KR20160029919A - Method for improving the resistance to the drought stress using ABA receptor, CaRCAR1, in plants - Google Patents

Method for improving the resistance to the drought stress using ABA receptor, CaRCAR1, in plants Download PDF

Info

Publication number
KR20160029919A
KR20160029919A KR1020140118705A KR20140118705A KR20160029919A KR 20160029919 A KR20160029919 A KR 20160029919A KR 1020140118705 A KR1020140118705 A KR 1020140118705A KR 20140118705 A KR20140118705 A KR 20140118705A KR 20160029919 A KR20160029919 A KR 20160029919A
Authority
KR
South Korea
Prior art keywords
carcar1
present
gene
plants
plant
Prior art date
Application number
KR1020140118705A
Other languages
Korean (ko)
Other versions
KR101668917B1 (en
Inventor
이성철
임채우
Original Assignee
중앙대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 중앙대학교 산학협력단 filed Critical 중앙대학교 산학협력단
Priority to KR1020140118705A priority Critical patent/KR101668917B1/en
Publication of KR20160029919A publication Critical patent/KR20160029919A/en
Application granted granted Critical
Publication of KR101668917B1 publication Critical patent/KR101668917B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H5/00Angiosperms, i.e. flowering plants, characterised by their plant parts; Angiosperms characterised otherwise than by their botanic taxonomy
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8273Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Botany (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physiology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Environmental Sciences (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Peptides Or Proteins (AREA)

Abstract

The present invention relates to a CaRCAR1 which is a gene encoding a pepper-derived abscisic acid receptor, associated with resistance against desiccation stress in plants. More specifically, the present invention relates to a method for enhancing resistance against desiccation stress in plants, by regulating expression of CaRCAR1 protein. A transgenic plant (CaRCAR1-OX) in which CaRCAR1 of the present invention is over-expressed has shown effects of increasing sensitivity for abscisic acid and enhancing resistance against desiccation stress. Thus the method of the present invention can be useful for improving crops that men can use.

Description

앱시스산 수용체 CaRCAR1을 이용한 식물체의 건조 스트레스 저항성 증진방법 {Method for improving the resistance to the drought stress using ABA receptor, CaRCAR1, in plants}FIELD OF THE INVENTION [0001] The present invention relates to a method for enhancing dry stress resistance of a plant using an abscisic acid receptor CaRCAR1,

본 발명은 고추유래의 앱시스산 수용체 유전자 CaRCAR1 및 이를 이용한 식물체의 건조 스트레스 저항성을 증진시키는 방법에 관한 것으로서, 보다 구체적으로는 CaRCAR1의 발현을 조절하여 식물체의 건조 스트레스에 대한 저항성을 증진시키는 방법에 관한 것이다.The present invention relates to a method for enhancing the dry stress resistance of a plant using the Caesalin receptor gene CaRCAR1 derived from pepper, and more particularly, to a method for enhancing resistance to the dry stress of a plant by controlling the expression of CaRCAR1 will be.

건조(drought) 상태와 같은 환경 스트레스들은 직접적으로 곡물의 성장 및 생산에 해로운 효과들을 야기한다. 특히, 오늘날 사막화가 진행됨에 따라 물 부족이 농업과 환경에 큰 문제점을 초래하고 있으며, 이에 물을 적게 사용하여도 건조한 환경에서 견디고 살 수 있는 식물의 개발이 필요한 실정이다. 이러한 기술이 개발되어 작물에 적용되면 농업 생산량이 크게 증가할 것으로 기대되며, 특히 건조한 지역의 경우, 건조 저항성이 향상된 식물, 즉 증산 작용을 낮출 수 있는 식물들은 생존에 유리하므로, 농업 생산성 향상에 기여할 수 있을 뿐 아니라, 환경이 매우 건조한 지역에서 환경정화에도 유용할 수 있다.Environmental stresses, such as drought conditions, directly cause detrimental effects on grain growth and production. Especially, as the desertification progresses today, water shortages cause big problems in agriculture and the environment. Therefore, it is necessary to develop plants that can survive in a dry environment even when water is used less. When these techniques are developed and applied to crops, agricultural production is expected to increase greatly. Especially in dry areas, plants with improved resistance to dryness, that is, plants capable of lowering the transpiration rate, are favorable to survival, And may be useful for environmental purification in areas where the environment is very dry.

한편, 식물은 가뭄, 염, 추위, 더위, 병충해 등의 다양한 환경적 스트레스에 자주 노출되기 때문에 스트레스의 해로운 효과에 대처하는 생리학적, 생화학적, 분자적 방어 기작을 발전시켜왔으며, 특히 앱시스산(abscisic acid: ABA) 신호 변환 조절은 식물이 상기 스트레스를 극복할 수 있도록 한다. 보고된 바에 의하면, 앱시스산을 미리 처리하고 스트레스를 준 식물은 그렇지 않은 식물에 비해 스트레스에 잘 저항하는 반면 앱시스산을 생성하지 못하거나, 앱시스산에 반응하지 못하는 돌연변이 식물들은 스트레스에 약한 것으로 알려졌다. 따라서 앱시스산의 반응에 관여하는 단백질들을 이용하면, 환경 스트레스에 대한 저항성이 향상된 식물을 개발할 수 있을 것으로 기대되고 있다.Plants, on the other hand, have been developing physiological, biochemical and molecular defense mechanisms to cope with the harmful effects of stress because they are frequently exposed to various environmental stresses such as drought, salt, cold, heat, abscisic acid: ABA) signal transduction regulation allows plants to overcome these stresses. It has been reported that plants pretreated with abscisic acid and stressed are resistant to stress compared to plants that do not produce stress, while mutant plants that fail to produce abscisic acid or fail to respond to abscisic acid are known to be stress-free. Therefore, it is expected that the use of proteins involved in the reaction of abscisic acid will enable to develop plants with improved resistance to environmental stress.

