darocur MBF(BASF, pehnyl glyoxylic acid methyl ester)이고,The initiator is Darocur MBF (BASF, pehnyl glyoxylic acid methyl ester)

용매는 디프로필렌글리콜 디메틸 에테르(Dipropyleneglycol dimethyl ether)이다.
The solvent is dipropyleneglycol dimethyl ether.

<< 실시예Example 13-18> 불소계,  13-18> Fluorine, 비불소계Non-fluorine 혼용  Mixed 나노임프린트용For nanoimprint 조성물 제조 Composition manufacturing

상기 제조예 1-6에서 얻은 화합물을 하기 표 3의 비율로 혼합한 후, 균질한 용액을 얻기 위하여 상온에서 1시간 동안 교반하여 조성물을 제조하였다.The compounds obtained in Preparation Example 1-6 were mixed at the ratios shown in Table 3 below and then stirred at room temperature for 1 hour to obtain a homogeneous solution.

실시예Example AA BB CC DD 제조예
1
Manufacturing example
One
제조예
2
Manufacturing example
2
제조예
3
Manufacturing example
3
제조예
4
Manufacturing example
4
제조예
5
Manufacturing example
5
제조예
6
Manufacturing example
6
개시제Initiator 용매menstruum
1313 1515 1010 2020 2020 7.57.5 -- 3.53.5 7.57.5 -- 3.53.5 33 1010 1414 2020 55 2020 2020 7.57.5 -- 3.53.5 7.57.5 -- 3.53.5 33 1010 1515 1515 1010 2020 2020 -- 7.57.5 3.53.5 -- 7.57.5 3.53.5 33 1010 1616 2020 55 2020 2020 -- 7.57.5 3.53.5 -- 7.57.5 3.53.5 33 1010 1717 1515 1010 2020 2020 7.57.5 -- 3.53.5 -- 7.57.5 3.53.5 33 1010 1818 2020 55 2020 2020 7.57.5 -- 3.53.5 -- 7.57.5 3.53.5 33 1010

상기 표 3에서,In Table 3,

단위는 중량%이고,The unit is weight%

A는 헥산디올 디아크릴레이트(Hexanediol diacrylate)이고,A is Hexanediol diacrylate,

B는 펜타에리스리톨 트리아크릴레이트(Pentaerythritol triacrylate)이고,B is pentaerythritol triacrylate,

C는 퍼플루오로헥실 디아크릴레이트(Perfluorohexyl diacrylate)이고,C is perfluorohexyl diacrylate,

D는 폴리에틸렌 글리콜 디아크릴레이트(Polyethylene glycol diacrylate)이고,D is polyethylene glycol diacrylate,

개시제는 Darocur MBF(BASF, pehnyl glyoxylic acid methyl ester)이고,The initiator is Darocur MBF (BASF, pehnyl glyoxylic acid methyl ester)

용매는 디프로필렌글리콜 디메틸 에테르(Dipropyleneglycol dimethyl ether)이다.
The solvent is dipropyleneglycol dimethyl ether.

<< 실시예Example 19-40> 고점도  19-40> Viscosity 나노임프린트용For nanoimprint 조성물 제조 Composition manufacturing

상기 제조예 1-6에서 얻은 화합물을 하기 표 4의 비율로 혼합한 후, 균질한 용액을 얻기 위하여 상온에서 1시간 동안 교반하여 조성물을 제조하였다.The compounds obtained in Preparation Example 1-6 were mixed in the ratios shown in Table 4, and then the mixture was stirred at room temperature for 1 hour to obtain a homogeneous solution.

