KR20160015804A - AirJet high speed propulsion system with self electricity generation - Google Patents

AirJet high speed propulsion system with self electricity generation Download PDF

Info

Publication number
KR20160015804A
KR20160015804A KR1020140098534A KR20140098534A KR20160015804A KR 20160015804 A KR20160015804 A KR 20160015804A KR 1020140098534 A KR1020140098534 A KR 1020140098534A KR 20140098534 A KR20140098534 A KR 20140098534A KR 20160015804 A KR20160015804 A KR 20160015804A
Authority
KR
South Korea
Prior art keywords
air
compressed air
unit
cycle
heat exchanger
Prior art date
Application number
KR1020140098534A
Other languages
Korean (ko)
Inventor
김영선
Original Assignee
김영선
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김영선 filed Critical 김영선
Priority to KR1020140098534A priority Critical patent/KR20160015804A/en
Publication of KR20160015804A publication Critical patent/KR20160015804A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H11/00Marine propulsion by water jets
    • B63H11/12Marine propulsion by water jets the propulsive medium being steam or other gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H11/00Marine propulsion by water jets
    • B63H2011/002Marine propulsion by water jets using Coanda effect, i.e. the tendency of fluid jets to be attracted to nearby surfaces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Jet Pumps And Other Pumps (AREA)

Abstract

The present invention relates to a high speed air jet propulsion system capable of generating power. A compressed air spray nozzle is installed on the inside of a spray unit main body to spray compressed air through the spray nozzle to propagate the sprayed compressed air along a coanda surface at a high speed and allow water to flow into a water inlet of the spray unit main body by a decrease in surrounding pressure to compress the water in a compression chamber to spray the water and the compressed air through a spray nozzle unit at a high speed to allow an air jet spray unit to receive a propulsive force. A high temperature heat source of air compressed by an air compressor and discharged is collected to generate and supply power, and cooled compressed air is supplied to the air jet spray unit. A heat gain cycle is formed in a reverse Rankine cycle to absorb the high temperature heat source of the compressed air, and the high temperature heat source is supplied to an organic Rankine cycle for generation of higher temperature heat in the heat gain cycle to generate power to supply the power. Accordingly, the heat gain cycle and the organic Rankine cycle are combined in the air compression unit and the air jet spray unit to supply the power.

Description

자가발전 에어젯 고속추진체 { AirJet high speed propulsion system with self electricity generation }[0002] Air-jet high-speed propulsion systems with self-

공기압축기의 압축공기를 활용하여 에어젯 분사유닛에 공급하여 물을 흡입하여 같이 배출하여 추진력을 얻는 에어젯 고속 추진체에 관한 것이다.
The present invention relates to an air jet high-speed propellant which is supplied to an air jet injection unit by utilizing compressed air of an air compressor to suck and discharge water to obtain propulsion.

또한, 자체 필요한 동력을 공급하는 기술로, 상기 공기압축기로 부터 토출되는 고온고압의 압축공기로 부터 열원을 회수하여 역랭킨사이클로 구현된 열취득사이클과 발전사이클인 유기랭킨사이클이 결합된 발전시스템을 통해 전력을 생산하여, 상기 In addition, a technology for supplying self-required power, a power generation system in which a heat source is recovered from high-temperature, high-pressure compressed air discharged from the air compressor, and a heat acquisition cycle implemented in a reverse Rankine cycle and an organic Rankine cycle To produce electric power,

에어젯 고속추진체의 소요전력을 공급하는 것이다.
And supplies the required power of the air jet high-speed propellant.

일반적으로 엔진을 사용하여 임펠러를 회전시켜 해수를 흡입하여 고속으로 배출하는 워터젯 추진체는 이미 공지된 기술이다.
Generally, a water jet propellant for rotating an impeller using an engine to suck seawater and discharge it at a high speed is a well known technique.

그러나, 엔진과 회전축으로 연결된 임펠러를 회전시키기 위해서는 연료가 필요하다.
However, fuel is required to rotate the impeller connected to the engine and the rotary shaft.

본 발명에서는 공기압축기로 부터 토출되는 고온의 압축공기의 열을 역랭킨사이클로 구현된 열취득사이클의 열교환기에서 흡수하여, 유기랭킨사이클에 열원을 공급하여 시스템 소요 동력을 자체 공급하고, 냉각된 압축공기를 에어젯 분사유닛으로 공급하여, 에어젯 분사유닛의 본체 내부 압축공기 분사노즐에서 고압으로 분사하여, 에어젯 분사유닛 안쪽 코안다면(Coanda Surface) 을 따라 고속으로 흐르면서, 에어젯 분사유닛 워터흡입구를 통해 유입된 물과 공기가 혼합되어 에어젯 분사유닛의 분사노즐로 고속으로 분사되어 추진력을 얻을 수 있다.
In the present invention, the heat of the high-temperature compressed air discharged from the air compressor is absorbed by a heat exchanger of a heat acquisition cycle implemented in a reverse Rankine cycle, the heat source is supplied to the organic Rankine cycle, Air is supplied to the air jet injection unit and is injected at a high pressure from the compressed air injection nozzle in the main body of the air jet injection unit so that the air jet injection unit water inlet And air is injected into the jet nozzle of the air jet jetting unit at a high speed to obtain a driving force.

공기의 압력으로 물을 흡입하여 고속으로 분사할 수 있는 에어젯 분사유닛과 공기를 압축하기 위한 공기압축기 등 에어젯 분사시스템에서 필요로 하는 동력을 자체 공급하도록 하는 것이다.
Air jet injection system that can suck water at high speed by air pressure, and air compressor to compress air.

본 발명은 수면위에서 고속의 추진력을 얻기 위해 물과 공기의 혼합물을 고속으로 분사하여 추진력을 얻을 수 있는 에어젯 분사유닛을 구성한다.
The present invention constitutes an air jet injection unit capable of obtaining a propulsive force by spraying a mixture of water and air at a high speed in order to obtain high-speed propulsion force on a water surface.

에어젯 분사유닛은 워터흡입구와 압축공기 분사노즐, 압축챔퍼, 분사노즐부를 구비한 분사유닛 본체로 구성되고, 분사유닛 본체 내부에는 코안다효관( Coanda effect)를 유발하는 코안다면(Coanda Surface)에 압축공기 분사노즐로 부터 고속으로 분사되는 압축공기가 코안다면을 따라 고속으로 유동하면서, 에어젯 분사유닛 입구로 부터 물의 유입을 증가시키고, 유입된 물과 공기가 압축챔버에서 압축되어 분사노즐부에서 고속으로 분사되어 추진력을 얻는다.
The air jet ejecting unit is composed of a water injection port, a jetting unit body having a compressed air jetting nozzle, a compression chamfer and a jetting nozzle unit, and a coanda surface The compressed air injected at a high speed from the compressed air injection nozzle flows at a high speed along the nose surface to increase the inflow of water from the inlet of the air jet injection unit and the inflow water and air are compressed in the compression chamber, It is injected at high speed to obtain propulsion.

본 발명의 에어젯 고속추진체의 소요동력은 공기압축기로 부터 토출되는 고온고압의 압축공기로 부터 열원을 흡수하여 전력을 생산할 수 있는 역랭킨사이클로 구성된 열취득사이클과 발전사이클인 유기랭킨사이클을 결합하여, 흡수한 열원을 열취득사이클에서 더 높은 열원으로 만들어 유기랭킨사이클에 공급하여 전력을 생산한다.
The required power of the air jet high-speed propulsion unit of the present invention is a combination of a heat acquisition cycle constituted by a reverse Rankine cycle capable of absorbing a heat source from high-temperature high-pressure compressed air discharged from an air compressor and generating electric power, and an organic Rankine cycle , The absorbed heat source is made into a higher heat source in the heat acquisition cycle and supplied to the organic Rankine cycle to produce electric power.

따라서, 본 발명의 에어젯 고속추진체는 자체적으로 동력을 만들어 추진력을 얻을 수 있는 자가발전 에어젯 고속추진체 기술을 제안한다.
Accordingly, the air jet high-speed propulsion of the present invention proposes a self-powered air jet high-speed propulsion technology capable of generating propulsion power by itself.

본 발명의 자가발전 에어젯 고속추진체는 프로펠러를 돌려 추진력을 얻는 것이 아니기 때문에 수상레저용 추진체등에 고속추진체로 활용할 수 있고, 고속 추진력을 얻기 위해서 디젤이나 휘발유 등의 화석연료를 사용하지 않고, 공기를 흡입하여 압축공기로 만드는 과정에서 발생된 열원을 회수하여 자체동력을 생산하기 때문에 별도의 연료비가 발생하지 않을 뿐 아니라, 하천이나 해상을 오염시키지 않으면서 고속의 추진체 기술을 제공한다.
The self-propelled air jet high-speed propulsion of the present invention can be utilized as a high-speed propellant for a water-leasing propulsion or the like because it does not obtain a propelling power by turning the propeller. In order to obtain a high propulsion force, a fossil fuel such as diesel or gasoline is not used, In addition, since it produces self-generated power by recovering the heat source generated in the process of making compressed air by suction, it provides not only extra fuel cost, but also high-speed propulsion technology without polluting the river or sea.

도1 은 본 발명의 자가발전 에어젯 고속추진체 실시예
도2 는 본 발명의 자가발전 에어젯 고속추진체 또 다른 실시예
도3 은 본 발명의 자가발전 에어젯 고속추진체 에어젯 분사유닛 구성도
1 is a schematic diagram of a self-generating air jet high-
2 is a self-powered air jet high-speed propellant of another embodiment of the present invention
Figure 3 is a self-generating air jet high-velocity propellant air jetting unit configuration diagram of the present invention

도1 은 본 발명의 자가발전 에어젯 고속추진체 실시예 이다. 1 is a self propelled air jet high speed propellant embodiment of the present invention.

본 발명에서는 압축공기로 부터 추진력을 얻고, 부가적으로 공기 압축과정에서 발생하는 고온의 열원을 회수하여 전력을 생산하여 자체 소요동력을 공급한다.
In the present invention, the propulsion power is obtained from the compressed air, and further, the hot heat source generated in the air compression process is recovered to produce electric power, thereby supplying the self-required power.

이를 위해 공기흡입구(301)와 공기필터(302), 모터/발전기(304)가 연결된 공기압축기(303)를 구비하여 외기공기를 흡입하여 압축하는 공기압축부가 구성되고, 상기 공기압축기(303)로 부터 토출되는 고온고압의 압축공기로 부터 열원을 회수하기 위한 열취득사이클이 필요하다.
An air compressor 303 is connected to the air inlet 301 and an air filter 302 and a motor / generator 304 to constitute an air compressor for sucking and compressing outside air. A heat recovery cycle for recovering the heat source from the high-temperature, high-pressure compressed air discharged from the high-temperature and high-pressure compressed air is required.

열취득사이클은 압축기(111), 제1열교환기(105), 팽창밸브(112), 제2열교환기(103), 제3열교환기(113)으로 폐루프를 형성하여 역랭킨사이클로 구성한다.
The heat acquisition cycle is constituted by a reverse Rankin cycle by forming a closed loop by the compressor 111, the first heat exchanger 105, the expansion valve 112, the second heat exchanger 103 and the third heat exchanger 113.

공기압축기(303)로 부터 토출되는 고온고압의 압축공기는 압축공기 배관(306)으로 부터 상기 열취득사이클의 제3열교환기(113)로 연결되어 열취득사이클의 작동열매체에 의해 열원이 흡수되어 냉각된 압축공기가 되어 압축공기 배관(307)로 배출된다.
Pressure compressed air discharged from the air compressor 303 is connected to the third heat exchanger 113 of the heat acquisition cycle from the compressed air pipe 306 so that the heat source is absorbed by the working heat medium in the heat acquisition cycle The compressed air is discharged into the compressed air pipe 307.

열취득사이클로 부터 열원을 공급받아 전력을 생산하는 발전사이클은 마이크로터빈(101), 제2열교환기(103), 압축펌프(104), 제1열교환기(105)로 폐루프를 형성하여 유기랭킨사이클로 구성된다.
The power generation cycle in which the heat source is supplied from the heat acquisition cycle to produce electric power is formed by forming a closed loop by the microturbine 101, the second heat exchanger 103, the compression pump 104 and the first heat exchanger 105, Cycle.

열취득사이클로 부터의 고온의 응축열은 제1열교환기(105)를 통해 유기랭킨사이클로 공급되어, 유기랭킨사이클의 작동열매체가 포화증기가 되어 그 포화증기 압력으로 마이크로터빈(101)을 회전시켜 축으로 연결된 발전기에 회전력을 전달하여 The high temperature condensation heat from the heat acquisition cycle is supplied to the organic Rankine cycle through the first heat exchanger 105 so that the working heat medium of the organic Rankine cycle becomes saturated steam and the microturbine 101 is rotated by the saturated steam pressure, By transmitting the rotational force to the connected generator

전력을 생산한다. 이 마이크로터빈(101)의 회전력은 또한 같은 축으로 연결된 열취득사이클의 압축기(111)에도 전달되어 열취득사이클을 작동시킨다.
It produces electricity. The rotational force of the microturbine 101 is also transmitted to the compressor 111 of the heat acquisition cycle connected to the same axis to operate the heat acquisition cycle.

한편, 열취득사이클의 제3열교환기(113)으로 부터 열원이 흡수되어 냉각된 압축공기는 에어젯 분사유닛(400)으로 공급된다.
On the other hand, the compressed air, which is absorbed by the heat source from the third heat exchanger 113 in the heat acquisition cycle and cooled, is supplied to the air jet injection unit 400.

압축공기를 분사하여 추진력을 얻는 에어젯 분사유닛(400)은 워터흡입구(407)와 압축챔버(408), 분사노즐부(409)로 분사유닛본체(401)를 구성하여, 분사유닛본체(401)의 워터흡입구(407) 안쪽에 압축공기 분사노즐(405)에서 압축공기를 고속 분사하여, 코안다면(406)을 따라 흐르는 유체에 의해 주변 압력이 낮아져, 워터흡입구(407)로 다량의 물을 유입시켜, 압축챔버(408)에서 압축해서 분사노즐부(409)로 고속 분사되게 함으로서 고속의 추진력을 얻는다.
An air jetting unit 400 for jetting compressed air to obtain an impelling force forms a jetting unit body 401 with a water inlet 407, a compression chamber 408 and a jetting nozzle unit 409, The compressed air is jetted at a high speed from the compressed air injection nozzle 405 inside the water inlet 407 of the water inlet 407 and the peripheral pressure is lowered by the fluid flowing along the nose inner surface 406, And is compressed in the compression chamber 408 to be injected at a high speed into the injection nozzle unit 409, thereby obtaining a high thrust force.

도2 는 본 발명의 자가발전 에어젯 고속추진체 또 다른 실시예 이다.2 is another embodiment of the self-powered air jet high-speed propulsion of the present invention.

본 발명의 자가발전 에어젯 고속추진체는 열취득사이클의 팽창밸브(112)를 팽창터빈(112’)로 바꾸고, 팽창터빈(112’)과 공기압축부의 공기압축기(303)를 모터/발전기(304)와 한 축으로 연결하여, 팽창터빈(112’)의 회전력을 공기압축기(303)와 모터/발전기(304)에 전달하여, 외기를 흡입하여 압축하면서 전력을 생산할 수 있게 하고 있다. 이렇게 생산된 전력은 에어젯 고속추진체 자체 동력으로 공급된다.
The self-powered air jet high speed propulsion of the present invention converts the expansion valve 112 of the heat acquisition cycle into an expansion turbine 112 'and the expansion turbine 112' and the air compressor 303 of the air compression section to the motor / generator 304 To transmit the rotational force of the expansion turbine 112 'to the air compressor 303 and the motor / generator 304 so as to generate electric power while sucking and compressing the outside air. The power thus produced is supplied by the air jet high speed propellant itself.

도3 은 본 발명의 자가발전 에어젯 고속추진체 에어젯 분사유닛 구성도 이다.
3 is a self-powered air jet high-speed propellant air jetting unit configuration diagram of the present invention.

100 : 발전시스템
101 : 마이크로터빈
102,304 : 모터/발전기
103 : 제2열교환기
104 : 압축펌프
105 : 제1열교환기
111 : 압축기
112 : 팽창밸브
112’ : 팽창터빈
113 : 제3열교환기
200 : 전력변환부
201 : AC-DC컨버터
202 : 슈퍼커패시터
S200 : 전력스위치
203 : DC-DC컨버터
204 : DC-AC인버터
205 : 배터리
300 : 공기압축부
301 : 공기흡입구
302 : 공기필터
303 : 공기압축기
304 : 모터
305 : 압축공기 배출구
306, 307 : 압축공기 배관
400 : 에어젯 분사유닛
401 : 분사유닛 본체
402 : 압축공기 유입구
403 : 공기챔버
404 : 압축공기 분사노즐제어부
405 : 압축공기 분사노즐
406 : 코안다면(Coanda Surface)
407 : 워터흡기구
408 : 압축챔버
409 : 분사노즐부
100: Power generation system
101: Microturbine
102,304: motor / generator
103: second heat exchanger
104: Compressor pump
105: first heat exchanger
111: Compressor
112: expansion valve
112 ': Expansion turbine
113: third heat exchanger
200: Power conversion unit
201: AC-DC converter
202: super capacitor
S200: Power switch
203: DC-DC converter
204: DC-AC inverter
205: Battery
300: air compression unit
301: Air inlet
302: air filter
303: Air compressor
304: Motor
305: Compressed air outlet
306, 307: Compressed air piping
400: Air jet injection unit
401: injection unit body
402: Compressed air inlet
403: air chamber
404: Compressed air injection nozzle control unit
405: Compressed air injection nozzle
406: Coanda Surface
407: Water inlet
408: Compression chamber
409: jet nozzle part

Claims (4)

에어젯 추진체에 있어서,
공기흡입구(301)와 공기필터(302), 모터/발전기(304)가 연결된 공기압축기(303)를 구비하여 외기공기를 흡입하여 압축하는 공기압축부;
압축기(111), 제1열교환기(105), 팽창밸브(112), 제2열교환기(103), 제3열교환기(113)으로 폐루프를 형성하여 역랭킨사이클을 구성한 열취득사이클;
마이크로터빈(101), 제2열교환기(103), 압축펌프(104), 제1열교환기(105)로 폐루프를 형성하여 유기랭킨사이클을 구성한 발전사이클;
압축공기를 분사하여 추진력을 얻는 에어젯 분사유닛;

상기와 같이 공기압축부로 부터 토출된 고압압축공기의 열원을 열취득사이클 제3열교환기(113)에서 흡수하여, 제1열교환기(105)를 통하여 발전사이클로 공급하여 전력을 생산하여 전체 시스템 소요동력으로 공급하고, 제3열교환기(113)에서 냉각된 압축공기를 에어젯 분사유닛으로 공급하여 추진력을 얻음을 특징으로 하는 자가발전 에어젯 고속추진체.
In an air jet propellant,
An air compressor for sucking and compressing outside air by having an air inlet 301, an air filter 302, and an air compressor 303 connected to the motor / generator 304;
A heat acquisition cycle in which a closed loop is formed by the compressor 111, the first heat exchanger 105, the expansion valve 112, the second heat exchanger 103, and the third heat exchanger 113 to form a reverse Rankine cycle;
A power generation cycle in which a closed loop is formed by the microturbine 101, the second heat exchanger 103, the compression pump 104, and the first heat exchanger 105 to constitute an organic Rankine cycle;
An air jet ejecting unit for ejecting compressed air to obtain driving force;

As described above, the heat source of the high-pressure compressed air discharged from the air compression unit is absorbed by the heat recovery cycle third heat exchanger 113 and supplied to the power generation cycle through the first heat exchanger 105 to generate electric power, And the compressed air cooled by the third heat exchanger (113) is supplied to an air jet injection unit to obtain a propulsive force.
청구항 1항에 있어서,
열취득사이클의 팽창밸브(112)를 팽창터빈(112’)로 바꾸고, 팽창터빈(112’)과 공기압축부의 공기압축기(303)를 모터/발전기(304)와 한 축으로 연결하여, 팽창터빈(112’)의 회전력을 공기압축기(303)와 모터/발전기(304)에 전달하여, 외기를 흡입하여 압축하면서 전력을 생산함을 특징으로 하는 자가발전 에어젯 고속추진체.
The method according to claim 1,
The expansion valve 112 of the heat acquisition cycle is replaced with the expansion turbine 112 'and the expansion compressor 112' and the air compressor 303 of the air compression section are connected to the motor / generator 304 in one axis, And the electric power is generated while transmitting the rotational force of the air compressor (112 ') to the air compressor (303) and the motor / generator (304) to suck and compress the outside air.
청구항 1항에 있어서,
에어젯 분사유닛이 워터흡입구(407)와 압축챔버(408), 분사노즐부(409)로 분사유닛본체(401)를 구성하여, 분사유닛본체(401)의 워터흡입구(407) 안쪽에 압축공기 분사노즐(405)에서 압축공기를 고속 분사하여, 코안다면(406)을 따라 흐르는 유체에 의해 주변 압력이 낮아져, 워터흡입구(407)로 다량의 물을 유입시켜, 압축챔버(408)에서 압축해서 분사노즐부(409)로 고속 분사되게 함으로서 고속의 추진력을 얻음을 특징으로 하는 자가발전 에어젯 고속추진체.
The method according to claim 1,
The air jetting unit constitutes the jetting unit body 401 with the water suction port 407 and the compression chamber 408 and the jetting nozzle unit 409 so that the compressed air in the water suction port 407 of the jetting unit body 401 The compressed air is jetted at high speed from the injection nozzle 405 and the peripheral pressure is lowered by the fluid flowing along the nose surface 406 so that a large amount of water flows into the water suction port 407 and is compressed in the compression chamber 408 Jet nozzle unit 409 to obtain a high-speed propulsive force.
청구항 3항에 있어서,
압축공기 유입구(402)로 부터 공기챔버(403)로 유입한 압축공기를 압축공기 분사노즐(405)로 분사함에 있어서, 압축공기 분사노즐제어부(404)에 의해 압축공기 분사노즐(405)의 간격을 조절하여, 압축공기 분사노즐(405)로 분사되는 압축공기의 량을 조절함으로서, 분사노즐부(409)로 분사되는 물과 공기의 양을 제어하여 추진압력을 제어함을 특징으로 하는 자가발전 에어젯 고속추진체.
The method according to claim 3,
The compressed air injection nozzle control unit 404 controls the interval of the compressed air injection nozzles 405 by the compressed air injection nozzle control unit 404 in injecting the compressed air flowing into the compressed air injection nozzle 405 from the compressed air inlet 402 into the air chamber 403. [ And controls the amount of compressed air injected to the compressed air injection nozzle (405) to control the amount of water and air injected to the injection nozzle unit (409) to control the propelling pressure. Air jet high speed propellant.
KR1020140098534A 2014-07-31 2014-07-31 AirJet high speed propulsion system with self electricity generation KR20160015804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140098534A KR20160015804A (en) 2014-07-31 2014-07-31 AirJet high speed propulsion system with self electricity generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140098534A KR20160015804A (en) 2014-07-31 2014-07-31 AirJet high speed propulsion system with self electricity generation

Publications (1)

Publication Number Publication Date
KR20160015804A true KR20160015804A (en) 2016-02-15

Family

ID=55356673

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140098534A KR20160015804A (en) 2014-07-31 2014-07-31 AirJet high speed propulsion system with self electricity generation

Country Status (1)

Country Link
KR (1) KR20160015804A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109835453A (en) * 2019-04-12 2019-06-04 辽宁工程技术大学 Multistage coil formula pump-jet propulsor
KR20200045865A (en) * 2018-10-23 2020-05-06 삼성중공업 주식회사 Energy saving system of encune by using waste heat and ocean construction comprising the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200045865A (en) * 2018-10-23 2020-05-06 삼성중공업 주식회사 Energy saving system of encune by using waste heat and ocean construction comprising the same
CN109835453A (en) * 2019-04-12 2019-06-04 辽宁工程技术大学 Multistage coil formula pump-jet propulsor

Similar Documents

Publication Publication Date Title
JP2004332626A (en) Generating set and generating method
WO2013023607A1 (en) Jet rotary motor
KR20160015804A (en) AirJet high speed propulsion system with self electricity generation
CN105599888A (en) Ship propulsion system, and operation method of the same
CN102619645A (en) Charge engine injected with low-entropy mixed-combustion liquefied gas
CN104578682B (en) A kind of available latent heat of vaporization closed-cycle magnetohydrodynamics power generation method and cycle generating system thereof
CN107891961B (en) A kind of fluid piston and the heating power pressure spray ship propulsion system using the fluid piston
RU2013137177A (en) PUMPING DEVICE USING VAPOR PRESSURE FOR SUPPLYING WATER TO A POWER PLANT
KR102111521B1 (en) Compressed air jet pre-wirl stator and cavitation prevention system using the same
US20130186097A1 (en) Liquid Fuel Heating System
CN107060908B (en) Cooling system and cooling method for organic Rankine cycle steam turbine generator unit
CN108953178A (en) A kind of supercritical steam cycle power generator and its injection shock wave increasing apparatus
CN103670796A (en) Jet propulsion rotor engine
CN103821614B (en) Thermodynamic gas turbine adopting liquid-air working medium environment and working method of thermodynamic gas turbine
CN103939236A (en) External combustion propelling engine
WO2014121655A1 (en) Child-mother type double-wheel rotor steam power machine
CN104196769A (en) Environment-friendly multi-channel water jet air ejector
CN204061355U (en) A kind of environment protection type multi-path water jet air extractor
CN203702343U (en) Low-temperature hybrid power gas turbine
CN103790706B (en) A kind of low-temperature mixed power gas turbine method of work
US20160369751A1 (en) Internal combustion engine using water as auxiliary power
KR20160011350A (en) WaterJet high speed propulsion system with self electricity generation
WO2017015775A1 (en) Internal combustion engine using water as auxiliary power
CN104214007A (en) Velocity-type work-applying mechanism engine
CN209053741U (en) Fluid energy-storing and power-generating system

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination