KR20160020098A - 압축 후 전달 기법을 사용하는 릴레이 무선 통신 시스템에서 복합 자동 재전송 방법 및 장치 - Google Patents

압축 후 전달 기법을 사용하는 릴레이 무선 통신 시스템에서 복합 자동 재전송 방법 및 장치 Download PDF

Info

Publication number
KR20160020098A
KR20160020098A KR1020140104987A KR20140104987A KR20160020098A KR 20160020098 A KR20160020098 A KR 20160020098A KR 1020140104987 A KR1020140104987 A KR 1020140104987A KR 20140104987 A KR20140104987 A KR 20140104987A KR 20160020098 A KR20160020098 A KR 20160020098A
Authority
KR
South Korea
Prior art keywords
data
relay
node
information
channel
Prior art date
Application number
KR1020140104987A
Other languages
English (en)
Other versions
KR102147679B1 (ko
Inventor
임종부
채성호
임성훈
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020140104987A priority Critical patent/KR102147679B1/ko
Priority to US15/324,633 priority patent/US10237023B2/en
Priority to PCT/KR2015/008501 priority patent/WO2016024833A1/ko
Publication of KR20160020098A publication Critical patent/KR20160020098A/ko
Application granted granted Critical
Publication of KR102147679B1 publication Critical patent/KR102147679B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0076Distributed coding, e.g. network coding, involving channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1835Buffer management
    • H04L1/1845Combining techniques, e.g. code combining
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link
    • H04L2001/0097Relays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

본 발명은 릴레이 무선 통신 시스템에서 복합 자동 재전송 방법 및 장치에 관한 것으로, 특히 압축 후 전달(Compress-and-Forward, 이하 "CF"라 함) 기법을 사용하는 릴레이 무선 통신 시스템에서 복합 자동 재전송 방법 및 장치에 관한 것이다.
본 발명의 일 실시 예에 따른 릴레이 노드에서의 방법은, 압축 후 전달(CF) 기법을 사용하는 릴레이 무선 통신 시스템의 상기 릴레이 노드에서 복합 자동 재전송 방법으로, 이전 노드로부터 데이터를 수신 시 상기 이전 노드로부터 데이터 수신된 데이터를 다음 노드로 전송하기 위한 양자화 시 잉여 정보를 갖도록 그물망 형태의 양자화를 수행하는 단계; 상기 양자화된 정보 중 상위 정보부터 상기 다음 노드로 전송하기 위해 설정된 채널로 전송할 수 있는 양만큼만 채널 부호화하여 상기 다음 노드로 전송하는 단계; 및 상기 다음 노드로부터 부정 응답(NACK) 수신 시 상기 양자화된 정보 중 전송되지 않은 나머지 정보들 중 상기 설정된 채널로 전송할 수 있는 양만큼 채널 부호화를 수행하여 상기 다음 노드로 재전송하는 단계;를 포함할 수 있다.