실시예Example BB CC DD 제조예1Production Example 1 제조예2Production Example 2 제조예3Production Example 3 제조예4Production Example 4 제조예5Production Example 5 제조예6Production Example 6 개시제Initiator 1919 1010 2525 3535 2626 -- -- -- -- -- 44 2020 1010 2525 3535 -- -- -- 2626 -- -- 44 2121 1010 2525 3535 -- 2626 -- -- -- -- 44 2222 1010 2525 3535 -- -- -- -- 2626 -- 44 2323 1010 2525 3535 -- -- 2626 -- -- -- 44 2424 1010 2525 3535 -- -- -- -- -- 2626 44 2525 1010 2525 3535 1313 -- -- 1313 -- -- 44 2626 1010 2525 3535 1313 1313 -- -- -- -- 44 2727 1010 2525 3535 1313 -- -- -- 1313 -- 44 2828 1010 2525 3535 1313 -- 77 66 -- -- 44 2929 1010 2525 3535 1313 -- 3.53.5 66 -- 3.53.5 44 3030 1010 2525 3535 1313 66 77 -- -- -- 44 3131 1010 2525 3535 1313 66 3.53.5 -- -- 3.53.5 44 3232 1010 2525 3535 1313 -- 77 -- 66 -- 44 3333 1010 2525 3535 1313 -- 3.53.5 -- 66 3.53.5 44 3434 1010 2525 3535 -- 1313 -- 1313 -- -- 44 3535 1010 2525 3535 -- -- -- 1313 1313 -- 44 3636 1010 2525 3535 -- 66 77 1313 -- -- 44 3737 1010 2525 3535 -- 66 3.53.5 1313 -- 3.53.5 44 3838 1010 2525 3535 -- 1313 -- -- 1313 -- 44 3939 1010 2525 3535 -- 1313 77 -- 66 -- 44 4040 1010 2525 3535 -- 1313 3.53.5 -- 66 3.53.5 44

상기 표 4에서,In Table 4,

단위는 중량%이고,The unit is weight%

B는 펜타에리스리톨 트리아크릴레이트(Pentaerythritol triacrylate)이고,B is pentaerythritol triacrylate,

C는 퍼플루오로헥실 디아크릴레이트(Perfluorohexyl diacrylate)이고,C is perfluorohexyl diacrylate,

D는 폴리에틸렌 글리콜 디아크릴레이트(Polyethylene glycol diacrylate)이고,D is polyethylene glycol diacrylate,

개시제는 Darocur MBF(BASF, pehnyl glyoxylic acid methyl ester)이다.
The initiator is Darocur MBF (BASF, pehnyl glyoxylic acid methyl ester).

<< 비교예Comparative Example 1-2> 비  1-2> Rain 실록산계Siloxane system  And 포스포러스계Phosphorous system 조성물 제조 Composition manufacturing

하기 표 5의 비율로 혼합한 후, 균질한 용액을 얻기 위하여 상온에서 1시간 동안 교반하여 조성물을 제조하였다. After mixing in the ratio shown in Table 5, the composition was stirred at room temperature for 1 hour to obtain a homogeneous solution.

AA BB CC DD 개시제Initiator 용매menstruum 비교예1Comparative Example 1 3737 1010 2020 2020 33 1010 비교예2Comparative Example 2 4242 55 2020 2020 33 1010

상기 표 5에서,In Table 5,

단위는 중량%이고,The unit is weight%

A는 헥산디올 디아크릴레이트(Hexanediol diacrylate)이고,A is Hexanediol diacrylate,

B는 펜타에리스리톨 트리아크릴레이트(Pentaerythritol triacrylate)이고,B is pentaerythritol triacrylate,

C는 퍼플루오로헥실 디아크릴레이트(Perfluorohexyl diacrylate)이고,C is perfluorohexyl diacrylate,

D는 폴리에틸렌 글리콜 디아크릴레이트(Polyethylene glycol diacrylate)이고,D is polyethylene glycol diacrylate,

개시제는 Darocur MBF(BASF, pehnyl glyoxylic acid methyl ester)이고,The initiator is Darocur MBF (BASF, pehnyl glyoxylic acid methyl ester)

용매는 디프로필렌글리콜 디메틸 에테르(Dipropyleneglycol dimethyl ether)이다.
The solvent is dipropyleneglycol dimethyl ether.

<< 실험예Experimental Example 1>  1> 광경화Photocuring 속도 평가 Speed rating

본 발명에 따라 제조된 나노임프린트용 광중합성 조성물의 광경화 속도를 평가하기 위하여 실시예 19, 21, 25, 및 30에서 제조한 나노임프린트용 광중합성 조성물의 광경화 거동을 광 DSC(Differential Scanning Calorimetry)를 이용하여 조사하였다. 조사 UV광량은 20 mW로 수행하였다. 그 결과를 하기 표 6에 나타내었다.In order to evaluate the photo-curing rate of the photopolymerizable composition for nanoimprint prepared according to the present invention, the photo-curing behavior of the photopolymerizable composition for nanoimprint prepared in Examples 19, 21, 25, and 30 was measured by optical scanning differential scanning calorimetry (DSC) ). The irradiation UV light amount was 20 mW. The results are shown in Table 6 below.

