KR20160019732A - 전기습윤 구동 방식의 광자극기 - Google Patents
전기습윤 구동 방식의 광자극기 Download PDFInfo
- Publication number
- KR20160019732A KR20160019732A KR1020140104419A KR20140104419A KR20160019732A KR 20160019732 A KR20160019732 A KR 20160019732A KR 1020140104419 A KR1020140104419 A KR 1020140104419A KR 20140104419 A KR20140104419 A KR 20140104419A KR 20160019732 A KR20160019732 A KR 20160019732A
- Authority
- KR
- South Korea
- Prior art keywords
- light
- conductive
- droplet
- electric field
- water droplet
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N5/0613—Apparatus adapted for a specific treatment
- A61N5/0622—Optical stimulation for exciting neural tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/40—Detecting, measuring or recording for evaluating the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6846—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
- A61B5/6867—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive specially adapted to be attached or implanted in a specific body part
- A61B5/6877—Nerve
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2562/00—Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
- A61B2562/12—Manufacturing methods specially adapted for producing sensors for in-vivo measurements
- A61B2562/125—Manufacturing methods specially adapted for producing sensors for in-vivo measurements characterised by the manufacture of electrodes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N2005/0664—Details
- A61N2005/0668—Apparatus adapted for operation in a moist environment, e.g. bath or shower
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Animal Behavior & Ethology (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Surgery (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Medical Informatics (AREA)
- Heart & Thoracic Surgery (AREA)
- Neurosurgery (AREA)
- Neurology (AREA)
- Physiology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Radiation-Therapy Devices (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
Abstract
본 발명의 실시예에 따른 광 자극기는 체내의 특정 신경세포를 자극하여 신경신호를 얻기 위한 장치로서, 전극을 포함하고, 상기 전극과 연결되는 다수개의 전기 단자가 구비되는 본체부, 상기 본체부의 일측에서 연장되며, 전기습윤을 구동시키기 위한 다수개의 전도성 물방울이 소정의 거리로 이격되어 배치되는 광선로 기판; 및 상기 본체부에 배치되며, 상기 광선로 기판에 형성된 전도성 물방울이 배치되는 방향으로 광을 발생시키는 광원부를 포함하고, 상기 전기 단자 각각은 상기 각각의 전도성 물방울과 연결되며, 상기 전도성 물방울은 상기 전기 단자에 의해 전기장이 인가되는 경우에 광을 통과시키고, 전기장이 인가되지 않는 경우에 진행되는 광을 상기 전도성 물방울의 상부로 반사시켜 특정 신경세포를 자극하는 것을 특징으로 한다.
따라서, 단일 자극 지점의 신경세포를 자극할 뿐만 아니라 깊이 방향으로 여러 지점의 신경세포를 자극할 수 있어 더욱 정밀하게 신경신호의 측정 및 분석을 수행할 수 있다.
따라서, 단일 자극 지점의 신경세포를 자극할 뿐만 아니라 깊이 방향으로 여러 지점의 신경세포를 자극할 수 있어 더욱 정밀하게 신경신호의 측정 및 분석을 수행할 수 있다.
Description
본 발명은 전기습윤 방식으로 전도성 물방울의 형상을 제어하여 자극하고자 하는 신경세포로 광 경로를 변경하는 광자극기에 관한 것이다.
최근들어 Optogenetics 라 불리는 광유전학은 현재 신경과학 또는 공학에 종사하는 사람들의 주목을 끌어왔다. 광유전학에서는 일부 신경세포가 특정 파장의 빛에 감응하도록 유전자를 변형한다. 이러한 유전자 변형이 일어난 신경세포는 특정 파장대의 빛에 노출되었을 때 반응하여 신경신호를 내보내게 되며, 단일 신경세포에 대하여 자극이 가능하기에 기존의 전기를 통한 신경자극 보다 더욱 국부적인 자극이 가능하다는 큰 장점이 있다.
이를 위한 자극 기기로써 일반적으로 광섬유, LED, OLED 등이 사용되었다. OLED와 LED의 경우 전원만 있다면 발광할 수 있어 전체적인 장치의 크기를 줄일 수 있다는 장점이 있으나, 빛을 발광하는 면적이 광섬유를 통해 전달되는 것보다 상대적으로 크다. 또한, 초소형 LED, OLED 제작은 제작 단가가 매우 높으며, 광섬유를 통해 전달되는 빛 보다 강도(intensity)가 낮아 유전자 변형이 된 신경세포의 반응 역치 값에 도달하기 어렵다.
광섬유를 이용하는 자극 장치의 경우, 광섬유 부분은 실험체에 이식이 되어있고, 외부에 laser와 같은 광원이 있으며, 자극 시에만 광섬유의 끝단에 연결하여 사용한다. 자극이 가능 한 부분은 뇌 또는 신경에 삽입이 된 광섬유 끝단이며, 이로 인해 장기(chronic) 실험을 위하여 장치를 이식한 실험체의 뇌에서 깊이에 따른 다른 위치 또는 다른 영역에서의 사용이 어렵다는 문제가 있고, 뇌의 깊이 위치를 변경해가며 실험을 실행하기 위해서는 단기(acute)실험을 통해서만 가능하다. 이러한 기존의 광섬유를 이용한 광유전학 장치들은 광유전학의 연구 영역을 제한하고 있다.
본 발명은 상술한 문제점을 해결하기 위한 것으로서, 장기간 또는 단기간 한 실험체를 통해 신경계 광유전학 연구시 단일 사이트가 아닌 깊이 방향의 여러 사이트에서 광자극을 수행할 수 있는 광자극기를 제공하는 것을 목적으로 한다.
본 발명은 자극하고자 하는 타겟 뉴런에 대해 더욱 가까운 위치에서 정밀한 자극을 가할 수 있고, 가해준 자극에 대한 기록을 수행하는 전극 또한 다양하고 가깝게 배치될 수 있는 광자극기를 제공하는데 그 목적이 있다.
본 발명의 실시예에 따른 광 자극기는 체내의 특정 신경세포를 자극하여 신경신호를 얻기 위한 장치로서, 전극을 포함하고, 상기 전극과 연결되는 다수개의 전기 단자가 구비되는 본체부; 상기 본체부의 일측에서 연장되며, 전기습윤을 구동시키기 위한 다수개의 전도성 물방울이 소정의 거리로 이격되어 배치되는 광선로 기판; 및 상기 본체부에 배치되며, 상기 광선로 기판에 형성된 전도성 물방울이 배치되는 방향으로 광을 발생시키는 광원부;를 포함하고, 상기 전기 단자 각각은 상기 각각의 전도성 물방울과 연결되며, 상기 전도성 물방울은 상기 전기 단자에 의해 전기장이 인가되는 경우에 형상 변화를 통해 광을 통과시키고, 전기장이 인가되지 않는 경우에 전도성 물방울의 초기 형상을 유지하여 진행되는 광을 상기 전도성 물방울의 상부로 반사시켜 특정 신경세포를 자극하는 것을 특징으로 한다.
본 발명의 실시예에 따른 광 자극기는 체내의 특정 신경세포를 자극하여 신경신호를 얻기 위한 장치로서, 전극을 포함하고, 상기 전극과 연결되는 다수개의 전기 단자가 구비되는 본체부; 상기 본체부의 일측에서 연장되며, 전기습윤을 구동시키기 위한 다수개의 전도성 물방울이 소정의 거리로 이격되어 배치되는 광선로 기판; 및 상기 본체부에 배치되며, 상기 광선로 기판에 형성된 전도성 물방울이 배치되는 방향으로 광을 발생시키는 광원부;를 포함하고, 상기 전기 단자 각각은 상기 각각의 전도성 물방울과 연결되며, 상기 전도성 물방울은 상기 전기 단자에 의해 전기장이 인가되는 경우에 형상 변화를 통해 광을 통과시키고, 전기장이 인가되지 않는 경우에 전도성 물방울의 초기 형상을 유지하여 진행되는 광을 상기 전도성 물방울의 하부로 굴절시켜 특정 신경세포를 자극하는 것을 특징으로 한다.
본 발명에 따르면, 광선로 기판 상에 마련된 전도성 물방울의 전기습윤 성질을 이용하여 사용자가 원하는 부분에 연결된 전기습윤 전극을 온(on) 또는 오프(off)시킴으로써 전도성 물방울의 표면 상태를 변경하고, 이에 따라 진행되는 광의 진행 경로를 변경하여 타겟으로 하는 신경세포를 자극할 수 있다.
본 발명에 따르면, 광유전학에 본 실시예를 적용함에 있어서 단일 지점의 신경세포를 자극하는 것이 아니라 깊이 방향으로 여러 지점의 신경세포를 자극할 수 있어 더욱 정밀하고 고분해성으로 선택적인 신경신호의 측정 및 분석을 수행할 수 있다.
본 발명에 따르면, 깊이 방향으로 광이 특정 지점으로 진행할 수 있고, 광의 진행이 변경되는 지점에 기록 전극이 배치됨으로써 타겟으로 하는 신경세포에서 발생하는 신호를 더욱 가까운 거리에서 획득할 수 있다.
도 1은 전기습윤의 구동 원리를 나타내는 도면
도 2는 본 발명의 제1 실시예에 따른 전기습윤 방식의 광자극기를 나타낸 사시도
도 3은 본 발명의 제1 실시예에 따른 광자극기의 일부 구성만을 나타낸 사시도
도 4는 본 발명의 제1 실시예에 따른 광 경로가 변경되는 부분을 나타낸 단면도
도 5는 도 4를 위에서 바라본 평면도
도 6은 본 발명의 제1 실시예에 따른 광 경로의 진행 방향을 나타낸 단면도
도 7은 본 발명의 제2 실시예에 따른 전기습윤 방식의 광자극기를 나타낸 사시도
도 8은 본 발명의 제2 실시예에 따른 광자극기의 일부 구성만을 나타낸 사시도
도 9는 본 발명의 제2 실시예에 따른 광 경로가 변경되는 부분을 나타낸 단면도
도 10은 도 9를 위에서 바라본 평면도
도 11은 본 발명의 제2 실시예에 따른 광 경로의 진행 방향을 나타낸 단면도
도 2는 본 발명의 제1 실시예에 따른 전기습윤 방식의 광자극기를 나타낸 사시도
도 3은 본 발명의 제1 실시예에 따른 광자극기의 일부 구성만을 나타낸 사시도
도 4는 본 발명의 제1 실시예에 따른 광 경로가 변경되는 부분을 나타낸 단면도
도 5는 도 4를 위에서 바라본 평면도
도 6은 본 발명의 제1 실시예에 따른 광 경로의 진행 방향을 나타낸 단면도
도 7은 본 발명의 제2 실시예에 따른 전기습윤 방식의 광자극기를 나타낸 사시도
도 8은 본 발명의 제2 실시예에 따른 광자극기의 일부 구성만을 나타낸 사시도
도 9는 본 발명의 제2 실시예에 따른 광 경로가 변경되는 부분을 나타낸 단면도
도 10은 도 9를 위에서 바라본 평면도
도 11은 본 발명의 제2 실시예에 따른 광 경로의 진행 방향을 나타낸 단면도
이하 첨부된 도면들을 참조하여 본 발명의 실시예들을 상세하게 설명하지만, 본 발명의 실시예에 의해 제한되거나 한정되는 것은 아니다. 본 발명을 설명함에 있어서, 공지된 기능 혹은 구성에 대해 구체적인 설명은 본 발명의 요지를 명료하게 하기 위해 생략될 수 있다.
전기습윤(Electrowetting)이란 고체표면 위의 전도성 물방울의 형상을 전기적으로 변형하거나 물방울과 맞닿는 고체표면 사이의 접촉각에 변화를 유도하는 것을 일컬으며, 이를 효과적으로 재현하기 위한 방식으로 전도성 물방울과 전기장을 발생시키는 전극 사이에 절연체를 위치하며, 이는 Electrowetting-on-dielectric (EWOD)라 불린다.
도 1은 이러한 전기습윤의 구동 원리를 나타내는 도면이다.
도 1을 참조하면, 일반적으로 연구 및 사용되는 전기습윤 구동방식을 사용한 장치는 전극(10)과 절연체(11) 그리고 전도성 물방울(12)로 구성되어 있다.
전극에 전원을 주어 전기장을 발생시키기 전까지는 전도성 물방울의 전하들은 무정형으로 퍼져 있으며 접촉각은 θs를 이루고 있다. 전극(10)에 전기가 공급되지 않는 경우 절연체(11)는 전도성 물방울을 밀어내는 소수성 작용을 하여 절연체와 전도성 물방울 간의 접촉면적이 줄어들고 전도성 물방울과 절연체가 접촉하는 접촉각이 크다.
이 상태의 전도성 물방울에 전기장이 가해졌을 때는, 물방울 내의 전하들이 전기장 유도에 의해 고체와 액체가 접하는 부분에 축적되며, 이는 물방울의 표면장력을 감소시키게 된다. 이로 인해 물방울의 형태는 퍼지게 되며, 접촉각(θs(V))은 전기장이 발생되기 전의 접촉각(θs)에 비해 감소하게 된다.
이러한 구성 중 물방울과 전극 사이에 절연체가 꼭 존재해야 하는 것은 아니지만 사용되는 이유는 다음과 같다. 1) 전극으로부터 물방울을 보호하여, 전기장을 더 높게 생성 할 수 있다. 2) 매우 소수성을 띠는 물질을 얇게 도포하여 물방울을 쉽게 움직일 수 있으며, 초기 접촉각을 높일 수 있다. 또한 접촉각 hysterisis가 적다. 이러한 이유들로 인하여 electrowetting applicaion의 안정적인 성능을 보장 할 수 있다.
본 발명은 상기와 같은 전기습윤 구동방식을 이용하여, 특정 신경세포에 자극을 가할 수 있는 광 자극기를 제안하고자 한다.
도 2는 본 발명의 제1 실시예에 따른 전기습윤 방식의 광자극기를 나타낸 사시도이다. 도 2를 참조하면, 제1 실시예의 광자극기(20)는 본체부(26), 전기 단자(21), 광원부(22), 기록 전극(24), 광진행 슬릿(23), 광선로 기판(25) 및 전도성 물방울(30)로 이루어질 수 있다.
제1 실시예의 광자극기는 광원부(22)에서 발생한 광이 전도성 물방울(30)의 표면에 도달한 후 반사되어 광경로가 진행되는 실시예로서, 반사형 광자극기의 일례를 도시한 것이다.
본체부(26)의 내부에는 전극(미도시)이 배치되고, 상기 전극과 연결되는 복수개의 전기 단자(21)가 마련된다. 상기 각각의 전기 단자(21)는 전도성 물방울(30)이 놓여지는 광선로 기판(25)을 따라 연장되어 어느 하나의 전도성 물방울에 연결될 수 있다. 하나의 전기 단자(21)는 하나의 전도성 물방울의 형태를 제어하기 위해 배치되며, 전기 단자(21)의 갯수는 전도성 물방울(30)의 갯수와 동일하게 형성될 수 있다.
본체부(26)의 일측에는 광이 진행하는 방향을 제공하는 광선로 기판(25)이 소정의 길이로 형성될 수 있다. 상기 광선로 기판(25)에는 광의 진행 방향을 결정하기 위한 전기습윤 장치가 구비되는 되는 영역으로, 실제 체내에 삽입되어 광의 진행 방향에 따라 타겟으로 하는 신경세포를 자극하는 역할을 한다.
시작 지점에는 특정한 광을 제공하는 광원부(22)가 배치될 수 있다. 상기 광원부(22)에서는 광선로 기판(25)의 연장방향과 동일한 방향으로 광이 진행될 수 있다.
광선로 기판(25)의 상부에는, 광원부(22)에서 발생한 광이 지나가는 경로에 다수개의 전도성 물방울(30)이 소정의 간격으로 이격되어 형성될 수 있다. 상기 전도성 물방울(30)의 갯수 및 간격은 타겟으로 하는 신경세포의 종류 및 자극점의 설정에 따라서 다양하게 변경될 수 있다.
광선로 기판(25)의 일부를 확대해서 살펴보면, 광선로 기판(25) 상에는 전도성 물방울(30)이 소정의 간격으로 이격되어 배치될 수 있다. 상기 전도성 물방울(30)은 본 발명의 제1 실시예에서 리퀴드메탈(liquid metal)이 사용될 수 있다. 리퀴드 메탈은 사용온도에서 액체상태인 금속을 가리키며, 상온에서의 수은이나 원자로 또는 고온동력기관의 냉각재에 쓰이는 나트륨, 리튬 및 나트륨-칼륨 합금, Galinstan 합금 등이 사용될 수 있다.
그리고, 상기 광선로 기판(25)의 길이방향으로 연장되고 전도성 물방울(30)의 측면에 형성되는 광진행 가드(27)가 형성될 수 있다. 상기 전도성 물방울(30)의 상부에는 유리 커버(29)가 마련될 수 있다. 상기 광진행 가드(27) 및 유리 커버(29)는 진행하는 광이 광자극기 외부로 이탈하는 것을 방지하기 위해 마련된다. 상기 유리 커버(29)는 필름 형태로 제작된 물질이 선택될 수도 있다.
상기 유리 커버(29)에는, 상기 전도성 물방울의 상부에 대응하는 위치에 전도성 물방울에서 반사된 광이 투과되기 위한 공간을 제공하는 광진행 슬릿(23)이 마련될 수 있다. 상기 광진행 슬릿(23)은 반사된 광이 투과될 수 있도록 투명한 재질의 막 또는 소정의 공간이 오픈된 형태로 제작될 수 있다.
그리고, 상기 유리 커버(29) 상에는 신경신호의 측정을 위한 기록 전극(24)이 배치될 수 있다. 상기 기록 전극(24)은 각 광진행 슬릿(23)의 일측에 하나 이상이 형성될 수 있으며, 광진행 슬릿(23)을 통과하여 타겟으로 하는 뉴런에 자극을 준 경우, 이의 신경신호를 측정함으로써 신경세포의 자극에 대한 반응을 파악할 수 있고 이에 대한 데이터베이스를 구축할 수 있다.
도 3은 본 발명의 제1 실시예에 따른 광자극기의 일부 구성만을 나타낸 사시도이다. 도 3을 참조하면, 제1 실시예의 광자극기 중에서 전기습윤을 이용한 광 진행 경로를 더욱 구체적으로 나타낸 것이다.
도시된 바와 같이 광원부(22)에서 발생된 광(28)은 광 경로 상에 놓여진 전도성 물방울(30)에 대해 소정의 각도로 입사하여, 전도성 물방울의 표면각에 따라 반사되어 상부의 타겟으로 하는 신경세포에 도달하도록 구성된다. 본 실시예는 상기 전도성 물방울(30)의 형상을 변경하여 광(28)의 진행방향을 바꾸거나, 광(28)이 전도성 물방울(30)의 상부를 그대로 통과할 수 있다.
상술한 바와 같이 전도성 물방울(30)의 형상이 변경되는 점은, 전도성 물방울(30)이 접촉되어 있는 영역에 그 특징이 있으며 이에 대해 살펴보기로 한다.
도 4는 본 발명의 제1 실시예에 따른 광 경로가 변경되는 부분을 나타낸 단면도이다. 도 4를 참조하면, 특히 전도성 물방울(30)을 둘러싸고 있는 영역을 나타낸 것이다. 전기습윤의 구동을 위해서는 전도성 물방울(30)에 전기가 통하고 있지 않을 때 소정의 접촉각을 유지할 수 있는 조건을 만족하여야 한다. 이를 위해, 광선로 기판(25) 상의 전도성 물방울(30)이 안착되는 영역에는 활성 전극(33)이 전도성 물방울의 외주부분을 따라 링 형상으로 형성될 수 있다.
그리고, 소수성을 지니며 전기적으로 절연성을 가지는 물질로 이루어지는 절연층(32)이 상기 활성 전극(33)을 덮으면서 형성된다. 상기 절연층(32)은 전극으로부터 물방울을 보호하여, 전기장을 더 높게 생성하기 위해 형성되며, 소수성을 띠는 물질을 얇게 도포함으로써 물방울을 쉽게 움직일 수 있고, 초기 접촉각을 높일 수 있다. 그리고, 상기 절연층(32) 상의 전도성 물방울의 중심부에는 접지 전극(34)이 형성될 수 있다.
접지 전극(34)은 전도성 물방울(30)의 중심부와 직접 접촉하며, 활성 전극(33)은 절연층(32) 하부에 위치하므로 전도성 물방울(30)과 접촉하지 않도록 배치된다. 그리고, 전도성 물방울(30)로 입사하는 광의 진행에 대해 외부의 영향을 방지하기 위해 전도성 물방울(30)의 양측을 막는 광진행 가드(27) 및 상측에 형성되는 유리 커버(29)가 구비될 수 있다. 유리 커버(29)의 일부에는 반사된 광이 진행하는 경로를 제공하기 위해 일부가 오픈되거나 투명한 재질로 형성되는 광진행 슬릿(23)이 마련될 수 있다.
그리고, 전도성 물방울의 형상을 유지하기 위해서 teflon, parlylene-C와 같은 박막을 활용할 수 있으며, 얇은 필름을 전도성 물방울 외막으로 형성할 수 있다. 전도성 물방울의 크기는 전도성 물방울이 놓여지는 절연층(32)의 형상과 크기에 따라 달라지며, 전도성 물방울을 형성하는 방법에 따라서도 달라질 수 있다.
도 5는 도 4를 위에서 바라본 평면도이다.
도 5에 도시된 바와 같이, 전도성 물방울이 안착되는 영역에는 전도성 물방울에 전기장을 인가하는 활성 전극(33)이 하부에 배치되고, 상기 활성 전극(33)의 일단이 전기 단자(21)와 연결됨으로써 전도성 물방울에 전기장을 인가하게 된다.
그리고, 활성 전극(33) 상에는 전도성 물방울의 하면 외주부가 접촉하게 되는 절연층(32)이 배치되고, 절연층(32)의 상부 중에서 전도성 물방울의 중심부에 해당하는 부분에는 접지 전극(34)이 구비되어 전도성 물방울에 가해지는 전기장을 온 또는 오프 시킬 수 있다.
도 6은 본 발명의 제1 실시예에 따른 광 경로의 진행 방향을 나타낸 단면도이다. 도 6을 참조하면, 전기습윤의 구동에 따라 광 진행 방향이 변경되는 제1 실시예의 광자극기의 동작원리를 구체적으로 살펴볼 수 있다.
도 6에서는 일부의 구성을 배제하고, 전기습윤의 구동에 따라 복수개로 구성되는 전도성 물방울을 이용하여 광진행 방향을 변경하는 예시를 나타낸 것이다.
광선로 기판(25) 상에는 소정의 거리만큼 이격되도록 복수개의 전도성 물방울(30a, 30b)이 배치될 수 있고, 광선로 기판(25) 상에는 광원(22)에서 발생된 광(28)이 진행된다. 제1 전도성 물방울(30a)에 연결된 활성 전극이 온되어 전기장이 인가되는 경우, 제1 전도성 물방울(30a) 내의 전하들이 전기장 유도에 의해 고체와 액체가 접하는 부분에 축적되며, 이는 표면장력을 감소시키게 된다. 이로 인해 물방울의 형태는 퍼지게 되고 결과적으로 물방울의 높이가 줄어들어 광은 상기 제1 전도성 물방울(30a)의 상부를 통과하게 된다.
제1 전도성 물방울(30a)의 상부를 통과한 광(28)은 제2 전도성 물방울(30b)에 전기장이 인가되지 않은 경우, 제2 전도성 물방울(30b)의 표면에서 반사되어 A지점으로 진행된다. A 지점은 타겟으로 하는 신경세포가 위치하는 지점으로 정의할 수 있으며, 제2 전도성 물방울(30b)에 전기장이 인가되는 경우에 광은 B의 방향으로 이동하여 다른 부분의 신경세포를 자극할 수 있다. 상기와 같은 조건을 만족하기 위하여 진행하는 광의 높이는 전기장이 인가된 물방울의 높이와 인가되지 않은 물방울의 높이 사이에서 설정되어야 한다.
즉, 본 발명의 제1 실시예는 사용자가 타겟으로 하는 신경세포를 자극하기 위하여, 타겟으로 하는 신경세포가 위치하는 영역에 배치된 전도성 물방울부터 전기장이 인가되지 않도록 함으로서 수행될 수 있다. 예를 들어, 광 경로 상에서 가장 끝부분에 위치한 신경세포를 자극하고 싶다면, 가장 끝부분에 위치한 전도성 물방울 외에 다른 전도성 물방울에 모두 전기장을 인가함으로써 발생되는 광이 광선로 기판의 끝부분까지 이동할 수 있다.
반대로, 가장 초입부의 신경세포를 자극하고 싶다면 광선로 기판에 형성된 전도성 물방울에 모두 자기장을 인가하지 않음으로써 광의 진행 경로를 초입부에서 변경할 수 있다.
상술한 바와 같이, 본 실시예에서 제안하는 광 자극기는 사용자가 단일 사이트가 아닌 깊이 방향의 여러 사이트에서 광자극을 수행할 수 있다.
도 7은 본 발명의 제2 실시예에 따른 전기습윤 방식의 광자극기를 나타낸 사시도이다.
도 7을 참조하면, 제2 실시예의 광자극기(40)는 본체부(47), 전기 단자(41), 광원부(42), 광선로 기판(46) 및 전도성 물방울(50)로 이루어질 수 있다.
제2 실시예의 광자극기는 광원부(42)에서 발생한 광이 전도성 물방울(50)의 표면에 도달한 후 굴절되어 광경로가 진행되는 실시예로서, 굴절형 광자극기의 일례를 도시한 것이다.
본체부(47)의 내부에는 전극(미도시)이 배치되고, 상기 전극과 연결되는 복수개의 전기 단자(41)가 마련된다. 상기 각각의 전기 단자(41)는 전도성 물방울(50)이 놓여지는 광선로 기판(46)을 따라 연장되어 어느 하나의 전도성 물방울에 전기장을 가하는 전극과 연결될 수 있다. 하나의 전기 단자(41)는 하나의 전도성 물방울의 형태를 제어하기 위해 배치되며, 전기 단자(41)의 갯수는 전도성 물방울(50)의 갯수와 동일하게 형성될 수 있다.
본체부(47)의 일측에는 광이 진행하는 방향을 제공하는 광선로 기판(46)이 소정의 길이로 형성될 수 있다. 상기 광선로 기판(46)에는 광의 진행 방향을 결정하기 위한 전기습윤 장치가 구비되는 되는 영역으로, 실제 체내에 삽입되어 광의 진행 방향에 따라 타겟으로 하는 신경세포를 자극하는 역할을 한다.
광선로 기판이 시작되는 지점에는 특정한 광을 발생시키는 광원부(42)가 배치될 수 있다. 상기 광원부(42)에서는 광선로 기판(46)의 연장방향과 동일한 방향으로 광이 진행될 수 있다.
광선로 기판(46)의 상부에는, 광원부(42)에서 발생한 광이 지나가는 경로에 다수개의 전도성 물방울(50)이 소정의 간격으로 이격되어 형성될 수 있다. 상기 전도성 물방울(50)의 갯수 및 간격은 타겟으로 하는 신경세포의 종류 및 자극점의 설정에 따라서 다양하게 변경될 수 있다.
광선로 기판(46)의 일부를 확대해서 살펴보면, 광선로 기판(46) 상에는 전도성 물방울(50)이 소정의 간격으로 이격되어 배치될 수 있다. 상기 전도성 물방울(50)은 표면에서 굴절율이 높은 전도성 액체(conductive liquid)가 사용될 수 있다.
도 8은 본 발명의 제2 실시예에 따른 광자극기의 일부 구성만을 나타낸 사시도이다. 도 8을 참조하면, 제2 실시예의 광자극기에서 전기습윤을 이용한 광 진행 경로를 더욱 구체적으로 나타낸 것이다.
도시된 바와 같이 광원부(42)에서 발생된 광(45)은 광 경로 상에 놓여진 전도성 물방울(50)에 대해 소정의 각도로 입사하여, 전도성 물방울의 표면각에 따라 굴절되어 하부의 타겟으로 하는 신경세포에 도달하도록 구성된다. 본 실시예는 상기 전도성 물방울(50)의 형상을 변경하여 광(45)의 진행방향을 바꾸거나, 광(45)이 전도성 물방울(50)의 상부를 그대로 통과할 수 있다.
상술한 바와 같이 전도성 물방울(50)의 형상이 변경되는 점은, 전도성 물방울(50)이 접촉되어 있는 영역에 그 특징이 있으며 이에 대해 살펴보기로 한다.
도 9는 본 발명의 제2 실시예에 따른 광 경로가 변경되는 부분을 나타낸 단면도이다.
도 9를 참조하면, 특히 하나의 전도성 물방울(50)을 둘러싸고 있는 영역을 나타낸 것이다. 전기습윤의 구동을 위해서는 전도성 물방울(50)에 전기가 통하고 있지 않을 때 소정의 접촉각을 유지할 수 있는 조건을 만족하여야 한다. 이를 위해, 광선로 기판(46) 상의 전도성 물방울(50)이 안착되는 영역은 직경이 깊이 방향으로 좁아지는 원형의 경사부를 갖는 안착부(48)가 형성될 수 있다.
상기 안착부(48)의 테두리에는 활성 전극(52)이 전도성 물방울(50)의 테두리를 둘러싸도록 형성될 수 있다.
그리고, 소수성을 지니며 전기적으로 절연성을 가지는 물질로 이루어지는 절연층(51)이 상기 활성 전극(52)을 덮으면서 경사부를 따라 형성된다. 그리고, 전도성 물방울의 중심부에는 접지 전극(53)이 형성될 수 있다.
접지 전극(53)은 전도성 물방울(50)의 중심부와 직접 접촉하며, 활성 전극(52)은 절연층(51) 하부에 위치하므로 전도성 물방울(50)과 접촉하지 않도록 배치된다. 그리고, 전도성 물방울(50)로 입사하는 광의 진행에 대해 외부의 영향을 방지하기 위해 전도성 물방울(50)의 양측을 막는 광진행 가드 및 상측에 형성되는 유리 커버가 구비될 수 있다.
그리고, 전도성 물방울의 형상을 유지하기 위해서 teflon, parlylene-C와 같은 물질을 활용할 수 있으며, 얇은 필름을 전도성 물방울 외막으로 형성할 수 있다. 전도성 물방울의 크기는 전도성 물방울이 놓여지는 절연층(51)의 형상과 크기에 따라 달라지며, 전도성 물방울을 형성하는 방법에 따라서도 달라질 수 있다.
도 10은 도 9를 위에서 바라본 평면도이다.
도 10에 도시된 바와 같이, 전도성 물방울이 안착되는 영역에는 전도성 물방울에 전기장을 인가하는 활성 전극(52)이 안착부(48) 상에 배치되고, 상기 활성 전극(52)의 일단이 전기 단자(41)와 연결됨으로써 전도성 물방울에 전기장을 인가하게 된다.
그리고, 활성 전극(52) 상에는 전도성 물방울의 하면 외주부가 접촉하게 되는 절연층(51)이 배치되고, 전도성 물방울의 중심부에 해당하는 부분에는 접지 전극(53)이 구비되어 전도성 물방울에 가해지는 전기장을 온 또는 오프 시킬 수 있다. 제2 실시예에서 광의 진행방향은 굴절되어 접지 전극(53)을 통과하여 하부로 진행되기 때문에 접지 전극(53)은 ITO와 같은 투명한 물질로 이루어져야 한다.
접지 전극(53)의 맞은편에는 신경신호 기록을 위하여 기록 전극(54)을 배치할 수 있다. 기록 전극(54)은 광 경로를 방해하지 않고, 투과시켜야 하기 때문에 ITO와 같은 투명한 물질로 형성될 수 있다.
도 11은 본 발명의 제2 실시예에 따른 광 경로의 진행 방향을 나타낸 단면도이다. 도 11을 참조하면, 전기습윤의 구동에 따라 광 진행 방향이 변경되는 제2 실시예의 광자극기의 동작원리를 구체적으로 살펴볼 수 있다.
도 11에서는 일부의 구성을 배제하고, 전기습윤의 구동에 따라 복수개로 구성되는 전도성 물방울을 이용하여 광진행 방향을 변경하는 예시를 나타낸 것이다.
광선로 기판(46) 상에는 소정의 거리만큼 이격되도록 복수개의 전도성 물방울(50a, 50b)이 안착부 내에 배치될 수 있고, 광선로 기판(46) 상에는 광원(42)에서 발생된 광(45)이 진행된다. 제1 및 제2 전도성 물방울(50a, 50b)에 연결된 활성 전극이 온되어 전기장이 인가되는 경우, 제1 및 제2 전도성 물방울(50a, 50b) 내의 전하들이 전기장 유도에 의해 고체와 액체가 접하는 부분에 축적되며, 이는 표면장력을 감소시키게 된다. 이로 인해 물방울의 형태는 퍼지게 되고 결과적으로 전도성 물방울은 경사부를 따라 하부로 이동되어, 그 높이가 감소하게 되며 진행하는 광은 상기 제1 및 제2 전도성 물방울(50a, 50b)의 상부를 통과하게 된다.
제1 전도성 물방울(50a)의 상부를 통과한 광(28)은 제2 전도성 물방울(50b)에 전기장이 인가되지 않은 경우, 제2 전도성 물방울(30b)의 표면에서 굴절되어 하부 방향으로 진행된다. 상기와 같은 조건을 만족하기 위하여 진행하는 광의 높이는 전기장이 인가된 물방울의 높이와 인가되지 않은 물방울의 높이 사이에서 설정되어야 한다.
즉, 본 발명의 제2 실시예는 제1 실시예와는 달리 전도성 물방울이 경사를 가지거나 수직으로 형성되는 포켓인 안착부에 부착되어 있으며, 진행하는 광을 하부로 굴절시킨다는 점에서 차이가 있다.
제2 실시예의 광자극기는 사용자가 타겟으로 하는 신경세포를 자극하기 위하여, 타겟으로 하는 신경세포가 위치하는 영역에 배치된 전도성 물방울부터 전기장이 인가되지 않도록 함으로서 수행될 수 있다. 예를 들어, 광 경로 상에서 가장 끝부분에 위치한 신경세포를 자극하고 싶다면, 가장 끝부분에 위치한 전도성 물방울 외에 다른 전도성 물방울에 모두 전기장을 인가함으로써 발생되는 광이 광선로 기판의 끝부분까지 이동할 수 있다.
반대로, 가장 초입부의 신경세포를 자극하고 싶다면 광선로 기판에 형성된 전도성 물방울에 모두 자기장을 인가하지 않음으로써 광의 진행 경로를 초입부에서 변경하여 초입부에 해당하는 사이트의 신경세포를 자극할 수 있다.
상술한 바와 같이, 본 실시예에서 제안하는 광 자극기는 사용자가 단일 사이트가 아닌 깊이 방향의 여러 사이트에서 광자극을 수행할 수 있다.
본 발명의 제1 및 제2 실시예는 자극하고자 하는 타겟 뉴런에 대해 더욱 가까운 위치에서 정밀한 자극을 가할 수 있고, 가해준 자극에 대한 기록을 수행하는 전극 또한 다양하고 가깝게 배치될 수 있는 광자극기를 제공함으로써 신경세포의 자극에 대해 더욱 정밀한 분석을 수행할 수 있다.
이상에서 본 발명에 대하여 그 바람직한 실시예를 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 발명의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 본 발명의 실시예에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.
20, 40: 광 자극기
21, 41: 전기 단자
22, 42: 광원부
23: 광진행 슬릿
24, 54: 기록 전극
25, 46: 광선로 기판
27: 광진행 가드
29: 유리 커버
30, 50: 전도성 물방울
32, 51: 절연층
33, 52: 활성 전극
34, 53: 접지 전극
48: 안착부
28, 45: 광진행 경로
26, 47: 본체부
30a, 50a: 제1 전도성 물방울
30b, 50b: 제2 전도성 물방울
21, 41: 전기 단자
22, 42: 광원부
23: 광진행 슬릿
24, 54: 기록 전극
25, 46: 광선로 기판
27: 광진행 가드
29: 유리 커버
30, 50: 전도성 물방울
32, 51: 절연층
33, 52: 활성 전극
34, 53: 접지 전극
48: 안착부
28, 45: 광진행 경로
26, 47: 본체부
30a, 50a: 제1 전도성 물방울
30b, 50b: 제2 전도성 물방울
Claims (18)
- 체내의 특정 신경세포를 자극하여 신경신호를 얻기 위한 장치로서,
전극을 포함하고, 상기 전극과 연결되는 다수개의 전기 단자가 구비되는 본체부;
상기 본체부의 일측에서 연장되며, 전기습윤을 구동시키기 위한 다수개의 전도성 물방울이 소정의 거리로 이격되어 배치되는 광선로 기판; 및
상기 본체부에 배치되며, 상기 광선로 기판에 형성된 전도성 물방울이 배치되는 방향으로 광을 발생시키는 광원부;를 포함하고,
상기 전기 단자 각각은 상기 각각의 전도성 물방울과 연결되며, 상기 전도성 물방울은 상기 전기 단자에 의해 전기장이 인가되는 경우에 형상 변화를 통해 광을 통과시키고, 전기장이 인가되지 않는 경우에 전도성 물방울의 초기 형상을 유지하여 진행되는 광을 상기 전도성 물방울의 상부로 반사시켜 특정 신경세포를 자극하는 광 자극기. - 제 1항에 있어서,
상기 광선로 기판의 상면에는 상기 전도성 물방울에 전기장을 인가하는 활성 전극이 원형의 링 형상으로 구비되는 광 자극기. - 제 2항에 있어서,
상기 활성 전극의 상면에는 상기 전도성 물방울의 외주면이 접촉하는 절연층이 증착되는 광 자극기. - 제 3항에 있어서,
상기 절연층의 상면에는, 상기 전도성 물방울의 중심부에 접촉하는 접지 전극이 배치되는 광 자극기. - 제 1항에 있어서,
상기 전도성 물방울은 리퀴드 메탈(liquid metal)로 이루어지는 광 자극기. - 제 1항에 있어서,
상기 광선로 기판의 길이방향으로 연장되고, 상기 전도성 물방울의 측면에 형성되는 광진행 가드와 상기 전도성 물방울의 상부를 덮는 유리 커버가 마련되어 외부로부터의 광간섭을 차단하는 광 자극기. - 제 1항에 있어서,
상기 전도성 물방울 상부에 대응하는 유리 커버의 일부에는 반사되는 광이 진행하는 공간을 제공하는 광진행 슬릿이 마련되고, 상기 광진행 슬릿은 투명막 또는 일부가 오픈되는 형상으로 제조되는 광 자극기. - 제 7항에 있어서,
상기 유리 커버의 표면에는, 상기 광진행 슬릿을 통해 진행된 광이 타겟으로 하는 신경세포를 자극한 후 발생되는 신경신호를 측정하는 기록 전극이 상기 각각의 광진행 슬릿 주변에 배치되는 광 자극기. - 제 1항에 있어서,
상기 광원부에서 발생하는 광과 광선로 기판과의 거리는, 상기 전도성 물방울에 전기장이 인가된 경우의 전도성 물방울의 높이와 전기장이 인가되지 않은 경우의 전도성 물방울 높이의 사이값으로 설정되는 광 자극기. - 제 1항에 있어서,
상기 전도성 물방울은 전기장이 인가됨에 따라 퍼짐현상에 의해 그 높이가 감소하여 상기 광원부에서 발생된 광을 통과시키고, 전기장이 인가되지 않으면 초기 형상을 유지하여 상기 광원부에서 발생된 광을 반사시키는 광 자극기. - 체내의 특정 신경세포를 자극하여 신경신호를 얻기 위한 장치로서,
전극을 포함하고, 상기 전극과 연결되는 다수개의 전기 단자가 구비되는 본체부;
상기 본체부의 일측에서 연장되며, 전기습윤을 구동시키기 위한 다수개의 전도성 물방울이 소정의 거리로 이격되어 배치되는 광선로 기판; 및
상기 본체부에 배치되며, 상기 광선로 기판에 형성된 전도성 물방울이 배치되는 방향으로 광을 발생시키는 광원부;를 포함하고,
상기 전기 단자 각각은 상기 각각의 전도성 물방울과 연결되며, 상기 전도성 물방울은 상기 전기 단자에 의해 전기장이 인가되는 경우에 형상 변화를 통해 광을 통과시키고, 전기장이 인가되지 않는 경우에 전도성 물방울의 초기 형상을 유지하여 진행되는 광을 상기 전도성 물방울의 하부로 굴절시켜 특정 신경세포를 자극하는 광 자극기. - 제 11항에 있어서,
상기 광선로 기판의 상면에는 상기 전도성 물방울이 안착되는 안착부가 마련되며, 상기 안착부는 깊이 방향으로 그 직경이 감소하는 경사면을 포함하는 광 자극기. - 제 12항에 있어서,
상기 안착부의 상면에는 상기 전도성 물방울을 둘러싸면서, 상기 전도성 물방울에 전기장을 인가하는 활성 전극이 마련되는 광 자극기. - 제 13항에 있어서,
상기 안착부의 상면에는 상기 활성 전극을 덮으면서, 상기 경사면을 따라 절연층이 형성되는 광 자극기. - 제 11항에 있어서,
상기 광선로 기판 상의 전도성 물방울의 중심부에는 접지 전극이 마련되며, 상기 접지 전극은 굴절된 광이 진행하기 위해 투명막으로 형성되는 광 자극기. - 제 11항에 있어서,
상기 광선로 기판의 길이방향으로 연장되고, 상기 전도성 물방울의 측면에 형성되는 광진행 가드와 상기 전도성 물방울의 상부를 덮는 유리 커버가 마련되어 외부로부터의 광간섭을 차단하는 광 자극기. - 제 11항에 있어서,
상기 광원부에서 발생하는 광과 광선로 기판과의 거리는, 상기 전도성 물방울에 전기장이 인가된 경우의 물방울의 높이와 전기장이 인가되지 않은 경우의 물방울의 높이 사이값으로 설정되는 광 자극기. - 제 12항에 있어서,
상기 전도성 물방울은 전기장이 인가됨에 따라 퍼짐현상에 의해 상기 경사면을 따라 하강하여 상기 광선로 기판을 기준으로 그 높이가 감소하며, 상기 광원부에서 발생되는 광을 통과시키는 광 자극기.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020140104419A KR102241309B1 (ko) | 2014-08-12 | 2014-08-12 | 전기습윤 구동 방식의 광자극기 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020140104419A KR102241309B1 (ko) | 2014-08-12 | 2014-08-12 | 전기습윤 구동 방식의 광자극기 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20160019732A true KR20160019732A (ko) | 2016-02-22 |
KR102241309B1 KR102241309B1 (ko) | 2021-04-16 |
Family
ID=55445418
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020140104419A KR102241309B1 (ko) | 2014-08-12 | 2014-08-12 | 전기습윤 구동 방식의 광자극기 |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102241309B1 (ko) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080084614A1 (en) * | 2004-09-09 | 2008-04-10 | Koninklijke Philips Electronics, N.V. | Reflective Electrowetting Lens |
KR20100051636A (ko) * | 2007-06-29 | 2010-05-17 | 테크21 센소어 게엠베하 | 물리적인 영향에 의해 발생하는 입력신호를 기록하는 레지스터 장치 및 측정값을 기록하고 신호를 처리하는 방법 |
KR101019464B1 (ko) * | 2009-03-25 | 2011-03-07 | 한국과학기술연구원 | 광 자극 시스템 |
JP4773360B2 (ja) * | 2003-11-17 | 2011-09-14 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | 流体を操作するためのシステム |
US20130046357A1 (en) * | 2008-03-27 | 2013-02-21 | Joseph Neev | Tissue or nerve treatment device and method |
WO2013093463A2 (en) * | 2011-12-20 | 2013-06-27 | Mled Limited | Intergrated medical device |
JP2014033851A (ja) * | 2012-08-09 | 2014-02-24 | Nakatani Sangyo Co Ltd | 神経用電極 |
-
2014
- 2014-08-12 KR KR1020140104419A patent/KR102241309B1/ko active IP Right Grant
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4773360B2 (ja) * | 2003-11-17 | 2011-09-14 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | 流体を操作するためのシステム |
US20080084614A1 (en) * | 2004-09-09 | 2008-04-10 | Koninklijke Philips Electronics, N.V. | Reflective Electrowetting Lens |
KR20100051636A (ko) * | 2007-06-29 | 2010-05-17 | 테크21 센소어 게엠베하 | 물리적인 영향에 의해 발생하는 입력신호를 기록하는 레지스터 장치 및 측정값을 기록하고 신호를 처리하는 방법 |
US20130046357A1 (en) * | 2008-03-27 | 2013-02-21 | Joseph Neev | Tissue or nerve treatment device and method |
KR101019464B1 (ko) * | 2009-03-25 | 2011-03-07 | 한국과학기술연구원 | 광 자극 시스템 |
WO2013093463A2 (en) * | 2011-12-20 | 2013-06-27 | Mled Limited | Intergrated medical device |
JP2014033851A (ja) * | 2012-08-09 | 2014-02-24 | Nakatani Sangyo Co Ltd | 神経用電極 |
Also Published As
Publication number | Publication date |
---|---|
KR102241309B1 (ko) | 2021-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lee et al. | Transparent intracortical microprobe array for simultaneous spatiotemporal optical stimulation and multichannel electrical recording | |
US3871747A (en) | Optical waveguide display panel | |
Pisanello et al. | Micro-and nanotechnologies for optical neural interfaces | |
EP3429468B1 (de) | Mikroelektrodenarray und verfahren zur herstellung eines mikroelektrodenarrays | |
Reddy et al. | High density, double-sided, flexible optoelectronic neural probes with embedded μLEDs | |
US20200229704A1 (en) | Optoelectronic device to write-in and read-out activity in brain circuits | |
Abaya et al. | Characterization of a 3D optrode array for infrared neural stimulation | |
Zhang et al. | Integrated device for optical stimulation and spatiotemporal electrical recording of neural activity in light-sensitized brain tissue | |
EP3021738B1 (en) | Optogenetic tool for multiple and independently addressing of patterned optical windows | |
US20130046148A1 (en) | Three Dimensional Penetrating Optical-Electrical Neural Interface for Selective Stimulation and Recording | |
KR101051025B1 (ko) | 뇌 자극 및 측정 장치 및 그의 제조 방법 | |
US20150018901A1 (en) | Neural prosthetic device and method of making same | |
KR20130057246A (ko) | 생체 신호 측정용 테트로드 및 그 제조 방법 | |
KR20100107303A (ko) | 어레이형 광 자극 장치 | |
Kwon et al. | A wireless slanted optrode array with integrated micro leds for optogenetics | |
TW201403199A (zh) | 光學感應式介電泳裝置 | |
AU2012209095A1 (en) | Combined stimulation with controlled light distribution for electro-optical cochlear implants | |
ATE479920T1 (de) | Siliziumlichtwellenleiter mit auf dem wellenleiter positionierten mos-kondensatoren | |
KR101828149B1 (ko) | 광 자극을 위한 신경 탐침 모듈 및 그를 구비한 신경 탐침 시스템 | |
KR101461525B1 (ko) | 광도파 효율이 개선된 광도파 부재를 구비한 신경 탐침 구조체 및 그 제조방법 | |
ES2807183T3 (es) | Aparato para detección de biomoléculas y su fabricación | |
KR20160019732A (ko) | 전기습윤 구동 방식의 광자극기 | |
KR101150422B1 (ko) | 반사면을 구비한 광자극 탐침 | |
US20140277296A1 (en) | Incorporating an optical waveguide into a neural interface | |
KR101518245B1 (ko) | 약물 주입 채널을 구비한 신경 탐침 구조체 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
N231 | Notification of change of applicant | ||
A201 | Request for examination | ||
E701 | Decision to grant or registration of patent right |