Description

압축 후 전달 기법을 사용하는 릴레이 무선 통신 시스템에서 복합 자동 재전송 방법 및 장치{HYBRID ARQ METHOD AND APPARATUS IN A RELAY WIRELESS COMMUNICATION SYSTEM USING COMPRESS AND FORWARD SCHEME}
본 발명은 릴레이 무선 통신 시스템에서 복합 자동 재전송 방법 및 장치에 관한 것으로, 특히 압축 후 전달(Compress-and-Forward, 이하 "CF"라 함) 기법을 사용하는 릴레이 무선 통신 시스템에서 복합 자동 재전송 방법 및 장치에 관한 것이다.
릴레이 무선 통신 시스템은 발신 장치로부터 목적지 장치까지 데이터 전송 시 중계 장치를 이용하여 통신을 수행하는 방법이다. 이러한 릴레이 무선 통신 시스템에서는 발신 장치에서 목적지까지 데이터를 송신하기 위해 반드시 하나 이상의 중계 장치를 경유하게 된다. 이때, 중계 장치는 발신 장치가 제공한 데이터를 그대로 전송하지 않고, 가공하여 목적지 장치로 제공한다. 중계 장치가 수행하는 동작은 크게 3가지로 구분될 수 있다.
첫째 증폭 후 전달(Amplify-and Forward, 이하 "AF"라 함) 기법이 있으며, 둘째 복호 후 전달(Decode-and Forward, 이하 "DF"라 함) 기법이 있고, 셋째, 압축 후 전달(Compress-and-Forward, 이하 "CF"라 함) 기법이 존재한다.
AF 기법은 이전 노드로부터 수신된 데이터를 증폭만 하여 다음 노드로 전송함으로써 발신 장치에서 목적지 장치까지 데이터가 전송되도록 하는 방법이다. 이는 발신 장치에서 송신한 신호를 증폭 없이 그대로 전달하는 경우 최종 목적지 노드에서 데이터를 복호할 수 없는 상태가 되는 것을 방지하기 위한 가장 기본적인 방법이 될 수 있다.
DF 기법은 이전 노드에서 수신된 데이터를 디코딩하고, 디코딩한 데이터를 다시 중계 장치가 인코딩하여 송신하는 기법이다. DF 기법을 이용하면, 기본적으로 중계 장치 각각에서 매번 디코딩과 인코딩 동작이 이루어진다. 따라서 중계 장치는 디코딩 후 인코딩하여 다시 데이터를 전송할 시 송신을 위한 최소한의 전력 이상으로 송신하게 됨으로써 발신 장치로부터 목적지 장치까지 데이터가 안전하게 전송될 수 있다.
CF 기법은 이전 노드에서 수신된 데이터를 압축하여 전달한다. 이때, 압축 기법으로 양자화 기법을 사용하여 다음 노드로 전송하게 된다. 따라서 중계 장치는 양자화된 데이터를 다시 복호하고, 다음 노드로 전송 전에 양자화를 수행하여 전송하는 방법을 사용한다. CF 기법에서도 이전 노드에서 양자화된 데이터를 수신하면, 이를 다시 복원하고, 다시 양자화를 통해 전송하기 때문에 최소한의 전력 이상으로 송신하게 됨으로써 발신 장치로부터 목적지 장치까지 데이터가 안전하게 전송될 수 있다.
이상에서 살펴본 각각의 방법들에서 송신된 데이터에 오류(error)가 발생하는 경우 복합자동재전송(Hybrid ARQ, 이하 "HAQR"라 함) 기법을 사용하게 된다. 이상에서 살펴본 방식들 중 DF 기법에 기반한 릴레이 프로토콜을 위한 HARQ 적용 방법은 크게 하기의 2가지가 있다.
첫째 종단간(end-to-end) HARQ를 적용하는 방법이 있고, 둘째 각 노드간 독립적인 HARQ를 적용하는 방법이 있다. 이하에서 두 가지 방법을 설명함에 있어 데이터를 송신하는 발신 장치를 소스(source)라 하고, 목적지 장치를 목적지(destination)로 칭하며, 목적지(destination)와 소스(source) 간 존재하는 중계 장치들을 릴레이(relay)라 칭하기로 한다.
먼저 종단간 HARQ를 적용하는 방법은 목적지에서 소스로부터 릴레이를 통해 전송되어 온 데이터의 복호를 수행하고, 패킷의 에러 유무를 결정한다. 목적지는 결정된 패킷의 에러 유무에 따라 대응하여 ACK/NACK 정보를 릴레이를 통해 소스로 다시 전송할 수 있다. 소스는 ACK을 받으면 새로운 패킷을 전송하고 NACK을 받는 경우 재전송을 수행한다.
다음으로 노드간 독립적인 HARQ를 적용하는 방법에 대하여 살펴보기로 하자. 릴레이는 소스로부터 패킷을 수신하면, 디코딩을 수행하여 패킷의 오류 유무를 결정한다. 만일 릴레이에서 디코딩에 성공하는 경우 소스로 ACK 정보를 전송하고 디코딩에 성공한 데이터를 다음 노드 예컨대, 다른 릴레이 또는 목적지로 송신할 수 있다. 이러한 경우 소스는 새로운 패킷을 송신할 수 있다. 반면에 디코딩에 실패하는 경우 릴레이는 소스로 NACK를 송신하여 재전송하도록 한다.
이상에서 설명한 CF 기법은 릴레이 네트워크를 위해 종단간 end-to-end HARQ 기법을 적용하거나 릴레이-목적지 링크의 채널 불확실성(uncertainty)으로 인한 에러(error)를 보정해 주기 위한 HARQ를 수행해야만 한다. 이러한 경우, 소스와 목적지 사이에 다중 홉(multi-hop)으로 시그널링 정보와 재전송 데이터를 주고받아야 하기 때문에 HARQ에 의한 지연이 크게 증가할 수 있다.
따라서 본 발명에서는 CF 기법을 사용하는 릴레이 무선 통신 시스템에서 지연을 감소시키기 위한 HARQ 방법 및 이를 위한 장치를 제공한다.
본 발명의 일 실시 예에 따른 릴레이 노드에서의 방법은, 압축 후 전달(CF) 기법을 사용하는 릴레이 무선 통신 시스템의 상기 릴레이 노드에서 복합 자동 재전송 방법으로, 이전 노드로부터 데이터를 수신 시 상기 이전 노드로부터 데이터 수신된 데이터를 다음 노드로 전송하기 위한 양자화 시 잉여 정보를 갖도록 그물망 형태의 양자화를 수행하는 단계; 상기 양자화된 정보 중 상위 정보부터 상기 다음 노드로 전송하기 위해 설정된 채널로 전송할 수 있는 양만큼만 채널 부호화하여 상기 다음 노드로 전송하는 단계; 및 상기 다음 노드로부터 부정 응답(NACK) 수신 시 상기 양자화된 정보 중 전송되지 않은 나머지 정보들 중 상기 설정된 채널로 전송할 수 있는 양만큼 채널 부호화를 수행하여 상기 다음 노드로 재전송하는 단계;를 포함할 수 있다.
본 발명의 일 실시 예에 따른 목적지 노드에서의 방법은, 압축 후 전달(CF) 기법을 사용하는 릴레이 무선 통신 시스템의 목적지 노드에서 복합 자동 재전송 방법으로, 상기 릴레이로부터 1차 부호화된 패킷이 수신될 시 상기 1차 부호화된 패킷을 저장 및 복호하는 단계; 상기 1차 부호화된 패킷의 복호가 실패한 경우 상기 릴레이로 부정 응답(NACK)을 전송하는 단계; 상기 릴레이로부터 2차 부호화된 패킷이 수신될 시 상기 1차 부호화된 패킷과 상기 2차 부호화된 패킷을 결합하여 복호를 수행하는 단계; 및 상기 복호의 성공 여부(ACK/NACK)를 상기 릴레이로 전송하는 단계;를 포함하며,
상기 1차 부호화된 패킷과 상기 2차 부호화된 패킷은 상기 릴레이에서 잉여 정보를 갖도록 그물망 형태로 양자화된 데이터이며, 상기 1차 부호화된 패킷은 상기 양자화된 정보 중 상위 정보부터 설정된 채널로 전송될 수 있는 양만큼 구성된 정보이고, 상기 2차 부호화된 패킷은 상기 양자화된 정보 중 나머지 정보들 중 상기 설정된 채널로 전송할 수 있는 양만큼의 정보로 구성될 수 있다.
본 발명의 일 실시 예에 따른 릴레이 노드 장치는, 압축 후 전달(CF) 기법을 사용하는 릴레이 무선 통신 시스템에서 복합 자동 재전송을 수행하기 위한 릴레이 노드 장치로, 이전 노드로부터 데이터를 수신하여 기저대역의 아날로그 신호로 변환하며, 다음 노드로부터 응답(ACK/NACK) 신호를 수신하여 제어부로 출력하는 데이터 수신부; 상기 기저대역의 아날로그 신호를 상기 다음 노드로 전송하기 위해 잉여 정보를 갖도록 그물망 형태의 양자화를 수행하는 양자화부; 상기 양자화된 데이터를 저장하는 저장부; 상기 저장부에 저장된 양자화 데이터 중 설정된 채널로 전송할 수 있는 양자화 데이터를 출력하도록 하며, 초기 전송 시 양자화된 데이터의 상위 정보부터 출력하도록 하고, 재전송 시 전송되지 않은 양자화 데이터들을 출력하도록 제어하는 제어부; 상기 저장부에서 출력된 데이터를 채널 부호화하는 채널 부호화부; 및 상기 채널 부호화부에서 채널 부호화된 데이터를 설정된 채널을 통해 송신하는 데이터 전송부;를 포함할 수 있다.
본 발명의 일 실시 예에 따른 목적지 노드 장치는, 압축 후 전달(CF) 기법을 사용하는 릴레이 무선 통신 시스템에서 복합 자동 재전송을 위한 목적지 노드 장치로, 상기 릴레이로부터 부호화된 패킷을 수신하여 기저대역의 아날로그 신호로 변환하여 출력하는 데이터 수신부; 상기 기저대역의 신호를 채널 복호하는 채널 복호부; 상기 채널 복호부의 출력을 저장하는 복호된 데이터 저장부; 상기 채널 복호부로부터 출력된 데이터와 상기 복호된 데이터 저장부에서의 출력을 결합하는 결합부; 입력되는 신호의 복호 성공 여부를 판별하는 복호 성공 판단부; 상기 채널 복호부와 상기 결합부의 출력 중 어느 하나를 상기 복호 성공 판단부로 입력되도록 스위칭하는 스위치; 복호된 결과에 따른 응답(ACK/NACK) 신호를 상기 릴레이로 전송하는 응답 신호 전송부; 및 상기 채널 복호부의 출력이 상기 복호된 데이터 저장부 또는 상기 결합부 중 어느 하나와 상기 스위치로 출력되도록 제어하고, 상기 복호된 데이터 저장부의 리셋 및 데이터 출력을 제어하며, 상기 결합부에서 1차 채널 복호된 데이터와 2차 채널 복호된 데이터를 결합하도록 제어하고, 상기 스위치의 스위칭 동작을 제어하며, 상기 복호 성공 판단부로부터의 복호 성공 여부에 따라 상기 응답 신호 전송부로 전송할 응답 신호의 생성을 제어하는 제어부;를 포함하며,
상기 릴레이로부터 수신된 부호화된 패킷은 잉여 정보를 갖도록 그물망 형태로 양자화된 데이터이며, 상기 초기 전송 시 전송된 부호화된 패킷은 상기 양자화된 정보 중 상위 정보부터 설정된 채널로 전송될 수 있는 양만큼 구성된 정보이고, 상기 재전송 시 전송된 부호화된 패킷은 상기 양자화된 정보 중 나머지 정보들 중 상기 설정된 채널로 전송할 수 있는 양만큼의 정보로 구성될 수 있다.
본 발명에 따른 기법을 적용하면, 릴레이 시스템에서 릴레이 노드와 목적지 노드간 HARQ를 통한 지연을 감소시킬 수 있다. 또한 종단간 HARQ를 수행하지 않음으로 인해 지연시간을 감소시킬 수 있다.
도 1은 릴레이를 이용하는 무선 통신 시스템의 개략적인 구성도,
도 2a 내지 도 2c는 소스 노드가 릴레이 노드를 통해 목적지 노드로 데이터를 송신할 시 추정된 채널 상태와 실제 채널 상태가 상이한 경우를 설명하기 위한 예시도들,
도 3a 및 도 3b는 DF 방식을 사용하는 릴레이 무선 통신 시스템에서 HARQ에 따른 재전송 방식을 설명하기 위한 시나리오,
도 3c는 CF 방식을 사용하는 릴레이 무선 통신 시스템에서 HARQ에 따른 재전송 방식을 설명하기 위한 시나리오,
도 4a 내지 도 4c는 본 발명에 따라 그물망 형태의 양자화 방법을 설명하기 위한 예시도,
도 5는 CF 기법을 사용하는 릴레이 무선 통신 시스템에서 본 발명에 따른 릴레이 노드의 블록 구성도,
도 6은 CF 기법을 사용하는 릴레이 무선 통신 시스템에서 본 발명에 따른 목적지 노드의 블록 구성도,
도 7은 본 발명에 따른 CF 방식을 사용하는 릴레이 무선 통신 시스템에서 HARQ에 따른 재전송 방식을 설명하기 위한 시나리오,
도 8은 본 발명에 따른 CF 기법을 사용하는 릴레이 무선 통신 시스템에서 HARQ 동작 시의 전체 시나리오에 따른 흐름도,
도 9는 본 발명에 따른 CF 기법을 사용하는 릴레이 무선 통신 시스템의 릴레이 노드에서 HARQ 동작 시의 제어 흐름도,
도 10은 본 발명에 따른 CF 기법을 사용하는 릴레이 무선 통신 시스템의 목적지 노드에서 HARQ 동작 시의 제어 흐름도.
이하, 첨부된 도면들을 참조하여 다양한 실시예들을 상세히 설명한다. 이때, 첨부된 도면들에서 동일한 구성 요소는 가능한 동일한 부호로 나타내고 있음에 유의해야 한다. 또한 이하에 첨부된 본 발명의 도면은 본 발명의 이해를 돕기 위해 제공되는 것으로, 본 발명의 도면에 예시된 형태 또는 배치 등에 본 발명이 제한되지 않음에 유의해야 한다. 또한 본 발명의 요지를 흐리게 할 수 있는 공지 기능 및 구성에 대한 상세한 설명은 생략할 것이다. 하기의 설명에서는 본 발명의 다양한 실시 예들에 따른 동작을 이해하는데 필요한 부분만이 설명되며, 그 이외 부분의 설명은 본 발명의 요지를 흩트리지 않도록 생략될 것이라는 것을 유의하여야 한다.