이에, 식물체의 건조 저항성 증진방법이 주요한 과제의 대상이 되고 있으며, 앱시스산의 반응에 관여하는 단백질을 이용하는 방법에 대한 연구가 이루어지고 있으나(한국 특허 공개번호 10-2010-0040789), 아직 미비한 실정이다. Accordingly, a method for increasing the dry resistance of plants has been the subject of much research, and studies have been conducted on the use of proteins involved in the reaction of abscisic acid (Korean Patent Publication No. 10-2010-0040789) to be.

본 발명은 상기와 같은 문제점을 해결하기 위해 안출된 것으로서, 본 발명자들은, ABA 또는 건조 스트레스에 의한 CaRCAR1 유전자 발현 감소효과, CaRCAR1이 과발현된 형질전환 식물체(CaRCAR1-OX)의 앱시스산 민감도 증진효과를 확인하고, 이에 기초하여 본 발명을 완성하게 되었다. The present invention has been made to solve the above problems, the present inventors, ABA or CaRCAR1 reduced gene expression effect of drought stress, the Absecon seusan sensitivity enhancement effect of CaRCAR1 a transgenic plant (CaRCAR1 -OX) And the present invention has been completed on the basis thereof.

이에, 본 발명의 목적은 고추 유래의 건조 스트레스 저항성 단백질을 코딩하는 서열번호 1의 염기서열로 이루어진 유전자 CaRCAR1을 제공하는 것이다.Accordingly, an object of the present invention is to provide a gene CaRCAR1 comprising the nucleotide sequence of SEQ ID NO: 1 encoding a dry stress-resistant protein derived from pepper.

또한, 본 발명의 다른 목적은 상기 유전자 CaRCAR1에 의해 코딩되는 서열번호 2의 아미노산 서열의 펩티드를 제공하는 것이다.Another object of the present invention is to provide a peptide of the amino acid sequence of SEQ ID NO: 2 which is encoded by the gene CaRCAR1 .

또한, 본 발명의 또 다른 목적은 CaRCAR1 단백질을 암호화하는 유전자를 식물체에 형질전환하는 단계 및 상기 형질전환된 식물체에서 CaRCAR1 단백질을 과발현시키는 단계를 포함하는 식물체의 건조 스트레스 저항성 증진방법을 제공하는 것이다.It is still another object of the present invention to provide a method for enhancing dry stress resistance of a plant, comprising transforming a gene encoding CaRCAR1 protein into a plant, and overexpressing the CaRCAR1 protein in the transformed plant.

또한, 본 발명의 또 다른 목적은 상기 방법에 의해 건조 스트레스 저항성이 증진된 형질 전환 식물체를 제공하는 것이다.
It is still another object of the present invention to provide a transgenic plant having improved dry stress resistance by the above method.

그러나 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.However, the technical problem to be solved by the present invention is not limited to the above-mentioned problems, and other matters not mentioned can be clearly understood by those skilled in the art from the following description.

상기와 같은 본 발명의 목적을 달성하기 위하여, 본 발명은 고추 유래의 건조 스트레스 저항성 단백질을 코딩하는 서열번호 1의 염기서열로 이루어진 유전자 CaRCAR1을 제공한다.In order to accomplish the object of the present invention as described above, the present invention provides a gene CaRCAR1 comprising the nucleotide sequence of SEQ ID NO: 1 encoding a dry stress resistant protein derived from pepper.

본 발명은 상기 유전자 CaRCAR1에 의해 코딩되는 서열번호 2의 아미노산 서열의 펩티드를 제공한다.The present invention provides a peptide of the amino acid sequence of SEQ ID NO: 2 which is encoded by the gene CaRCAR1 .

본 발명은 CaRCAR1 단백질을 암호화하는 유전자를 식물체에 형질전환하는 단계 및 상기 형질전환된 식물체에서 CaRCAR1 단백질을 과발현시키는 단계를 포함하는 식물체의 건조 스트레스 저항성 증진방법을 제공한다. The present invention provides a method for promoting dry stress resistance of a plant, comprising transforming a gene encoding a CaRCAR1 protein into a plant, and overexpressing the CaRCAR1 protein in the transformed plant.

본 발명은 상기 방법에 의해 건조 스트레스 저항성이 증진된 형질 전환 식물체를 제공한다.The present invention provides a transgenic plant improved in dry stress resistance by the above method.

본 발명은 후보 물질을 처리한 후, CaRCAR1 단백질의 발현 여부를 측정하는 단계를 포함하는, 식물체의 건조 스트레스 저항성 증진제 스크리닝 방법을 제공한다.The present invention provides a screening method for a dry stress resistance enhancer of a plant, comprising the step of treating the candidate substance and then measuring the expression of the CaRCAR1 protein.

본 발명은 식물체의 건조 스트레스 저항성 관련 고추유래의 유전자 CaRCAR1에 관한 것으로서, 상기 CaRCAR1이 과발현된 형질전환 식물체(CaRCAR1-OX)의 앱시스산 민감도 증진효과를 확인하였는바, CaRCAR1 발현 조절을 통해 인류가 이용할 수 있는 작물 등의 개량에 유용하게 활용될 수 있을 것으로 기대된다. The present invention relates to a gene CaRCAR1 of drying stress tolerance-related origin of pepper plants, the CaRCAR1 bar hayeotneun determine Absecon seusan sensitivity enhancement effect of the transgenic plants (CaRCAR1 -OX), humans available on the expression control CaRCAR1 It is expected that it will be useful for improving crops.

도 1은 고추 CaRCAR1SlPYL8, MtPYL9, PsATF, AhPIP, MdPYL9, AtRCAR3간의 아미노산 서열을 비교한 결과이다.
도 2는 고추 CaRCAR1SlPYL8, MtPYL9, PsATF, AhPIP, MdPYL9, AtRCAR3간의 phylogenetic tree analysis 결과이다.
도 3은 (A) ABA 또는 (B) 건조 스트레스 조건에서, CaRCAR1 발현량의 변화를 qRT-PCR을 통하여 확인한 결과이다.
도 4는 고추 CaRCAR1의 세포내 발현 및 작용 위치를 확인하기 위하여 CaRCAR1-GFP 발현을 확인한 결과이다.
도 5는 ABA 스트레스 조건에서, CaRCAR1이 과발현된 형질전환 애기장대 식물체(CaRCAR1-OX #4, #9) 및 야생형인 대조군(WT)간 (A) 발아율, (B) 녹색 자엽의 비율을 육안으로 관찰한 결과, (C) 녹색 자엽의 비율을 수치화한 결과, (D) 뿌리길이를 수치화한 결과, 및 (E) 뿌리길이를 육안으로 관찰한 결과이다.
FIG. 1 shows the amino acid sequence comparison between pepper CaRCAR1 and SlPYL8, MtPYL9, PsATF, AhPIP, MdPYL9 and AtRCAR3 .
FIG. 2 shows phylogenetic tree analysis results between pepper CaRCAR1 and SlPYL8, MtPYL9, PsATF, AhPIP, MdPYL9 and AtRCAR3 .
FIG. 3 shows the results of qRT-PCR for the change of CaRCAR1 expression level under (A) ABA or (B) dry stress conditions.
FIG. 4 shows the results of confirming expression of CaRCAR1- GFP in order to confirm intracellular expression and action site of pepper CaRCAR1 .
FIG. 5 shows the ratio of germination (A) to green cotyledons ( CaRCAR1- OX # 4, # 9) and wild type control (WT) germination rate of CaRCAR1 overexpressed CaRCAR1 overexpressed in ABA stress condition As a result of observation, (C) the ratio of green cotyledon was numerically determined, (D) the root length was quantified, and (E) the root length was observed with naked eyes.

본 발명자들은, 건조 또는 ABA 스트레스 조건에서 CaRCAR1 발현 감소 및 CaRCAR1이 과발현된 형질전환 애기장대에서 앱시스산 민감도 증진효과를 확인하고, 이에 기초하여 본 발명을 완성하였다.
The present inventors have confirmed that Absecon seusan sensitivity enhancement effect on the drying ABA or stress conditions, and decreased expression CaRCAR1 CaRCAR1 the transgenic Arabidopsis thaliana in, and have accomplished the present invention based thereon.

이하 본 발명을 상세히 설명한다.
Hereinafter, the present invention will be described in detail.

본 발명은 고추 유래의 건조 스트레스 저항성 단백질을 코딩하는 유전자 CaRCAR1 또는 유전자 CaRCAR1에 의해 코딩되는 펩티드를 제공한다. 본 발명의 유전자인 CaRCAR1은 Differential hybridization analysis를 통하여 고추로부터 분리하였으며, 본 발명의 CaRCAR1 유전자는 바람직하게는 서열번호 1의 염기서열로 이루어져 있으며, 상기 CaRCAR1 유전자에 의해 코딩되는 펩티드는 바람직하게는 서열번호 2로 이루어질 수 있으나, 이에 제한되는 것은 아니다.The present invention provides a peptide encoded by the gene CaRCARl or the gene CaRCARl encoding a dry stress resistant protein from pepper. Gene CaRCAR1 of the present invention were isolated from the pepper through Differential hybridization analysis, CaRCAR1 genes of the present invention preferably consists of the nucleotide sequence of SEQ ID NO: 1, peptides encoded by the CaRCAR1 gene is preferably SEQ ID NO: 2, but is not limited thereto.

본 발명자들은 상기 CaRCAR1 유전자의 비-생물적 스트레스에 대한 새로운 기능을 밝히기 위해 연구하던 중, CaRCAR1 유전자가 앱시스산(abscisic acid: ABA), 건조(탈수) 스트레스에 노출된 고추 잎에서 발현이 억제된다는 사실을 밝혀냈으며(실시예 2 참조), 앱시스산의 민감도가 증가할 수록 기공폐쇄를 촉진하여, 건조 저항성을 증진시킬 수 있다는 사실에 기반하여, 앱시스 산 또는 건조 스트레스와 CaRCAR1 유전자간의 연관성을 규명하고자 하였다.The inventors of the present invention have been studying to reveal a novel function of the CaRCAR1 gene against non-biological stress, and it has been found that the expression of CaRCAR1 gene is suppressed in pepper leaves exposed to abscisic acid (ABA) and dry (dehydration) (See Example 2), and based on the fact that as the sensitivity of abscisic acid increases, pore closure is promoted and drying resistance can be enhanced, the relationship between abscisic acid or dry stress and the CaRCAR1 gene is identified .

이에, 본 발명의 일실시예에서는 CaRCAR1 단백질과 다른 ABA receptor 단백질간 아미노산 서열의 상동성(실시예 1 참조)을 확인하였다. 또한, CaRCAR1이 과발현된 형질전환 애기장대를 제조하여(실시예 3 참조), 앱시스산 민감도 증진효과(실시예 4 참조)를 확인함으로써 CaRCAR1의 발현을 조절함으로써, 건조 스트레스에 대한 저항성을 증진시킬 수 있음을 밝혀냈다.Thus, in one embodiment of the present invention, the homology of the amino acid sequence between the CaRCAR1 protein and the other ABA receptor protein (see Example 1) was confirmed. In addition, by regulating the expression of CaRCARl by preparing transgenic Arabidopsis thaliana overexpressing CaRCARl (see Example 3) and confirming the abscisic acid sensitization enhancing effect (see Example 4), resistance to dry stress can be enhanced .