실시예Example 최대 경화시 경화시간(분)Max curing time (min) 최종 경화시간(분)Final curing time (minutes) 1919 0.150.15 0.50.5 2121 0.130.13 0.70.7 2525 0.210.21 1.31.3 3030 0.170.17 1.51.5

상기 표 6에 나타난 바와 같이, 본 발명의 실시예 19, 21, 25, 및 30에서 제조한 나노임프린트용 광중합성 조성물 모두 최종 경화가 1.5분 이내에 완료되는 것으로 나타나 경화 속도가 빠른 것으로 확인되었다.
As shown in Table 6, all the photopolymerizable compositions for nanoimprint prepared in Examples 19, 21, 25, and 30 of the present invention were completed within 1.5 minutes, indicating that the curing speed was fast.

<< 실험예Experimental Example 2> 패턴  2> Pattern 전사성Transferability 및 이형성 평가 And releasing property evaluation

본 발명에 따라 제조된 나노임프린트용 광중합성 조성물의 패턴 전사성 및 이형성을 평가하기 위하여, 100 nm 피치의 마스터 몰드를 이용하여 자외선 나노임프린트 공정을 수행하였다.
In order to evaluate the pattern transferability and releasability of the photopolymerizable composition for a nanoimprint produced according to the present invention, an ultraviolet nanoimprint process was performed using a master mold having a pitch of 100 nm.

마스터 몰드를 이용하여 복제 몰드를 제작한 후 제작된 복제 몰드를 사용하여 기판상에 놓여있는 실시예 19-40의 경화 조성물에 압력을 가하고, 자외선을 1분 동안 조사하였다. 경화된 조성물은 복제 몰드와의 이형이 우수하였으며, 제작된 경화 수지 패턴은 SEM(Scanning Electron Microscope)을 이용하여 패턴과 단면을 관찰하였다. 그 결과를 도 1 및 도 2에 나타내었다.
The master mold was used to make a replica mold, and the replica mold thus prepared was used to apply pressure to the curing composition of Examples 19 to 40 placed on the substrate, and irradiated with ultraviolet rays for 1 minute. The cured composition was superior to the replica mold and the pattern of the prepared cured resin pattern was observed using a scanning electron microscope (SEM). The results are shown in Fig. 1 and Fig.

도 1은 본 발명에 따른 나노임프린트용 광중합성 조성물을 이용하여 자외선 나노임프린트 공정을 통해 제작된 100 nm 피치(Pitch)의 형상을 SEM(Scanning Electron Microscope)을 이용하여 관찰한 이미지이고,1 is an image obtained by observing a shape of a 100 nm pitch fabricated by a UV nanoimprint process using a photopolymerizable composition for a nanoimprint according to the present invention using a scanning electron microscope (SEM)

도 2는 본 발명에 따른 나노임프린트용 광중합성 조성물을 이용하여 자외선나노임프린트 공정을 통해 제작된 100 nm 피치(Pitch)의 패턴 단면을 SEM(Scanning Electron Microscope)을 이용하여 관찰한 이미지이다.
2 is an image of a pattern section of a 100 nm pitch fabricated through a UV nanoimprint process using a photopolymerizable composition for a nanoimprint according to the present invention, using an SEM (Scanning Electron Microscope).

도 1 및 2에 나타난 바와 같이, 본 발명에 따른 나노임프린트용 광중합성 조성물을 이용하여 자외선 나노임프린트 공정을 통해 제작된 패턴은 우수한 패턴 전사성을 갖는 것으로 나타났다.
As shown in FIGS. 1 and 2, the pattern produced by the ultraviolet nanoimprint process using the photopolymerizable composition for a nanoimprint according to the present invention has excellent pattern transferability.