도 1은 릴레이를 이용하는 무선 통신 시스템의 개략적인 구성도이다.
도 1을 참조하면, 소스 노드들 10a, 10b와 릴레이 노드들 20a, 20b 및 목적지 노드 30으로 릴레이를 이용하는 무선 통신 시스템의 구성을 예시하고 있다.
제1소스 노드 10a는 서로 다른 두 릴레이 노드들 20a, 20b 중 어느 하나를 통해 목적지 노드 30으로 데이터를 전송할 수도 있고, 서로 다른 두 릴레이 노드들 20a, 20b 모두를 이용하여 목적지 노드 30으로 데이터를 전송할 수 있다. 이를 보다 상세히 살펴보면, 제1소스 노드 10a가 제1릴레이 노드 20a를 통해 목적지 노드 30으로 데이터를 송신하는 경우 참조부호 100 및 참조부호 100-1의 채널을 통해 데이터를 송신할 수 있다. 또한 제1소스 노드 10a가 제2릴레이 노드 20b를 통해 목적지 노드 30으로 데이터를 송신하는 경우 참조부호 101 및 참조부호 101-1의 채널을 통해 데이터를 송신할 수 있다.
또한 제2소스 노드 10b는 서로 다른 두 릴레이 노드들 20a, 20b 중 어느 하나를 통해 목적지 노드 30으로 데이터를 전송할 수도 있고, 서로 다른 두 릴레이 노드들 20a, 20b 모두를 이용하여 목적지 노드 30으로 데이터를 전송할 수 있다. 이를 보다 상세히 살펴보면, 제2소스 노드 10b가 제1릴레이 노드 20a를 통해 목적지 노드 30으로 데이터를 송신하는 경우 참조부호 121 및 참조부호 121-1의 채널을 통해 데이터를 송신할 수 있다. 또한 제2소스 노드 10b가 제2릴레이 노드 20b를 통해 목적지 노드 30으로 데이터를 송신하는 경우 참조부호 120 및 참조부호 120-1의 채널을 통해 데이터를 송신할 수 있다.
이상에서 설명한 형태는 릴레이 시스템에서 사용할 수 있는 다양한 예를 설명하기 위한 것이다. 이하에서는 설명의 편의를 위해 도 1의 구성 중 소스 노드에 대한 참조부호로 10을 사용하며, 릴레이 노드는 참조부호 20을 사용하여 설명하기로 한다. 또한 설명의 편의를 위해 하나의 소스 노드와 하나의 릴레이 노드만을 갖는 경우를 가정하여 설명하기로 한다. 이는 설명의 편의를 위한 것일 뿐 실제로 소스 노드로부터 목적지 노드까지 둘 이상의 릴레이를 통해 데이터가 전송될 수도 있다. 예컨대, 소스 노드 - 릴레이 노드 - 릴레이 노드 - 목적지 노드 형식으로 소스 노드와 목적지 노드 사이에 둘 이상의 릴레이 노드를 가질 수 있다. 또한 도 1에서 예시한 바와 같이 하나의 소스 노드가 서로 다른 릴레이를 통해 하나의 목적지 노드로 데이터를 송신할 수도 있다.
도 2a 내지 도 2c는 소스 노드가 릴레이 노드를 통해 목적지 노드로 데이터를 송신할 시 추정된 채널 상태와 실제 채널 상태가 상이한 경우를 설명하기 위한 예시도들이다.
도 2a를 참조하면, 소스 노드 10과 릴레이 노드 20간 실제 채널 상태 202가 추정된 채널 상태 201보다 열악한 경우이고, 릴레이 노드 20과 목적지 노드 30간은 추정된 채널 상태 211가 실제 채널 상태와 동일한 상태인 경우를 예시하고 있다.
다음으로 도 2b를 참조하면, 소스 노드 10과 릴레이 노드 20간 추정된 채널 상태 201이 실제 채널 상태와 동일한 상태이고, 릴레이 노드 20과 목적지 노드 30간은 실제 채널 상태 212가 추정된 채널 상태 211보다 열악한 상태의 경우를 예시하고 있다.
마지막으로 도 2c를 참조하면, 소스 노드 10과 릴레이 노드 20간 실제 채널 상태 202가 추정된 채널 상태 201보다 열악한 경우이고, 릴레이 노드 20과 목적지 노드 30간은 실제 채널 상태 212가 추정된 채널 상태 211보다 열악한 상태의 경우를 예시하고 있다.
도 2a 내지 도 2c에서 예시한 바와 같이 각 노드 사이의 실제 채널 상태가 추정된 채널 상태보다 열악한 상태인 경우들이 발생할 수 있다. 이처럼 실제 채널 상태가 추정된 채널 상태보다 열악한 상태인 경우 각 해당 채널에서 전송되는 데이터의 오류가 발생할 확률이 증가하게 된다.
도 3a 및 도 3b는 DF 방식을 사용하는 릴레이 무선 통신 시스템에서 HARQ에 따른 재전송 방식을 설명하기 위한 시나리오이다.
먼저 도 3a를 참조하면, 소스 노드 10은 목적지 노드 30으로 송신하고자 하는 데이터가 존재하는 경우 릴레이 20을 통해 전송할 수 있다. 도 3a에서는 DF 방식을 사용하는 릴레이 무선 통신 시스템이므로, 소스 노드 10은 릴레이 20을 통해 목적지 노드 30으로 데이터를 송신하는 경우에 대하여 살펴보기로 하자.
소스 노드 10은 송신할 데이터를 채널 부호화(channel coding)하여 채널 부호화된 데이터 300을 생성할 수 있다. 이때, 채널 부호화된 데이터는 실제로 소스 노드 10에서 릴레이 노드 20으로 전송할 데이터보다 큰 데이터가 될 수 있다. 이는 무선 통신에서 소스 노드 10로부터 다른 노드로 데이터를 송신하는 경우 채널 부호화 시 낮은 부호율을 사용하기 때문에 리던던시(redundancy)가 발생한다. 따라서 소스 노드 10은 채널 부호화된 데이터 중 일부만을 전송하게 된다. 이는 부호율과 채널의 용량에 따라 송신되는 패킷의 크기가 결정될 수 있다.
소스 노드 10은 채널 부호화된 데이터 300 중 첫 번째 전송하는 패킷 301(이하 "제1 S-R 데이터 패킷"이라 함)을 310단계에서 릴레이 노드 20으로 전송할 수 있다. 이에 따라 릴레이 노드 20은 311단계에서 제1 S-R 데이터 패킷을 수신한다. 또한 릴레이 노드 20은 DF 방식을 사용하는 릴레이이므로, 수신된 제1 S-R 데이터 패킷 301을 복호하고, 오류를 검사한다.
도 3a에서는 소스 노드 10로부터 릴레이 노드 20로 전송된 데이터에 오류가 존재하는 경우를 예시하고 있다. 이처럼 오류가 발생할 수 있는 환경은 다양한 형태가 존재할 수 있다. 예컨대, 도 2a의 경우 또는 도 2c의 경우와 같이 실제 채널 상태가 추정된 채널 상태보다 열악한 경우가 대표적인 예가 될 수 있다. 따라서 릴레이 노드 20에서 수신하여 복호한 제1 S-R 데이터 패킷 301에 오류가 존재하는 경우 릴레이 노드 20은 312단계에서 NACK 신호를 소스 노드로 전송한다.
소스 노드 10은 312단계에서 NACK 신호를 수신하는 경우 소스 노드 10은 313단계에서 채널 부호화된 데이터 300 중 전송되지 않은 나머지 패킷 302(이하 "제2 S-R 데이터 패킷"이라 함)를 릴레이 노드 20으로 전송할 수 있다.
그러면 릴레이 노드 20은 311단계에서 수신된 제1 S-R 데이터 패킷 301과 313단계에서 수신된 제2 S-R 데이터 패킷 302를 결합(combinig)하여 복호를 수행한다. 이때, 도 3a에서는 복호된 데이터에 오류가 없는 경우를 예시하였다. 따라서 릴레이 노드 20은 수신된 패킷에 대하여 ACK를 소스 노드 10으로 전송(미도시)할 수 있다. 또한 릴레이 노드 20은 복호된 데이터를 다시 채널 부호화하여 315단계에서 목적지 노드 30으로 전송한다. 이때, 릴레이 노드 20에서 목적지 노드 30으로 송신하기 위해 채널 부호화된 데이터는 소스 노드 10에서 생성된 형식과 동일 또는 유사한 형태가 될 수 있다.
도 3b에서는 릴레이 노드 20으로부터 목적지 노드 30으로 전송된 데이터에 오류가 존재하는 경우를 예시하고 있다.
도 3b를 참조하면, 앞서 설명한 바와 같이 소스 노드 10은 송신할 데이터를 채널 부호화(channel coding)하여 채널 부호화된 데이터 300을 생성할 수 있다. 이때, 채널 부호화된 데이터는 실제로 소스 노드 10에서 릴레이 노드 20으로 전송할 데이터보다 큰 데이터가 될 수 있다. 이는 무선 통신에서 소스 노드 10로부터 다른 노드로 데이터를 송신하는 경우 채널 부호화 시 낮은 부호율을 사용하기 때문에 리던던시(redundancy)가 발생한다. 따라서 소스 노드 10은 채널 부호화된 데이터 중 일부만을 전송하게 된다. 이는 부호율과 채널의 용량에 따라 송신되는 패킷의 크기가 결정될 수 있다.
소스 노드 10은 채널 부호화된 데이터 300 중 첫 번째 전송하는 패킷 301(이하 "제1 S-R 데이터 패킷"이라 함)을 310단계에서 릴레이 노드 20으로 전송할 수 있다. 이에 따라 릴레이 노드 20은 311단계에서 제1 S-R 데이터 패킷을 수신한다. 또한 릴레이 노드 20은 DF 방식을 사용하는 릴레이이므로, 수신된 제1 S-R 데이터 패킷 301을 복호하고, 오류를 검사한다.
도 3b에서는 소스 노드 10로부터 릴레이 노드 20로 전송된 데이터에 오류가 존재하지 않는 경우를 예시하고 있다. 따라서 릴레이 노드 20에서 수신하여 복호한 제1 S-R 데이터 패킷 301에 오류가 존재하는 경우 릴레이 노드 20은 312단계에서 ACK 신호를 소스 노드 10으로 전송한다(미도시).
또한 릴레이 노드 20은 복호된 데이터를 다시 채널 부호화하여 채널 부호화된 데이터 320을 생성한다. 이때, 채널 부호화된 데이터 320은 실제로 릴레이 노드 20에서 목적지 노드 30으로 전송할 데이터보다 큰 데이터가 될 수 있다. 이는 무선 통신에서 릴레이 노드 20으로부터 다른 노드로 데이터를 송신하는 경우 채널 부호화 시 낮은 부호율을 사용하기 때문에 리던던시(redundancy)가 발생한다. 따라서 릴레이 노드 20은 채널 부호화된 데이터 중 일부만을 전송하게 된다. 이는 부호율과 채널의 용량에 따라 송신되는 패킷의 크기가 결정될 수 있다.
릴레이 노드 20은 채널 부호화된 데이터 320 중 첫 번째 전송하는 즉, 초기 전송 패킷 321(이하 "제1 R-D 데이터 패킷"이라 함)을 331단계에서 목적지 노드 30으로 전송할 수 있다. 이에 따라 목적지 노드 30은 331단계에서 제1 R-D 데이터 패킷 321을 수신한다. 또한 목적지 노드 30은 DF 방식을 사용하므로, 수신된 제1 R-D 데이터 패킷 321을 복호하고, 오류를 검사한다.
도 3b에서는 릴레이 노드 20로부터 목적지 노드 30로 전송된 데이터에 오류가 존재하는 경우를 예시하고 있다. 이처럼 오류가 발생할 수 있는 환경은 다양한 형태가 존재할 수 있다. 예컨대, 도 2b의 경우 또는 도 2c의 경우와 같이 실제 채널 상태가 추정된 채널 상태보다 열악한 경우가 대표적인 예가 될 수 있다. 따라서 목적지 노드 30에서 수신하여 복호한 제1 R-D 데이터 패킷 321에 오류가 존재하는 경우 목적지 노드 30은 333단계에서 NACK 신호를 릴레이 노드 20으로 전송한다.
릴레이 노드 20은 333단계에서 NACK 신호를 수신하는 경우 릴레이 노드 20은 미리 채널 부호화하여 생성된 데이터 300 중 전송되지 않은 나머지 패킷 322(이하 "제2 R-D 데이터 패킷"이라 함)를 334단계에서 목적지 노드 30으로 전송할 수 있다.
그러면 목적지 노드 30은 332단계에서 수신된 제1 R-D 데이터 패킷 321과 334단계에서 수신된 제2 R-D 데이터 패킷 322를 결합(combinig)하여 복호를 수행한다. 이때, 도 3b에서는 복호된 데이터에 오류가 없는 경우를 예시하였다. 따라서 목적지 노드 30은 수신된 패킷에 대하여 ACK를 릴레이 노드 20으로 전송(미도시)할 수 있다.
도 3c는 CF 방식을 사용하는 릴레이 무선 통신 시스템에서 HARQ에 따른 재전송 방식을 설명하기 위한 시나리오이다.
도 3c를 참조하면, 앞서 설명한 바와 같이 소스 노드 10은 송신할 데이터를 채널 부호화(channel coding)하여 채널 부호화된 데이터 300을 생성할 수 있다. 이때, 채널 부호화된 데이터 300은 실제로 소스 노드 10에서 릴레이 노드 20으로 전송할 데이터보다 많은 양의 데이터가 될 수 있다. 이는 DF 방식을 사용하던 CF 방식을 사용하던 모두 동일한 형태의 데이터가 될 수 있다. 또한 앞에서 설명한 바와 같이 무선 통신에서 소스 노드 10로부터 다른 노드로 데이터를 송신하는 경우 채널 부호화 시 낮은 부호율을 사용하기 때문에 리던던시(redundancy)가 발생한다. 따라서 소스 노드 10은 채널 부호화된 데이터 중 일부만을 전송하게 된다. 전송되는 패킷의 양은 부호율과 채널의 용량에 따라 송신되는 패킷의 크기가 결정될 수 있다.