따라서, 본 발명은 CaRCAR1 단백질을 암호화하는 유전자를 식물체에 형질전환하는 단계 및 상기 형질전환된 식물체에서 CaRCAR1 단백질을 과발현시키는 단계를 포함하는 식물체의 건조 스트레스 저항성 증진방법을 제공한다. Accordingly, the present invention provides a method for enhancing dry stress resistance of a plant, comprising transforming a gene encoding CaRCAR1 protein into a plant, and overexpressing the CaRCAR1 protein in the transformed plant.

본 발명의 다른 측면에 있어서, 본 발명은 CaRCAR1 단백질이 과발현되어 건조 스트레스 저항성이 증진된 형질전환 식물체를 제공한다. In another aspect, the present invention provides a transgenic plant in which CaRCARl protein is overexpressed to enhance dry stress resistance.

본 발명에 따른 식물체는 벼, 밀, 보리, 옥수수, 콩, 감자, 팥, 귀리, 수수를 포함하는 식량작물류; 애기장대, 배추, 무, 고추, 딸기, 토마토, 수박, 오이, 양배추, 참외, 호박, 파, 양파, 당근을 포함하는 채소작물류; 인삼, 담배, 목화, 참깨, 사탕수수, 사탕무우, 들깨, 땅콩, 유채를 포함하는 특용작물류; 사과나무, 배나무, 대추나무, 복숭아, 양다래, 포도, 감귤, 감, 자두, 살구, 바나나를 포함하는 과수류; 장미, 글라디올러스, 거베라, 카네이션, 국화, 백합, 튤립을 포함하는 화훼류; 및 라이그라스, 레드클로버, 오차드그라스, 알파알파, 톨페스큐, 페레니얼라이그라스를 포함하는 사료작물류 등일 수 있으며, 바람직하게는 애기장대(Arabidopsis)일 수 있으나, 이에 한정되는 것은 아니다.
The plant according to the present invention is a food crop including rice, wheat, barley, corn, soybean, potato, red bean, oats, sorghum; Vegetable crops including Arabidopsis, cabbage, radish, red pepper, strawberry, tomato, watermelon, cucumber, cabbage, melon, squash, onions, onions and carrots; Special crops including ginseng, tobacco, cotton, sesame seed, sugar cane, beet, perilla, peanut, and rapeseed; Fruit trees including apple trees, pears, jujube trees, peaches, sheep grapes, grapes, citrus fruits, persimmons, plums, apricots, and bananas; Roses, gladiolus, gerberas, carnations, chrysanthemums, lilies, tulips; And feed crops including ragras, red clover, orchardgrass, alpha-alpha, tall fescue, perenniallaigrus, and the like, preferably Arabidopsis , but are not limited thereto.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 하기 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.
Hereinafter, preferred embodiments of the present invention will be described in order to facilitate understanding of the present invention. However, the following examples are provided only for the purpose of easier understanding of the present invention, and the present invention is not limited by the following examples.

실시예 1. Example 1. CaRCAR1CaRCAR1 서열 상동성 분석 Sequence homology analysis

본 발명자들은 고추 CaRCAR1 아미노산 서열이 타종의 ABA receptor 단백질과 어느 정도 유사성을 나타내는지 알아보기 위하여, Multiple alignment analysis 및 phylogenetic tree analysis를 실시하였다. 고추 CaRCAR1의 아미노산 서열과 SlPYL8, MtPYL9, PsATF, AhPIP, MdPYL9, AtRCAR3간의 아미노산 서열의 상동성을 비교하였다.
The present inventors performed multiple alignment analysis and phylogenetic tree analysis in order to determine the degree of similarity of pepper CaRCAR1 amino acid sequence with other ABA receptor proteins. The amino acid sequences of pepper CaRCAR1 and SlPYL8, MtPYL9, PsATF, AhPIP, MdPYL9 and AtRCAR3 were compared.

도 1 및 도 2에 나타낸 바와 같이, 고추 CaRCAR1 아미노산 서열은 타종의 PYL 및 RCAR과 같은 ABA receptor 단백질과 높은 상동성을 가지고 있음을 확인하였다.
As shown in FIGS. 1 and 2, the amino acid sequence of pepper CaRCAR1 has high homology with ABA receptor proteins such as PYL and RCAR of various species.

실시예 2. ABA 및 건조 스트레스에 의한 Example 2 < RTI ID = 0.0 > CaRCAR1CaRCAR1 유전자의 유도 Induction of gene

ABA 또는 건조(drought) 스트레스에 의해 촉진되는지 알아보기 위해, qRT-PCR을 통하여 상기 조건하에서, CaRCAR1 유전자 발현양상을 확인하였다. To determine if it was promoted by ABA or drought stress, the expression pattern of CaRCARl gene was confirmed under the above conditions through qRT-PCR.

ABA (100μM), drought(탈수)을 각각 처리한 후, 샘플링한 고추 잎으로 부터 RNA를 추출하였다. 추출된 RNA 샘플은 genomic DNA를 제거하기 위하여 RNA-free DNase 처리를 하였으며, -20℃에서 보관되었다. reverse transcription PCR을 위하여, Transcript First Strand cDNA Synthesis kit (Roche)를 이용하였다. 이와 동시에 역전사효소없이 PCR을 수행하고, cDNA 샘플에서 genomic DNA의 오염을 재확인하기 위한 qRT-PCR에 PCR 산물을 사용하였다. 합성한 cDNA는 iQTMSYBR Green Supermix 및 하기 표 1에 나타낸 특이 프라이머와 함께 CFX96 Touch™ Real-Time PCR detection system (Bio-Rad, Hercules, CA, USA)을 이용하여 증폭시켰다. 모든 반응은 세 번 반복하여 수행하였으며, PCR 조건은 다음과 같다: 95℃에서 5분 가열 후, [95℃에서 20초, 60℃에서 20초, 72℃에서 20초]를 한 사이클로 하여 45 사이클 반복. qRT-PCR은 반복 실험(biological 및 technical replicate)을 각각 적어도 두 번씩 수행하였다. 각 유전자의 상대적 발현량은 ΔΔCt 방법(Livak and Schmittgen 2001)으로 계산하였으며, 타겟 유전자 발현의 정확한 측정을 위해 내부 대조군 유전자( 18S rRNA)를 정규화에 이용하였다.ABA (100 μM), and drought (dehydrated), respectively, and RNA was extracted from the sampled pepper leaves. Extracted RNA samples were treated with RNA-free DNase to remove genomic DNA and stored at -20 ° C. For reverse transcription PCR, Transcript First Strand cDNA synthesis kit (Roche) was used. At the same time, PCR was performed without reverse transcriptase, and PCR products were used for qRT-PCR to reaffirm genomic DNA contamination in cDNA samples. The synthesized cDNA was amplified using a CFX96 Touch ™ real-time PCR detection system (Bio-Rad, Hercules, CA, USA) together with iQ SYBR Green Supermix and the specific primers shown in Table 1 below. All reactions were repeated three times. The PCR conditions were as follows: After heating for 5 minutes at 95 ° C, 45 cycles (95 ° C for 20 seconds, 60 ° C for 20 seconds, and 72 ° C for 20 seconds) repeat. qRT-PCR was performed at least twice each in biological and technical replicates. The relative expression level of each gene was calculated by the ΔΔCt method (Livak and Schmittgen 2001), and an internal control gene (18S rRNA) was used for normalization to accurately measure target gene expression.

Figure pat00001
Figure pat00001

그 결과, 도 3에 나타낸 바와 같이, ABA 또는 건조 스트레스 조건에서 CaRCAR1 유전자 발현은 점차적으로 감소하였다. 상기 결과는 CaRCAR1 유전자의 발현은 ABA 및 건조 스트레스와 밀접한 관련성을 갖는다는 것을 의미한다.
As a result, as shown in Fig. 3, expression of CaRCARl gene gradually decreased under ABA or dry stress conditions. These results indicate that expression of the CaRCAR1 gene is closely related to ABA and dry stress.

실시예Example 3.  3. CaRCAR1CaRCAR1 단백질의  Protein 세포내Intracellular 발현 및 작용 위치 조사 Expression and action location investigation

CaRCAR1 단백질의 세포내 발현 및 작용 위치를 조사하기 위하여, 종결코돈을 갖지 않는 CaRCAR1 전장 cDNA의 C-말단에 형광단백질인 Green flourescent protein (GFP)을 결합시켜 cauliflower mosaic virus (CaMV) 35S 프로모터 하에서 발현되도록 벡터를 구축하였다. 일시 발현을 위해서, 상기 CaRCAR1-GFP가 삽입된 벡터를 갖는 Agrobacterium tumefaciens 균주 GV3101를 p19 균주와 혼합하여 유전자 silencing을 피하고, 1ml needless 주사기를 사용하여 5주된 Nicotiana benthamiana 잎의 배축면에 주입하였다. 현미경 분석을 위해 잎절편을 주입 2일 후에 잘랐다. 하부 표피세포를 LSM Image Browser software로 조작되는 공초점 현미경(model Zeiss 510 UV/Vis Meta)으로 분석하였다. In order to investigate the intracellular expression and action site of the CaRCAR1 protein, the fluorescent protein Green flourescent protein (GFP) was bound to the C-terminus of the CaRCAR1 full-length cDNA having no stop codon to be expressed under the cauliflower mosaic virus (CaMV) 35S promoter Vector. For the transient expression, Agrobacterium tumefaciens strain GV3101 with the CaRCAR1- GFP inserted vector was mixed with p19 strain to avoid gene silencing and injected into the hypocotyl of 5 week old Nicotiana benthamiana leaf using a 1 ml needless syringe. Leaf sections were cut 2 days after injection for microscopic analysis. The lower epidermal cells were analyzed with a confocal microscope (model Zeiss 510 UV / Vis Meta) operated with LSM Image Browser software.

도 4에 나타난 바와 같이, CaRCAR1는 세포의 핵 및 세포질 모두에서 발현 또는 작용하는 것으로 확인되었다.
As shown in Fig. 4, CaRCAR1 was found to be expressed or acting in both nucleus and cytoplasm of cells.

실시예 4. Example 4. CaRCAR1CaRCAR1 과발현 애기장대 돌연변이 식물체의 제조 Production of overexpressed Arabidopsis mutant plants

CaRCAR1 유전자에 대해 식물체 내에서의 그 기능을 확인하기 위해 모델식물인 애기장대에 형질전환하였다. CaMV 35S 프로모터 하에 CaRCAR1 유전자의 상시발현을 유도하기 위해, CaRCAR1의 cDNA 전체 서열을 binary 벡터 pK2GW7에 삽입하였다. 이후 전기 천공법을 통해 상기 binary 벡터를 Agrobacterium tumefaciens 균주 GV3101에 도입하였다. 애기장대 식물로의 CaRCAR1 유전자 도입은 floral dipping 방법을 사용하여 수행하였다. CaRCAR1 유전자 과발현(CaRCAR1-OX) 형질전환주의 선택을 위해, 형질전환된 것으로 추정되는 식물에서 수확한 종자를 50μg/ml 카나마이신을 포함한 MS 고체배지에 파종하여 선발하였다.
The CaRCAR1 gene was transformed into Arabidopsis thaliana, a model plant, to confirm its function in the plant. To under CaMV 35S promoter to drive expression of the constant CaRCAR1 gene, it was inserted into the entire cDNA sequence of the binary vector CaRCAR1 pK2GW7. The binary vector was then introduced into Agrobacterium tumefaciens strain GV3101 by electroporation. CaRCAR1 gene transfer into Arabidopsis plants was performed using floral dipping method. For CaRCAR1 gene overexpression ( CaRCAR1- OX) transgenic selection, harvested seeds from plants suspected of being transformed were selected by inoculation on MS solid medium containing 50 μg / ml kanamycin.

실시예 5. Example 5. CaRCAR1CaRCAR1 과발현 애기장대 돌연변이 식물체의 ABA 스트레스에 대한 증진된 민감도 확인 Promoting increased sensitivity to ABA stress in overexpressed Arabidopsis mutant plants

ABA 민감도에 대한 CaRCAR1 유전자의 역할을 알아보기 위하여 CaRCAR1이 과발현된 형질전환 애기장대 식물체(CaRCAR1-OX #4, #9)와 야생형(WT)인 대조군간의 발아율, 녹색 자엽의 비율, 및 뿌리의 길이를 비교하였다. The CaRCAR1 the transgenic To investigate the role of CaRCAR1 genes for ABA sensitivity of Arabidopsis plants (CaRCAR1 -OX # 4, # 9 ) , and percentage of germination percentage, green cotyledons between the wild-type controls (WT), and the length of the roots Were compared.

각 농도별 ABA(0, 0.50, 0.75, 1.00 μM)가 함유된 ㅍ MS 배지에 종자를 치상(planting)하고, 이 후 2일, 4일째 발아율을 측정하였으며, 상기 실험은 50개의 종자(seed)를 대상으로 실시되었으며, 독립적으로 3번 반복 수행하였다. 또한, ABA(0, 0.75 μM)가 함유된 ㅍ MS 배지에 종자를 치상(planting)한 후, 7일째 녹색 자엽의 비율을 측정하였으며, 상기 실험은 40개의 종자(seed)를 대상으로 실시되었으며, 독립적으로 3번 반복 수행하였다. 아울러, ABA(0, 0.5 μM)가 함유된 ㅍ MS 배지에 종자를 치상(planting)한 후, 7일째 뿌리의 길이를 측정하였으며, 상기 실험은 독립적으로 3번 반복 수행하였다.The seeds were planted on MS medium containing ABA (0, 0.50, 0.75, 1.00 μM) at each concentration, and the germination rate was measured on the 2nd and the 4th day. Were performed independently and repeated three times. The seeds were planted in MS medium containing ABA (0, 0.75 μM), and the percentage of green cotyledons was measured on the 7th day. The experiment was carried out on 40 seeds, And repeated three times independently. In addition, seeds were planted on MS medium containing ABA (0, 0.5 μM), and the length of roots was measured on day 7, and the experiment was repeated 3 times independently.

도 5에 나타낸 바와 같이, ABA의 처리농도가 증가함에 따라, CaRCAR1이 과발현된 형질전환 및 야생형 애기장대 묘목의 발아율, 녹색 자엽의 비율, 및 뿌리 길이는 감소하였으며, CaRCAR1이 과발현된 형질전환 애기장대는 야생형인 대조군과 비교하여 낮은 발아율, 녹색 자엽의 비율을 보였으며, 뿌리 길이가 크게 감소하였다.As shown in Figure 5, as the concentration of ABA is increased, the CaRCAR1 the transgenic and wild-type Arabidopsis germination of the rod the seedlings, the rate of green cotyledons and root length was reduced, CaRCAR1 the transgenic Arabidopsis Showed a low germination rate and green cotyledon ratio compared to the wild type control, and the root length was greatly reduced.

상기 결과는 CaRCAR1 유전자가 과발현된 애기장대에서 앱시스산(ABA)에 대한 민감도가 증진되었음을 의미한다.
These results indicate that sensitivity to abscisic acid (ABA) is enhanced in the Arabidopsis overexpressing CaRCAR1 gene.

전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.It will be understood by those skilled in the art that the foregoing description of the present invention is for illustrative purposes only and that those of ordinary skill in the art can readily understand that various changes and modifications may be made without departing from the spirit or essential characteristics of the present invention. will be. It is therefore to be understood that the above-described embodiments are illustrative in all aspects and not restrictive.

<110> Chung-Ang University Industry-Academy Cooperation Foundation <120> Method for improving the resistance to the drought stress using ABA receptor, CaRCAR1, in plants <130> CAU20141516KR_PB14-12162 <160> 6 <170> KopatentIn 2.0 <210> 1 <211> 561 <212> DNA <213> Artificial Sequence <220> <223> CaRCAR1 <400> 1 atggaggcac agtttgtaga aagataccat agtcatcagc ctagtgacca tcaaagtagt 60 tcatctcttg ttaagcacat caaagcacct gttgatattg tttggtcact cgtaaggaga 120 ttcgatcagc ctcagaagta taagccattt attagcaggt gtactgtgaa gggtgatctt 180 acaattggta gtgttagaga ggtgaatgtc aagtctggtc ttccagccac cactagcacc 240 gaaagattgg aacttcttga tgatgaggag catatccttg gcatcagaat cgttggtggc 300 gatcacaggc ttaagaacta ttcttcggtt attacagtcc atcccgagac acttgatggt 360 agaccgggga cactggtgat tgagtcattt atggtggatg tgcctgaagg gaacactcaa 420 gaggagactt gctactttgt gaaggcctta atcaattgca atctgaaatc actagctgat 480 gtatctgaga gaatggctat gcagggaggt gttgtaccca ccagtgtgaa ctggtcttct 540 agtaaccaga tcgagacatg a 561 <210> 2 <211> 186 <212> PRT <213> Artificial Sequence <220> <223> CaRCAR1 Protein <400> 2 Met Glu Ala Gln Phe Val Glu Arg Tyr His Ser His Gln Pro Ser Asp 1 5 10 15 His Gln Ser Ser Ser Ser Leu Val Lys His Ile Lys Ala Pro Val Asp 20 25 30 Ile Val Trp Ser Leu Val Arg Arg Phe Asp Gln Pro Gln Lys Tyr Lys 35 40 45 Pro Phe Ile Ser Arg Cys Thr Val Lys Gly Asp Leu Thr Ile Gly Ser 50 55 60 Val Arg Glu Val Asn Val Lys Ser Gly Leu Pro Ala Thr Thr Ser Thr 65 70 75 80 Glu Arg Leu Glu Leu Leu Asp Asp Glu Glu His Ile Leu Gly Ile Arg 85 90 95 Ile Val Gly Gly Asp His Arg Leu Lys Asn Tyr Ser Ser Val Ile Thr 100 105 110 Val His Pro Glu Thr Leu Asp Gly Arg Pro Gly Thr Leu Val Ile Glu 115 120 125 Ser Phe Met Val Asp Val Pro Glu Gly Asn Thr Gln Glu Glu Thr Cys 130 135 140 Tyr Phe Val Lys Ala Leu Ile Asn Cys Asn Leu Lys Ser Leu Ala Asp 145 150 155 160 Val Ser Glu Arg Met Ala Met Gln Gly Gly Val Val Pro Thr Ser Val 165 170 175 Asn Trp Ser Ser Ser Asn Gln Ile Glu Thr 180 185 <210> 3 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> CaRCAR1-Forward <400> 3 atggaggcac agtttgtaga aagatacc 28 <210> 4 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> CaRCAR1-Reverse <400> 4 tcatgtctcg atctggttac tagaagacc 29 <210> 5 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> 18S rRNA-Forward <400> 5 tatggtgtgc accggtcgtc tcgt 24 <210> 6 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> 18S rRNA-Reverse <400> 6 gcagttgttc gtctttcata aatccaa 27 <110> Chung-Ang University Industry-Academy Cooperation Foundation <120> Method for improving the resistance to the drought stress using          ABA receptor, CaRCAR1, in plants <130> CAU20141516KR_PB14-12162 <160> 6 <170> Kopatentin 2.0 <210> 1 <211> 561 <212> DNA <213> Artificial Sequence <220> <223> CaRCAR1 <400> 1 atggaggcac agtttgtaga aagataccat agtcatcagc ctagtgacca tcaaagtagt 60 tcatctcttg ttaagcacat caaagcacct gttgatattg tttggtcact cgtaaggaga 120 ttcgatcagc ctcagaagta taagccattt attagcaggt gtactgtgaa gggtgatctt 180 acaattggta gtgttagaga ggtgaatgtc aagtctggtc ttccagccac cactagcacc 240 gaaagattgg aacttcttga tgatgaggag catatccttg gcatcagaat cgttggtggc 300 gatcacaggc ttaagaacta ttcttcggtt attacagtcc atcccgagac acttgatggt 360 agaccgggga cactggtgat tgagtcattt atggtggatg tgcctgaagg gaacactcaa 420 gaggagactt gctactttgt gaaggcctta atcaattgca atctgaaatc actagctgat 480 gtatctgaga gaatggctat gcagggaggt gttgtaccca ccagtgtgaa ctggtcttct 540 agtaaccaga tcgagacatg a 561 <210> 2 <211> 186 <212> PRT <213> Artificial Sequence <220> <223> CaRCAR1 Protein <400> 2 Met Glu Ala Gln Phe Val Glu Arg Tyr His Ser Gln Pro Ser Serp   1 5 10 15 His Gln Ser Ser Ser Ser Leu Val Lys His Ile Lys Ala Pro Val Asp              20 25 30 Ile Val Trp Ser Leu Val Arg Arg Phe Asp Gln Pro Gln Lys Tyr Lys          35 40 45 Pro Phe Ile Ser Arg Cys Thr Val Lys Gly Asp Leu Thr Ile Gly Ser      50 55 60 Val Arg Glu Val Asn Val Lys Ser Gly Leu Pro Ala Thr Thr Ser Thr  65 70 75 80 Glu Arg Leu Glu Leu Leu Asp Asp Glu Glu His Ile Leu Gly Ile Arg                  85 90 95 Ile Val Gly Gly Asp His Arg Leu Lys Asn Tyr Ser Ser Val Ile Thr             100 105 110 Val His Pro Glu Thr Leu Asp Gly Arg Pro Gly Thr Leu Val Ile Glu         115 120 125 Ser Phe Met Val Asp Val Pro Glu Gly Asn Thr Gln Glu Glu Thr Cys     130 135 140 Tyr Phe Val Lys Ala Leu Ile Asn Cys Asn Leu Lys Ser Leu Ala Asp 145 150 155 160 Val Ser Glu Arg Met Ala Met Gln Gly Gly Val Val Pro Thr Ser Val                 165 170 175 Asn Trp Ser Ser Ser Asn Gln Ile Glu Thr             180 185 <210> 3 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> CaRCAR1-Forward <400> 3 atggaggcac agtttgtaga aagatacc 28 <210> 4 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> CaRCAR1-Reverse <400> 4 tcatgtctcg atctggttac tagaagacc 29 <210> 5 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> 18S rRNA-Forward <400> 5 tatggtgtgc accggtcgtc tcgt 24 <210> 6 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> 18S rRNA-Reverse <400> 6 gcagttgttc gtctttcata aatccaa 27

Claims (4)

고추 유래의 건조 스트레스 저항성 단백질을 코딩하는 서열번호 1의 염기서열로 이루어진 CaRCAR1 유전자.
A CaRCAR1 gene consisting of the nucleotide sequence of SEQ. ID. NO: 1 encoding a dry stress resistant protein derived from pepper.
제 1항에 기재된 CaRCAR1 유전자에 의해 코딩되는 서열번호 2의 아미노산 서열의 펩티드.
A peptide of the amino acid sequence of SEQ ID NO: 2 which is encoded by the CaRCAR1 gene of claim 1.
하기의 단계를 포함하는, 식물체의 건조 스트레스 저항성 증진방법:
(a) CaRCAR1 단백질을 암호화하는 유전자를 식물체에 형질전환하는 단계; 및
(b) 상기 형질전환된 식물체에서 CaRCAR1 단백질을 과발현시키는 단계.
A method for enhancing dry stress resistance of a plant comprising the steps of:
(a) transforming a gene encoding a CaRCAR1 protein into a plant; And
(b) overexpressing the CaRCARl protein in the transformed plant.
제 3항의 방법에 의해 건조 스트레스 저항성이 증진된 형질 전환 식물체.



A transgenic plant having increased dry stress resistance by the method of claim 3.



KR1020140118705A 2014-09-05 2014-09-05 Method for improving the resistance to the drought stress using ABA receptor, CaRCAR1, in plants KR101668917B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140118705A KR101668917B1 (en) 2014-09-05 2014-09-05 Method for improving the resistance to the drought stress using ABA receptor, CaRCAR1, in plants

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140118705A KR101668917B1 (en) 2014-09-05 2014-09-05 Method for improving the resistance to the drought stress using ABA receptor, CaRCAR1, in plants

Publications (2)

Publication Number Publication Date
KR20160029919A true KR20160029919A (en) 2016-03-16
KR101668917B1 KR101668917B1 (en) 2016-10-25

Family

ID=55649744

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140118705A KR101668917B1 (en) 2014-09-05 2014-09-05 Method for improving the resistance to the drought stress using ABA receptor, CaRCAR1, in plants

Country Status (1)

Country Link
KR (1) KR101668917B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102090651B1 (en) * 2019-04-11 2020-03-18 중앙대학교 산학협력단 Method for improving the resistance to the drought stress using pepper protein kinase CaDIK1 in plants
KR102090653B1 (en) * 2019-04-11 2020-03-18 중앙대학교 산학협력단 Method for improving the resistance to the drought stress using pepper protein kinase CaSnRK2.6 in plants

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100827349B1 (en) 2006-11-24 2008-05-06 재단법인서울대학교산학협력재단 2A red pepper gene CaABS2 confers abiotic stress-tolerance to plants

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102090651B1 (en) * 2019-04-11 2020-03-18 중앙대학교 산학협력단 Method for improving the resistance to the drought stress using pepper protein kinase CaDIK1 in plants
KR102090653B1 (en) * 2019-04-11 2020-03-18 중앙대학교 산학협력단 Method for improving the resistance to the drought stress using pepper protein kinase CaSnRK2.6 in plants

Also Published As

Publication number Publication date
KR101668917B1 (en) 2016-10-25

Similar Documents

Publication Publication Date Title
JP6103607B2 (en) Plant suitable for high-density planting and use thereof
KR101775788B1 (en) Method for improving the resistance to the drought stress using CaDRT1 in plants
KR20070076918A (en) A method for the development of wide-leafed, late-flowering and environmental stress-resistant plants by transforming the transcription factor gene atmyb44
KR101803500B1 (en) Novel Gene Implicated in Plant Cold Stress Tolerance and Use Thereof
KR101668917B1 (en) Method for improving the resistance to the drought stress using ABA receptor, CaRCAR1, in plants
KR101416506B1 (en) Gene Implicated in Abiotic Stress Tolerance and Growth Accelerating and Use Thereof
KR20120111715A (en) Osbhlh148 gene enhancing drought stress tolerance of plant and uses thereof
CN109628475B (en) Application of brassinolide synthetic gene PaCYP724B1 in regulation and control of plant branches
KR100900928B1 (en) CaRma1H1 gene increasing plant stress resistance and transgenic plants transformed by CaRma1H1 gene
CN108004248B (en) Application of cucumber calcium binding protein gene CsCaM in improvement of plant heat resistance
KR101710806B1 (en) Method for improving the resistance to the abiotic stresses using CaAINR1 in plants
CN112941042B (en) Apple column candidate gene Co38, encoding protein and application thereof
KR101582047B1 (en) Method for improving the resistance to the drought stress using CaAIP1 in plants
KR20190083578A (en) Novel Gene Implicated in Plant Environmental Stresses Tolerance and Use Thereof
KR100637341B1 (en) Gene controlling flowering time of plants and method for manipulating flowering time of plant using the same
KR102095345B1 (en) Plants with Promoted Flowering Time Using FKF1 Mutant and Method for Producing the Same
KR102022247B1 (en) Novel proteins enhancing drought stress tolerance of plants, genes encoding the proteins and transgenic plants transformed with the genes
KR100990369B1 (en) Loss-of-function atubph1 and atubph2 mutant plants increasing resistance against plant stress and transgenic plants transformed by AtUBPH1 and AtUBPH2 promoting plant growth
KR100475359B1 (en) Method for delaying senescence of plants using the gene regulating leaf longevity in plants
KR102230148B1 (en) Compositions for Enhancing Cold Stress Tolerance and Transgenic Plants Using the Same
KR101485825B1 (en) Gene Implicated in Salt Stress Tolerance and Transformed Plants with the Same
CN102174525A (en) Brassica napus resistance-related gene (i)BnWRERF50(/i) and preparation method as well as application
KR102093591B1 (en) Novel gene related to plant cold stress tolerance and use thereof
KR101131600B1 (en) Method for producing cold or freezing tolerant plants transformed with genes encoding RNA-binding proteins from rice
KR101438738B1 (en) Gene Implicated in Abiotic Stress Tolerance and Growth Accelerating and Use Thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20191001

Year of fee payment: 4