따라서, 본 발명에 따른 나노임프린트용 광중합성 조성물을 이용하여 자외선 나노임프린트 공정을 통해 제작된 패턴은 디스플레이용 박막, 반도체 분야, 홀로그램, 미디어용 구조체, 정밀 센서, 기계 부품 등의 미세 구조화된 분야에 유용하게 사용될 수 있으며, 바람직하게는 디스플레이용 편광막 제조에 유용하게 사용될 수 있다.
Therefore, the pattern produced by the ultraviolet nanoimprinting process using the photopolymerizable composition for nanoimprint according to the present invention can be applied to a microstructured field of a thin film for display, a semiconductor field, a hologram, a structure for media, a precision sensor, Can be usefully used, and can be preferably used for producing a polarizing film for a display.

<< 실험예Experimental Example 3> 에칭 저항성 평가 3> Evaluation of etching resistance

본 발명에 따라 제조된 나노임프린트용 광중합성 조성물의 에칭 저항성을 알아보기 위하여 비교예 1, 실시예 19 및 실시예 21에서 제조한 조성물을 사용하였다. 에칭 저항성 실험을 위해 몰드를 이용한 패턴 전사는 실시하지 않았으며, 스핀 코팅법을 이용하여 3,000 rpm의 회전 속도로 60초간 코팅을 실시하여 자외선을 1분 동안 조사하였다. 에칭 공정은 파워 90 W로 산소 50 sccm, 아르곤 20 sccm 분위기에서 수행하였다. 그 결과를 도 3에 나타내었다.
In order to examine the etching resistance of the photopolymerizable composition for nanoimprints prepared according to the present invention, the compositions prepared in Comparative Examples 1, 19 and 21 were used. In order to test the etching resistance, pattern transfer using a mold was not carried out. Coating was performed for 60 seconds at a rotation speed of 3,000 rpm using a spin coating method, and ultraviolet rays were irradiated for 1 minute. The etching process was performed at a power of 90 W at 50 sccm of oxygen and 20 sccm of argon. The results are shown in Fig.

도 3은 본 발명에 따른 나노임프린트용 광중합성 조성물의 에칭 저항성을 평가한 그래프이다.
3 is a graph showing the etching resistance of the photopolymerizable composition for a nanoimprint according to the present invention.

도 3에 나타난 바와 같이, 실시예 19 및 실시예 21에서 제조한 나노임프린트용 광중합성 조성물은 플라즈마 처리 시간대비 두께 감소가 정도가 비교예 1과 비교하여 현저히 줄어든 것으로 확인되므로, 에칭 저항성이 우수한 것으로 나타났다.
As shown in FIG. 3, the photopolymerizable composition for nanoimprint prepared in Example 19 and Example 21 showed a remarkable reduction in the thickness of the photopolymerizable composition compared to the plasma treatment time in Comparative Example 1, appear.

따라서, 본 발명에 따른 나노임프린트용 광중합성 조성물을 이용하여 자외선 나노임프린트 공정을 통해 제작된 패턴은 디스플레이용 박막, 반도체 분야, 홀로그램, 미디어용 구조체, 정밀 센서, 기계 부품 등의 미세 구조화된 분야에 유용하게 사용될 수 있으며, 바람직하게는 디스플레이용 편광막 제조에 유용하게 사용될 수 있다.Therefore, the pattern produced by the ultraviolet nanoimprinting process using the photopolymerizable composition for nanoimprint according to the present invention can be applied to a microstructured field of a thin film for display, a semiconductor field, a hologram, a structure for media, a precision sensor, Can be usefully used, and can be preferably used for producing a polarizing film for a display.

Claims (10)

하기 화학식 1-3으로 표시되는 화합물로 이루어지는 군으로부터 선택되는 1종 이상의 화합물을 포함하는 나노임프린트용 광중합성 조성물:
[화학식 1]
Figure pat00023

(상기 화학식 1에서,
R1은 -(CH2)m-, 또는 -CH2(CF2OCF2)nCH2-이고,
m 및 n은 독립적으로 0-5의 정수이다).

[화학식 2]
Figure pat00024

(상기 화학식 2에서,
R2는 -(CH2)p-, 또는 -(CF2CF2OCF2CF2)q-이고,
p 및 q는 독립적으로 0-5의 정수이다).

