KR20160018039A - Cathod active material composition for magnesium rechargeable batteries and magnesium rechargeable batteries including the same - Google Patents

Cathod active material composition for magnesium rechargeable batteries and magnesium rechargeable batteries including the same Download PDF

Info

Publication number
KR20160018039A
KR20160018039A KR1020140101929A KR20140101929A KR20160018039A KR 20160018039 A KR20160018039 A KR 20160018039A KR 1020140101929 A KR1020140101929 A KR 1020140101929A KR 20140101929 A KR20140101929 A KR 20140101929A KR 20160018039 A KR20160018039 A KR 20160018039A
Authority
KR
South Korea
Prior art keywords
magnesium
secondary battery
active material
positive electrode
rechargeable batteries
Prior art date
Application number
KR1020140101929A
Other languages
Korean (ko)
Inventor
김영준
우상길
박민식
조우석
Original Assignee
전자부품연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전자부품연구원 filed Critical 전자부품연구원
Priority to KR1020140101929A priority Critical patent/KR20160018039A/en
Publication of KR20160018039A publication Critical patent/KR20160018039A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/46Alloys based on magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/46Alloys based on magnesium or aluminium
    • H01M4/466Magnesium based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

The present invention relates to a positive electrode composition for a magnesium secondary battery and a magnesium secondary battery comprising the same. The positive electrode composition for a magnesium secondary battery and the magnesium secondary battery comprising the same according to the present invention have improved reversibility of an active material through interaction between a copper metal included in an electrode composition and a magnesium ion which is de-inserted/inserted in a positive electrode active material of a magnesium secondary battery. In addition, the positive electrode composition for a magnesium secondary battery comprises: a copper metal; and a magnesium positive electrode active material.

Description

마그네슘 이차 전지용 양극 조성물 및 이를 포함하는 마그네슘 이차 전지{CATHOD ACTIVE MATERIAL COMPOSITION FOR MAGNESIUM RECHARGEABLE BATTERIES AND MAGNESIUM RECHARGEABLE BATTERIES INCLUDING THE SAME} BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a positive electrode composition for a magnesium secondary battery, and a magnesium secondary battery including the same. BACKGROUND ART [0002]

본 발명은 마그네슘 이차 전지용 양극 조성물 및 이를 포함하는 마그네슘 이차 전지에 관한 것이다.
The present invention relates to a positive electrode composition for a magnesium secondary battery and a magnesium secondary battery comprising the same.

모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차전지의 수요가 급격히 증가하고 있고, 그러한 이차전지 중 높은 에너지 밀도와 방전 전압의 리튬 이차전지에 대해 많은 연구가 행해져서 현재 상용화되어 널리 사용되고 있다.As technology development and demand for mobile devices have increased, the demand for secondary batteries as energy sources has been rapidly increasing. Many researches have been conducted on lithium secondary batteries with high energy density and discharge voltage among such secondary batteries. .

이러한 리튬 이차전지는 리튬 코발트 산화물, 리튬 니켈 산화물, 리튬 망간 산화물, 리튬 혼합 전이금속 산화물을 양극 활물질로 주로 사용하고 있고, 뛰어난 성능에도 불구하고 셀 당 제조비용이 비싸며, 폭발의 위험성이 있고, 장차 리튬 자원의 고갈이 우려되는 바, 최근에는 그 대안으로 마그네슘 이차전지에 대한 연구가 활발히 진행되고 있다.Such a lithium secondary battery mainly uses lithium cobalt oxide, lithium nickel oxide, lithium manganese oxide, and lithium mixed transition metal oxide as cathode active materials. In spite of excellent performance, manufacturing cost per cell is high and there is a risk of explosion. There is concern about depletion of lithium resources. Recently, research on magnesium secondary batteries has been actively conducted as an alternative.