소스 노드 10은 채널 부호화된 데이터 300 중 첫 번째 전송하는 패킷 301(이하 "제1 S-R 데이터 패킷"이라 함)을 310단계에서 릴레이 노드 20으로 전송할 수 있다. 이에 따라 릴레이 노드 20은 340단계에서 제1 S-R 데이터 패킷을 수신한다. 또한 릴레이 노드 20은 CF 방식을 사용하는 릴레이이므로, 341단계에서 수신된 제1 S-R 데이터 패킷 301을 양자화하여, 양자화된 데이터 350을 획득할 수 있다. 그런 후 릴레이 노드 20은 342단계에서 이처럼 양자화된 데이터 350을 채널 부호화(channel coding)를 수행하여 채널 부호화된 데이터 352를 획득한다. 이처럼 채널 부호화된 데이터 352를 획득하면, 릴레이 노드 20은 343단계에서 채널 부호화된 데이터 352를 목적지 노드 30으로 전송할 수 있다. 이에 따라 목적지 노드 30은 344단계에서 릴레이 노드 20에서 양자화 및 채널 부호화가 이루어진 데이터 패킷 352를 수신한다. 또한 목적지 노드 30은 CF 방식을 사용하므로, 344단계에서 수신된 데이터 패킷 352를 역 양자화하고, 복호하여 오류를 검사한다.
도 3c에서는 소스 노드 10으로부터 릴레이 노드 20으로 또는 릴레이 노드 20로부터 목적지 노드 30로 전송되는 채널들 중 적어도 하나의 채널에서 오류가 발생한 경우를 예시하고 있다. 이러한 경우는 앞서 설명한 도 2a 내지 도 2c의 경우 중 어느 하나의 경우가 대표적인 예가 될 수 있다.
따라서 목적지 노드 30에서 수신하여 복호한 데이터 패킷 352에 오류가 존재하는 경우 목적지 노드 30은 345단계에서 NACK 신호를 릴레이 노드 20을 통해 소스 노드 10으로 또는 목적지 노드 30이 직접 소스 노드 10으로 전송할 수 있다.
그러면 소스 노드 10은 345단계에서 NACK 신호를 수신하는 경우 미리 채널 부호화하여 생성된 데이터 300 중 전송되지 않은 나머지 패킷인 제1 S-R 데이터 패킷 302를 346단계에서 릴레이 노드 20으로 전송한다. 이에 따라 릴레이 노드 20은 347단계에서 제2 S-R 데이터 패킷을 다시 양자화하여, 양자화된 데이터 360을 획득할 수 있다. 그런 후 릴레이 노드 20은 348단계에서 이처럼 양자화된 데이터 360을 채널 부호화(channel coding)를 수행하여 채널 부호화된 데이터 362를 획득한다. 이처럼 채널 부호화된 데이터 362를 획득하면, 릴레이 노드 20은 349단계에서 채널 부호화된 데이터 362를 목적지 노드 30으로 전송할 수 있다.
그러면 목적지 노드 30은 370단계에서 수신된 패킷을 역 양자화하고, 344단계에서 수신되어 역 양자화된 패킷과 결합하여 복호를 수행한다. 복호 결과에 따라 다시 HARQ에 따른 NACK 동작이 이루어지거나 또는 ACK 동작이 이루어질 수 있다.
CF 방식을 사용하는 경우 도 3c에 예시한 바와 같은 과정을 통해 소스 노드 - 릴레이 노드 간 및 릴레이 노드 - 목적지 노드 간 데이터 패킷의 송신이 이루어진다. 이때, CF 방식을 사용하는 경우 릴레이 노드 20에서 목적지 노드 30으로 데이터 전송 시에 HARQ 적용 시 NACK 전송에 따른 부가적인 동작이 존재하지 않는다. 즉 CF 방식에서는 데이터의 재전송이 필요 여부는 목적지 노드에서만 판단하므로, 재전송 시 매번 소스 노드 10에서부터 다시 전송이 이루어져야 한다.
특히, 도 2c의 경우와 같이 소스 노드 - 릴레이 노드 간의 링크와 릴레이 노드 - 목적지 노드 간의 링크 모두 실제 채널 상태가 추정된 채널 상태보다 열악하거나 열악해지는 경우 CF 기반 릴레이 프로토콜에서는 항상 종단간(end-to-end) HARQ와 릴레이 노드 - 목적지 노드 링크 간 HARQ를 동시에 수행해야 한다. 이러한 경우, 소스 노드와 목적지 노드 사이에 다중 홉으로 시그널링(signaling) 정보와 재전송 데이터를 주고받아야 하기 때문에 HARQ에 의한 지연이 크게 증가할 수 있다.
따라서 본 발명에서는 릴레이 노드 20에서 목적지 노드 30으로 데이터를 송신하기 위한 압축을 위한 양자화(quantization) 시 채널 특성에 따라 전송에 필요한 정보 비트(bit)의 수보다 많은 정보 비트의 수를 갖도록 양자화하도록 한다. 이후 양자화된 정보 비트 중 일부만 목적지 노드 30로 전송한다. 따라서 본 발명에 따르면, 양자화된 정보 비트들 중 일부만 전송하더라도 다음 노드 예컨대, 목적지 노드 30에서 역 양자화를 통해 정상적인 데이터를 복원할 수 있는 형태가 되어야 한다.
또한 만일 릴레이 노드에서 다음 노드 예컨대, 릴레이 노드 또는 목적지 노드에서 오류가 발생하여 HARQ NACK를 수신하는 경우 양자화 비트 중 나머지 비트를 송신하도록 구성한다. 이를 통해 릴레이 노드의 다음 노드 예컨대, 릴레이 노드 또는 목적지 노드에서는 추가된 양자화 정보와 이전에 수신된 양자화 정보를 결합하여 복원이 가능해야 한다.
이러한 방법을 적용하면, 이를 통해 소스 노드 - 릴레이 노드 사이의 실제 채널 상태 또는/및 릴레이 노드 - 목적지 노드 사이의 실제 채널 상태가 추정된 채널 상태보다 열악해지거나 열악한 경우 릴레이 노드에서 목적지 노드로 잉여(redundancy) 양자화된 나머지 정보를 전송토록 함으로써 채널의 효율성 및 다중 홉 시그널링으로 인한 데이터 지연을 줄일 수 있도록 한다. 또한 종단간 HARQ의 수행을 최소화함으로써 소스 노드와 목적지 노드 사이에 다중 홉으로 시그널링 정보와 재전송 데이터를 주고받음으로 발생하는 지연을 크게 줄일 수 있다.
이러한 형태를 제공하기 위해서 릴레이 노드 20에서 목적지 노드 30으로 전송하는 데이터의 압축을 위한 양자화 기법을 이하에서는 파인 양자화(fine quantization)이라 칭하며, 파인 양자화를 이용한 압축 시 양자화 방법은 그물망(nested) 형태로 구성해야 한다.
도 4a 내지 도 4c는 본 발명에 따라 그물망 형태의 양자화 방법을 설명하기 위한 예시도이다.
도 4a를 참조하면, 소스 노드 10으로부터 전송되어 온 신호를 압축하여 양자화하기 위한 매핑 룰을 도시하고 있다. 예컨대, 수신된 신호의 위상이 1사분면에 존재하면 "01"의 비트를 부여하고, 수신된 신호의 위상이 2사분면에 존재하면 "00"의 비트를 부여하며, 수신된 신호의 위상이 3사분면에 존재하면 "10"의 비트를 부여하고, 수신된 신호의 위상이 4사분면에 위치하면 "11"의 비트를 부여한다.
또한 1사분면을 참조부호 410 및 420과 같이 다시 4면으로 분할하여, 보다 정밀하게 위상을 구분할 수 있다. 가령 1사분면을 참조부호 410과 420로 다시 분할하여, 4사분면 형태로 구분하면, 이후 2자리 비트를 다시 생성할 수 있다.
수신된 신호의 위상이 1사분면의 1사분면 위치에 존재하는 경우 "01"이후의 비트에 다시 "01"의 비트를 부가할 수 있고, 수신된 신호의 위상이 1사분면의 2사분면 위치에 존재하는 경우 "01"이후의 비트에 다시 "00"의 비트를 부가할 수 있고, 수신된 신호의 위상이 1사분면의 3사분면 위치에 존재하는 경우 "01"이후의 비트에 다시 "10"의 비트를 부가할 수 있으며, 수신된 신호의 위상이 1사분면의 4사분면 위치에 존재하는 경우 "01"이후의 비트에 다시 "11"의 비트를 부가할 수 있다.
마찬가지 방법으로 1사분면의 1사분면을 다시 참조부호 411 및 421과 같이 4사분면 형태로 구분할 수도 있다. 이러한 경우 수신된 신호에 따라 다시 그 이후의 비트를 "01", "00", "10", "11"로 부여할 수 있다.
예를 들어 도 4a의 참조부호 431의 심볼은 위와 같은 형태로 구분하여 비트를 부여할 때, "010111"의 값으로 표현될 수 있다. 이러한 정보를 토대로 수신된 신호는 "01"의 정보로부터 4사분면 중 1사분면에 위치하며, 이후 "01"의 정보로부터 4사분면 중 1사분면을 다시 4사분면으로 구분할 때, 1사분면에 위치함을 알 수 있다. 또한 마지막 "11"의 정보를 토대로 수신된 신호는 4사분면 중 1사분면을 다시 4사분면으로 구분한 1사분면을 다시 4사분면으로 구분할 때, 4사분면임을 알 수 있다.
이처럼, 수신된 신호의 위치를 4분면으로 구분하고, 보다 상세히 다시 4분면으로 구분하는 순서로 2비트씩 끊어서 판단하면, 보다 정확한 신호의 위치를 추정할 수 있다. 이처럼 특정한 비트 단위로 구분된 영역을 보다 세밀하게 다시 구분할 수 있는 형태를 본 발명에서는 "그물망(nested) 양자화" 또는 "그물망 형태의 양자화"라 칭하기로 한다.
또한 본 발명에서는 앞서 설명한 바와 같이 릴레이에서 다음 노드로 전송해야 하는 양자화 정보보다 많은 양의 양자화를 수행한다. 가령, 릴레이 노드가 다음 노드로 데이터 전송 시 4비트의 양자화 정보를 송신해야 한다고 가정하자. 그러면 릴레이는 도 4a에 예시한 바와 같이 6비트로 양자화를 수행할 수 있다. 따라서 양자화된 신호 중 실제로 전송되는 데이터는 상위(MSB, Most Significant Bit) 4비트가 될 수 있다. 이때에도 릴레이 노드는 상위 비트 정보를 채널 부호화하여 전송하게 된다. 이처럼 HARQ 방식을 통해 전송되는 동일한 데이터로 구성된 패킷을 이하의 설명에서는 "제1 R-D 데이터 패킷"이라 한다. 따라서 소스 노드 10에서 서로 다른 패킷이 전송될 때마다 릴레이 노드 20은 제1 R-D 패킷을 목적지 노드 30으로 전송해야 한다. 또한 이하의 설명에서 제1 R-D 데이터 패킷의 오류가 발생하는 경우 재전송되는 패킷을 제2 R-D 데이터 패킷 또는 제3 R-D 데이터 패킷 등과 같이 표현하기로 한다. 즉, 첫 번째 HARQ 재전송되는 잉여 비트로 구성된 데이터 패킷을 제2 R-D 데이터 패킷이라 하고, 두 번째 HARQ 재전송되는 잉여 비트로 구성된 데이터 패킷을 제3 R-D 데이터 패킷이라 칭한다.
만일 다음 노드 예컨대, 목적지 노드로부터 NACK 정보가 수신되는 경우 릴레이 노드는 미리 생성된 양자화 비트 중 전송되지 않은 정보가 존재하므로, 전송되지 않은 하위(LSB, Least Signal Bit) 2비트의 양자화 정보를 채널 부호화하여 목적지 노드로 전송할 수 있다.
이에 따라 목적지 노드는 이전에 수신된 양자화 정보와 NACK 전송에 응답하여 추가로 전송된 양자화 정보를 부가한 후 역 양자화를 수행한 데이터를 근거로 다시 복호를 수행할 수 있다.
이상에서는 도 4a를 참조하여 설명하였으나, 동일한 방법으로 도 4b 및 도 4c의 경우도 적용할 수 있다. 도 4b의 경우는 도 4a와 대비할 때, 직선의 형태가 아닌 형식으로 각 사분면들을 구분하는 형태이다. 따라서 참조부호 441은 동일한 방법에 의거하여 "0101"의 정보가 될 수 있고, 보다 세밀하게 구분하는 경우 참조부호 442의 위상을 지시하려면 "010111"의 정보가 될 수 있다. 이때에도 릴레이 노드 20에서 목적지 노드 30으로 양자화 정보를 전송 시에 초기 4비트의 양자화 정보만을 채널 부호화하여 전송하고, 이후 NACK 정보가 수신될 시 나머지 2비트의 정보를 채널 부호화하여 전송할 수 있다.
도 4c는 도 4b의 구성이 반시계 방향으로 약 45도 회전된 형태로 각 사분면을 구분하도록 구성한 예이다. 이러한 경우에도 1사분면은 "01"의 정보, 1사분면 중 4사분면의 위치는 "11"의 정보를 갖는다. 따라서 수신 신호의 위상이 참조부호 451의 위치에 존재하는 경우 릴레이 노드는 목적지 노드로 "0111"의 정보를 전송할 수 있다. 만일 목적지 노드로부터 NACK 신호를 수신하는 경우 릴레이 노드는 실제 수신된 신호의 위상이 참조부호 452의 위치에 대하여 미리 생성한 "011110"의 정보 중 전송되지 않은 "01"의 정보를 목적지 노드로 채널 부호화하여 전송할 수 있다.
그러면 이상에서 설명한 내용을 토대로 릴레이 장치와 목적지 노드의 구성에 대하여 살펴보기로 하자.
도 5는 CF 기법을 사용하는 릴레이 무선 통신 시스템에서 본 발명에 따른 릴레이 노드의 블록 구성도이다.
도 5를 참조하면, 데이터 수신부 501은 소스 노드 10에서 전송되어 온 채널 부호화되어 미리 설정된 대역으로 전송되어 온 신호를 수신하여 대역 하강 변환한다. 데이터 수신부 501에서 대역 하강 변환된 신호는 기저대역의 아날로그 신호가 될 수 있다. 기저대역의 아날로그 신호는 양자화부 502로 입력된다.