[화학식 3]
Figure pat00025

(상기 화학식 3에서,
R3는 -CH2O(CH2CH2O)kCH2-, 또는 -(CF2OCF2)j-이고,
k 및 j는 독립적으로 0-5의 정수이다).
1. A photopolymerizable composition for a nanoimprint comprising at least one compound selected from the group consisting of compounds represented by the following general formula
[Chemical Formula 1]
Figure pat00023

(In the formula 1,
R 1 is - (CH 2 ) m -, or -CH 2 (CF 2 OCF 2 ) n CH 2 -
and m and n are independently 0-5.

(2)
Figure pat00024

(In the formula (2)
R 2 is - (CH 2 ) p -, or - (CF 2 CF 2 OCF 2 CF 2 ) q -
p and q are independently integers of 0-5.

(3)
Figure pat00025

(3)
R 3 is -CH 2 O (CH 2 CH 2 O) k CH 2 -, or - (CF 2 OCF 2 ) j -
k and j are independently an integer of 0-5.
제1항에 있어서,
상기 화학식 1로 표시되는 화합물은 하기 화학식 4 또는 화학식 5로 표시되는 화합물인 것을 특징으로 하는 나노임프린트용 광중합성 조성물:
[화학식 4]
Figure pat00026


[화학식 5]
Figure pat00027
.
The method according to claim 1,
Wherein the compound represented by the formula (1) is a compound represented by the following formula (4) or (5): &lt; EMI ID =
[Chemical Formula 4]
Figure pat00026


[Chemical Formula 5]
Figure pat00027
.
제1항에 있어서,
상기 화학식 2로 표시되는 화합물은 하기 화학식 6 또는 화학식 7로 표시되는 화합물인 것을 특징으로 하는 나노임프린트용 광중합성 조성물:
[화학식 6]
Figure pat00028


[화학식 7]
Figure pat00029
.
The method according to claim 1,
Wherein the compound represented by Formula 2 is a compound represented by Formula 6 or Formula 7:
[Chemical Formula 6]
Figure pat00028


(7)
Figure pat00029
.
제1항에 있어서,
상기 화학식 3으로 표시되는 화합물은 하기 화학식 8 또는 화학식 9로 표시되는 화합물인 것을 특징으로 하는 나노임프린트용 광중합성 조성물:
[화학식 8]
Figure pat00030


[화학식 9]
Figure pat00031
.
The method according to claim 1,
Wherein the compound represented by the general formula (3) is a compound represented by the following general formula (8) or (9): &lt; EMI ID =
[Chemical Formula 8]
Figure pat00030


[Chemical Formula 9]
Figure pat00031
.
제1항에 있어서,
상기 나노임프린트용 광중합성 조성물은 하기 화학식 10 내지 13으로 이루어지는 화합물 군으로부터 선택되는 1종 이상의 첨가제를 더 포함하는 것을 특징으로 하는 나노임프린트용 광중합성 조성물:
[화학식 10]
Figure pat00032


[화학식 11]
Figure pat00033


[화학식 12]
Figure pat00034


[화학식 13]
Figure pat00035

(상기 화학식 13에서,
g는 1-20의 정수이다).
The method according to claim 1,
Wherein the photopolymerizable composition for nanoimprint further comprises at least one additive selected from the group consisting of compounds represented by the following formulas (10) to (13):
[Chemical formula 10]
Figure pat00032


(11)
Figure pat00033


[Chemical Formula 12]
Figure pat00034


[Chemical Formula 13]
Figure pat00035

(In the above formula (13)
g is an integer of 1-20).
제1항에 있어서,
상기 나노임프린트용 광중합성 조성물은 광 개시제인 Darocur MBF(BASF, pehnyl glyoxylic acid methyl ester), Darocur 1173(BASF, 2-hydroxy-2-methyl-1-phenyl-1-propane), Irgacure 184(BASF, 1-hydroxy-cyclohexyl-phenyl-ketone) 및 Irgacure 127(BASF, 2-hydroxy-1-{4-[4-(2-hydroxy-2-methyl-propionyl)-benzyl]-phenyl}-2-methyl-propan-1-one)로 이루어지는 군으로부터 선택되는 1종 이상인 것을 특징으로 하는 나노임프린트용 광중합성 조성물.

The method according to claim 1,
The photopolymerizable composition for the nanoimprint includes a photoinitiator Darocur MBF (BASF, pehnyl glyoxylic acid methyl ester), Darocur 1173 (BASF, 2-hydroxy-2-methyl-1-phenyl-1-propane), Irgacure 184 1-hydroxy-cyclohexyl-phenyl-ketone) and Irgacure 127 (BASF, 2-hydroxy-1- {4- [2- propan-1-one). &lt; RTI ID = 0.0 &gt; 8. &lt; / RTI &gt;

기판상에 제1항의 나노임프린트용 광중합성 조성물을 도포하는 단계(단계 1);
상기 단계 1의 나노임프린트용 광중합성 조성물이 도포된 기판상에 패턴이 형성된 투명 몰드를 가압하여 성형하는 단계(단계 2);
광을 조사하여 나노임프린트용 광중합성 조성물을 경화시킨 후, 몰드를 이형시키는 단계(단계 3); 및
식각 부위에 잔류하는 상기 나노임프린트용 광중합성 조성물을 에칭하는 단계(단계 4);를 포함하는 미세패턴 박막의 제조방법.
Applying the photopolymerizable composition for a nanoimprint of claim 1 onto a substrate (step 1);
Pressing the transparent mold having the pattern formed on the substrate coated with the photopolymerizable composition for nanoimprint of step 1 (step 2);
Irradiating light to cure the photopolymerizable composition for nanoimprint and releasing the mold (step 3); And
And etching the photopolymerizable composition for nanoimprint remaining on the etching site (step 4).
제7항에 있어서,
상기 단계 3의 광은 자외선(ultraviolet rays, UV)인 것을 특징으로 하는 미세패턴 박막의 제조방법.
8. The method of claim 7,
Wherein the light in step 3 is ultraviolet rays (UV).
제7항에 있어서,
상기 단계 4의 에칭 방법은 플라즈마 에칭인 것을 특징으로 하는 미세패턴 박막의 제조방법.
8. The method of claim 7,
Wherein the etching method of step 4 is a plasma etching.
제1항의 나노임프린트용 광중합성 조성물을 포함하는 미세패턴 박막.A fine patterned thin film comprising the photopolymerizable composition for a nanoimprint of claim 1.
KR1020140122008A 2014-09-15 2014-09-15 Photopolymerizable composition for nanoimprint and method of preparing nanopatterned film using the same KR101650740B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140122008A KR101650740B1 (en) 2014-09-15 2014-09-15 Photopolymerizable composition for nanoimprint and method of preparing nanopatterned film using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140122008A KR101650740B1 (en) 2014-09-15 2014-09-15 Photopolymerizable composition for nanoimprint and method of preparing nanopatterned film using the same

Publications (2)

Publication Number Publication Date
KR20160031814A true KR20160031814A (en) 2016-03-23
KR101650740B1 KR101650740B1 (en) 2016-08-24

Family

ID=55645181

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140122008A KR101650740B1 (en) 2014-09-15 2014-09-15 Photopolymerizable composition for nanoimprint and method of preparing nanopatterned film using the same

Country Status (1)