마그네슘 이차전지는 마그네슘 금속을 음극으로 사용하여 마그네슘 이온이 양극재에 삽입-탈리되어 충방전이 가능하게 한 이차전지로서, 리튬 이차전지에 비하여 이론적으로 에너지 밀도가 2배 이상이고, 저가이며 대기 중에서 안정하여 차세대 이차전지로 주목받고 있다.The magnesium secondary battery is a secondary battery in which magnesium ions are inserted and desorbed into the cathode material by using magnesium metal as a cathode to enable charging and discharging. The secondary battery has a theoretical energy density twice or more as compared with a lithium secondary battery, And is attracting attention as a next generation secondary battery.

그러나, 리튬 이차전지를 넘어서는 고 에너지 밀도의 양극재와 넓은 전위 영역을 가지는 전해액을 포함하는 마그네슘 이차전지 개발에 많은 어려움을 겪고 있으며, 현재까지 Mo6S8을 양극재로, Mg(AlCl2BuEt)2/THF을 전해액으로 사용하는 마그네슘 이차전지가 유일하게 알려져 있다. However, it has been difficult to develop a magnesium secondary battery including a cathode material having a high energy density and an electrolyte having a wide potential range beyond a lithium secondary battery. To date, Mo 6 S 8 has been used as a cathode material, Mg (AlCl 2 BuEt ) 2 / THF is used as an electrolyte solution.

그러나, 보고에 따르면 Mo6S8의 초기 방전 용량은 120 mAh/g이나 trapping effect로 인하여 그 다음 충전 및 방전 용량은 80 mAh/g으로 현격히 감소하는 것으로 알려져 있다. 이를 극복하기 위하여 활물질의 입도를 줄여 쉐브렐 구조 내의 마그네슘 이온의 확산 거리를 줄이는 시도가 있었다. 이러한 방법을 통해 초기 방전 시 갇힌 마그네슘 이온이 다음 충전 시 보다 원활히 구조 내로 나올 수 있게 하였으나, 이도 100 mAh/g 이하의 가역 용량을 나타내었다. However, according to reports, the initial discharge capacity of Mo 6 S 8 is 120 mAh / g, but due to the trapping effect, the subsequent charge and discharge capacities are known to be significantly reduced to 80 mAh / g. To overcome this problem, there has been an attempt to reduce the diffusion distance of magnesium ions in the Schrelevel structure by reducing the particle size of the active material. In this way, the trapped magnesium ions in the initial discharge were able to flow smoothly into the structure during the next charging, but the reversible capacity was below 100 mAh / g.

이와 같이 쉐브렐 구조를 갖는 Mo6S8은 마그네슘 이온의 탈/삽입이 가능하고 수명 특성이 우수한 활물질이지만, 물질이 지닌 가역용량을 충분히 활용하지 못하기에 높은 에너지 밀도를 지닌 마그네슘 이차전지 구현에 한계를 갖고 있다는 문제점이 있다.
Mo 6 S 8 having a shavele structure is an active material capable of removing / inserting magnesium ions and having excellent lifetime characteristics. However, since the reversible capacity of the material can not be fully utilized, Mo 6 S 8 has a high energy density. There is a problem that it has limitations.

본 발명은 상기와 같은 문제점을 해결하기 위하여 쉐브렐 구조를 갖는 양극활물질을 포함하는 마그네슘 전지용 양극 조성물을 제공하는 것을 목적으로 한다. It is another object of the present invention to provide a cathode composition for a magnesium battery, which comprises a cathode active material having a shavele structure in order to solve the above problems.

본 발명은 또한, 본 발명에 의한 마그네슘 전지용 양극 조성물을 포함하는 마그네슘 전지를 제공하는 것을 목적으로 한다.
The present invention also provides a magnesium battery including the positive electrode composition for a magnesium battery according to the present invention.

본 발명은 상기와 같은 과제를 해결하기 위하여 구리 금속; 및 마그네슘 양극활물질; 을 포함하는 마그네슘 이차전지용 양극 조성물을 제공한다. In order to solve the above-mentioned problems, And magnesium cathode active material; And a positive electrode active material.