양자화부 502는 릴레이 노드 제어부 510의 제어에 의해 앞서 도 4a 내지 도 4c에서 설명한 바와 같이 본 발명에 따라 그물망 양자화 기법을 이용하여 양자화를 수행한다. 릴레이 노드 제어부 510은 도 4a 내지 도 4c의 방법 또는 그와 유사한 형태의 방법들 중 어느 하나의 양자화 방법을 미리 설정해 둘 수 있다. 이러한 설정은 CF 방식의 릴레이 무선 통신 시스템에서 미리 설정된 방식일 수도 있고, 각 노드간 도 4a 내지 도 4c의 방법 또는 그와 유사한 다른 형태의 방법들 중 어느 방법을 사용할 것인지에 대하여 미리 약속되어 있는 것으로 가정한다.
또한 양자화부 502는 릴레이 제어부 510의 제어에 의해 송신할 양의 양자화 정보보다 많은 정보를 갖는 형태로 양자화를 수행한다. 가령, 송신에 필요한 양자화 정보가 4비트인 경우 도 4a에서 설명한 바와 같이 6비트의 정보를 이용하여 양자화를 수행할 수 있다.
이처럼 양자화된 정보는 양자화 신호 저장부 503으로 입력되어 저장된다. 이때, 릴레이 노드 제어부 510의 전송 레벨 결정부 512는 양자화 신호 저장부 503에 저장된 양자화 데이터 중 전송할 양자화 정보의 양을 결정한다. 예컨대, 제1 R-D 데이터 패킷인 경우 상위(MSB) 4비트의 양자화 정보만을 출력하도록 하고, 제2 R-D 데이터 패킷인 경우 나머지 하위(LSB) 2비트의 양자화 정보만을 출력하도록 제어한다.
이에 따라 양자화 신호 저장부 503은 양자화된 정보들 중 일부의 정보만응 채널 부호부 504로 출력한다. 채널 부호부 504는 릴레이 노드 제어부 510의 제어에 의해 양자화된 정보를 다시 채널 부호화(channel coding)한다. 이때, 채널 부호율은 릴레이 노드 제어부 510의 제어에 의해 결정될 수 있으며, 릴레이 노드와 목적지 노드간 채널 상황 등에 따라 미리 약속된 부호율을 가질 수 있다. 채널 부호후 504에서 채널 부호화된 패킷은 데이터 전송부 505로 입력된다.
데이터 전송부 505는 릴레이 노드 제어부 511의 제어에 의해 목적지 노드로 송신하기 위한 대역의 캐리어 신호에 채널 부호화된 패킷을 실어 목적지 노드로 전송할 수 있다.
또한 데이터 수신부 501은 목적지 노드로부터 ACK/NACK 정보를 수신하는 경우 릴레이 노드 제어부 510으로 제공할 수 있다. 이때, 릴레이 노드 제어부와 데이터 수신부 510 사이에는 아날로그-디지털 변환기(미도시)를 추가로 구성할 수 있다. 이에 따라 릴레이 노드 제어부 510의 ACK/NACK 판단부 511은 목적지 노드로부터 수신된 ACK/NACK 정보에 근거하여 다음 데이터를 전송할 것인지 또는 전송한 정보를 재전송할 것인지를 결정한다. 만일 재전송이 필요한 경우 전송 레벨 결정부 512에서 양자화 신호 저장부 503에 저장된 미 전송된 양자화 정보를 채널 부호부 504로 출력하도록 제어한다. 또한 릴레이 노드 제어부 510은 재전송 시 채널 부호부 504 및 데이터 전송부 505를 제어하여 미전송된 양자화 정보를 추가 전송하도록 제어할 수 있다.
도 6은 CF 기법을 사용하는 릴레이 무선 통신 시스템에서 본 발명에 따른 목적지 노드의 블록 구성도이다.
도 6을 참조하면, 데이터 수신부 601은 릴레이 노드 20에서 채널 부호화되어 전송되어 양자화 신호를 수신하여 대역 하강 변환한다. 데이터 수신부 601에서 대역 하강 변환된 신호는 기저대역의 아날로그 신호가 될 수 있다. 기저대역의 아날로그 신호는 채널 복호부 602로 입력된다.
채널 복호부 602는 양자화된 정보에 대하여 채널 복호를 수행한다. 이는 릴레이 노드에서 채널 부호화하여 양자화된 정보를 송신하였기 때문이다. 따라서 채널 복호된 신호는 제1 R-D 패킷 데이터인 경우 복호 성공 판단부 604 및 복호된 데이터 저장부 612로 입력된다. 이때, 복호 성공 판단부 604와 채널 복호부 사이에는 스위치 603이 포함될 수 있다. 스위치 603은 목적지 노드 제어부 621의 제어에 의해 채널 복호부 602로부터 출력된 신호를 복호 성공 판단부 604와 연결되도록 하거나 또는 결합부 611의 출력을 복호 성공 판단부 604로 연결되도록 스위칭할 수 있다. 가령, 제1 R-D 패킷 데이터가 수신된 경우 목적지 노드 제어부 621은 채널 복호부 602의 출력이 복호 성공 판단부 604로 입력되도록 스위치 603의 연결을 제어한다. 반면에 제2 R-D 패킷 데이터가 수신된 경우 목적지 노드 제어부 621은 결합부 611의 출력이 복호 성공 판단부 604로 입력되도록 스위치 603의 연결을 제어한다.
또한 목적지 노드 제어부 621은 제2 R-D 데이터 패킷이 수신된 경우 복호된 데이터 저장부 612에 저장된 양자화된 데이터와 채널 복호부 602에서 출력되는 데이터가 결합부 611로 입력되도록 제어한다. 이에 따라 결합부 611은 제1 R-D 데이터 패킷의 양자화 정보와 제2 R-D 데이터 패킷의 양자화 정보를 결합하여 출력할 수 있다.
복호 성공 판단부 604는 미리 결정된 복호 성공 여부에 대한 판단 기준 예컨대, CRC 검사 등의 방법을 통해 수신된 정보의 성공 여부를 판단할 수 있다. 이러한 판단 결과 정보는 목적지 노드 제어부 621로 제공된다.
목적지 노드 제어부 621은 복호 성공 여부에 따라 ACK 신호 또는 NACK 신호를 릴레이 노드로 전송하도록 ACK/NACK 전송부 605를 제어한다. 따라서 ACK/NACK 전송부 605는 릴레이 노드로 수신된 데이터 패킷의 성공 여부를 알리는 ACK/NACK를 생성하여 전송한다.
도 7은 본 발명에 따른 CF 방식을 사용하는 릴레이 무선 통신 시스템에서 HARQ에 따른 재전송 방식을 설명하기 위한 시나리오이다.
도 7을 참조하면, 앞서 설명한 바와 같이 소스 노드 10은 송신할 데이터를 채널 부호화(channel coding)하여 채널 부호화된 데이터 300을 생성할 수 있다. 이때, 채널 부호화된 데이터 300은 실제로 소스 노드 10에서 릴레이 노드 20으로 전송할 데이터보다 많은 양의 데이터가 될 수 있다. 또한 앞에서 설명한 바와 같이 무선 통신에서 소스 노드 10로부터 다른 노드로 데이터를 송신하는 경우 채널 부호화 시 낮은 부호율을 사용하기 때문에 리던던시(redundancy)가 발생한다. 따라서 소스 노드 10은 채널 부호화된 데이터 중 일부만을 전송하게 된다. 전송되는 패킷의 양은 부호율과 채널의 용량에 따라 송신되는 패킷의 크기가 결정될 수 있다.
소스 노드 10은 채널 부호화된 데이터 300 중 첫 번째 전송하는 패킷 301(이하 "제1 S-R 데이터 패킷"이라 함)을 700단계에서 릴레이 노드 20으로 전송할 수 있다. 이에 따라 릴레이 노드 20은 700단계에서 전송되어 온 제1 S-R 데이터 패킷 301을 수신한다. 또한 릴레이 노드 20은 CF 방식을 사용하는 릴레이이므로, 701단계에서 제1 S-R 데이터 패킷 301을 양자화하여, 양자화된 데이터 730을 획득할 수 있다. 이때, 양자화 방식은 도 4a 및 도 4c에서 설명한 바와 같이 그물망 형태를 갖는 방식으로 양자화가 이루어지며, 잉여 정보를 갖도록 양자화가 이루어진다.
또한 본 발명에 따른 릴레이 노드 20은 앞서 설명한 바와 같이 양자화 시 실제 채널 상으로 전송될 수 있는 데이터의 양보다 많은 양이 되도록 즉, 잉여 정보를 갖도록 양자화를 수행한다. 따라서 양자화되는 데이터의 양만으로 보면, CF 방식이 적용되지 않는 것처럼 보일 수도 있다. 하지만, 이처럼 잉여 정보를 갖도록 양자화하여 생성된 데이터 중 실제 전송되는 양자화된 데이터는 양자화된 데이터 전체가 아닌 일부만 전송된다. 따라서 양자화된 전체 데이터 730 중 채널을 통해 초기 전송되는 데이터는 제1부분 데이터 731이 될 수 있다. 또한 릴레이 노드 20과 목적지 노드 30간 HARQ의 횟수에 따라 양자화되는 전체 데이터의 크기가 변경될 수 있다. 가령 HARQ 횟수가 1회로 설정된 경우 초기 전송과 재전송을 포함하여 2회 전송이 가능하므로, 1회 전송할 수 있는 데이터의 양보다 많고, 2회 전송할 수 있는 데이터의 양보다 같거나 작은 양만큼이 되도록 양자화 레벨을 조정할 수 있다. 이는 HARQ 횟수가 2회, 3회로 증가하면 동일한 방식을 적용할 수 있다.
도 7에서는 HARQ에 따른 재전송이 1회로 제한되는 경우를 가정하여 도시하였다. 따라서 릴레이 노드 20은 701단계에서 양자화를 통해 획득한 양자화된 데이터 730은 제1부분 데이터 731과 제2부분 데이터 732로 구분할 수 있다. 만일 HARQ에 따른 재전송이 2회로 제한되는 경우 초기 전송을 포함하므로, 양자회된 데이터는 제1부분 데이터, 제2부분 데이터 및 제3부분 데이터로 구성된다. 이때, 제1부분 데이터는 모두 초기 전송에 사용되는 데이터이다.
따라서 릴레이 노드 20은 702단계에서 제1부분 데이터 731만을 이용하여 채널 부호화(channel coding)를 수행하여 채널 부호화된 제1부분 데이터 741을 획득한다. 이는 초기 전송에 필요한 데이터만을 이용하여 채널 부호화를 수행하는 것이다. 릴레이 노드 20은 제1부분 데이터 731만을 이용하여 채널 부호화를 통해 채널 부호화된 제1 R-D 데이터 패킷 741을 획득하면, 703단계에서 제1 R-D 데이터 패킷 741을 목적지 노드 30으로 전송한다. 이하의 설명에서 "제1 R-D 데이터 패킷"이라 함은 소스 노드 10으로부터 수신된 데이터를 잉여 정보를 갖도록 양자화하여 DF 방식에서와 같이 잉여 양자화된 데이터 중 초기 전송에 사용하는 데이터 패킷을 의미한다.
이에 따라 목적지 노드 30은 704단계에서 릴레이 노드 20으로부터 양자화 및 채널 부호화가 이루어진 데이터를 수신하고, 역양자화 및 복호를 수행한다. 목적지 노드 30은 704단계에서 채널 부호화가 이루어진 데이터를 복호한 후 오류를 검사하고, 오류 검사 결과에 따라 ACK/NACK를 소스 노드 10이 아닌 릴레이 노드 20으로 전송할 수 있다. 즉, 본 발명에서는 목적지 노드 30이 복호 결과인 ACK/NACK 신호를 바로 소스 노드 10으로 전송하지 않고, 릴레이 노드 20으로 전송하여 릴리에 노드 20과 목적지 노드 30간 HARQ 재전송을 수행하도록 하는 것이다.
도 7에서는 릴레이 노드 20으로부터 목적지 노드 30으로 초기 전송되어 온 제1 R-D 패킷을 복호한 결과 오류가 존재하는 경우를 가정하여 도시하였다. 따라서 목적지 노드 30은 705단계에서 릴레이 노드 20으로 초기 수신된 제1 R-D 패킷의 복호 결과 오류가 존재함을 알리는 NACK 신호를 송신한다.
705단계에서 전송되어 온 NACK 신호를 수신한 릴레이 노드 20은 양자화 시 잉여 정보를 갖도록 양자화하고, 초기 전송에 사용하지 않은 제2부분 데이터 732를 아직 전송하지 않은 상태이다. 또한 제1부분 데이터 부분 731과 제2데이터 부분 732는 앞서 설명한 바와 같이 그물망 형태를 갖도록 양자화를 수행한 형태의 정보이다.
따라서 릴레이 노드 20은 706단계로 진행하면, 앞서 설명한 701단계에서 잉여 정보를 갖도록 양자화된 데이터 중 전송되지 않은 제2부분 데이터 732를 이용하여 제2부분 채널 코딩을 수행하고, 채널 부호화된 제2 R-D 패킷 데이터 751을 획득한다. 본 발명에 따른 "제2 R-D 데이터 패킷", "제3 R-D 데이터 패킷", … 등은 HARQ 방식에 따른 재전송 패킷이 된다.
이처럼 제2 R-D 데이터 패킷 751을 획득한 이후 릴레이 노드 20은 707단계에서 제2 R-D 데이터 패킷 751을 목적지 노드 30으로 재전송할 수 있다. 이에 따라 목적지 노드 30은 708단계에서 제2 R-D 데이터 패킷 751을 수신하고, 역양자화를 수행한다. 이후 목적지 노드 30은 704단계에서 수신된 초기 전송된 제1 R-D 데이터 패킷 741의 역양자화된 데이터와 707단계에서 전송되어 온 제2 R-D 데이터 패킷 751의 역양자화된 데이터를 결합하여 복호를 수행한다. 이처럼 역양자화된 데이터를 결합하면, 도 4a 내지 도 4c에서 설명한 바와 같이 전송되어 데이터 패킷이 잉여 정보를 갖도록 그물망 구조로 양자화된 데이터이기 때문에 복호의 성공 확률이 증가한다.