Country Link
KR (1) KR101650740B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180128908A (en) * 2016-03-31 2018-12-04 캐논 가부시끼가이샤 Imprint resist and substrate pretreatment to reduce charge time in nanoimprint lithography
CN111499663A (en) * 2020-04-23 2020-08-07 郑州大学 Phosphate crosslinking agent and preparation method thereof, phosphate-based crosslinked gel polymer electrolyte and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070093667A (en) 2006-03-15 2007-09-19 엘지이노텍 주식회사 Apparatus for receiving broadcasting signal using portable storage device and method thereof
KR20090131648A (en) * 2008-06-18 2009-12-29 후지필름 가부시키가이샤 Curable composition for nanoimprint and patterning method
JP2012134446A (en) * 2010-11-30 2012-07-12 Jnc Corp Curable composition for optical nanoimprint and hardened film obtained from curable composition
JP2013138179A (en) * 2011-11-30 2013-07-11 Central Glass Co Ltd Photopolymerizable composition and pattern formation method using the same
KR20140093678A (en) * 2011-10-18 2014-07-28 후지필름 가부시키가이샤 Curable composition for imprint and method for storing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070093667A (en) 2006-03-15 2007-09-19 엘지이노텍 주식회사 Apparatus for receiving broadcasting signal using portable storage device and method thereof
KR20090131648A (en) * 2008-06-18 2009-12-29 후지필름 가부시키가이샤 Curable composition for nanoimprint and patterning method
JP2012134446A (en) * 2010-11-30 2012-07-12 Jnc Corp Curable composition for optical nanoimprint and hardened film obtained from curable composition
KR20140093678A (en) * 2011-10-18 2014-07-28 후지필름 가부시키가이샤 Curable composition for imprint and method for storing same
JP2013138179A (en) * 2011-11-30 2013-07-11 Central Glass Co Ltd Photopolymerizable composition and pattern formation method using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180128908A (en) * 2016-03-31 2018-12-04 캐논 가부시끼가이샤 Imprint resist and substrate pretreatment to reduce charge time in nanoimprint lithography
CN111499663A (en) * 2020-04-23 2020-08-07 郑州大学 Phosphate crosslinking agent and preparation method thereof, phosphate-based crosslinked gel polymer electrolyte and preparation method and application thereof

Also Published As

Publication number Publication date
KR101650740B1 (en) 2016-08-24

Similar Documents

Publication Publication Date Title
JP5696017B2 (en) Curable composition for imprint, pattern forming method and pattern
JP6230159B2 (en) Curable resin composition, resin mold for imprint, optical imprint method, method for producing semiconductor integrated circuit, method for producing fine optical element, and fluorinated urethane (meth) acrylate
EP2399167B1 (en) Nanolithography process
TWI572983B (en) Curable composition for photo imprints, method for forming pattern, pattern and method for manufacturing semiconductor device
JP6534347B2 (en) Composition, resin mold, optical imprint method, method of manufacturing optical element, and method of manufacturing electronic element
TWI536101B (en) A photo-hardened nanoimprint composition, a method of forming the pattern of the composition, and a copying tool for a nanoimprint of the hardened body having the composition
JP5762245B2 (en) Composition for photo-curable nanoimprint, pattern formation method using the composition, and replica mold for nanoimprint having a cured product of the composition
JP5739185B2 (en) Method for producing curable composition for imprint
KR20130062054A (en) Photo-curable resin composition and method for preparing of replication mold and using the same
JP5839830B2 (en) Organometallic complex compound, method for producing organometallic complex compound, and photocurable composition containing organometallic complex compound
Hu et al. A degradable polycyclic cross-linker for UV-curing nanoimprint lithography
CN113156765B (en) Photoresist composition for ultraviolet nano-imprinting and preparation and application thereof
JP5975814B2 (en) Photocurable nanoimprint composition and pattern formation method
KR101650740B1 (en) Photopolymerizable composition for nanoimprint and method of preparing nanopatterned film using the same
Matsukawa et al. Reworkable dimethacrylates with low shrinkage and their application to UV nanoimprint lithography
JP2014065853A (en) Composition for photocurable nanoimprint and method of forming pattern
JP6008628B2 (en) Pattern production method using photocurable nanoimprinting composition
JP2012169434A (en) Method of producing molding having fine pattern
JP5832428B2 (en) Organic tantalum complex compound and method for producing the same
KR101607965B1 (en) Photopolymerizable composition for roll-to-roll nanoimprint lithography and Wire-grid olarizer film comprising the same
KR101730802B1 (en) Uv-crosslinkable resin composition and method for formation of pattern using the same
KR102101344B1 (en) Photopolymerizable composition for roll-to-roll nanoimprint lithography replica mold, and replica mold containg the same
TWI662087B (en) Curable composition for photo-imprints, method for forming pattern and pattern
Kimura et al. Dual-functional fluorinated-thiolated silsesquioxane nanoparticles for UV nanoimprinting via thiol-ene chemistry
WO2015146710A1 (en) Curable composition for optical imprinting, pattern forming method and pattern

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190711

Year of fee payment: 4