본 발명에 의한 마그네슘 이차전지용 양극 조성물은 구리 금속을 포함하고, 상기 구리 금속이 상기 마그네슘 이차전지 양극활물질에서 탈/삽입하는 마그네슘 이온과의 교호 작용을 통해 활물질의 가역성을 향상시키게 된다. The positive electrode composition for a magnesium secondary battery according to the present invention includes a copper metal. The copper metal improves the reversibility of the active material through interactions with magnesium ions that are released from the positive electrode active material of the magnesium secondary battery.

본 발명에 의한 마그네슘 이차전지용 양극 조성물에 있어서, 상기 마그네슘 양극활물질은 쉐브렐(Chevrel) 구조의 양극활물질인 것을 특징으로 한다. In the cathode composition for a magnesium secondary battery according to the present invention, the magnesium cathode active material is a cathode active material having a Chevrel structure.

본 발명에 의한 마그네슘 이차전지용 양극 조성물에 있어서, 상기 쉐브렐(Chevrel) 구조의 양극활물질은 다음 식으로 표시되는 것을 특징으로 한다.In the cathode composition for a magnesium secondary battery according to the present invention, the cathode active material having the Chevrel structure is represented by the following formula.

CuxMgyMo6S8 (상기 식에서, 0<x≤1이고, 0<y≤2 임)Cu x Mg y Mo 6 S 8 (Where 0 < x < = 1 and 0 &lt; y &

상기 쉐브렐 구조 양극활물질은 제조시에는 Mo6S8 형태로 제조되나, 마그네슘 전지 내에서 충방전이 지속될 시, 마그네슘 이온이 흡장 탈리되면서 구리가 탈/삽입하는 마그네슘 이온과의 교호 작용을 통해 양극활물질 구조내로 흡수되게 되는 것을 특징으로 한다. The shale-structured positive electrode active material is prepared by adding Mo 6 S 8 However, when charging / discharging is continued in the magnesium battery, the magnesium ions are absorbed and desorbed and absorbed into the cathode active material structure through interactions with magnesium ions that are released / inserted into the copper.

본 발명에 의한 마그네슘 이차전지용 양극 조성물에 있어서, 상기 구리 금속은 상기 마그네슘 양극활물질 100 중량부당 0 내지 20 중량부의 비율로 혼합되는 것을 특징으로 한다. In the cathode composition for a magnesium secondary battery according to the present invention, the copper metal is mixed at a ratio of 0 to 20 parts by weight per 100 parts by weight of the magnesium cathode active material.

본 발명에 의한 마그네슘 이차전지용 양극 조성물에 있어서, 상기 구리 금속은 고체 분말 상태로 혼합되고, 입자 크기가 5㎛ 이하인 것을 특징으로 한다. In the cathode composition for a magnesium secondary battery according to the present invention, the copper metal is mixed in a solid powder state and has a particle size of 5 탆 or less.

본 발명은 또한, 본 발명에 의한 마그네슘 이차전지용 양극 조성물을 포함하는 마그네슘 이차전지를 제공한다. The present invention also provides a magnesium secondary battery comprising the positive electrode composition for a magnesium secondary battery according to the present invention.

본 발명에 의한 마그네슘 이차전지에 있어서, 상기 이차전지의 음극은 마그네슘 또는 마그네슘 화합물을 포함하는 것을 특징으로 한다. In the magnesium secondary battery according to the present invention, the negative electrode of the secondary battery includes magnesium or a magnesium compound.

본 발명에 의한 마그네슘 이차전지에 있어서, 상기 이차전지의 전해액은 마그네슘 유기금속 화합물을 포함하는 것을 특징으로 한다.
In the magnesium secondary battery according to the present invention, the electrolyte of the secondary battery includes a magnesium organometallic compound.

본 발명에 의한 마그네슘 이차전지용 양극 조성물 및 이를 포함하는 마그네슘 이차전지는 전극 조성물 내에 포함된 구리 금속이 마그네슘 이차전지 양극활물질에서 탈/삽입하는 마그네슘 이온과의 교호 작용을 통해 활물질의 가역성을 향상시키게 된다.
The positive electrode composition for a magnesium secondary battery and the magnesium secondary battery including the same according to the present invention improve the reversibility of the active material through interaction between magnesium contained in the electrode composition and magnesium ions that are released from the positive electrode active material of the magnesium secondary battery .

도 1 내지 도 4는 본 발명의 일 비교예 및 실시예에서 제조된 마그네슘 전지의 충방전 특성을 나타낸다. Figs. 1 to 4 show the charge-discharge characteristics of the magnesium battery manufactured in the comparative example and the example of the present invention.

이하에서는 본 발명을 실시예에 의하여 더욱 상세히 설명한다. 그러나, 본 발명이 이하의 실시예에 의하여 한정되는 것은 아니다.
Hereinafter, the present invention will be described in more detail by way of examples. However, the present invention is not limited by the following examples.

<실시예> 양극조성물 제조<Examples> Preparation of cathode composition

출발 물질로서 A 원소 화합물은 Cu, Mo 원소 화합물 및 X 원소로서 S을 혼합하고, 고에너지밀링기(Hign energy milling machine) 6시간 동안 480 rpm 으로 교반하였다. 이후, Swagelok 반응기 내에 위치시킨 후 1100℃ 에서 아르곤(Ar) 가스분위기에서 24시간 동안 열처리시켜 Cu2.5Mo6S8로 표시되는 마그네슘 양극 재료를 합성하였다. 이후 HCl을 산화제로 사용하여 상기 Cu2.5Mo6S8로부터구리 원소를 탈리시켜 나노 크기의 Mo6S8 입자를 형성하였다..As the starting material, the element A was mixed with S as the Cu, Mo element and X element, and stirred at 480 rpm for 6 hours in a Hign energy milling machine. Thereafter, the material was placed in a Swagelok reactor and then heat-treated at 1100 ° C in an argon (Ar) gas atmosphere for 24 hours to synthesize a magnesium cathode material represented by Cu 2.5 Mo 6 S 8 . The copper element was then removed from the Cu 2.5 Mo 6 S 8 using HCl as the oxidizing agent to form nano-sized Mo 6 S 8 particles.

상기 Mo6S8 100 중량부당 구리 금속을 5, 10, 20 중량부의 비율로 혼합하고 교반하여 실시예 1 내지 3의 양극활물질로 사용하고, 비교예로서 구리 금속을 포함하지 않고 Mo6S8 만을 포함하여 사용하였다.
Copper metal was mixed in a ratio of 5, 10, 20 parts by weight per 100 parts by weight of Mo 6 S 8 and stirred to use as a cathode active material in Examples 1 to 3. In Comparative Example, only Mo 6 S 8 .

<실시예> 마그네슘 이차 전지의 제조<Examples> Preparation of Magnesium Secondary Battery

상기에서 제조된 물질을 양극활물질로 사용하고, 바인더로서 PVdF를, 도전제로서 Super-P를 82: 8 : 10 비율(중량비)로 혼합하여, 용매인 NMP와 함께 교반 한 후, 금속 집전체인 SUS foil에 코팅하였다. 이를 120℃의 진공오븐에서 12 시간 이상 건조한 후 120℃의 롤압착기(roll press machine)로 20-25%의 압착률로 압착하여 양극을 제조하였다.PVdF as a binder and Super-P as a conductive agent were mixed in a ratio of 82: 8: 10 (weight ratio), and the resultant was stirred together with NMP as a solvent. SUS foil. The resultant was dried in a vacuum oven at 120 ° C. for 12 hours or more, and pressed at 120 ° C. using a roll press machine at a compression ratio of 20-25% to prepare a cathode.

상기 양극과 음극으로 Mg 금속 및 폴리에틸렌으로 제조된 다공성 분리막을 사용하여 코인셀을 제작하였다.A coin cell was fabricated using the porous separator made of Mg metal and polyethylene as the anode and the cathode.

코인셀은 2032규격으로, 세퍼레이터로는 폴리에틸렌 (PE)를 사용하였고, 전해질로는 테트라하이드로퓨란(THF)에 0.4M (PhMgCl:AlCl3Et = 2:1)의 염을 함유하는 전해액을 주입하였다.
The coin cell was a 2032 standard, polyethylene (PE) was used as a separator, and an electrolyte containing 0.4M (PhMgCl: AlCl 3 Et = 2: 1) salt in tetrahydrofuran (THF) .

<< 실험예Experimental Example > 전지 특성 시험> Battery characteristics test

비교예 및 상기 실시예 1 내지 3의 전지에 대해서 충방전 특성을 측정한 결과를 도 1 내지 4 및 아래 표 1에 나타내었다. The charging and discharging characteristics of the comparative example and the batteries of Examples 1 to 3 were measured, and the results are shown in Figs. 1 to 4 and Table 1 below.

Figure pat00001
Figure pat00001

도 1에서 구리 금속을 포함하지 않는 전극 조성물의 경우 첫번째 방전 용량 대비 두번째 방전 용량이 33% 감소하는데 비해, 도 2 내지 도 4에서 보는 바와 같이 본 발명에 의하여 구리 금속을 포함하는 전극 조성물의 경우 첫번째 방전 용량 대비 두번째 방전 용량의 감소 비율이 크게 개선되는 것을 알 수 있다.In FIG. 1, in the case of the electrode composition not containing the copper metal, the second discharge capacity is reduced by 33% compared to the first discharge capacity. On the other hand, as shown in FIGS. 2 to 4, It can be seen that the reduction ratio of the second discharge capacity to the discharge capacity is greatly improved.

Claims (8)

구리 금속; 및
마그네슘 양극활물질; 을 포함하는
마그네슘 이차 전지용 양극 조성물.
Copper metal; And
Magnesium cathode active material; Containing
A cathode composition for a magnesium secondary battery.
제 1 항에 있어서,
상기 구리 금속은 상기 마그네슘 양극활물질 100 중량부당 0 내지 20 중량부의 비율로 혼합되는 것을 특징으로 하는 마그네슘 이차 전지용 양극 조성물.
The method according to claim 1,
Wherein the copper metal is mixed in a ratio of 0 to 20 parts by weight per 100 parts by weight of the magnesium cathode active material.
제 1 항에 있어서,
상기 마그네슘 양극활물질은 쉐브렐 구조인 것을 특징으로 하는 마그네슘 이차 전지용 양극 조성물.
The method according to claim 1,
Wherein the magnesium cathode active material is a Schrelevel structure.
제 3 항에 있어서,
상기 쉐브렐 구조 양극활물질은 다음 식으로 표시되는 것을 특징으로 하는 마그네슘 이차 전지용 양극 조성물.
CuxMgyMo6S8
(상기 식에서, 0≤x≤1 , 0≤y≤2 임)
The method of claim 3,
Wherein the shale-structured positive electrode active material is represented by the following formula.
Cu x Mg y Mo 6 S 8
(Where 0? X? 1, 0? Y? 2)
제 1 항에 있어서,
상기 구리 금속은 입자 크기가 5 ㎛ 이하인 고체 상태인 것을 특징으로 하는 마그네슘 이차 전지용 양극 조성물.
The method according to claim 1,
Wherein the copper metal is in a solid state with a particle size of 5 占 퐉 or less.
제 1 항에 의한 마그네슘 이차 전지용 양극 조성물을 포함하는 마그네슘 이차전지.
A magnesium secondary battery comprising the positive electrode composition for a magnesium secondary battery according to claim 1.
제 6 항에 있어서,
상기 이차전지의 음극은 마그네슘 또는 마그네슘 화합물을 포함하는 것을 특징으로 하는 마그네슘 이차전지.
The method according to claim 6,
Wherein the negative electrode of the secondary battery comprises magnesium or a magnesium compound.
제 6 항에 있어서,
상기 이차전지의 전해액은 마그네슘 유기금속 화합물을 포함하는 것을 특징으로 하는 마그네슘 이차전지.
The method according to claim 6,
Wherein the electrolyte of the secondary battery comprises a magnesium organometallic compound.
KR1020140101929A 2014-08-07 2014-08-07 Cathod active material composition for magnesium rechargeable batteries and magnesium rechargeable batteries including the same KR20160018039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140101929A KR20160018039A (en) 2014-08-07 2014-08-07 Cathod active material composition for magnesium rechargeable batteries and magnesium rechargeable batteries including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140101929A KR20160018039A (en) 2014-08-07 2014-08-07 Cathod active material composition for magnesium rechargeable batteries and magnesium rechargeable batteries including the same