따라서 목적지 노드 30은 708단계에서 수신 및 역양자화를 수행하고, 동일 데이터에 대하여 이전에 수신되어 역양자화된 데이터와 함께 결합하여 복호를 수행한다. 목적지 노드 30은 708단계에서의 복호 결과에 대한 정보를 송신할 시 HARQ 재전송 제한 횟수에 따라 소스 노드 10으로 재전송을 요청할 수도 있고, 릴레이 노드 30으로 재전송을 요청할 수도 있다.
도 8은 본 발명에 따른 CF 기법을 사용하는 릴레이 무선 통신 시스템에서 HARQ 동작 시의 전체 시나리오에 따른 흐름도이다.
도 8을 참조하면, 소스 노드 10은 800단계에서 릴리에 노드 20으로 데이터를 전송한다. 이때, 소스 노드 10은 송신할 데이터 패킷을 채널 부호화하여 송신한다. 이에 따라 채널 부호화된 패킷을 수신한 릴레이 노드 20은 802단계에서 수신된 신호를 대역하강 변환 및 그물망 양자화 기법을 통해 압축하기 위한 양자화를 수행한다. 이때, 릴레이 노드 20은 802단계에서 그물망 양자화 시 전송할 양자화 데이터의 양보다 많은 양 즉, 잉여 정보를 갖도록 양자화한다. 이후 양자화된 신호 중 일부 예컨대, MSB부터 채널로 전송할 양자화 정보만큼만을 채널 부호화한다.
릴레이 노드 20은 802단계에서 채널 부호화가 완료되면, 804단계에서 목적지 노드 30으로 채널 부호화된 데이터 패킷을 전송한다. 이에 따라 목적지 노드 30은 806단계에서 수신된 패킷을 복호를 수행한다. 이후 목적지 노드 30은 808단계에서 수신된 패킷에 대하여 복호에 성공하였는가를 검사한다. 808단계의 검사결과 복호에 성공한 경우 목적지 노드 30은 810단계로 진행하여 릴레이 노드 20으로 ACK 신호를 송신한다.
반면에 808단계의 검사결과 복호에 실패한 경우 목적지 노드 30은 812단계로 진행하여 릴레이 노드 20과 목적지 노드 30의 링크 간 HARQ를 수행한다. 이러한 HARQ는 미리 정해진 횟수만큼 이루어질 수 있다. 가령, HARQ 재전송이 2회로 제한된 경우 릴레이 노드 20은 최초 전송을 포함하여 3회까지 목적지 노드 30으로 재전송을 수행할 수 있고, HARQ 재전송이 1회로 제한된 경우 릴레이 노드 20은 최초 전송을 포함하여 2회까지 목적지 노드 30으로 재전송을 수행할 수 있다.
이처럼 릴레이 노드 20과 목적지 노드 30간 HARQ 기법을 적용하여 릴레이 노드 20은 잉여 정보를 추가 전송할 수 있고, 목적지 노드 30은 잉여 정보를 추가로 획득할 수 있다. 따라서 목적지 노드 30은 이전에 수신된 정보와 릴레이 노드 20과 목적지 노드 30간 HARQ 기법을 통해 새롭게 획득된 잉여 정보를 추가하여 이전에 수신된 정보에 추가하여 복호를 수행할 수 있다.
따라서 목적지 노드 30은 814단계에서 잉여 정보를 포함하여 복호를 수행한 결과 복호가 성공되었는가를 검사한다. 목적지 노드 30은 814단계의 검사결과 복호에 성공한 경우 818단계로 진행하여 릴레이 노드 20으로 ACK 신호를 송신한다. 반면에 814단계의 검사결과 복호에 실패한 경우 목적지 노드 30은 816단계로 진행하여 종단(end-to-end) 링크 HARQ를 수행한다. 종단 링크라 함은 소스 노드 10로 재전송을 요청하는 것을 의미한다.
도 9는 본 발명에 따른 CF 기법을 사용하는 릴레이 무선 통신 시스템의 릴레이 노드에서 HARQ 동작 시의 제어 흐름도이다.
릴레이 노드 20은 소스 노드 10으로부터 목적지 노드 30으로 전송할 데이터를 수신하면, 900단계에서 잉여(redundancy) 정보를 갖도록 양자화를 수행한다. 이때, 잉여 정보를 갖도록 양자화한다는 의미는 실제로 전송하기 위한 양보다 많은 양이 되도록 양자화한다는 것을 의미한다. 가령, 앞서 도 4a 내지 도 4c에서 설명한 바와 같이 4비트의 양자화 정보를 전송하는 경우 6비트로 양자화하거나 또는 4비트보다 많은 양의 정보로 양자화를 수행한다는 것을 의미한다. 또한 처음 전송되는 제1 R-D 패킷 데이터가 4비트만 전송된다고 가정할 때, 4비트는 CF 기법을 사용하는 형태이므로, 압축된 정보가 될 수 있다.
이러한 잉여 정보의 양은 HARQ 재전송 제한 횟수에 따라 변경될 수도 있다. 가령, HARQ 재전송 제한 횟수가 1회인 경우 최초 전송을 포함하여 2회의 전송만이 필요하다. 따라서 잉여 정보를 포함하는 양자화 정보의 양은 1회 전송에 필요한 양보다 많고 2회 전송에 필요한 양 이하의 만큼의 양으로 결정될 수 있다.
다른 예로 HARQ 재전송 제한 횟수가 2회인 경우 최초 전송을 포함하여 3회의 재전송이 가능하다. 따라서 잉여 정보를 포함하는 양자화 정보의 양은 3회 전송에 필요한 양이 될 수 있다. 이에 따라 릴레이 노드 20은 2회 잉여 정보를 포함하는 양자화 정보의 양을 결정할 시 2회 전송의 양보다 많고 3회 전송에 필요한 양 이하가 되도록 양자화를 수행할 수 있다.
또한 릴레이 노드 20은 양자화 시 앞서 설명한 바와 같이 그물망 구조를 갖도록 양자화를 수행한다. 이러한 그물망 구조는 앞서 설명한 도 4a 내지 도 4c에서 이미 설명하였으므로, 여기서 추가적인 설명은 생략하기로 한다.
릴레이 노드 20은 이후 902단계에서 양자화된 데이터 중 일부로 채널 부호화를 수행한다. 양자화된 데이터 중 일부라 함은, 앞서 900단계에서 실제로 제1 R-D 패킷 데이터에 전송할 양보다 많은 양으로 양자화를 수행하였기 때문에 양자화된 데이터 중 일부만을 전송한다. 이때, 양자화된 데이터 중 일부는 상위(MSB) 비트의 정보들이 될 수 있다. 또한 채널 부호화는 릴레이 노드 20과 목적지 노드 30 상호간 추정된 채널 상황에 따라 미리 약속된 부호율을 가질 수 있다.
이후 릴레이 노드 20은 904단계에서 부호화된 데이터 즉, 제1 R-D 데이터 패킷을 목적지 노드 30으로 전송한 후 목적지 노드 30으로부터 ACK/NACK의 응답 신호를 대기한다.
906단계에서 ACK 신호 또는 NACK 신호를 수신하면, 릴레이 노드 20은 908단계에서 수신된 응답 신호가 ACK 신호인지 또는 NACK 신호인지를 검사한다. 908단계의 검사결과 응답 신호가 ACK 신호인 경우 릴레이 노드 20은 910단계로 진행하여 다음 패킷을 목적지 노드 30으로 송신한다. 만일 더 이상 목적지 노드 30으로 전송할 데이터가 없는 경우 릴레이 노드의 동작을 종료할 수 있다.
반면에 908단계의 검사결과 응답 신호가 NACK 신호인 경우 릴레이 노드는 912단계로 진행하여, 나머지 양자화된 데이터 가령, 하위(LSB) 비트의 정보들로 채널 부호화를 수행한다. 이처럼 릴레이 노드 20에서 하위 비트의 정보들로 채널 부호화를 수행할 수 있는 것은, 앞서 설명한 바와 같이 900단계에서 잉여 정보를 갖도록 양자화하였고, 902단계에서 양자화된 데이터 중 일부만을 전송하였으므로, 전송하지 않은 나머지 양자화 정보가 존재하기 때문이다.
이후 릴레이 노드 20은 914단계에서 채널 부호화된 데이터 예컨대, 제2 R-D 패킷 데이터를 목적지 노드로 전송할 수 있다.
도 10은 본 발명에 따른 CF 기법을 사용하는 릴레이 무선 통신 시스템의 목적지 노드에서 HARQ 동작 시의 제어 흐름도이다.
목적지 노드 30은 1000단계에서 릴레이 노드 20으로부터 1차로 부호화된 패킷 예컨대, 제1 R-D 데이터 패킷을 수신할 수 있다. 그러면 목적지 노드 30은 1002단계로 진행하여 수신된 패킷의 복호를 수행한다. 이후 목적지 노드 30은 1004단계에서 복호가 성공하였는지를 검사한다. 만일 릴레이 노드 20과 목적지 노드 30간 추정된 채널 상태와 실제 채널 상태가 동일하고, 채널 부호화율이 적절하였다면, 대체로 복호에 성공한다. 목적지 노드 30은 1004단계에서 복호에 성공한다면, 1006단계로 진행하여 ACK 응답 신호를 생성하고, 이를 릴레이 노드 20으로 전송하여 해당하는 패킷의 전송을 종료하거나 또는 다음 패킷의 수신을 기다릴 수 있다.
하지만, 릴레이 노드 20과 목적지 노드 30간 추정된 채널 상태보다 실제 채널 상태가 열악하거나 또는 급격한 채널 변화로 깊은 페이딩을 겪는 경우 목적지 노드 30은 릴레이 노드 20에서 전송된 패킷의 복호에 실패할 확률이 높다. 만일 1004단계의 검사결과 수신된 패킷의 복호에 실패한 경우 본 발명에 따른 목적지 노드 30은 1008단계에서 이전의 CF 방식과 달리 릴레이 노드 20으로 NACK를 전송한다. 이를 통해 종단간(end-to-end) 데이터의 재전송이 이루어지는 것이 아닌, 릴레이 노드 20으로부터 목적지 노드 30으로의 HARQ 재전송을 요청할 수 있다.
이후 목적지 노드 30은 1010단계에서 릴레이 노드 20으로부터 2차 부호화된 패킷을 수신할 수 있다. 이는 앞서 설명한 바와 같이 릴레이 노드 20에서 잉여(redundancy) 정보를 갖도록 양자화를 수행하였기 때문에 나머지 정보를 수신하는 것이다. 또한 릴레이 노드 20에서 양자화 시 그물망 구조를 갖도록 양자화하였기 때문에 2차 부호화된 패킷을 수신하여 이를 결합하면, 실제 소스 노드 10에서 전송되어 온 데이터 패킷을 보다 정확하게 획득할 수 있다.
따라서 목적지 노드 30은 1012단계에서 1차 부호화된 패킷과 2차 부호화된 패킷을 결합하고, 결합된 패킷을 이용하여 복호를 수행한다. 이는 앞서 설명한 바와 같이 릴레이 노드 20에서 잉여 정보를 갖도록 양자화하였으며, 양자화 기법으로 그물망 형태를 갖도록 하였기 때문에 가능하다.
목적지 노드 30은 1012단계에서 복호를 수행한 후 1014단계에서 복호에 성공하였는가를 검사한다. 만일 복호에 성공한 경우 1006단계로 진행하여 릴레이 노드 20으로 ACK 신호를 전송할 수 있다. 반면에 복호에 실패한 경우 1008단계로 진행하여 이후 과정을 반복할 수 있다. 또한 대체로 HARQ 재전송 방법은 HARQ 재전송 횟수를 1회 또는 2회 등으로 제한을 둘 수 있다. 따라서 목적지 노드 30은 복호에 실패한 경우 NACK를 전송하기 전에 HARQ 재전송 횟수만큼 재전송이 이루어졌는가를 미리 검사하도록 할 수도 있다.
이처럼 만일 HARQ 재전송 제한 횟수만큼 재전송이 이루어진 이후에도 복호에 실패한 경우 목적지 노드 30은 종단간(end-to-end) 재전송을 요청할 수 있다. 이러한 종단간 재전송 요청 시 목적지 노드 30은 릴레이 노드 20을 통해 소스 노드 10으로 종단간 재전송을 요청할 수도 있고, 목적지 노드 30이 소스 노드 10으로 직접 재전송을 요청할 수도 있다. 본 발명에서는 이에 대한 제한을 두지는 않는다.
그리고 본 명세서와 도면에 개시된 실시 예들은 본 발명의 내용을 쉽게 설명하고, 이해를 돕기 위해 특정 예를 제시한 것일 뿐이며, 본 발명의 범위를 한정하고자 하는 것은 아니다. 따라서 본 발명의 범위는 여기에 개시된 실시 예들 이외에도 본 발명의 기술적 사상을 바탕으로 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
10, 10a, 10b : 소스 노드 20, 20a, 20b : 릴레이 노드
30 : 목적지 노드
100 : 제1소스 노드로부터 제1릴레이 노드로의 채널
101 : 제1소스 노드로부터 제2릴레이 노드로의 채널
120 : 제2소스 노드로부터 제2릴레이 노드로의 채널
121 : 제2소스 노드로부터 제1릴레이 노드로의 채널
100-1, 121-1 : 제1릴레이 노드로부터 목적지 노드로의 채널
101-1, 120-1 : 제2릴레이 노드로부터 목적지 노드로의 채널
201, 211 : 추정된 채널 상태
202, 212 : 실제 채널 상태
300 : 소스 노드에서 채널 부호화되어 생성된 데이터
301 : 제1 S-R 데이터 패킷 302 : 제2 S-R 데이터 패킷
320, 350, 360 : 릴레이 노드에서 채널 부호화되어 생성된 데이터
321, 351 : 제1 R-D 데이터 패킷
322, 362 : 제2 R-D 데이터 패킷
501, 601 : 데이터 수신부 502 : 양자화부
503 : 양자화 신호 저장부 504 : 채널 부호부
505 : 데이터 전송부 510 : 릴레이 노드 제어부
511 : ACK/NACK 판단부 512 : 전송 레벨 결정부
602 : 채널 복호부 603 : 스위치
604 : 복호 성공 판단부 605 : ACK/NACK 전송부
611 : 결합부 612 : 복호된 데이터 저장부
621 : 목적지 노드 제어부

Claims (15)

  1. 압축 후 전달(CF) 기법을 사용하는 릴레이 무선 통신 시스템의 상기 릴레이 노드에서 복합 자동 재전송 방법에 있어서,
    이전 노드로부터 데이터를 수신 시 상기 이전 노드로부터 데이터 수신된 데이터를 다음 노드로 전송하기 위한 양자화 시 잉여 정보를 갖도록 그물망 형태의 양자화를 수행하는 단계;
    상기 양자화된 정보 중 상위 정보부터 상기 다음 노드로 전송하기 위해 설정된 채널로 전송할 수 있는 양만큼만 채널 부호화하여 상기 다음 노드로 전송하는 단계; 및
    상기 다음 노드로부터 부정 응답(NACK) 수신 시 상기 양자화된 정보 중 전송되지 않은 나머지 정보들 중 상기 설정된 채널로 전송할 수 있는 양만큼 채널 부호화를 수행하여 상기 다음 노드로 재전송하는 단계;를 포함하는, 압축 후 전달 기법을 사용하는 릴레이 무선 통신 시스템에서 복합 자동 재전송 방법.
  2. 제1항에 있어서, 상기 이전 노드는,
    소스 노드인, 압축 후 전달 기법을 사용하는 릴레이 무선 통신 시스템에서 복합 자동 재전송 방법.
  3. 제1항에 있어서, 상기 다음 노드는,
    목적지 노드인, 압축 후 전달 기법을 사용하는 릴레이 무선 통신 시스템에서 복합 자동 재전송 방법.
  4. 제1항에 있어서,
    상기 양자화 시 잉여 정보의 양은, 상기 복합 자동 재전송의 전송 제한 횟수에 근거하여 결정되는, 압축 후 전달 기법을 사용하는 릴레이 무선 통신 시스템에서 복합 자동 재전송 방법.
  5. 압축 후 전달(CF) 기법을 사용하는 릴레이 무선 통신 시스템의 목적지 노드에서 복합 자동 재전송 방법에 있어서,
    상기 릴레이로부터 1차 부호화된 패킷이 수신될 시 상기 1차 부호화된 패킷을 저장 및 복호하는 단계;
    상기 1차 부호화된 패킷의 복호가 실패한 경우 상기 릴레이로 부정 응답(NACK)을 전송하는 단계;
    상기 릴레이로부터 2차 부호화된 패킷이 수신될 시 상기 1차 부호화된 패킷과 상기 2차 부호화된 패킷을 결합하여 복호를 수행하는 단계; 및
    상기 복호의 성공 여부(ACK/NACK)를 상기 릴레이로 전송하는 단계;를 포함하며,
    상기 1차 부호화된 패킷과 상기 2차 부호화된 패킷은 상기 릴레이에서 잉여 정보를 갖도록 그물망 형태로 양자화된 데이터이며,
    상기 1차 부호화된 패킷은 상기 양자화된 정보 중 상위 정보부터 설정된 채널로 전송될 수 있는 양만큼 구성된 정보이고,
    상기 2차 부호화된 패킷은 상기 양자화된 정보 중 나머지 정보들 중 상기 설정된 채널로 전송할 수 있는 양만큼의 정보로 구성되는, 압축 후 전달 기법을 사용하는 릴레이 무선 통신 시스템에서 복합 자동 재전송 방법.
  6. 제5항에 있어서,
    상기 1차 부호화된 패킷의 복호에 성공한 경우 상기 릴레이로 긍정 응답(ACK)을 전송하는 단계;를 더 포함하는, 압축 후 전달 기법을 사용하는 릴레이 무선 통신 시스템에서 복합 자동 재전송 방법.
  7. 제5항에 있어서,
    미리 설정된 제한 횟수만큼 복합 자동 재전송 패킷을 수신하여 복호한 결과 복호에 실패한 경우 상기 소스 노드로 재전송을 요청하는 단계;를 더 포함하는, 압축 후 전달 기법을 사용하는 릴레이 무선 통신 시스템에서 복합 자동 재전송 방법.
  8. 제7항에 있어서,
    상기 소스 노드로 재전송 요청 시 상기 릴레이를 통해 재전송을 요청하는, 압축 후 전달 기법을 사용하는 릴레이 무선 통신 시스템에서 복합 자동 재전송 방법.
  9. 압축 후 전달(CF) 기법을 사용하는 릴레이 무선 통신 시스템에서 복합 자동 재전송을 수행하기 위한 릴레이 노드 장치에 있어서,
    이전 노드로부터 데이터를 수신하여 기저대역의 아날로그 신호로 변환하며, 다음 노드로부터 응답(ACK/NACK) 신호를 수신하여 제어부로 출력하는 데이터 수신부;
    상기 기저대역의 아날로그 신호를 상기 다음 노드로 전송하기 위해 잉여 정보를 갖도록 그물망 형태의 양자화를 수행하는 양자화부;
    상기 양자화된 데이터를 저장하는 저장부;
    상기 저장부에 저장된 양자화 데이터 중 설정된 채널로 전송할 수 있는 양자화 데이터를 출력하도록 하며, 초기 전송 시 양자화된 데이터의 상위 정보부터 출력하도록 하고, 재전송 시 전송되지 않은 양자화 데이터들을 출력하도록 제어하는 제어부;
    상기 저장부에서 출력된 데이터를 채널 부호화하는 채널 부호화부; 및
    상기 채널 부호화부에서 채널 부호화된 데이터를 설정된 채널을 통해 송신하는 데이터 전송부;를 포함하는, 압축 후 전달 기법을 사용하는 릴레이 무선 통신 시스템에서 복합 자동 재전송을 위한 릴레이 장치.
  10. 제9항에 있어서, 상기 이전 노드는,
    소스 노드인, 압축 후 전달 기법을 사용하는 릴레이 무선 통신 시스템에서 복합 자동 재전송을 위한 릴레이 장치.
  11. 제9항에 있어서, 상기 다음 노드는,
    목적지 노드인, 압축 후 전달 기법을 사용하는 릴레이 무선 통신 시스템에서 복합 자동 재전송을 위한 릴레이 장치.
  12. 제9항에 있어서,
    상기 양자화 시 잉여 정보의 양은, 상기 복합 자동 재전송의 전송 제한 횟수에 근거하여 결정되는, 압축 후 전달 기법을 사용하는 릴레이 무선 통신 시스템에서 복합 자동 재전송을 위한 릴레이 장치.
  13. 압축 후 전달(CF) 기법을 사용하는 릴레이 무선 통신 시스템에서 복합 자동 재전송을 위한 목적지 노드 장치에 있어서,
    상기 릴레이로부터 부호화된 패킷을 수신하여 기저대역의 아날로그 신호로 변환하여 출력하는 데이터 수신부;
    상기 기저대역의 신호를 채널 복호하는 채널 복호부;
    상기 채널 복호부의 출력을 저장하는 복호된 데이터 저장부;
    상기 채널 복호부로부터 출력된 데이터와 상기 복호된 데이터 저장부에서의 출력을 결합하는 결합부;
    입력되는 신호의 복호 성공 여부를 판별하는 복호 성공 판단부;
    상기 채널 복호부와 상기 결합부의 출력 중 어느 하나를 상기 복호 성공 판단부로 입력되도록 스위칭하는 스위치;
    복호된 결과에 따른 응답(ACK/NACK) 신호를 상기 릴레이로 전송하는 응답 신호 전송부; 및
    상기 채널 복호부의 출력이 상기 복호된 데이터 저장부 또는 상기 결합부 중 어느 하나와 상기 스위치로 출력되도록 제어하고, 상기 복호된 데이터 저장부의 리셋 및 데이터 출력을 제어하며, 상기 결합부에서 1차 채널 복호된 데이터와 2차 채널 복호된 데이터를 결합하도록 제어하고, 상기 스위치의 스위칭 동작을 제어하며, 상기 복호 성공 판단부로부터의 복호 성공 여부에 따라 상기 응답 신호 전송부로 전송할 응답 신호의 생성을 제어하는 제어부;를 포함하며,
    상기 릴레이로부터 수신된 부호화된 패킷은 잉여 정보를 갖도록 그물망 형태로 양자화된 데이터이며,
    상기 초기 전송 시 전송된 부호화된 패킷은 상기 양자화된 정보 중 상위 정보부터 설정된 채널로 전송될 수 있는 양만큼 구성된 정보이고,
    상기 재전송 시 전송된 부호화된 패킷은 상기 양자화된 정보 중 나머지 정보들 중 상기 설정된 채널로 전송할 수 있는 양만큼의 정보로 구성되는, 압축 후 전달 기법을 사용하는 릴레이 무선 통신 시스템에서 복합 자동 재전송을 위한 목적지 노드 장치.
  14. 제13항에 있어서, 상기 제어부는,
    미리 설정된 제한 횟수만큼 복합 자동 재전송 패킷을 수신하여 복호한 결과 복호에 실패한 경우 상기 소스 노드로 재전송을 요청하도록 제어하는, 압축 후 전달 기법을 사용하는 릴레이 무선 통신 시스템에서 복합 자동 재전송을 위한 목적지 노드 장치.
  15. 제14항에 있어서, 상기 제어부는,
    상기 소스 노드로 재전송 요청 시 상기 릴레이를 통해 재전송을 요청하도록 제어하는, 압축 후 전달 기법을 사용하는 릴레이 무선 통신 시스템에서 복합 자동 재전송을 위한 목적지 노드 장치.
KR1020140104987A 2014-08-13 2014-08-13 압축 후 전달 기법을 사용하는 릴레이 무선 통신 시스템에서 복합 자동 재전송 방법 및 장치 KR102147679B1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020140104987A KR102147679B1 (ko) 2014-08-13 2014-08-13 압축 후 전달 기법을 사용하는 릴레이 무선 통신 시스템에서 복합 자동 재전송 방법 및 장치
US15/324,633 US10237023B2 (en) 2014-08-13 2015-08-13 Hybrid automatic repeat request method and apparatus in relay wireless communication system using compressed-and-forward scheme
PCT/KR2015/008501 WO2016024833A1 (ko) 2014-08-13 2015-08-13 압축 후 전달 기법을 사용하는 릴레이 무선 통신 시스템에서 복합 자동 재전송 방법 및 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140104987A KR102147679B1 (ko) 2014-08-13 2014-08-13 압축 후 전달 기법을 사용하는 릴레이 무선 통신 시스템에서 복합 자동 재전송 방법 및 장치

Publications (2)

Publication Number Publication Date
KR20160020098A true KR20160020098A (ko) 2016-02-23
KR102147679B1 KR102147679B1 (ko) 2020-08-25

Family

ID=55304380

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140104987A KR102147679B1 (ko) 2014-08-13 2014-08-13 압축 후 전달 기법을 사용하는 릴레이 무선 통신 시스템에서 복합 자동 재전송 방법 및 장치

Country Status (3)

Country Link
US (1) US10237023B2 (ko)
KR (1) KR102147679B1 (ko)
WO (1) WO2016024833A1 (ko)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10326560B2 (en) * 2014-11-03 2019-06-18 Lg Electronics Inc. Data buffering method and apparatus for hybrid automatic repeat request in wireless access system supporting non-orthogonal multiple access scheme
CN106254041A (zh) * 2015-08-20 2016-12-21 北京智谷技术服务有限公司 数据传输方法、数据接收方法、及其装置
US10003438B2 (en) * 2016-01-26 2018-06-19 Qualcomm Incorporated Relay operation for latency sensitive reliable data exchange
DE102016210492A1 (de) 2016-03-11 2017-09-14 Volkswagen Aktiengesellschaft Verfahren zur Übertragung von Daten über einen gestörten Funkkanal sowie Empfangseinheit und Sendeeinheit zur Verwendung bei dem Verfahren
US11165488B2 (en) * 2017-11-08 2021-11-02 Qualcomm Incorporated Enhanced internet of things relay data re-transmission
JP6858143B2 (ja) * 2018-01-25 2021-04-14 Kddi株式会社 中継局を介して基地局と移動通信装置が通信する無線アクセスシステム
JP6869199B2 (ja) * 2018-03-20 2021-05-12 Kddi株式会社 中継局を介して基地局と移動通信装置が通信する無線アクセスシステム
TWI678092B (zh) * 2018-04-27 2019-11-21 奇邑科技股份有限公司 長距離全雙工無線通訊方法與通訊系統
US11711448B2 (en) * 2020-05-08 2023-07-25 Qualcomm Incorporated Compression schemes for relaying prior to decoding
WO2022040097A1 (en) * 2020-08-17 2022-02-24 Kyocera Corporation Relay device management based on data priority level
US11677590B2 (en) 2020-09-15 2023-06-13 Electronics And Telecommunications Research Institute Method and apparatus for distributed communication based on reception signal quantization in wireless communication system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100054735A (ko) * 2008-11-14 2010-05-25 삼성전자주식회사 네트워크 부호화를 사용하는 하이브리드 자동 재송 요구 동작을 위한 방법 및 장치
KR101316622B1 (ko) * 2006-08-01 2013-11-12 삼성전자주식회사 무선 통신망을 통한 멀티캐스트 패킷의 송수신 방법 및상기 무선 통신망 시스템
KR20140062530A (ko) * 2012-11-12 2014-05-26 국방과학연구소 무선 통신 시스템에서 예비 자원 할당을 통한 효율적인 자원 관리 방법 및 시스템, 중계국, 그리고 기지국

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5285276A (en) * 1991-03-12 1994-02-08 Zenith Electronics Corp. Bi-rate high definition television signal transmission system
US7327287B2 (en) * 2004-12-09 2008-02-05 Massachusetts Institute Of Technology Lossy data compression exploiting distortion side information
EP1861965A1 (en) * 2005-03-22 2007-12-05 Samsung Electronics Co, Ltd Method and apparatus for transmitting packet data
US8897193B2 (en) 2006-08-01 2014-11-25 Samsung Electronics Co., Ltd. Multicast packet transmitting method over wireless communication network and wireless communication network system using the method
AU2006246497B2 (en) * 2006-11-30 2010-02-11 Canon Kabushiki Kaisha Method and apparatus for hybrid image compression
KR101294384B1 (ko) * 2007-02-01 2013-08-08 엘지전자 주식회사 사용자 간섭을 줄이는 데이터 전송 방법
US7950367B2 (en) 2007-03-30 2011-05-31 Honda Motor Co., Ltd. Accelerator position sensor arrangement structure for motorcycle
US20100211842A1 (en) * 2007-10-09 2010-08-19 Sung Ho Moon Method of transmitting data using constellation rearrangement
TWI386814B (zh) * 2007-12-31 2013-02-21 Ind Tech Res Inst 具動態工作管理能力之多處理器界面及其程式載卸方法
US9030948B2 (en) * 2008-03-30 2015-05-12 Qualcomm Incorporated Encoding and decoding of control information for wireless communication
KR20100009185A (ko) 2008-07-18 2010-01-27 삼성전자주식회사 이동통신 단말기의 harq 버스트 처리 장치 및 방법
US8402334B2 (en) 2008-12-17 2013-03-19 Research In Motion Limited System and method for hybrid automatic repeat request (HARQ) functionality in a relay node
EP2611056B1 (en) 2011-04-18 2016-08-17 Huawei Device Co., Ltd. Data retransmission method, apparatus and system
US9130749B1 (en) * 2012-09-12 2015-09-08 Marvell Internatonal Ltd. Method and apparatus for decoding a data packet using scalable soft-bit retransmission combining

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101316622B1 (ko) * 2006-08-01 2013-11-12 삼성전자주식회사 무선 통신망을 통한 멀티캐스트 패킷의 송수신 방법 및상기 무선 통신망 시스템
KR20100054735A (ko) * 2008-11-14 2010-05-25 삼성전자주식회사 네트워크 부호화를 사용하는 하이브리드 자동 재송 요구 동작을 위한 방법 및 장치
KR20140062530A (ko) * 2012-11-12 2014-05-26 국방과학연구소 무선 통신 시스템에서 예비 자원 할당을 통한 효율적인 자원 관리 방법 및 시스템, 중계국, 그리고 기지국

Also Published As

Publication number Publication date
KR102147679B1 (ko) 2020-08-25
WO2016024833A1 (ko) 2016-02-18
US20170244521A1 (en) 2017-08-24
US10237023B2 (en) 2019-03-19

Similar Documents

Publication Publication Date Title
KR102147679B1 (ko) 압축 후 전달 기법을 사용하는 릴레이 무선 통신 시스템에서 복합 자동 재전송 방법 및 장치
US10601545B2 (en) System and method for forward error correction
US9294221B2 (en) Method and arrangement for retransmission control
US8484526B2 (en) Encoder, decoder, encoding method, and decoding method
TWI354467B (en) A redundancy version implementation for an uplink
JP4703310B2 (ja) 通信方法および通信システム
EP2218204B1 (en) Method and system for data transmission in a data network
EP1271833A1 (en) ARQ system with transmission priority and receiver quality feedback
US10630430B2 (en) System and method for dual-coding for dual-hops channels
US20120192026A1 (en) Methods and Systems for Data Transmission Management Using HARQ Mechanism for Concatenated Coded System
CN102694636A (zh) 采用喷泉码的harq技术的发送、接收方法及系统
US20120084618A1 (en) Jointly encoding a scheduling request indicator and acknowledgments/negative acknowledgments
JP2010147755A (ja) 送信装置、受信装置および通信システム
CN104579573B (zh) 数据传输的反馈信息的编码、解码方法及发送端和接收端
CN104539402A (zh) 一种无线网络中的广播传输方法
CN107248904B (zh) 一种基于联合编码的ldpc码差错控制方法
KR101691224B1 (ko) 네트웍 부호를 적용한 데이터 재전송 방법 및 장치
WO2024168933A1 (en) Harq for source coding
CN111988118B (zh) 一种无线局域网中的通信方法及设备
WO2016184074A1 (zh) 一种基于协作网络编码场景的传输方法及系统
KR101753971B1 (ko) 향상된 오류 정정 기능을 제공하는 네트워크-채널 결합 코딩 방법, 이를 이용한 네트워크-채널 결합 코딩 장치 및 네트워크-채널 결합 코딩 시스템
WO2019064377A1 (ja) 無線通信方法、無線通信システム、基地局、及び無線端末

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant