KR20160016974A - 열화된 신호 환경에서 gnss 위성 신호를 검출하는 방법 및 장치 - Google Patents

열화된 신호 환경에서 gnss 위성 신호를 검출하는 방법 및 장치 Download PDF

Info

Publication number
KR20160016974A
KR20160016974A KR1020157037294A KR20157037294A KR20160016974A KR 20160016974 A KR20160016974 A KR 20160016974A KR 1020157037294 A KR1020157037294 A KR 1020157037294A KR 20157037294 A KR20157037294 A KR 20157037294A KR 20160016974 A KR20160016974 A KR 20160016974A
Authority
KR
South Korea
Prior art keywords
gnss
search space
signal
determining
correlation
Prior art date
Application number
KR1020157037294A
Other languages
English (en)
Inventor
무하마드 해리스 아프잘
베흐남 아미니안
Original Assignee
알엑스 네트웍스 아이엔씨.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 알엑스 네트웍스 아이엔씨. filed Critical 알엑스 네트웍스 아이엔씨.
Publication of KR20160016974A publication Critical patent/KR20160016974A/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/25Acquisition or tracking or demodulation of signals transmitted by the system involving aiding data received from a cooperating element, e.g. assisted GPS
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/10Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing dedicated supplementary positioning signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/10Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing dedicated supplementary positioning signals
    • G01S19/11Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing dedicated supplementary positioning signals wherein the cooperating elements are pseudolites or satellite radio beacon positioning system signal repeaters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/28Satellite selection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/29Acquisition or tracking or demodulation of signals transmitted by the system carrier including Doppler, related
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/48Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0257Hybrid positioning
    • G01S5/0263Hybrid positioning by combining or switching between positions derived from two or more separate positioning systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/35Constructional details or hardware or software details of the signal processing chain

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

위치 결정 디바이스 및 GNSS 신호를 검출하는 방법에 있어서, 상기 방법은, 추정된 위치 영역, 시간, 및 모든 GNSS 위성의 예측된 궤도 데이터를 이용하여 위치 결정 디바이스 위의 궤도를 도는 후보 GNSS 위성을 결정하는 단계, 및 후보 GNSS 위성에 대하여, 후보 GNSS 위성의 속도를 추정된 위치 영역에 투영함으로써 공칭 도플러를 결정하는 단계; 추정된 코드 위상에 걸쳐 각각의 공칭 도플러 주변의 상관 검색 공간을 결정하는 단계; 상관 검색 공간에 대한 상관자를 결정하여 상관을 수행하는 단계; 다수의 GNSS 위성에 연관된 상관 피크가 공통 도플러 오프셋에 위치할 때의 수신기 클록 바이어스를 결정하는 단계; 검출기의 집합 - 상기 검출기의 집합 중 하나는 가장 높은 검출 확률을 가지는 상관 피크를 검출함 - 을 이용하여 상기 공통 도플러 오프셋 내의 GNSS 신호를 검출하는 단계; 및 상기 GNSS 신호가 검출될 수 있는 감소된 검색 공간을 결정하는 단계를 포함한다.

Description

열화된 신호 환경에서 GNSS 위성 신호를 검출하는 방법 및 장치{METHOD AND APPARATUS FOR DETECTING GNSS SATELLITE SIGNALS IN SIGNAL DEGRADED ENVIRONMENTS}
본 출원은 짧은 중간 주파수 데이터 캡처를 이용하여 글로벌 네비게이션 새틀라이트 시스템(Global Navigation Satellite System; GNSS) 신호를 검출하기 위한 방법 및 장치에 연관된다.
글로벌 네비게이션 새틀라이트 시스템(Global Navigation Satellite System; GNSS) 수신기 및 GNSS 위성 간의 통신이 이용 가능한 조건에서, GNSS 수신기의 3차원 위치를 결정하기 위하여 GNSS 수신기에 의해 적어도 4개의 GNSS 위성으로부터의 정보가 이용된다. 실내, 빽빽하게 숲으로 뒤덮인 지역 또는 도심 깊숙한 위치와 같은 도전적인 환경으로 인한 위성의 신호 열화(degradation) 또는 이용 불가능, 예를 들어 감쇠 및 다중 경로 효과는 GNSS 수신기가 요구되는 개수의 GNSS 위성으로부터 정보를 식별하고 획득하기 어렵도록 한다.
GNSS 수신기의 위치를 추정하기 위하여, 예를 들어 Wi-Fi 및 셀룰러-기반 포지셔닝과 같은 기술을 이용하는 다른 소스로부터의 보조가 대략적(coarse) 위치 보조를 제공하기 위하여 이용될 수 있다. GNSS 수신기 및 임의의 다른 포지셔닝 기술 및/또는 GNSS 정보 서버 간의 협력은 보조된-GNSS(Assisted-GNSS; A-GNSS)로 지칭된다.
잘 알려진 GNSS는 글로벌 포지셔닝 시스템(Global Positioning System; GPS)이다. 초기 위치, 초기 시간 및 위성 궤도력(ephemeris) 보조가 이용 가능한 경우의 보조된-GPS(Assisted-GPS; A-GPS)에서, 수신기는 머리 위를 지나는(passing overhead) 위성을 포착(acquire)하는 데 초점을 맞출 수 있다. 이 프로세스는 종종 스카이 서치(sky search)로서 지칭되며 위성 포착 동안 수신기의 신호 프로세싱 복잡도를 감소시키는 것을 돕는다. GNSS 위성이 지구의 회전보다 더 높은 궤도 속도로 지구 주위를 돌기 때문에, 지구 인근의 GNSS 위성으로부터 수신된 신호는 위성 도플러로서 알려진 주파수의 변화를 겪는다. 위성 도플러에 더하여, GNSS 수신기의 로컬 클록 바이어스(bias) 뿐만 아니라 GNSS 수신기의 움직임은 수신기로 하여금 GNSS 위성의 송신 주파수와 상이한 주파수에서 위성 신호를 수신하도록 한다. 이러한 주파수 차이 때문에, 위성 신호 검출은 수신기에서 확장된 신호 프로세싱 전력을 요구하는 복잡한 프로세스이다. 환경 및 간섭 효과로 인한 신호 열화는 복잡도를 증가시기고 수신기의 위성 포착 실패를 유발할 수 있다.
일반적으로, 본 출원의 방법 및 장치는 상관 검색 공간을 감소시키기 위하여 3개 이상의 GNSS 위성 신호의 공통 도플러 주파수 오프셋을 이용함으로써 더 약한 위성 신호의 검출을 돕기 위하여 강한 위성 신호를 이용하여 비교적 빠르게 위치의 결정을 가능하게 한다. 일실시예에서, 감소된 상관 검색 공간의 결정을 용이하게 하기 위하여 위치 결정 디바이스 사이에서 정보가 공유될 수 있다.
본 개시의 일 양태에서, 위치 결정 디바이스의 프로세서에서, 상기 GNSS 신호를 나타내는 디지털화된 데이터 - 상기 디지털화된 데이터는 상기 GNSS 신호가 수신된 시간과 함께 상기 위치 결정 디바이스의 메모리에 저장됨 - 를 수신하는 단계; 상기 위치 결정 디바이스의 프로세서에서, non-GNSS 포지셔닝 어플리케이션으로부터 추정된 위치 영역을 수신하는 단계; 상기 프로세서에서, 상기 추정된 위치 영역, 상기 시간 및 모든 GNSS 위성의 예측된 궤도 데이터를 이용하여 상기 위치 결정 디바이스 위의 궤도를 도는 후보 GNSS 위성을 결정하는 단계; 상기 후보 GNSS 위성에 대하여, 상기 후보 GNSS 위성의 속도를 상기 추정된 위치 영역에 투영(project)함으로써 공칭(nominal) 도플러를 결정하는 단계; 추정된 코드 위상에 걸쳐 각각의 공칭 도플러 주위의 상관 검색 공간(correlation search space)을 결정하는 단계; 상기 상관 검색 공간을 위한 것으로서 상관(correlation)을 수행하는 상관자(correlator)를 결정하는 단계; 다수(majority)의 GNSS 위성에 연관된 상관 피크(peak)가 공통 도플러 오프셋에 위치할 때의 수신기 클록 바이어스를 결정하는 단계; 검출기의 집합 - 상기 검출기의 집합 중 하나는 가장 높은 검출 확률을 가지는 상관 피크를 검출함 - 을 이용하여 상기 공통 도플러 오프셋 내의 GNSS 신호를 검출하는 단계; 상기 검출기의 집합 중 상기 하나의 코드 위상에 대응하는 상기 공통 도플러 오프셋 내의 감소된 검색 공간을 결정하는 단계를 포함하고, 상기 위치 결정 디바이스는 상기 추정된 위치 영역 내에 위치하는, GNSS 신호를 검출하는 방법이 제공된다.
본 개시의 다른 일 양태에서, RF 전단과 통신하는 메모리로서, GNSS 위성 신호를 나타내는 디지털화된 데이터 - 상기 위치 결정 디바이스에서 수신된 상기 디지털화된 데이터는 상기 GNSS 위성 신호가 수신된 시간과 함께 저장됨 - 를 저장하는 상기 메모리; 및 상기 메모리와 통신하는 프로세서로서, 상기 위치 결정 디바이스가 위치하는 추정된 위치 영역을 수신하고, 상기 추정된 위치 영역, 상기 시간 및 모든 GNSS 위성의 예측된 궤도 데이터를 이용하여 상기 위치 결정 디바이스 위의 궤도를 도는 후보 GNSS 위성을 결정하고, 상기 후보 GNSS 위성에 대하여: 상기 후보 GNSS 위성의 속도를 상기 추정된 위치 영역에 투영함으로써 공칭 도플러를 결정하고; 추정된 코드 위상에 걸쳐 각각의 공칭 도플러 주위의 상관 검색 공간을 결정하고; 상기 상관 검색 공간을 위한 것으로서 상관을 수행하는 상관자를 결정하고; 다수의 GNSS 위성에 연관된 상관 피크가 공통 도플러 오프셋에 위치할 때의 수신기 클록 바이어스를 결정하고; 검출기의 집합 - 상기 검출기의 집합 중 하나의 검출기는 가장 높은 검출 확률을 가지는 상관 피크를 검출함 - 을 이용하여 상기 공통 도플러 오프셋 내의 GNSS 신호를 검출하고; 상기 검출기의 집합 중 상기 하나의 검출기의 코드 위상에 대응하는 상기 공통 도플러 오프셋 내의 감소된 검색 공간을 결정하도록 구성된, 상기 프로세서를 포함하는, 위치 결정 디바이스가 제공된다.
본 개시의 다른 일 양태에서, 제2 위치 결정 디바이스에서, 감소된 검색 공간 - 상기 감소된 검색 공간은 주파수 범위 및 코드 위상 범위를 포함하고, 상기 감소된 검색 공간은 제1 위치 결정 디바이스에 의해 결정됨 - 을 수신하는 단계; 불확실성을 고려(account for)하기 위하여 상기 감소된 검색 공간의 상기 주파수 범위, 상기 코드 위상 범위, 및 상기 주파수 범위와 상기 코드 위상 범위 중 하나를 증가시킴으로써 검색 공간을 결정하는 단계; 상기 검색 공간 내에서 GNSS 신호를 검출하는 단계; 및 3개의 위성으로부터의 GNSS 신호가 검출되는 경우, 상기 제2 위치 결정 디바이스의 위치를 결정하는 단계를 포함하는, 위치를 결정하는 방법이 제공된다.
6초보다 작게 스패닝(spanning)하는 중간 주파수(Intermediate Frequency; IF) 데이터 캡처가 수신되는 GNSS 위성을 이용하여 3차원 위치를 결정하는 경우, 위치를 결정하기 위하여 적어도 5개의 GNSS 위성으로부터의 정보가 이용될 수 있다.
본 실시예들의 다른 양태 및 특징은 이어지는 구체적 실시예의 설명 및 첨부되는 도면을 함께 검토할 때 기술 분야의 통상의 기술자에게 명백하게 될 것이다.
본 출원의 실시예들은, 단지 예시로서, 첨부되는 도면을 참조하여 이제 설명된다.
도 1은 GNSS 위성 및 다른 신호 생성 소스와 통신하는 위치 결정 디바이스의 개략도이다.
도 2A는 일실시예에 따른 도 1의 위치 결정 디바이스의 컴포넌트의 단순화된 블록도이다.
도 2B는 다른 일실시예에 따른 도 1의 위치 결정 디바이스의 컴포넌트의 단순화된 블록도이다.
도 3은 무선 주파수(Radio Frequency; RF) 전단의 단순화된 블록도이다.
도 4는 위치를 결정하는 방법을 도시하는 흐름도이다.
도 5는 스카이 서치 방법을 도시하는 흐름도이다.
도 6은 스카이 서치 방법의 예시적 상관 검색 공간을 보여주는 개략도이다.
도 7은 신호 획득 방법을 도시하는 흐름도이다.
도 8은 다수의 위성으로부터의 상관 정보를 이용하는 클록 바이어스의 추정을 설명하는 개략도이다.
도 9는 간섭 완화를 보여주는 개략도이다.
도 10은 GNSS 수신기의 종래의 검출 기술을 도시하는 그래프이다.
도 11은 상이한 검출 임계치에서 신호를 검출하기 위하여 도 4, 5 및 7의 방법을 이용하는 검출을 도시하는 그래프이다.
도 12는 상이한 감도 및 확률에 연관된 상이한 검출기를 도시한다.
도 13은 다른 위치 결정 디바이스에 의해 위치를 결정하는 방법을 도시하는 흐름도이다.
도 14는 감소된 검색 공간, 수정된 검색 공간 및 상관 검색 공간의 예시를 보여주는 개략도이다.
단순하고 명료한 설명을 위해, 적절하다고 생각되는 곳에서, 참조 번호가 대응하는 또는 동일한 구성을 가리키기 위하여 반복될 수 있다는 것이 이해될 것이다. 이에 더하여, 여기에 설명되는 실시예들의 완벽한 이해를 제공하기 위하여 많은 구체적 세부사항들이 제시된다. 다만, 여기에 설명되는 실시예들이 이러한 구체적 세부사항들이 없이도 실시될 수 있다는 것이 기술 분야의 통상의 기술자에 의해 이해될 것이다. 다른 측면에서, 주지의 방법들, 절차들 및 컴포넌트들은 여기에 설명되는 실시예를 모호하게 하지 않기 위하여 상세하게 설명되지 않는다. 또한, 설명은 여기에 설명되는 실시예의 범위를 제한하는 것으로 간주되어서는 안 된다.
본 출원의 방법 및 장치가 예를 들어 GPS, GLONASS, Galileo, BeiDou 및 Iridium을 포함하는 임의의 GNSS에 적용될 수 있다는 것이 기술 분야의 통상의 기술자에 의해 인식될 것이다.
도 1을 참조하면, 하이브리드 포지셔닝 디바이스로서도 지칭될 수 있는 위치 결정 디바이스(16)는 자신의 위치를 결정하기 위하여 GNSS 위성(12)으로부터 신호를 수신하고 선택적으로 다른 신호 소스(14)로부터 신호를 수신할 수 있다. 위치 결정 디바이스(16)는 휴대 전화, PDA(personal digital assistant), 스마트폰, 자산 추적 디바이스, 태블릿 컴퓨터 또는 랩탑 컴퓨터, 네비게이션 디바이스 또는 자신의 위치를 구하는 다른 디바이스 내에 제공될 수 있다. 일부 실시예에서, 위치 결정 디바이스(16)는 예를 들어 Wi-Fi 액세스 포인트(Access Point; AP), 펨토셀 또는 복사기와 같은 사무소 장비와 같이 정적인 것으로 의도될 수 있다. 위치 결정 디바이스(16)가 자산 추적 디바이스인 경우, 많은 디바이스(16)는 예를 들어 선단(fleet) 모니터링 시스템의 일부로서 이용될 수 있다.
도 2a에 도시된 바와 같이, 위치 결정 디바이스(16)는 GNSS 신호를 포함하는 신호를 수신하기 위한 안테나(18), 안테나(18)와 통신하는 무선 주파수(Radio Frequency; RF) 전단(Front End; FE)(20) 및 RF FE(20)으로부터 디지털화된 위성 신호를 수신하는 메모리(22)를 포함한다. 메모리(22)는 프로세서(24)와 더 통신한다. non-GNSS 포지셔닝 어플리케이션(28)은 프로세서(24)에 의해 추정된 위치 영역의 결정을 용이하게 하기 위하여 메모리(22)에 컴퓨터 판독 가능한 코드로 저장되고 프로세서(24)에 의해 실행 가능하다. 여기에 설명되는 실시예에서, non-GNSS 포지셔닝 어플리케이션으로부터 도출되는 보조된 위치 정보는 적어도 초기 위치 보조 또는 대략적 위치 보조를 포함하며, 이는 머리 위를 지나는 GNSS 위성의 위치를 찾아내고 상관 검색 공간을 결정하기 위하여 위치 결정 디바이스(16)에 의해 이용된다. non-GNSS 포지셔닝 어플리케이션(28)은 대략적 위치 추정을 제공할 수 있는 임의의 포지셔닝 어플리케이션일 수 있다. 일실시예에서, 위치 결정 디바이스(16)의 네트워크 인터페이스로부터의 정보는 대략적 위치 추정을 제공하기 위해 이용될 수 있다.
non-GNSS 포지셔닝 어플리케이션의 예는, Wi-Fi-기반 포지셔닝, 셀룰러-기반 포지셔닝(GSM, CDMA, UMTS, LTE와 같은 모바일 표준을 포함하지만 이에 국한되지 않음), 지상 이동 라디오 시스템(사적 또는 공적 안전 어플리케이션에 이용되는 VHF 시스템을 포함하지만 이에 국한되지 않음), 라디오-방송 포지셔닝(FM 또는 TV 스테이션과 같은 라디오 방송 송신 타워에 기초한 포지셔닝을 포함하지만 이에 국한되지 않음), 다른 데이터 네트워크 인프라스트럭처 기반의 포지셔닝(IP 라우터, 데이터 모뎀 또는 GeoIP와 같은 인터넷 프로토콜을 포함하지만 이에 국한되지 않음), NFC (near field communication), 또는 INS(inertial navigation) 및 PDR(pedestrian dead reckoning)과 같은 MEMS 관성 센서에 기초한 다른 포지셔닝 방법을 포함한다.
non-GNSS 포지셔닝 어플리케이션(28)이 Wi-Fi-기반 포지셔닝 또는 다른 무선 신호-기반 기술을 이용하는 실시예에서, 위치 결정 디바이스(16)는 다른 신호 프로세서를 포함하며, 다른 신호 프로세서는 GNSS 신호 이외의 RF 신호를 수신하고 처리하기 위한 제2 안테나 및 연관된 하드웨어를 포함하고, 메모리(22)는 다른 신호 프로세서로부터 디지털화된 신호를 수신한다. 다른 신호 프로세서는 위치 결정 디바이스(16)로부터 분리되어 위치될 수 있고 위치 결정 디바이스(16)와 통신할 수 있다. 이 실시예에서, 다른 신호 프로세서는 제2 안테나를 포함하지 않을 수 있고, 안테나(18)은 RF FE(20) 및 다른 신호 프로세서 둘 다 그로부터 신호를 수신할 수 있는 넓은 대역폭 안테나일 수 있다.
일실시예에서, non-GNSS 포지셔닝 어플리케이션(28)은 위치 결정 디바이스(16)로부터 생략될 수 있고 대신에 위치 결정 디바이스(16)는 예를 들어 GPRS, EDGE, 3G, 4G, WLAN, 802.11g, 또는 802.11n과 같은 셀룰러 데이터 네트워크를 통해 non-GNSS 포지셔닝 어플리케이션으로부터 추정된 위치 영역을 수신하기 위하여 컴퓨터와 통신할 수 있다. 위치 결정 디바이스(16)는 또한 블루투스, NFC 를 이용하여 근거리 통신을 할 수 있으며, 예를 들어 MEMS 센서를 장착할 수도 있다.
도 2B를 참조하면, 도 2A에 도시된 집중화된 아키텍처에 더하여, 위치 결정 디바이스(16)는 대안적으로 분산된 아키텍처를 이용하여 구현될 수 있다. 도 2B에 도시된 바와 같이, 안테나(18) 및 RF FE(20) 및 non-GNSS 포지셔닝 어플리케이션(28)은 위치 결정 디바이스(16)로부터 원격에 위치할 수 있고 예를 들어 인터넷 또는 다른 네트워크를 통해 위치 결정 디바이스(16)와 통신할 수 있다. 안테나(18) 및 RF FE(20)는 non-GNSS 포지셔닝 어플리케이션(28)와 함께 위치할 수도 있고 분리될 수도 있다.
일실시예에서, 위치 결정 디바이스(16)는 안테나(18) 및 RF FE(20)를 포함하는 위치 요청 디바이스로부터 원격에 있는 서버에 제공될 수 있다. 이 실시예에서, 위치 요청 디바이스는 휴대 전화, PDA(personal digital assistant), 스마트폰, 자산 추적 디바이스, 태블릿 컴퓨터 또는 랩탑 컴퓨터, 네비게이션 디바이스 또는 자신의 위치를 구하는 다른 디바이스일 수 있다. 일부 실시예에서, 위치 결정 디바이스(16)는 예를 들어 Wi-Fi 액세스 포인트(Access Point; AP), 펨토셀 또는 복사기와 같은 사무소 장비와 같이 정적인 것으로 의도될 수 있다.
일실시예에서, 위치 결정 디바이스(16)의 프로세서(24)는 하나보다 많은 RF 전단으로부터 디지털화된 데이터를 수신한다. RF 전단은 자신의 안테나로부터 GNSS 신호를 수신하고 위에서 설명된 바와 같이 GNSS 신호를 디지털화한다.
위치 결정 디바이스(16)의 메모리(22) 및 프로세서(24)와 같은 컴포넌트가 개개의 컴포넌트로서 설명되었으나, 다수의 메모리 컴포넌트 및 다수의 프로세서 컴포넌트를 이용하여 방법이 구현될 수 있다.
도 3을 참조하면, RF FE(20)는 안테나(18)로부터 아날로그 신호를 수신하고, 증폭기(30)를 이용하여 신호를 증폭하고, 믹서(32) 및 필터(34)를 이용하여 더 낮은 주파수와 신호를 혼합(다운 컨버전으로서도 알려짐)하고, 아날로그-디지털 컨버터(Analog to Digital Converter; ADC)(36)를 이용하여 중간 주파수(Intermediate Frequency; IF) 데이터를 결정하기 위하여 다운 컨버전된 신호를 디지털화한다. 디지털화된 GNSS 신호는 메모리(22)에 저장된다. RF FE(20)의 믹서(32) 및 ADC(36)은 클록(38)에 의해 동기화되고, 이는 수신기 클록으로서도 지칭된다. RF FE(20)의 클록(38)은 GNSS 위성의 클록보다는 낮은 품질이다.
본 응용에서, GNSS 수신기는 위치 결정 디바이스(16) 내에 포함된다. 도 2A를 다시 참조하면, GNSS 수신기 컴포넌트는 안테나(18), RF FE(20), 메모리(22) 및 프로세서(24)를 포함한다. 위치 결정 디바이스(16)가 GNSS 수신기를 포함하고 non-GNSS 포지셔닝 어플리케이션(28)을 이용하는 위치 결정도 수행하기 때문에, 위치 결정 디바이스(16)는 하이브리드 포지셔닝 솔루션을 제공할 수 있다.
도 4를 참조하면, 위치를 결정하는 방법이 일반적으로 도시된다. 방법은 위치 결정 디바이스(16)에서 예를 들어 6초보다 작게 스패닝(spanning)하는 데이터 캡처와 같이 짧은 중간 주파수(IF) 데이터 캡처가 수신되는 경우에 이용될 수 있다. IF 데이터는 통상적으로 예를 들어 0 Hz 및 100 Hz 이지만, 또한 더 높을 수 있다. 방법은 프로세서(24)에서 대략적 위치 및 모든 이용 가능한 위성에 대한 궤도력 데이터를 수신하는 단계(40); 프로세서(24)에서 후보 위성에 대한 상관 검색 공간 및 상관자를 결정하는 단계(44); 프로세서(24)에서 후보 위성에 대한 코드 위상 및 도플러를 추정하는 단계(46); 프로세서(24)에서 위성이 포착된 후에 코드 위상 및 도플러 추정을 미세 조정함으로써 신호 추적을 수행하는 단계(48); 및 프로세서(24)에서 코드 위상 및 도플러 추정을 이용하고 위치 결정 디바이스의 위치를 추정함으로써 네비게이션을 수행하는 단계(50)를 포함한다. 기술 분야의 통상의 기술자에 의해 이해될 바와 같이, 신호 추적 및 위치의 추정은 알려진 방법에 의해 달성될 수 있고 따라서 여기에 더 설명되지 않을 것이다.
도 4의 방법에 따르면, non-GNSS 포지셔닝 어플리케이션(28)은 위에서 설명된 방법 중 하나를 이용하여 대략적 위치를 계산하고 대략적 위치를 프로세서(24)에게 보낸다. 프로세서(24)는 또한 예를 들어 궤도력 데이터의 형식으로 모든 이용 가능한 위성에 대한 GNSS 위성 궤도에 관한 정보를 수신한다. 궤도력 데이터는 널리 알려진 또는 예측된 형식일 수 있다. 궤도력 데이터는 위치 결정 디바이스(16)로부터 원격의 서버로부터 수신되거나, 위치 결정 디바이스(16) 상에서 생성될 수 있다.
도 4의 방법은 컴퓨터 판독 가능한 코드로서 메모리(22)에 저장된 하나 이상의 소프트웨어 어플리케이션을 실행함으로써 프로세서(24)에 의해 수행될 수 있다. 대안적으로, 방법은 예를 들어 ASIC(Application Specific Integrated Circuit) 또는 GPU(Graphic Processing Unit)와 같은 프로세서(24)의 전용 하드웨어 또는 프로세어와 통신하는 전용 하드웨어에 의해 수행되거나 하드웨어 및 소프트웨어의 조합에 의해 수행될 수 있다.
도 4의 방법의 후보 위성에 대한 상관 검색 공간 및 상관자는 스카이 서치 어플리케이션을 이용하여 결정된다. 도 5를 참조하면, 스카이 서치 어플리케이션을 동작하는 방법이 보여진다. 52에서, 스카이 서치 어플리케이션은 이용 가능한 모든 위성을 식별한다. 대략적 위치, 현재 시간 및 궤도력 정보를 이용하여 위성의 위치를 찾아낸다. 위성의 궤도력 데이터가 위성에 대한 세부사항을 포함하기 때문에, 스카이 서치 어플리케이션은 위성의 위치를 대략적 위치에 관한 공간으로 찾아낼 수 있다. 공간54에서, 스카이 서치 어플리케이션은 대략적 위치 및 현재 시간과 관련하여 위성에 대한 방위각 및 고도각을 계산한다. 현재의 대략적 위치의 수평선 아래에 있는 위성은 버려지고 나머지 위성은 후보 위성으로 결정된다. 이는 위치 결정 디바이스(16)가 현재의 위치 및 시간에서 머리 위로 검출 가능한 위성에 프로세싱 자원을 집중할 수 있도록 해준다. 56에서, 스카이 서치 어플리케이션은 위성의 속도를 대략적 위치에 투영(project)하고 공칭 도플러로 알려진 신호 주파수 상으로의 위성의 사용자 역학에 미치는 영향을 추정하기 위하여 사용자 역학방위각 및 고도각을 이용한다. 58에서 모든 후보 위성에 대한 공칭 도플러를 이용하여 상관 검색 공간이 결정된다.
도 6을 참조하면, 스카이 서치 어플리케이션의 예시적 상관 검색 공간(65)이 상관자의 2차원 그리드 형식으로 도시된다. 도 6에서 수직으로 보여지는 하나의 차원은 도플러 또는 위성 신호의 주파수 이동에 관한 정보를 포함한다. 공칭 도플러는 이 차원의 중앙에 있고 주파수 도메인의 상한 및 하한은 클록 불확실성 및 사용자 역학 불확실성에 기초한다. 도 6에서 수평으로 보여지는 상관 검색 공간의 두 번째 차원은 위성으로부터 위치 결정 디바이스(16)까지 이동하는 동안 RF 신호에 의해 경험하는 시간 지연으로서도 지칭되는 코드 위상에 관한 정보를 포함한다. 시간 지연이 추정되는 경우 도 4의 네비게이션 단계를 참조하여 설명된 바와 같이 위성 및 사용자 간의 예측되는 거리의 추정에 이용되며, 이는 일반적으로 의사거리(pseudorange)로서 알려져 있다. 코드 위상 도메인의 상한 및 하한은 GNSS 위성 신호의 유형뿐만 아니라 RF FE(20)의 샘플링 주파수 또는 상관 해상도에도 의존한다.
일실시예에서, 상관 검색 공간의 결정을 위하여 가능한 모든 클록 불확실성 및 사용자 역학 불확실성을 모두 커버하는 큰 불확실성이 이용될 수 있다. 다른 실시예에서, 클록 불확실성 및 사용자 역학 불확실성에 관한 정보가 이용 가능한 경우, 이러한 정보는 상관 검색 공간을 감소시키기 위해 이용될 수 있다. 클록 불확실성 정보는 RF FE 클록(38)의 명세 시트(specification sheet) 또는 세부 에러 모델링을 포함하는 분석 수단 둘 중 하나에 의해 획득될 수 있으며, 세부 에러 모델링은 기술 분야의 통상의 기술자가 이해할 수 있는 바와 같이 파워 스펙트럼 밀도(Power Spectral Density; PSD) 분석 또는 앨런 편차 분석에 의해 달성될 수 있다. 사용자 역학 불확실성은 위치 결정 디바이스(16)의 어플리케이션에 기초한다. 예를 들어, 위치 결정 디바이스(16)가 정적인 디바이스인 경우, 상관 검색 공간의 결정에 대한 사용자 역학으로 인한 기여는 0 이다. 기술 분야의 통상의 기술자가 이해할 수 있는 바와 같이, 스카이 서치 어플리케이션의 성능은 상관 검색 공간의 정의의 변화에 의해 영향을 받지 않는다.
도 5를 참조하면, 60에서 스카이 서치 어플리케이션은 상관 검색 공간에 대한 상관자를 결정한다. 예를 들어 시간 도메인 콘볼루션 기반 상관자, 주파수 도메인 푸리에 트랜스폼 기반 상관자, 및 주파수 도메인 원형 상관 기반 상관자와 같은 임의의 유형의 상관자가 이용될 수 있다. 상관 검색 공간 내의 모든 상관자는 동일할 수 있고, 대안적으로 동일한 상관 검색 공간 내에서 상이한 상관자가 이용될 수 있다.
도 7을 참조하면, 신호 획득 어플리케이션의 동작에 대응하는 도 4의 단계 46을 보여준다. 일반적으로, 신호 획득 어플리케이션은 디지털화된 데이터 내에서 GNSS 위성 신호를 찾아내기 위하여 RF FE(20)으로부터 (메모리(22)를 통해) 수신된 디지털화된 RF 신호 및 상관 검색 공간을 이용한다. 62에서, 후보 위성에 대한 상관 검색 공간 및 상관자는 스카이 서치 어플리케이션으로부터 수신된다. 64에서, 신호 획득 어플리케이션은 모든 후보 위성의 검색 공간 내의 모든 상관자를 위한 상관 동작을 수행한다. 66에서, 각 후보 위성에 대한 상관 표면을 획득하기 위하여 상관 동작을 위해 일괄(batch) 처리가 수행된다. 도 6에는 그리드의 각 박스가 상관자에 대응하는 예시적 상관 표면이 도시된다. 그리고, 68에서, RF FE 클록(38)과 연관된 클록 바이어스가 모든 상관 표면을 이용하여 추정된다.
4개의 후보 위성 SV1, SV2, SV3, 및 SV4에 대한 상관 표면이 도시된 도 8을 참조하여 클록 바이어스의 추정이 설명될 것이다. 각 상관 표면은 가운데에 식별되는 대응하는 후보 위성에 대한 공칭 도플러 빈(bin)을 포함한다. 일괄 처리 모드에서 모든 상관자에 대하여 모든 후보 위성 상에 상관 동작이 수행된 후, 위성에 대한 상관 피크가 검색 공간의 상이한 위치에서 식별된다. 3개 이상의 다수(majority)의 상관 피크가 공칭 도플러 빈으로부터 공통 주파수 오프셋에 있는 경우, 그 주파수 오프셋에서의 도플러 빈이 공통 도플러 빈으로 결정된다. 공칭 도플러 빈과 공통 도플러 빈 사이의 도플러 오프셋(74)이 클록(38)을 위한 추정된 클록 바이어스로 결정된다. 다수의 상관 파크dhk 상이한 오프셋에 위치한 상관 피크는 간섭 및 매우 약한 신호로부터 초래될 수 있는 거짓 상관 피크이다. 이러한 거짓 상관 피크는 검색에서 제외되며, 그에 따라 신호 획득 어플리케이션의 실행 시간을 개선할 수 있다.
70에서, 각 스테이지가 상이한 캐리어 대 잡음 비(C/N0)에 대응하는 신호 검출 스테이지가 수행된다. 도 10, 11, 및 12를 참조하여 공통 도플러 빈 내에서의 신호 검출이 이제 설명된다. 도 10 및 11을 참조하면, 공통 도플러 빈으로부터의 상관 결과가 도시된다. 도 10에서, 45 dB-Hz 이상의 신호를 검출할 수 있는 하나의 검출기가 이용된다. 도시된 바와 같이, 신호가 존재하지만 검출기의 C/N0 임계치보다 낮아 검출 확률의 감소로 이어지는 신호들은 걸러진다(missed). 여기에 설명되는 방법에서, 도 11에 도시된 바와 같이, 검출기의 집합은 신호의 존재에 대한 완벽한 검색을 수행하는 데 이용될 수 있다. 검출기의 집합은 검출 슬라이스(slice)를 구성하고, 본 신호 검출 방법은 하이퍼-슬라이싱으로 지칭될 수 있다.
도 12를 참조하면, 상이한 데이터 캡처 크기 및 신호 세기에 대하여 상이한 수신기 동작 특성(Receiver Operating Characteristics; ROC) 커브가 획득된다. ROC 커브를 생성하는 방법은 통계적인 검출 이론에 관한 문헌에 잘 기재되어 있고, 이 방법론은 여기에서 하이퍼-슬라이스를 결정하기 위해 이용된다. ROC 커브는 상이한 검출 확률 및 거짓 알람(false alarm)을 위한 검출 임계치를 획득하기 위한 모델로서 이용된다. 상관 이후에 상관 표면이 획득되면, GNSS 신호의 존재에 대한 완전한 검색이 하이퍼-슬라이싱 방법을 이용하여 수행된다. 가장 높은 검출 확률 및 가장 낮은 거짓 알람 확률을 가지는 상관 피크를 만족하는 검출기가 선택된 검출기로서 선정된다.
도 7을 참조하면, 선택된 검출기가 결정된 경우, 감소된 검색 공간을 결정할 때 선택된 검출기로부터 이용 가능한 신호 세기의 추정치가 이용된다. 가장 높은 검출 확률을 가지는 상관 피크가 위치하는 공통 도플러 빈의 코드 위상에 대응하는 감소된 검색 공간은 72에서 후보 위성을 위하여 결정된다. 도 9를 참조하면, 거짓 상관 피크(76) 및 실제 상관 피크(78)이 도플러 도메인에서 투영으로서 나타나는 도 8의 SV4가 도시된다. 가장 높은 상관 피크가 공통 도플러 빈에 위치하지 않기는 하지만, 여기에 설명되는 방법은 공통 도플러 빈이 결정되도록 허용한다. 일반적으로, 여기에 설명되는 방법을 이용하여, 거짓 알람의 확률이 감소되어 전체적인 신호 검출 감도가 증가되기 때문에, 도 9의 예에 도시된 바와 같이 더 많은 위성 신호가 검출될 수 있다.
감소된 검색 공간은 현재의 데이터 캡처 동작에 대하여 위성 신호를 검출하는데 이용될 수 있고, 또한 동일한 위치 결정 디바이스(16)로부터의 후속 데이터 캡처 동작에서 위성 신호를 검출하는데 이용될 수 있다. 추정된 클록 바이어스는 시간 기간 동안 유효하다. 위치 결정 디바이스(16)가 정적인 경우, 시간 기간은 수개월(months)일 수 있다. 위치 결정 디바이스(16)가 이동식(mobile)인 경우, 시간 기간은 수일(days)일 수 있다.
여기에 설명되는 방법 및 장치는 또한 제1 위치 결정 디바이스(16)와 통신하는 제2 위치 결정 디바이스에 의한 위치의 결정을 가능하게 할 수 있다. 도 13을 참조하면, 위치를 결정하는 방법은, 80에서, 제2 위치 결정 디바이스의 프로세서에서 감소된 검색 공간을 수신하는 단계를 포함한다. 이전에 설명된 것처럼, 도 4의 방법의 단계 46과 관련하여 설명된 바와 같이 감소된 검색 공간은 제1 위치 결정 디바이스에 의해 결정된 주파수 범위 및 코드 위상 범위를 포함한다. 감소된 검색 범위가 수신된 후, 82에서, 감소된 검색 범위의 주파수 범위, 코드 위상 범위, 및 주파수 범위와 코드 위상 범위 중에서 하나를 증가시킴으로써 수정된 검색 범위가 결정된다. 수정된 검색 범위는 수신기 클록 불확실성, 사용자 역학 불확실성 및 제2 위치 결정 디바이스의 위치 불확실성 중 하나 이상을 고려하기 위하여 결정된다. 84에서, 이어서 GNSS 신호는 수정된 검색 범위 내에서 검출된다. 그리고, 86에서, 3개의 위성으로부터의 GNSS 신호가 검출되는 때 제2 위치 결정 디바이스의 위치가 결정된다.
수정된 검색 공간의 크기를 결정하기 위하여, 위치 결정 디바이스의 수신기 클록(38) 간의 동기화 수준이 결정된다. 위치 결정 디바이스에서 클록 예측 및 오프셋 제거를 수행하기 위하여, 예를 들어 IEEE 1588-2008과 같은 타이밍 프로토콜을 이용함에 의해 또는 예를 들어 VC-TCXO(Voltage Controlled Temperature Compensated Oscillator)와 같은 설정 가능한 오실레이터를 통합시킴에 의해, 클록은 나노초 수준으로 동기화될 수 있다. 일실시예에서, 10-100 ns 이내로의 동기화가 달성된다. 수신기 클록(38)을 동기화함에 의해, 많은 상이한 위치 결정 디바이스를 이용한 도플러 및 코드 위상 정보의 공유가 가능하다.
도 14를 참조하면, 예시적인 상관 검색 공간(92) 내의 감소된 검색 공간(88) 및 수정된 검색 공간(90)이 2차원 그리드의 형식으로 도시된다. 상관 검색 공간을 나타내는 그리드는 도 6과 관련하여 설명되었으므로, 여기서는 반복되지 않을 것이다.
제2 위치 결정 디바이스는 위치 결정 디바이스(16)과 유사한 컴포넌트를 포함할 수 있고 유사한 프로세싱 성능을 가질 수 있다. 대안적으로, 제2 위치 결정 디바이스(16)는 더 적은 프로세싱 성능을 가질 수 있다. 제1 및 제2 위치 결정 디바이스 간의 통신은 예를 들어 유선 또는 무선에 걸쳐 발생할 수 있다. 또한, 위치 결정 디바이스 간의 연결은 직접적일 수 있고, 예를 들어 서버를 통하는 경우와 같이 간접적일 수 있다.
전술한 실시예들은 단지 예시인 것으로 의도된다. 개조, 수정 및 변경은 여기에 첨부되는 청구범위에 의해서만 정의되는 본 출원의 범위로부터 떠나지 않고 기술 분야의 통상의 기술자에 의해 특정한 실시예에 적용될 수 있다.

Claims (23)

  1. GNSS 신호를 검출하는 방법에 있어서,
    위치 결정 디바이스의 프로세서에서, 상기 GNSS 신호를 나타내는 디지털화된 데이터 - 상기 디지털화된 데이터는 상기 GNSS 신호가 수신된 시간과 함께 상기 위치 결정 디바이스의 메모리에 저장됨 - 를 수신하는 단계;
    상기 위치 결정 디바이스의 프로세서에서, non-GNSS 포지셔닝 어플리케이션으로부터 추정된 위치 영역을 수신하는 단계;
    상기 프로세서에서, 상기 추정된 위치 영역, 상기 시간 및 모든 GNSS 위성의 예측된 궤도 데이터를 이용하여 상기 위치 결정 디바이스 위의 궤도를 도는 후보 GNSS 위성을 결정하는 단계;
    상기 후보 GNSS 위성에 대하여,
    상기 후보 GNSS 위성의 속도를 상기 추정된 위치 영역에 투영(project)함으로써 공칭(nominal) 도플러를 결정하는 단계;
    추정된 코드 위상에 걸쳐 각각의 공칭 도플러 주위의 상관 검색 공간(correlation search space)을 결정하는 단계;
    상기 상관 검색 공간에 대한 상관자(correlator)를 결정하여 상관 (correlation)을 수행하는 단계;
    다수(majority)의 GNSS 위성에 연관된 상관 피크(peak)가 공통 도플러 오프셋에 위치할 때의 수신기 클록 바이어스를 결정하는 단계;
    검출기의 집합 - 상기 검출기의 집합 중 하나는 가장 높은 검출 확률을 가지는 상관 피크를 검출함 - 을 이용하여 상기 공통 도플러 오프셋 내의 GNSS 신호를 검출하는 단계;
    상기 검출기의 집합 중 상기 하나의 코드 위상에 대응하는 상기 공통 도플러 오프셋 내의 감소된 검색 공간을 결정하는 단계
    를 포함하고,
    상기 위치 결정 디바이스는 상기 추정된 위치 영역 내에 위치하는, GNSS 신호를 검출하는 방법.
  2. 제1항에 있어서,
    상기 GNSS 신호는 상기 위치 결정 디바이스의 안테나에서 수신되고 상기 위치 결정 디바이스의 RF 전단에 의해 디지털화되는, GNSS 신호를 검출하는 방법.
  3. 제1항에 있어서,
    상기 GNSS 신호는 안테나에서 수신되고 RF 전단에 의해 디지털화되고, 상기 안테나 및 상기 RF 전단은 상기 위치 결정 디바이스로부터 분리되고 상기 RF 전단은 상기 위치 결정 디바이스와 통신하는, GNSS 신호를 검출하는 방법.
  4. 제1항에 있어서,
    상기 예측된 궤도 데이터는 궤도력(ephemeris) 데이터인, GNSS 신호를 검출하는 방법.
  5. 제1항에 있어서,
    상기 검출기의 집합은 상이한 신호 세기의 신호들을 검출할 수 있는, GNSS 신호를 검출하는 방법.
  6. 제1항에 있어서,
    상기 검출기의 집합은 상이한 검출 확률의 신호들을 검출할 수 있는, GNSS 신호를 검출하는 방법.
  7. 제1항에 있어서,
    상기 다수의 GNSS 위성은 적어도 3개의 GNSS 위성을 포함하는, GNSS 신호를 검출하는 방법.
  8. 제1항에 있어서,
    상기 non-GNSS 포지셔닝 어플리케이션은 초기 위치를 제공할 수 있는 어플리케이션인, GNSS 신호를 검출하는 방법.
  9. 제1항에 있어서,
    상기 non-GNSS 포지셔닝 어플리케이션은 Wi-Fi, 셀룰러, 지상 이동(lnad-mobile) 라디오, 라디오 방송, GeoIP, NFC, INS 및 PDR 중에서 하나에 기초하는, GNSS 신호를 검출하는 방법.
  10. 제1항에 있어서,
    상기 상관 검색 공간은 클록 불확실성 및 사용자 역학(user dynamics) 불확실성을 추정함으로써 결정되는, GNSS 신호를 검출하는 방법.
  11. 제1항에 있어서,
    상기 후보 GNSS 위성은 모든 GNSS 위성에 대한 방위각 및 고도각을 계산하고 상기 추정된 위치 영역의 수평선보다 아래에 위치하는 GNSS 위성을 버림(reject)으로써 결정되는, GNSS 신호를 검출하는 방법.
  12. 제1항에 있어서,
    상기 감소된 검색 공간은 제2 위치 결정 디바이스로의 전송을 위한 것인, GNSS 신호를 검출하는 방법.
  13. 제1항에 있어서,
    상기 감소된 검색 공간 내에서 후속 데이터 캡처(subsequent data capture)의 GNSS 신호를 검출하는 단계를 더 포함하는, GNSS 신호를 검출하는 방법.
  14. 제1항에 있어서,
    상기 감소된 검색 공간은 제2 위치 결정 디바이스로의 전송을 위한 것인, GNSS 신호를 검출하는 방법.
  15. 제1항에 있어서,
    상기 디지털화된 데이터는 제1 RF 전단 및 제2 RF 전단으로부터 수신되고, 상기 디지털화된 데이터는 상기 제1 RF 전단과 통신하는 제1 안테나 및 상기 제2 RF 전단과 통신하는 제2 안테나에 의해 수신된 GNSS 신호를 나타내는, GNSS 신호를 검출하는 방법.
  16. 제1항의 방법을 구현하기 위하여 프로세서 상에서 실행되는 명령어를 포함하는 컴퓨터 판독 가능한 매체.
  17. 위치 결정 디바이스에 있어서,
    RF 전단과 통신하는 메모리로서, GNSS 위성 신호를 나타내는 디지털화된 데이터 - 상기 위치 결정 디바이스에서 수신된 상기 디지털화된 데이터는 상기 GNSS 위성 신호가 수신된 시간과 함께 저장됨 - 를 저장하는 상기 메모리; 및
    상기 메모리와 통신하는 프로세서로서,
    상기 위치 결정 디바이스가 위치하는 추정된 위치 영역을 수신하고,
    상기 추정된 위치 영역, 상기 시간 및 모든 GNSS 위성의 예측된 궤도 데이터를 이용하여 상기 위치 결정 디바이스 위의 궤도를 도는 후보 GNSS 위성을 결정하고,
    상기 후보 GNSS 위성에 대하여:
    상기 후보 GNSS 위성의 속도를 상기 추정된 위치 영역에 투영함으로써 공칭 도플러를 결정하고;
    추정된 코드 위상에 걸쳐 각각의 공칭 도플러 주위의 상관 검색 공간을 결정하고;
    상기 상관 검색 공간에 상관자를 결정하여 상관을 수행하고;
    다수의 GNSS 위성에 연관된 상관 피크가 공통 도플러 오프셋에 위치할 때의 수신기 클록 바이어스를 결정하고;
    검출기의 집합 - 상기 검출기의 집합 중 하나의 검출기는 가장 높은 검출 확률을 가지는 상관 피크를 검출함 - 을 이용하여 상기 공통 도플러 오프셋 내의 GNSS 신호를 검출하고;
    상기 검출기의 집합 중 상기 하나의 검출기의 코드 위상에 대응하는 상기 공통 도플러 오프셋 내의 감소된 검색 공간을 결정하도록
    구성된, 상기 프로세서
    를 포함하는, 위치 결정 디바이스. .
  18. 제17항에 있어서,
    상기 GNSS 위성 신호를 수신하기 위한 안테나 및 상기 안테나와 통신하는 RF 전단을 포함하고, 상기 RF 전단은 상기 GNSS 위성 신호를 나타내는 상기 디지털화된 신호를 생성하는, 위치 결정 디바이스.
  19. 제17항에 있어서,
    상기 추정된 위치 영역은 상기 메모리에 저장되고 상기 프로세서에 의해 실행되는 non-GNSS 포지셔닝 어플리케이션에 의해 결정되는, 위치 결정 디바이스.
  20. 제17항에 있어서,
    상기 상관 검색 공간은 클록 불확실성 및 사용자 역학 불확실성을 추정함으로써 결정되는, 위치 결정 디바이스.
  21. 제17항에 있어서,
    상기 후보 GNSS 위성은 모든 GNSS 위성에 대한 방위각 및 고도각을 계산하고 상기 추정된 위치 영역의 수평선보다 아래에 위치하는 GNSS 위성을 버림으로써 결정되는, 위치 결정 디바이스.
  22. 제17항에 있어서,
    상기 감소된 검색 공간은 후속 데이터 캡처에서 GNSS 신호를 검출하는데 이용되는, 위치 결정 디바이스.
  23. 위치를 결정하는 방법에 있어서,
    제2 위치 결정 디바이스에서, 감소된 검색 공간 - 상기 감소된 검색 공간은 주파수 범위 및 코드 위상 범위를 포함하고, 상기 감소된 검색 공간은 제1 위치 결정 디바이스에 의해 결정됨 - 을 수신하는 단계;
    불확실성을 고려(account for)하기 위하여 상기 감소된 검색 공간의 상기 주파수 범위, 상기 코드 위상 범위, 및 상기 주파수 범위와 상기 코드 위상 범위 중 하나를 증가시킴으로써 검색 공간을 결정하는 단계;
    상기 검색 공간 내에서 GNSS 신호를 검출하는 단계; 및
    3개의 위성으로부터의 GNSS 신호가 검출되는 경우, 상기 제2 위치 결정 디바이스의 위치를 결정하는 단계
    를 포함하는, 위치를 결정하는 방법.
KR1020157037294A 2013-06-05 2013-06-05 열화된 신호 환경에서 gnss 위성 신호를 검출하는 방법 및 장치 KR20160016974A (ko)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CA2013/050431 WO2014194398A1 (en) 2013-06-05 2013-06-05 Methods and apparatus for detecting gnss satellite signals in signal degraded environments

Publications (1)

Publication Number Publication Date
KR20160016974A true KR20160016974A (ko) 2016-02-15

Family

ID=52007340

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020157037294A KR20160016974A (ko) 2013-06-05 2013-06-05 열화된 신호 환경에서 gnss 위성 신호를 검출하는 방법 및 장치

Country Status (7)

Country Link
US (1) US20160124070A1 (ko)
EP (1) EP3004927A4 (ko)
JP (1) JP2016523357A (ko)
KR (1) KR20160016974A (ko)
CN (1) CN105474042B (ko)
CA (1) CA2915528A1 (ko)
WO (1) WO2014194398A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10234564B2 (en) * 2013-08-14 2019-03-19 Hemisphere Gnss Inc. System and method for determining the direction of a false GNSS satellite signal transmitter
CN105549054B (zh) * 2016-03-09 2018-06-12 成都华力创通科技有限公司 一种基于北斗地球同步卫星的快速定位方法
CN111694033B (zh) * 2019-12-31 2023-04-28 泰斗微电子科技有限公司 移动装置的位置确定方法、装置及移动装置
CN113447964B (zh) * 2021-06-15 2024-06-11 深圳市远东华强导航定位有限公司 一种基于rnss辅助的rsmc接收方法
CN114244418B (zh) * 2021-11-12 2023-06-06 华为技术有限公司 频偏补偿方法及装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5798732A (en) * 1996-09-19 1998-08-25 Trimble Navigation Limited GPS receiver having a fast time to first fix
US6661371B2 (en) * 2002-04-30 2003-12-09 Motorola, Inc. Oscillator frequency correction in GPS signal acquisition
US7421342B2 (en) * 2003-01-09 2008-09-02 Atc Technologies, Llc Network-assisted global positioning systems, methods and terminals including doppler shift and code phase estimates
US7688261B2 (en) * 2006-03-15 2010-03-30 The Boeing Company Global position system (GPS) user receiver and geometric surface processing for all-in-view coherent GPS signal PRN codes acquisition and navigation solution
US20120293366A1 (en) * 2010-01-27 2012-11-22 Baseband Technologies Inc. System, method and computer program for ultra fast time to first fix for a gnss receiver
JP2011220740A (ja) * 2010-04-06 2011-11-04 Toyota Motor Corp Gnss受信装置及び測位方法
WO2012055026A1 (en) * 2010-10-26 2012-05-03 Rx Networks Inc. Method and apparatus for determining a position of a gnss receiver

Also Published As

Publication number Publication date
JP2016523357A (ja) 2016-08-08
EP3004927A1 (en) 2016-04-13
CN105474042B (zh) 2018-03-23
CN105474042A (zh) 2016-04-06
US20160124070A1 (en) 2016-05-05
EP3004927A4 (en) 2017-01-25
CA2915528A1 (en) 2014-12-11
WO2014194398A1 (en) 2014-12-11

Similar Documents

Publication Publication Date Title
US10018730B2 (en) Method and apparatus for determining a position of a GNSS receiver
JP5957025B2 (ja) ユーザ受信機の位置決定方法
RU2446413C1 (ru) Определение времени спутника для sps приемника
KR101199048B1 (ko) 위성 시스템으로부터 정밀한 절대 시간 전송
JP5646465B2 (ja) 衛星システムを用いたインターネットホットスポットの位置決め
KR101266582B1 (ko) Sps 동작에서 초기 포지션 불확실성을 감소시키기 위한 시스템 및/또는 방법
US20140225770A1 (en) Position determination using measurements from past and present epochs
KR102005544B1 (ko) 배경 신호 추적을 통한 e911 포지셔닝을 위한 방법 및 장치
US11815607B2 (en) Global navigation satellite system (GNSS) receiver operation during spoofing
JP6061316B2 (ja) Gnss受信機の位置を決定する方法及び装置
KR20160016974A (ko) 열화된 신호 환경에서 gnss 위성 신호를 검출하는 방법 및 장치
US11846713B2 (en) Self-assisted fast acquisition and first fix for a standalone GNSS receiver
Figueroa Naharro et al. Analysis of Assisted GPS in LTE-Advanced networks and its applications to traditional and VTL based software receivers

Legal Events

Date Code Title Description
N231 Notification of change of applicant
WITB Written withdrawal of application