Publications (1)

Publication Number Publication Date
KR20160018039A true KR20160018039A (en) 2016-02-17

Family

ID=55457364

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140101929A KR20160018039A (en) 2014-08-07 2014-08-07 Cathod active material composition for magnesium rechargeable batteries and magnesium rechargeable batteries including the same

Country Status (1)

Country Link
KR (1) KR20160018039A (en)

Similar Documents

Publication Publication Date Title
US9583761B2 (en) Methods for making anodes for germanium-containing lithium-ion devices
US20160036045A1 (en) Anodes for lithium-ion devices
JP2006244734A (en) All-solid lithium secondary battery
JP2015176656A (en) positive electrode material
CN103702929A (en) Carbon-silicon composite, method for preparing same, and cathode active material comprising carbon-silicon composite
JP2015201388A (en) Cathode active material for non-aqueous secondary battery and manufacturing method for the same
CN111082128B (en) High-power all-solid-state battery and preparation thereof
JP2005228589A (en) Electrochemical device and electrode
JP2012174535A (en) Electrode active material, and metal secondary battery comprising negative electrode containing the electrode active material
JP2013045515A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and production method therefor, positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
CN108091835B (en) Lithium-sulfur battery composite positive electrode material with sulfur loaded on cobalt ferrite and preparation method thereof
JP2011003500A (en) All solid lithium secondary battery
JP2007134274A (en) Electrode material, electrode, and lithium ion battery
KR101497824B1 (en) Electrode for a lithium secondary battery, method of forming the same and lithium secondary battery
JP2005216502A (en) Lithium ion secondary battery
KR101485483B1 (en) Manufacturing method of Cathode material for Mg rechargeable batteries, and Cathode material for Mg rechargeable batteries made by the same
KR20140008957A (en) Anode having enhanced adhesive force and rate capability, and lithium secondary battery comprising the same
US10784500B2 (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery
KR20160018039A (en) Cathod active material composition for magnesium rechargeable batteries and magnesium rechargeable batteries including the same
KR20150131653A (en) Lithium sulfur batteries system
KR101587882B1 (en) NbO Method for Preparing of Carbon-Coated NbO as Negative Electrode Material for Lithium-ion Secondary Battery
KR20150041696A (en) Zinc air cell, anode for zinc air cell and method of preparing the same
WO2023210232A1 (en) Lithium sulfur battery positive electrode, lithium sulfur battery, and charging/discharging method for same
JP2018181608A (en) Positive electrode material for nonaqueous secondary battery, and nonaqueous secondary battery
JP7009805B2 (en) Positive electrode material for lithium ion secondary batteries and method for manufacturing positive electrode using it

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application
E601 Decision to refuse application
E801 Decision on dismissal of amendment