KR20160008958A - Planar linear phase array antenna with enhanced beam scanning - Google Patents

Planar linear phase array antenna with enhanced beam scanning Download PDF

Info

Publication number
KR20160008958A
KR20160008958A KR1020150090368A KR20150090368A KR20160008958A KR 20160008958 A KR20160008958 A KR 20160008958A KR 1020150090368 A KR1020150090368 A KR 1020150090368A KR 20150090368 A KR20150090368 A KR 20150090368A KR 20160008958 A KR20160008958 A KR 20160008958A
Authority
KR
South Korea
Prior art keywords
planar
phased array
array antenna
waveguide
sub
Prior art date
Application number
KR1020150090368A
Other languages
Korean (ko)
Other versions
KR102279931B1 (en
Inventor
겐나지 알렉산드로비치 예프츄시킨
치모페이 빅토로비치 카미셰프
엘레나 알렉산드로브나 셰페레바
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to US14/800,034 priority Critical patent/US9590315B2/en
Publication of KR20160008958A publication Critical patent/KR20160008958A/en
Application granted granted Critical
Publication of KR102279931B1 publication Critical patent/KR102279931B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/267Phased-array testing or checking devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/08Radiating ends of two-conductor microwave transmission lines, e.g. of coaxial lines, of microstrip lines
    • H01Q13/085Slot-line radiating ends
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/2658Phased-array fed focussing structure

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

The present invention relates to antenna technology. For example, according to the present invention, a very compact phase antenna array, which provides beam scanning of a maximum angle greater than or equal to ± 75 degrees, can be obtained. A planar phase array antenna having beamforming and wide-angle beam scanning functions comprises: a planar waveguide formed by top and bottom grounds and a dielectric layer between the top and bottom grounds; a phase array including radiators for forming an electromagnetic wave front in the planar waveguide; a rear reflection structure positioned behind the phase array; and a deflection structure formed in the dielectric layer to deflect the electromagnetic wave front in the planar waveguide, wherein the permittivity value of the deflection structure is different from that of the dielectric layer of the waveguide. The length of the layer of the top ground is shorter than the length of the layer of the bottom ground. The planar phase array antenna further comprises a converter for converting a vertically polarized wave in the planar waveguide into a horizontally polarized space wave formed along the outer boundary of the planar waveguide.

Description

빔 스캐닝이 개선되는 평면 선형 위상 어레이 안테나{PLANAR LINEAR PHASE ARRAY ANTENNA WITH ENHANCED BEAM SCANNING}[0001] PLANAR LINEAR PHASE ARRAY ANTENNA WITH ENHANCED BEAM SCANNING [0002]

본 발명은 안테나 기술에 관한 것으로, 특히 빔 스캐닝이 개선되는 평면 선형 위상 어레이 안테나에 관한 것이다.The present invention relates to antenna technology, and more particularly to a planar linear phased array antenna with improved beam scanning.

스캐닝 안테나들의 기술분야에서, 시스템의 효율성을 향상시키기 위해 스캐닝 각도를 증가시키는 것은 매우 현실적인 문제이다. 종래의 안테나 어레이의 스캐닝 각도는 통상 이득 손실을 고려하지 않고 ± 45도로 제한된다. 그러나, 특히 모바일 장치들에 있어서, 최적의 트래픽이 광범위하게 설정된 한계 내에서 변화하기 때문에, 70도까지 개선되는 스캐닝 각도를 현실화하기 위해서는 특별한 설비들이 요구된다.In the art of scanning antennas, increasing the scanning angle to improve the efficiency of the system is a very real problem. The scanning angle of conventional antenna arrays is typically limited to +/- 45 degrees without regard to gain loss. However, particularly in mobile devices, special equipment is required to realize a scanning angle that improves to 70 degrees, since optimal traffic varies widely within established limits.

최근 들어 등각(conformal) 안테나 어레이(실린더형), 루네부르크 렌즈(Luneburg lens) 안테나들, 스위칭 가능한 선대칭(axisymmetric) 안테나들이 스캐닝 각도를 증가시키는데 적용되고 있다. 이러한 종류의 안테나들은 ± 90도 이상의 스캐닝 각도 획득을 가능하게 한다. 그러나, 이러한 안테나 타입에는 아래와 같이, 몇 가지 단점들이 내재되어 존재한다.Recently, conformal antenna arrays (cylindrical), Luneburg lens antennas, and switchable line symmetric antennas have been applied to increase the scanning angle. These types of antennas enable acquisition of a scanning angle of more than +/- 90 degrees. However, there are some disadvantages inherent in this antenna type as follows.

첫째. 추가적인 손실을 삽입하는 복잡한 스위치의 존재.first. The presence of complex switches to insert additional losses.

둘째. 큰 공간 사이즈.second. Large space size.

셋째. 스위칭된 안테나들의 경우 안테나 구경(aperture)의 적은 효율.third. For switched antennas, the antenna aperture is less efficient.

종래의 안테나 어레이들은 어레이 앞에 설치되는 특별한 구조들에 의해 확장된 빔 스캐닝을 획득하기에도 적합하다. 그러한 구조들은 추가적 전면 파형 편향(front wave deflection)을 야기한다. 그러나, 이 구조들은 보통 넓은 사이드를 가진 대형 어레이들에 사용된다.Conventional antenna arrays are also suitable for obtaining beam scanning extended by special structures installed in front of the array. Such structures cause additional front wave deflection. However, these structures are typically used for large arrays with wide sides.

따라서 상술한 모든 기술들은, 예를 들어, 휴대용 장치에 적용되기에 적합한 아주 소형인 안테나 장치들을 설계하는 데에는 적합하지 않다.Thus, all of the techniques described above are not suitable for designing very small antenna devices suitable for, for example, portable devices.

가능한 넓은 영역에서의 빔 스캐닝을 제공하는 매우 컴팩트한 위상 안테나 어레이를 만드는 것과 관련한 기존의 몇몇 방안들이 존재한다.Several existing approaches exist for making very compact phase antenna arrays that provide beam scanning in as wide a range as possible.

예를 들어, 도 7에 도시된 바와 같은 미국 특허 제6,496,155('End-fire antenna or array on surface with tunable impedance')는 엔드 파이어(end-fire) 선형 어레이를 개시한다. 어레이의 소자들은 PCB의 표면 상에 위치한다. 소자들 간 위상 관계에 따라 방위 스캐닝이 실현된다. 이 어레이의 단점은 기본 방사기(radiator)의 충분히 넓지 않은 빔으로 인한 스캐닝 각도의 제한이다(40도 미만).For example, US Pat. No. 6,496,155 ('End-fire antenna or array on surface with tunable impedance') as shown in FIG. 7 discloses an end-fire linear array. The elements of the array are located on the surface of the PCB. Orientation scanning is realized according to the phase relationship between the elements. The disadvantage of this array is the limitation of the scanning angle (less than 40 degrees) due to the not sufficiently wide beam of the basic radiator.

도 8에 도시된 바와 같은, 비특허 문서인 “Beamforming Lens Antenna on a High Resistivity Silicon Wafer for 60 GHz WPAN(60GHz WPAN을 위한 고저항성 실리콘 웨이퍼 상의 빔포밍 렌즈 안테나)”(2010년 3월자 IEEE 안테나 및 전파 회보 제58권 3호)에서 제안한 안테나는 평면 일차원 스캐닝 렌즈 안테나이다 그 안테나는 PCB 기술에 의해 생산된다. 이러한 안테나 구조의 단점은 제한된 스캐닝 각도(± 40도) 및 빔 스티어링(steering) 동작을 위한 복잡한 스위치를 필요로 한다는 것이다.A non-patent document "Beamforming Lens Antenna on a High Resistivity Silicon Wafer for 60 GHz WPAN (Beam Forming Lens Antenna on High-Resistance Silicon Wafer for 60 GHz WPAN)" The proposed antenna is a flat one-dimensional scanning lens antenna. The antenna is produced by PCB technology. A disadvantage of such an antenna structure is that it requires a complicated switch for a limited scanning angle (+/- 40 degrees) and beam steering operation.

도 9에 도시된 바와 같은 미국 특허 제6,987,493('Electrically steering passive array antenna')는 능동 방사 소자 및 한 개 이상의 기생(parasitic) 소자들을 포함하는 안테나 어레이를 개시한다. 각각의 기생 안테나 소자는 방사 안테나 소자 주변 원 상에 위치한다. 수동 소자의 임피던스는 각각의 기생 소자에 연결된 튜너블(tunable) 커패시터에 의해 가변된다. 임피던스의 가변으로 인해, 재방사되는 파형의 위상이 바뀌고 결과적으로 메인 빔 방향이 교체된다. 이러한 안테나는 평면 구조를 가지며 원형의 일평면 스캐닝을 제공한다. 이러한 안테나 구조의 단점은 낮은 전후방비(front/back ratio), 낮은 지향성, 단일 능동 채널이며, 능동 튜너블 소자들과 DC 제어기를 필요로 한다는 것이다.US 6,987, 493 ('Electrically steering passive array antenna') as shown in FIG. 9 discloses an antenna array comprising an active radiating element and one or more parasitic elements. Each parasitic antenna element is located on a circle around the radiating antenna element. The impedance of the passive element is varied by a tunable capacitor connected to each parasitic element. Due to the variable impedance, the phase of the re-radiating waveform changes and the main beam direction changes as a result. These antennas have a planar structure and provide circular one-plane scanning. A disadvantage of this antenna structure is its low front / back ratio, low directivity, single active channel, and requires active tunable elements and a DC controller.

도 10에 도시된 바와 같은, 본 발명의 프로토타입으로 고려해 볼 수도 있는 미국 특허 제8,493,281('Lens for scanning angle enhancement of phased array antennas')는 평면 안테나 어레이 및 그 안테나 어레이를 커버하는 버키볼(buckyball) 모양의 렌즈 구조인, 두 기본 부분으로 구성되는 안테나 구조를 개시한다. 렌즈의 설계는 네거티브 인덱스 메타물질(metamaterial) 렌즈에 대해 생성된다. 평면 안테나 어레이가 고지향성 빔포밍 및 제한된 빔 스캐닝을 위해 사용된다. 버키볼 형태의 렌즈는 위상 어레이 안테나에 의해 생성된 빔을 약 90도로 구부릴 수 있다. 이러한 방안 역시 단점이 있는데, 안테나 어레이가 매우 큰 공간 사이즈를 가진다는 것이다. 경사진(declining) 렌즈의 구 형태(spherical form)는, 핸드폰 및 태블릿 PC와 같은 휴대형 장치에 이러한 방안을 적용하기는 것을 거의 불가능하게 한다.US Pat. No. 8,493,281 ('Lens for scanning angle enhancement of phased array antennas'), which may be considered as a prototype of the present invention, as shown in FIG. 10, includes a flat antenna array and a buckyball covering the antenna array. Shaped lens structure which is composed of two basic parts. The lens design is created for a negative index metamaterial lens. A planar antenna array is used for high directional beamforming and limited beam scanning. The buckyball-shaped lens can bend the beam generated by the phased array antenna by about 90 degrees. This approach is also disadvantageous, since the antenna array has a very large space size. The spherical form of the declining lens makes it nearly impossible to apply this approach to portable devices such as cell phones and tablet PCs.

더 나아가, 빔 스캐닝을 제공하는 앞서 알려진 안테나들은 생산 및 조립에 있어서의 높은 복잡도, 복잡한 스위칭과 급전(feeding) 회로의 존재, 및 방사 소자들의 부분적 사용과 같은 단점들을 가진다.Furthermore, the previously known antennas, which provide beam scanning, have drawbacks such as high complexity in production and assembly, the presence of complex switching and feeding circuits, and the partial use of radiating elements.

본 발명은 예를 들어, ± 75도 이상의 빔 스캐닝을 제공하는 극도로 컴팩트한 위상 안테나 어레이를 생성하기 위해 상기 문제들 중 적어도 일부를 해결하는 것을 목적으로 한다. The present invention aims at solving at least some of these problems to create an extremely compact phase antenna array that provides, for example, beam scanning of more than +/- 75 degrees.

본 발명의 실시예들의 특징에 따르면, 본 발명은 평면 위상 어레이 안테나에 있어서, 상부 및 하위 그라운드들과 그들 사이의 유전체 층에 의해 형성되는 평면 도파로; 상기 평면 도파로 내부에서 전자기 파두(wave front)를 형성하기 위한 방사기들을 포함하는 위상 어레이; 상기 위상 어레이 뒤에 위치하는 후방 측 반사 구조; 및 상기 평면 도파로 안에서 상기 전자기 파두를 편향시키도록 상기 유전체 층 내부에 구현되는 편향 구조를 포함하고, 상기 편향 구조의 유전율 값은 상기 평면 도파로의 상기 유전체 층의 유전율 값과 다르게 설정됨을 특징으로 한다. According to a feature of embodiments of the present invention, the present invention provides a planar phased array antenna comprising: a planar waveguide formed by upper and lower grounds and a dielectric layer therebetween; A phase array including emitters for forming an electromagnetic wave front within the planar waveguide; A rear side reflective structure positioned behind the phased array; And a deflection structure implemented within the dielectric layer to deflect the electromagnetic wave in the plane waveguide, wherein the dielectric constant of the deflection structure is set differently from the dielectric constant of the dielectric layer of the planar waveguide.

상기에서, 상부 그라운드는 하위 그라운드보다 그 층의 길이가 짧을 수 있다.In the above, the upper ground may be shorter in length than the lower ground.

또한, 평면 위상 어레이 안테나는 평면 도파로 내 수직 편파 전파를 평면 도파로의 바깥 경계를 따라 형성되는 수평 편파 공간 전파로 변환하기 위한 변환기를 더 포함할 수 있다.In addition, the planar phased array antenna may further include a converter for converting vertical polarization propagation in the planar waveguide into horizontally polarized spatial propagation formed along the outer boundary of the planar waveguide.

본 발명의 일부 실시예들에 따르면, 전체적 안테나가 평면 모양을 가지며, PCB 기술에 기반하여 생산될 수 있으나, 이에 국한되지 않는다. 이러한 특징들은 핸드폰, 태블릿 PC 및 기타와 같은 모바일 상황의 컴팩트 장치들 내부의 안테나 구현에 있어 매우 흥미로운 것들이다.According to some embodiments of the present invention, the overall antenna has a planar shape and may be produced based on PCB technology, but is not limited thereto. These features are very interesting for antenna implementation within compact devices in mobile situations such as cell phones, tablet PCs and others.

유사기술들과 비교하면, 본 발명의 실시예들에 따른 안테나는 빔 스캐닝을 위한 어떠한 가변 액티브 집중 소자들(lumped elements)을 가지지 않는다. 이러한 안테나의 주요 특성은 개선된 빔 스캐닝을 얻기 위한 메타 물질 매체에 의해 구현되는 특별한 편향(deflecting) 구조의 적용에 있다. 이 매체는 PCB 구조 내부의 특별한 형태의 영역을 나타낸다. 이 메타 물질 영역은 안테나 어레이 주변에서 파두(wave front)의 추가 지연을 구현하기 위해 형성된다. 그러한 위상 지연은 파두의 추가 편향을 일으킨다. 지연을 일으키는 메타 물질로서, PCB 내부에 금속 비아(via)가 사용된다. 패딩 영역(padding area)(즉, 상부 그라운드와 하위 그라운드 사이의 층)으로의 비아의 높이 차이로 인해, 불규칙한 파두 지연을 얻게 된다. 그 결과, 단일 위상 어레이의 빔 스캐닝이 ± 55도에서 ± 75도로 개선된다.Compared with similar technologies, the antenna according to embodiments of the present invention does not have any variable active lumped elements for beam scanning. The main characteristic of this antenna is the application of a special deflecting structure implemented by a meta-material medium to obtain improved beam scanning. This medium represents a special type of area inside the PCB structure. This meta-material region is formed to provide additional delay in the wave front around the antenna array. Such a phase delay causes additional deflection of the wave. As a metamaterial causing the delay, a metal via is used inside the PCB. Due to the difference in height of the vias to the padding area (i.e., the layer between the top and bottom grounds), an irregular wave delay is obtained. As a result, the beam scanning of a single phased array is improved by +/- 75 degrees at +/- 55 degrees.

본 발명에서 상기 미국 특허 제8,493,281와의 주요한 차이는 예를 들어 PCB 구조와 같은, 매우 얇은 평면 구조 내부에서의 편향 영역의 구현에 있다. 따라서, 본 발명의 실시예들에 따른 장치는 휴대 상황을 위한 기기들(핸드폰, 태블릿 PC 등)의 소자로서 설계될 수 있다. 상기 미국 특허 제8,493,281의 편향 시스템은 구형이며, 컴팩트하지 않은 형태를 나타낸다.The main difference from the US patent 8,493,281 in the present invention lies in the implementation of the deflection area within a very thin planar structure, for example a PCB structure. Therefore, the device according to the embodiments of the present invention can be designed as an element of devices (mobile phone, tablet PC, etc.) for a portable situation. The deflection system of U. S. Patent No. 8,493, 281 is spherical and non-compact.

실시예들 중 하나에 따르면, 본 발명에 따른 안테나는 선형 위상 어레이를 나타낸다. 그러나, 단일 차원(single dimensional) 위상 어레이를 비롯하여, 다른 가능한 위상 어레이 구조들도 사용될 수 있다.According to one of the embodiments, the antenna according to the invention represents a linear phased array. However, other possible phased array structures, including a single dimensional phased array, may also be used.

모든 적절한 유형의 방사기들이 어레이의 소자들로서 사용될 수 있다. 모노폴(monopole)들이 선호될 수 있는데, 이는 그들이 최선의 정합(matching) 및 PCB 구현 가능성을 제공하기 때문이다. 루프 방사기들(loop radiators) 역시 유리하게 사용될 수 있다.All suitable types of emitters can be used as elements of the array. Monopoles may be preferred because they provide the best matching and PCB implementation possibilities. Loop radiators can also be used advantageously.

방사기들의 개수는 다양하게 구현될 수 있으며, 설계 요건들에 따라 적절히 선택된다.The number of emitters can be variously embodied and suitably selected according to design requirements.

어레이의 소자들은 한 쌍의 수평적으로 평행한 그라운드 평면들 사이에 형성되는 고형(solid) 유전체 층(PCB 기판)의 매체 속에 위치한다. 그라운드 평면들과 고형 유전체의 조합이 평면 도파로를 형성한다. 최선의 정합 및 최적 빔포밍을 위해 공통 반사기(반사 구조)가 고형 유전체 내에서 방사기 열(line)에서 뒤로 약 처리 주파수의 1/4 파장 거리에 배치된다. 반사기와 결합된 방사기들의 어레이는 평면 도파로 내부에서 전파되는 단방향(unidirectional) 평면 파형(plane wave)을 형성한다. 상기 도파로는 한 쌍의 나란한 그라운드 평면들, 및 상기 그라운드 평면들 사이의 유전체 기판에 의해 형성된다. 평면 도파로의 외관 경계의 적절한 형태는 반원형일 수 있으나, 이 외에도, 모든 대칭적 곡선들(타원, 포물선 및 기타 모양)의 형태 역시 가능하며, 방사 소자들은 대응되는 형태의 지름(직경)을 따라 위치한다. 방사기들(수직 모노폴들)에서 위상 제어에 의해 비교적 법선 위치(normal position)에서 파두 방향 조정이 가능하다. 편향 구조의 영역은 방사 어레이와 평면 도파로의 외관 경계 사이에 배치된다. 편향 구조는 하나 이상의 서브 편향기들로 구성된다. 제1서브 편향기가 메인으로, 평면 도파로의 외관 경계에 가깝게 위치된다. 또한, 제2서브 편향기는 보조적으로 사용될 수 있고, 위상 어레이 및 제1서브 편향기 사이에 위치한다.The elements of the array are located in the medium of a solid dielectric layer (PCB substrate) formed between a pair of horizontally parallel ground planes. The combination of the ground planes and the solid dielectric forms a planar waveguide. For best matching and optimal beamforming, a common reflector (reflective structure) is placed at a quarter wavelength of the median processing frequency back in the radiator line in the solid dielectric. The array of emitters coupled with the reflector forms a unidirectional plane wave propagating inside the planar waveguide. The waveguide is formed by a pair of parallel ground planes, and a dielectric substrate between the ground planes. The appropriate shape of the outline boundary of the planar waveguide may be semicircular, but in addition, all symmetrical curves (ellipses, parabolic and other shapes) may also be possible, and the radiating elements may be located along the diameter do. It is possible to adjust the wave direction at a relatively normal position by phase control in radiators (vertical monopoles). The region of the deflection structure is disposed between the radiation array and the outer boundary of the planar waveguide. The deflection structure consists of one or more sub-deflectors. The first sub-deflector is positioned as close to the outer boundary of the planar waveguide as the main. The second sub deflector may also be used as an auxiliary and is located between the phased array and the first sub deflector.

본 발명의 실시예들 중 하나에 따르면, 고형 유전체 안으로 제공되는 제1서브 편향기의 평면적 윤곽은 안테나 둘레로 볼록한 말발굽 모양을 가진다. 제1서브 편향기 영역의 면적은 말발굽 형태의 중앙에서 최소가 되고 양편을 향해 완만하게 증가한다. 편향 구조 자체는 다양한 유전율 값을 가진 인공 편향을 나타낼 수 있다. 제1서브 편향기 유전율은 고형 유전체의 유전율 보다 높고, 제2서브 편향기 유전율은 고형 유전체의 것 보다 낮다. 제1서브 편향기의 인공 편향은 파두의 보완적 지연을 일으키며, 또한 그 지연은 파두의 서로 다른 부분들에서 일정치 않은데, 이는 제1서브 편향기의 면적 역시 가변하기 때문이다. 따라서 파두가 편향될 때, 어레이에 가깝게 위치된 파두의 일측은 인공 편향의 보다 두꺼운 면적으로 인해 보다 긴 지연을 경험할 것이다. 그 결과 스캐닝 각도가 확장된다.According to one of the embodiments of the present invention, the planar contour of the first sub-deflector provided in the solid dielectric has a convex horseshoe shape around the antenna. The area of the first sub-deflector region becomes minimum in the center of the horseshoe shape and gradually increases toward both sides. The deflection structure itself can exhibit artificial deflection with various permittivity values. The first sub-deflector permittivity is higher than the dielectric constant of the solid dielectric, and the second sub-deflector permittivity is lower than that of the solid dielectric. The artificial deflection of the first sub-deflector causes a complementary delay of the fangs and the delay is not constant in the different parts of the fringe because the area of the first sub-deflector is also variable. Thus, when the fuzz is deflected, one side of the fuzz positioned close to the array will experience a longer delay due to the thicker area of the artificial deflection. As a result, the scanning angle is expanded.

편향 효율성의 촉진을 위해, 제2서브 편향기는 유전체 층의 유전율보다 낮은 유전율을 가진 인공 유전체를 나타낼 수 있다. 이 영역은 제1서브 편향기의 내측과 인접하고 초승달 형태의 윤곽을 가진다. 제2서브 편향기 영역의 면적은 중앙 부위에서 최대가 되고 양편을 향해 완만하게 감소한다. 제2서브 편향기에서 파두에 대한 영향을 주는 과정은 상술한 제1서브 편향기에 의한 것과 반대가 된다. 방사기들의 어레이에서 보다 멀리 있는 파두의 부분은 반대되는 부분보다 더 넓은 제2서브 편향기 영역의 구간을 통과한다. 제2서브 편향기 영역의 낮은 유전율로 인해, 파두의 대응되는 부분은 추가 가속을 얻으며, 이러한 효과는 전체 파두의 상보적인 편향을 일으킨다. 제1서브 편향기의 영역은 도파로의 유전체 층(PCB 유전체 매체) 내부에 수 십 개의 금속피막된 홀(비아)들을 포함하는 인공 유전체이다. 모든 금속 비아는 평면 도파로 내부에서 불연속성이며, 소정 임피던스로 구별되는데, 그로 인해 여분의 위상 지연이 얻어진다. 즉, 도파로 내부의 모든 방해물은 그 자체의 임피던스 특성을 가지며, 따라서, 산란된 파는 자유 도파로 영역과 비교하여 추가적으로 지연된다. 유전율의 값과 위상 지연은 비아의 높이에 좌우된다. 편향 구조의 최대 투과도(transparency)을 구현하기 위해 비아 사이의 거리는 기판 안으로의 약 1/4 파장에 해당한다.For the promotion of deflection efficiency, the second sub deflector may exhibit an artificial dielectric with a dielectric constant lower than that of the dielectric layer. This region is adjacent to the inside of the first sub-deflector and has a crescent-shaped contour. The area of the second sub-deflector region is maximized at the central region and gradually decreases toward both sides. The process of influencing the fade in the second sub-deflector is opposite to that of the first sub-deflector described above. The portion of the fiducial that is farther from the array of emitters passes through a section of the second sub-deflector region wider than the opposite portion. Due to the low permittivity of the second sub-deflector region, the corresponding portion of the fauid acquires additional acceleration, and this effect causes a complementary deflection of the entire fauch. The region of the first sub-deflector is an artificial dielectric containing several dozen metal coated holes (vias) within the dielectric layer (PCB dielectric media) of the waveguide. All the metal vias are discontinuous within the planar waveguide and are distinguished by a predetermined impedance, thereby resulting in an extra phase delay. That is, all the obstacles inside the waveguide have their own impedance characteristics, and thus the scattered wave is further delayed compared to the free waveguide region. The value of the dielectric constant and the phase delay depend on the height of the vias. To realize the maximum transparency of the deflection structure, the distance between the vias corresponds to about a quarter wavelength into the substrate.

제2서브 편향기의 영역은 수 십 개의 비금속 관통 홀(비아)를 포함하는, 기판의 유전율보다 낮은 유전율을 가진 인공 유전체이다. 이 경우의 관통 홀들은 공기로 채워지므로, 이 영역의 유효 유전율은 고형 유전체의 것보다 낮을 것이다. 유전율의 값은 홀들의 밀도와 직경으로 결정된다. 이 매체를 통과하면서 전파는 고형 유전체와 관련해 보완적 가속을 경험한다. 따라서, 여기서 파두의 추가 편향에 대한 이중 효과, 구체적으로 전방 일측의 감속 및 타측의 가속이 존재한다. 무편향 지향 모드(스캐닝 없이)가 생성될 때, 파두의 양측은 편향 구조의 대청적 형태로 인해 유사한 지연을 얻는다. 그러나, 파두는 안테나의 중간 부분에서 높은 전파 속도로 인해 왜곡되고, 이러한 왜곡은 방사기들에서 대응하는 위상 보정에 의해 보상될 수 있다. 또한, 편향 구조를 통과한 TEM(Transversal Electromagnetic) 파는 안테나의 엣지로 진행하여 공간으로 방사된다. The region of the second sub-deflector is an artificial dielectric with a dielectric constant lower than the dielectric constant of the substrate, including several tens of non-metallic through holes (vias). Since the through-holes in this case are filled with air, the effective permittivity of this region will be lower than that of the solid dielectric. The value of the permittivity is determined by the density and diameter of the holes. As it passes through this medium, radio waves experience complementary acceleration with respect to the solid genome. Thus, here, there is a double effect on the additional deflection of the wave, specifically a deceleration on the front side and an acceleration on the other side. When an omnidirectional oriented mode (without scanning) is generated, both sides of the wave get similar delays due to the lunar configuration of the deflection structure. However, the wave is distorted due to the high propagation velocity in the middle portion of the antenna, and such distortion can be compensated by the corresponding phase correction in the emitters. In addition, a TEM (Transversal Electromagnetic) wave that has passed through the deflection structure propagates to the edge of the antenna and radiates into the space.

PCB 두께에 의해 제한되는 극도로 낮은 평면 도파로의 높이로 인해, 방사 효율성은 매우 낮다. 그러할 경우, 본 발명의 실시예들 중 하나에 따르면, 높은 방사 효율을 구현하게 할 수 있는 수직 편파에서 수평 편파로의 변환 사용이 제안된다. 평면 도파로의 엣지에 도달한 수평 편파 전파는 평면 도파로의 엣지에 할당된 지수적 변이 형태의 테이퍼들에 의해 채널 그룹들로 분배된다. 이러한 테이퍼들은 평면 도파로의 확장을 나타낸다. 지수적 변이 형태의 테이퍼를 통과한 모든 분할된 전파는 수평 지향 다이폴로 입력된다. 다이폴의 모든 암(arm)은 평면 도파로의 상부 또는 하위 그라운드의 연속이다. 다이폴들의 유효 길이는 충분하게 설계하여(약 1/2 파장), 공간 정합 및 방사는 매우 양호하다. 전체 지향성 증가의 관점에서, 모든 다이폴 앞에 디렉터가 배치된다.Because of the height of the extremely low planar waveguide, which is limited by the PCB thickness, the radiation efficiency is very low. If so, according to one of the embodiments of the present invention, the use of conversion from vertical polarization to horizontal polarization, which can realize high radiation efficiency, is proposed. The horizontal polarization propagation that reaches the edge of the planar waveguide is distributed to the channel groups by the exponential transition type tapers assigned to the edge of the planar waveguide. These tapers represent an extension of the planar waveguide. All divided waves that pass through the taper of the exponential transition type are input to the horizontal oriented dipole. Every arm of the dipole is a continuation of the upper or lower ground of the planar waveguide. The effective length of the dipoles is designed to be sufficient (about 1/2 wavelength), and the spatial matching and radiation is very good. From the perspective of increasing the overall directionality, the directors are placed before all the dipoles.

또 다른 실시예에서, 도파로의 두께를 늘려서 편파 변환의 필요성을 제거할 경우에, 안테나 구조를 보다 용이하게 구현할 수 있다. 실시예들 중 일례에 따라, 그러한 경우 안테나는 평면 도파로의 평활한 엣지에서 끝나고, 방사의 편파는 수직이 된다. 상부 그라운드는 하위 그라운드보다 보다 그 층의 형성 거리가 짧다. 하위 그라운드와 결합된 유전체 층의 돌출부가 평면 도파로와 공간 사이에서 정합 변환기로서의 역할을 한다.In yet another embodiment, the antenna structure can be implemented more easily when the thickness of the waveguide is increased to eliminate the need for polarization conversion. According to one of the embodiments, in such a case, the antenna ends at the smooth edge of the planar waveguide, and the polarization of the radiation becomes vertical. The upper ground has a shorter formation distance of the layer than the lower ground. The protrusion of the dielectric layer combined with the sub-ground serves as a matching transducer between the planar waveguide and the space.

본 발명은 첨부된 도면을 참조하여 보다 상세히 기재될 것이다.
도 1a, 도 1b 및 도 1c는 빔 스캐닝이 개선되는 본 발명의 일 실시예에 따른 평면 위상 어레이 안테나의 전체적인 형태를 나타낸다.
도 2a 및 도 2b는 편향 구조 성분들의 패턴을 보여준다.
도 3은 빔 편향 과정을 도시한다.
도 4는 다이폴(dipole)에 의해 종단된 평면 도파로의 엣지를 보여준다.
도 5는 수직 편파 방사를 구현하는 안테나의 다른 실시예를 나타낸다.
도 6a 및 도 6b는 E-평면과 H-평면 모두에 대한 방사 패턴들의 차트를 나타낸다.
도 7은 미국 특허 제6,496,155에 기재된 유사기술에 대한 도면을 나타낸다.
도 8은 "Beamforming Lens Antenna on a High Resistivity Silicon Wafer for 60 GHz WPAN(60 GHz WPAN을 위한 고저항성 실리콘 웨이퍼 상의 빔포밍 렌즈 안테나)”(IEEE Transaction of Antennas and Propagation vol.58, No3, March 2010) 문서에 기재된 유사기술의 도면을 나타낸다.
도 9는 미국 특허 제6,987,493에 기재된 유사기술에 대한 도면을 나타낸다.
도 10은 미국 특허 제8,493,281에 기재된 유사기술에 대한 도면을 나타낸다.
The invention will be described in more detail with reference to the accompanying drawings.
FIGS. 1A, 1B and 1C show a general form of a planar phased array antenna according to an embodiment of the present invention in which beam scanning is improved.
2A and 2B show a pattern of deflecting structural components.
3 shows a beam deflection process.
Figure 4 shows the edge of a planar waveguide terminated by a dipole.
Figure 5 shows another embodiment of an antenna implementing vertical polarization radiation.
Figures 6A and 6B show a chart of radiation patterns for both the E-plane and the H-plane.
Figure 7 shows a diagram of a similar technique as described in U.S. Patent No. 6,496,155.
8 is a schematic diagram of a beamforming lens antenna on a high-resistivity silicon wafer for a 60 GHz WPAN (IEEE Transactions on Antennas and Propagation, Vol. 58, No 3, March 2010), "Beamforming Lens Antenna on a High Resistivity Silicon Wafer for 60 GHz WPAN" Figure 5 shows a drawing of the similar technique described in the document.
Figure 9 shows a diagram of a similar technique as described in U.S. Patent No. 6,987,493.
Figure 10 shows a diagram of a similar technique as described in U.S. Patent No. 8,493,281.

도 1a 내지 도 1c는 스캐닝 각도가 개선되는 평면 선형 위상 어레이 안테나에 대한 본 발명의 일 실시예에 따른 전체 모양을 도시하며, 도 1a는 평면도, 도 1b는 측면도 도 1c는 사시도를 나타낸다. 도 1a 내지 도 1c를 참조하면, 방사 어레이는 상부 그라운드(3)와 하위 그라운드(4) 사이의 유전체 층(2) 안에 배치된 수직 모노폴들(1)의 열로 나타난다. 본 발명의 주제는 모노폴들(monopoles)의 개수를 제한하지 않는다. 방사기들(모노폴들)의 개수는 설계 요건들에 따라 적절히 선택된다. 상기 상부 그라운드(3)와 하위 그라운드(4)는 동박 등과 같은 얇은 금속 층의 구조로 구현되며, 상기 유전체 층(2)과 조합하여 전체적으로 PCB 구조와 유사한 구조를 형성한다. 유전체 층(2), 상부 그라운드(3) 및 하위 그라운드(4)의 조합이 평면 도파로(planar waveguide)를 형성한다. 평면 도파로의 저 임피던스를 통한 우수한 정합을 얻기 위해, 모든 모노폴(1)의 상위 부분의 반경은 하위 부분의 반경보다 크다. 어레이는 평면 도파로의 공간 안으로 수직 편파의 TEM 파를 조사한다. 일방향 전파(propagation)를 제공하기 위해, 후방 측에 공통 반사기(reflector)(5)가 유전체 층(2) 안에서 약 처리 주파수의 1/4 파장의 거리만큼 떨어져 모노폴들(1)의 뒤에 위치한다. 여기(exciting) 위상이 모든 모노폴에 있어 동일할 때, 파두는 어레이에 대해 법선 방향으로 전파된다. 전파 방향은 모노폴들(1) 사이의 위상 차에 의해 유발되는 다소의 편향을 가진다. 모노폴들(1)로부터 평면 도파로 엣지(6)로 파두의 전파 과정에서, 평면 파(planar wave)는 제1 및 제2서브 편향기들(7a 및 7b)로 구성된 편향 구조의 영역을 통과한다. 편향 구조의 평면적 형태는 실린더의 일부분에 해당하는 모양이며, 실린더의 모선(generator)은 상부 및 하위 그라운드들(3, 4)에 대해 수직이다.Figs. 1A to 1C show the overall shape of a planar linear phased array antenna with an improved scanning angle according to an embodiment of the present invention, wherein Fig. 1A is a plan view, Fig. 1B is a side view and Fig. 1C is a perspective view. 1A through 1C, the radiation array appears as a row of vertical monopoles 1 arranged in a dielectric layer 2 between a top ground 3 and a bottom ground 4. The subject matter of the present invention does not limit the number of monopoles. The number of emitters (monopoles) is appropriately selected according to design requirements. The upper ground 3 and the lower ground 4 are implemented with a thin metal layer structure such as a copper foil and combined with the dielectric layer 2 to form a structure similar to the PCB structure as a whole. The combination of dielectric layer 2, top ground 3 and bottom ground 4 forms a planar waveguide. In order to obtain excellent matching through the low impedance of the planar waveguide, the radius of the upper part of all the monopoles (1) is larger than the radius of the lower part. The array irradiates a TEM wave of vertical polarization into the space of the planar waveguide. In order to provide one-way propagation, a common reflector 5 on the rear side is located behind the monopoles 1 by a distance of a quarter of the wavelength of the processing frequency in the dielectric layer 2. When the exciting phase is the same for all monopoles, the fringes propagate in the normal direction relative to the array. The propagation direction has some deflection caused by the phase difference between the monopoles (1). In the process of propagating the wave from the monopoles 1 to the plane waveguide edge 6, a planar wave passes through the region of the deflection structure composed of the first and second sub deflectors 7a and 7b. The planar shape of the deflection structure is a shape corresponding to a portion of the cylinder, and the generator of the cylinder is perpendicular to the upper and lower grounds 3, 4.

도 2a 및 도 2b는 상부 및 하위 서브 편향기들(7a, 7b)의 구성요소들의 패턴을 보여준다. 제1서브 편향기(7a)의 실린더의 밑면은 법선 방향으로부터(즉, 중앙 지점에서) 측면을 향하여 증가되는 면적을 가진 말발굽 모양을 가진다. 제1서브 편향기(7a)의 영역은 홀(비아)(8)들로 채워진다. 상기 홀(8)들은 예를 들어, 비관통형 홀 형상이다. 금속피막된 홀(8)들은 편향기의 최대 투과도를 얻기 위해 서로 약 1/4 파장 간격으로 떨어져 있다. 수 십 개의 금속피막된 홀(8)들은 전파된 전파의 보완적 위상 지연으로 인해 인공 유전체의 특성을 가진다. 이러한 지연은 평면 도파로의 안에서의 소정 불연속성에 따른 금속 비아(홀)의 소정 리액턴스에 의해 유발된다. 이러한 인공 유전체의 유전율은 유전체 층(2)의 유전율보다 높다.2A and 2B show the pattern of the components of the upper and lower sub-deflectors 7a and 7b. The bottom surface of the cylinder of the first sub-deflector 7a has a horseshoe shape with an increased area toward the side from the normal direction (i.e., at the center point). The region of the first sub-deflector 7a is filled with holes (vias) 8. The holes 8 are, for example, non-through holes. The metallized holes 8 are spaced about one quarter wavelength apart from each other to obtain the maximum transmittance of the deflector. Several dozen metal-coated holes 8 have the properties of an artificial dielectric due to the complementary phase delay of propagated radio waves. This delay is caused by the predetermined reactance of the metal vias (holes) according to certain discontinuities in the planar waveguide. The dielectric constant of such an artificial dielectric is higher than the dielectric constant of the dielectric layer 2.

추가적 편향의 효과를 의도적으로 개선하기 위해, 제2서브 편향기(7b)가 구현된다. 제2서브 편향기(7b)의 위치는 제1편향기(7a)와 모노폴들(1) 사이에 있다. 여기서는 제1서브 편향기(7b)와는 달리, 제2서브 편향기(7b) 영역은 예를 들어, 비금속성 관통 형태인, 빈(hollow) 홀(9)들로 채워진다. 이러한 빈 홀(9들에 의해 관통된 유전체 층(2)의 유전율은 고형 유전체의 유전율보다 낮다. 제2서브 편향기(7b) 영역은 제1서브 편향기(7a)에 인접하며, 이 영역의 평면적 윤곽(profile)은 제1서브 편향기(7a)의 반대이다. 특히, 제2서브 편향기(7b) 영역의 평면적 형태로 볼 경우에 그 면적은 방사기들의 열에 대해 법선 방향으로 최대이고 양편으로 갈수록 완만하게 좁아진다. 이러한 제2서브 편향기(7b)의 구조는 실제로, 상기 평면 도파로를 형성하는 유전체 층에 다수의 구멍들이 뚫린 영역으로 간주할 수 있다.To intentionally improve the effect of additional deflection, a second sub-deflector 7b is implemented. The position of the second sub deflector 7b is between the first deflector 7a and the monopoles 1. Here, unlike the first sub-deflector 7b, the area of the second sub-deflector 7b is filled with hollow holes 9, for example, non-metallic through-holes. The dielectric constant of the dielectric layer 2 penetrated by these hollow holes 9 is lower than the dielectric constant of the solid dielectric. The second sub-deflector 7b region is adjacent to the first sub-deflector 7a, The planar profile is opposite to the first sub-deflector 7a. In particular, when viewed in planar form in the area of the second sub-deflector 7b, its area is maximum in the normal direction with respect to the rows of emitters, The structure of the second sub-deflector 7b can actually be regarded as a region where a plurality of holes are formed in the dielectric layer forming the planar waveguide.

파두 전파 과정이 도 3에 도시된다. 파두(10)가 모노폴들(1)을 여기시키는 신호들 간 위상 쉬프트로 인해 Θ1만큼 편향될 때, 어레이에 가깝게 놓여진 파두의 일측은 제1서브 편향기(7a) 내부에서 지연되는 전파 경로들의 길이 차이로 인해 반대측보다 더 지연될 수 있다. 반대로 파두의 다른 일측(즉, 상기 반대측)은 인공 유전체의 보다 낮은 유전율을 가진 제2편향기(7b) 내부의 보다 긴 경로로 인해 가속된다. 따라서, 파두의 일측의 감속 및 다른(반대) 측의 가속이라는, 파두(10) 편향의 이중 효과가 있게 된다. 이에 따라, 초기 스캐닝 각도는 보완 값 Ψ를 획득한다. 따라서, 예를 들어 스캐닝 각도 ± 60도가 약 ± 75-80도로 확장된다. 일반적인 전파(빔 편향이 없는)의 경우, 파두의 양측은 동일한 지연을 가지는데, 이는 경로들이 대칭적이고 보완적 편향이 존재하지 않기 때문이다.The faded propagation process is shown in Fig. One side of the waveguide placed close to the array is deflected by? 1 due to the phase shift between the signals that excite the monopole (1) Can be delayed more than the other side due to the difference in length. Conversely, the other side (i.e., the opposite side) of the waveguide is accelerated by a longer path inside the second deflector 7b having a lower dielectric constant of the artificial dielectric. Thus, there is a dual effect of the decapitation 10, namely deceleration on one side of the wave and acceleration on the other (opposite) side. Thus, the initial scanning angle obtains the complementary value [Psi]. Thus, for example, a scanning angle of +/- 60 degrees extends to about +/- 75-80 degrees. In the case of typical radio waves (without beam deflection), both sides of the wave have the same delay because the paths are symmetrical and there is no complementary deflection.

편향 구조 다음에, 산란된 TEM 전파는 평면 도파로 엣지(6)에 도달한다. 그러나 극히 낮은 도파로 높이(두께)로 인해 수직 편파된 전파의 방사는 미미할 수 있다. 도파로의 최대 높이는 PCB의 두께에 의해 제한된다. 전파에 대한 공간(space)과의 충분한 정합은 수직 편파의 수평 편파로의 변환에 의해 구현될 수 있다.Following the deflection structure, scattered TEM propagation reaches the planar waveguide edge 6. However, due to the extremely low waveguide height (thickness), the radiation of vertically polarized radio waves may be negligible. The maximum height of the waveguide is limited by the thickness of the PCB. Sufficient matching with space for radio waves can be realized by conversion of vertical polarization into horizontal polarization.

편파 변환의 상세 구조가 도 4에 묘사된다. 평면 도파로의 엣지에서의 전파는 지수적 변이 형태의 테이퍼(taper)들(11)에 의해 분배 및 분할된다. 테이퍼(11)들은 평면 도파로의 확장부분이 된다. 또한, 상기 산란된 분할 전파들은 예를 들어, 열 두어개의 수평 다이폴들(12)을 통해 방사된다. 수평 지향 다이폴들의 길이는 전체 안테나를 공간과 효율적인 정합이 되게 하기에 충분하게 설계된다. 지향성 개선의 관점에서, 추가적으로 디렉터(director)(13)가 모든 다이폴(12)들의 방사 방향의 전단에 설치되어, 방사 빔의 방사 방향을 유도하도록 구성할 수 있다.The detailed structure of the polarization conversion is depicted in FIG. The propagation at the edge of the plane waveguide is divided and divided by tapers 11 in the form of exponential transition. The tapers 11 become extended portions of the planar waveguide. Further, the scattered divided radio waves are radiated through twelve horizontal dipoles 12, for example. The length of the horizontally oriented dipoles is designed to be sufficient to make the entire antenna an efficient match to the space. In terms of improving the directivity, a director 13 may additionally be provided at the radial front of all the dipoles 12 to direct the radiation direction of the radiation beam.

상기 지수적 변이 형태의 테이퍼들(11)은 상부 그라운드(3) 및 하위 그라운드(4) 각각에서 금속 층에 연장되는 금속 패턴의 형태로 형성될 수 있다. 또한, 상기 수평 다이폴들(12)은 각각 2개의 암 조합으로 구성될 수 있는데, 하나의 암은 상부 그라운드 상부 그라운드(3)에 형성된 테이퍼와 연결되는 금속 패턴의 형태로 형성되며, 다른 하나의 암은 하위 그라운드(4)에 형성된 테이퍼와 연결되는 금속 패턴의 형태로 형성될 수 있다. 또한 상기 디렉터(13)는 예를 들어. 하위 그라운드(4)에 형성되는 다이폴 암의 전단에서 적절한 형태(예를 들어, 사각 막대 형태)의 금속 패턴의 형태로 형성될 수 있다. The exponential transition type tapers 11 may be formed in the form of a metal pattern extending in the metal layer in each of the upper ground 3 and the lower ground 4. Each of the horizontal dipoles 12 may be formed of a combination of two arms. One arm is formed in the form of a metal pattern connected to a taper formed on the upper ground upper ground 3, May be formed in the form of a metal pattern connected to a taper formed on the lower ground (4). The director 13 may also be, for example, May be formed in the form of a metal pattern of a suitable shape (for example, in the form of a square bar) at the front end of the dipole arm formed in the lower ground 4.

본 발명의 실시예들 중 하나에 따른 안테나의 방사 영역이 도 5에 도시된다.An emission region of an antenna according to one of the embodiments of the present invention is shown in Fig.

도 6a 및 도 6b는 E-평면과 H-평면 각각에 대한 방사 패턴들의 차트를 나타낸다.Figures 6A and 6B show a chart of radiation patterns for the E-plane and the H-plane, respectively.

사실상 안테나 구조는 보다 간단할 수 있다. 따라서, 예를 들어, 도 5에 도시된 바와 같이, 특정 응용예에서 보다 두꺼운 유전체 층(2)을 취하는 것이 가능한 경우, 편파 변환의 필요성이 사라질 수 있는데, 이는 높은(두꺼운) 평면 도파로의 공간과의 정합이 우수하기 때문이다. 이 경우, 안테나는 평면 도파로의 평활한 엣지에서 끝나고, 방사의 편파는 수직이 된다. 상부 그라운드(3)는 하위 그라운드(4) 보다 그 금속 층의 형성 거리가 짧다. 유전체 층(3)은 하위 그라운드(4)에 대응되게 형성되며, 이에 따라 유체 층(2)의 가장자리 부위에는 상부 그라운드(3)에 의해 커버되지 않은 돌출부(14)가 형성된다. 유전체 층(2)의 돌출부(14)는 하위 그라운드(4)와 조합하여 평면 도파로와 공간 사이에서 정합 변환기로서의 역할을 한다. 그러나, 이러한 안테나 버전의 구현을 위해서는 유전체 층(2)의 두께에 대한 강한 제한이 있어야 한다. 구체적으로, 안테나를 형성하는 유전체 층의 높이(두께)는 약 0.4 내지 0.5 λsp 이상이어야 한다. 이때 λsp는 유전체 층(2) 내에서 파장이다.In fact, the antenna structure can be simpler. Thus, if it is possible, for example, to take a thicker dielectric layer 2 in certain applications, as shown in Fig. 5, the need for polarization conversion can be eliminated, which results in a higher (thicker) Is excellent. In this case, the antenna ends at the smooth edge of the planar waveguide, and the polarization of the radiation becomes vertical. The upper ground 3 has a shorter formation distance of the metal layer than the lower ground 4. The dielectric layer 3 is formed corresponding to the lower ground 4 so that a protrusion 14 is formed at the edge of the fluid layer 2 and not covered by the upper ground 3. The protruding portion 14 of the dielectric layer 2 serves as a matching transducer between the planar waveguide and the space in combination with the lower ground 4. However, there is a strong restriction on the thickness of the dielectric layer 2 for the implementation of this antenna version. Specifically, the height (thickness) of the dielectric layer forming the antenna should be about 0.4 to 0.5 [lambda] sp or more. Where? Sp is the wavelength in the dielectric layer 2.

한편, 본 발명의 일부 실시예에서와 같이, 편파 변환구조를 가지도록 제안된 안테나에서, 안테나를 형성하는 유전체 층의 높이(두께)는 약 0.08 λ0 이상일 수 있고, 이때 λ0는 공간 내에서 파장이다.On the other hand, as in some embodiments of the invention, the proposed antenna so as to have a polarization conversion structure, the height (thickness) of the dielectric layer to form the antenna may be at least about 0.08 λ 0, wherein λ 0 is in the space Wavelength.

1-수직 모노폴
2-유전체 층
3-상부 그라운드
4-하위 그라운드
5-공통 반사기
6-도파로 엣지
7a, 7b-제1 및 제2서브 편향기
8-금속피막된 홀(비아)
9-빈 홀
10- 파두
11-지수적 변이 형태 테이퍼
12-수평 다이폴
13-디렉터
14-돌출부
15-무편향일 경우(즉, 메인 방사방향) 빔 패턴
16-최대 편향된 메인 빔
1-vertical monopole
2-Dielectric layer
3- Top Ground
4-sub ground
5- Common reflector
6-Waveguide Edge
7a and 7b-first and second sub deflectors
8-metal coated holes (vias)
9-empty hole
10-Faroo
11-Exponential transition type Taper
12-horizontal dipole
13-Director
14-
15- In the case of non-deflection (i.e., main radiation direction)
16-main deflected main beam

Claims (20)

평면 위상 어레이 안테나에 있어서,
상부 및 하위 그라운드들과 그들 사이의 유전체 층에 의해 형성되는 평면 도파로;
상기 평면 도파로 내부에서 전자기 파두(wave front)를 형성하기 위한 방사기들을 포함하는 위상 어레이;
상기 위상 어레이 뒤에 위치하는 후방 측 반사 구조; 및
상기 평면 도파로 안에서 상기 전자기 파두를 편향시키도록 상기 유전체 층 내부에 구현되는 편향 구조를 포함하고, 상기 편향 구조의 유전율 값은 상기 평면 도파로의 상기 유전체 층의 유전율 값과 다르게 설정됨을 특징으로 하는 평면 위상 어레이 안테나.
In a planar phased array antenna,
A planar waveguide formed by upper and lower grounds and a dielectric layer therebetween;
A phase array including emitters for forming an electromagnetic wave front within the planar waveguide;
A rear side reflective structure positioned behind the phased array; And
And a deflection structure implemented within the dielectric layer to deflect the electromagnetic wave in the plane waveguide, wherein the dielectric constant value of the deflection structure is set differently from the dielectric constant value of the dielectric layer of the planar waveguide. Array antenna.
제1항에 있어서, 상기 편향 구조는 상기 평면 도파로의 상기 유전체 층의 유전율보다 높은 유전율을 가지고, 상기 편향 구조의 평면상 넓이는 상기 방사기들의 열에 대한 중앙 법선에서 최소가 되고 양측에서 최대가 됨을 특징으로 하는 평면 위상 어레이 안테나.2. The structure of claim 1, wherein the deflection structure has a dielectric constant greater than that of the dielectric layer of the planar waveguide, wherein the planar extent of the deflection structure is at a minimum at the center normal to the row of radiators and maximum at both sides Plane phased array antenna. 제1항에 있어서, 상기 편향 구조는 서로 인접한 제1 및 제2서브 편향기들로 구성되고, 상기 제2서브 편향기는 상기 위상 어레이 및 상기 제1서브 편향기 사이에 배치되고, 상기 제1서브 편향기의 유전율은 상기 평면 도파로의 유전체 층의 유전율보다 높고, 상기 제1서브 편향기의 평면상 넓이는 상기 방사기들의 열에 대한 중앙 법선에서 최소가 되고 양측에서 최대가 되며, 상기 제2서브 편향기의 유전율은 상기 평면 도파로의 유전체 층의 유전율보다 낮고, 상기 제2서브 편향기의 평면상 넓이는 상기 방사기들의 열에 대한 중앙 법선에서 최대가 되고 양측에서 최소가 됨을 특징으로 하는 평면 위상 어레이 안테나.2. The apparatus of claim 1, wherein the deflection structure comprises first and second sub-deflectors adjacent to each other, the second sub-deflector being disposed between the phased array and the first sub-deflector, The permittivity of the deflector is higher than the permittivity of the dielectric layer of the planar waveguide and the planar extent of the first sub deflector is minimized at the center normal to the row of emitters and is maximized at both sides, Wherein the dielectric constant of the planar waveguide is lower than the dielectric constant of the dielectric layer of the planar waveguide and the planar width of the second sub deflector is maximum at the center normal to the row of radiators and minimum at both sides. 제1항에 있어서, 상기 위상 어레이는 선형 위상 어레이임을 특징으로 하는 평면 위상 어레이 안테나.2. The planar phased array antenna of claim 1, wherein the phased array is a linear phased array. 제1항에 있어서, 상기 방사기들은 수직 모노폴들 또는 루프 방사기들임을 특징으로 하는 평면 위상 어레이 안테나.2. The planar phased array antenna of claim 1, wherein the radiators are vertical monopoles or loop radiators. 제1항에 있어서, 상기 평면 위상 어레이 안테나는 전체적으로 PCB 유전체 기판 구조로 구현됨을 특징으로 하는 평면 위상 어레이 안테나.2. The planar phased array antenna of claim 1, wherein the planar phased array antenna is implemented as a PCB dielectric substrate structure. 제2항 또는 제3항에 있어서, 상기 제1서브 편향기의 영역은 금속피막된 홀들로 채워지게 형성되어 인공 유전체의 특성을 가짐을 특징으로 하는 평면 위상 어레이 안테나.The planar phased array antenna according to claim 2 or 3, wherein the region of the first sub-deflector is formed to be filled with metal coated holes to have a characteristic of an artificial dielectric. 제7항에 있어서, 상기 금속피막된 홀들은 서로 처리 주파수의 1/4 파장 간격으로 떨어지게 형성됨을 특징으로 하는 평면 위상 어레이 안테나.The planar phased array antenna according to claim 7, wherein the metal coated holes are formed to be separated from each other by a quarter wavelength of the processing frequency. 제3항에 있어서, 상기 제1서브 편향기는 평면 형태가 말발굽 모양을 가짐을 특징으로 하는 평면 위상 어레이 안테나.The planar phased array antenna according to claim 3, wherein the first sub-deflector has a horseshoe shape in plan view. 제3항에 있어서, 상기 제2서브 편향기의 영역은 빈 홀들로 채워진 유전체임을 특징으로 하는 평면 위상 어레이 안테나.4. The planar phased array antenna of claim 3, wherein the region of the second sub-deflector is a dielectric filled with voids. 제3항에 있어서, 상기 제2서브 편향기는 상기 제1서브 편향기의 내측에 인접하여 위치하고 평면 형태가 초승달 모양을 가짐을 특징으로 하는 평면 위상 어레이 안테나.4. The planar phased array antenna of claim 3, wherein the second sub deflector is located adjacent to the inside of the first sub deflector and has a crescent shape in plan view. 제1항에 있어서, 상기 평면 도파로는 반원 모양의 외관 경계를 가짐을 특징으로 하는 평면 위상 어레이 안테나.The planar phased array antenna of claim 1, wherein the planar waveguide has a semicircular outer boundary. 제1항에 있어서, 상기 평면 도파로의 외관 경계 모양은 타원, 포물선을 포함하는 대칭적 곡선들의 형태에서 선택됨을 특징으로 하는 평면 위상 어레이 안테나.The planar phased array antenna of claim 1, wherein the shape of the outer boundary of the planar waveguide is selected from symmetric curves including ellipses and parabolic lines. 제12항 또는 제13항에 있어서, 상기 방사 소자들은 상기 평면 도파로의 지름 또는 직경 상에 위치함을 특징으로 하는 평면 위상 어레이 안테나.14. The planar phased array antenna of claim 12 or 13, wherein the radiating elements are located on a diameter or diameter of the planar waveguide. 제1항에 있어서,
상기 상부 그라운드는 상기 하위 그라운드보다 거리가 짧게 형성됨을 특징으로 하는 평면 위상 어레이 안테나.
The method according to claim 1,
Wherein the upper ground is formed to have a shorter distance than the lower ground.
제1항에 있어서,
상기 평면 도파로 내 수직 편파 전파를 상기 평면 도파로의 외관 경계를 따라 형성되는 수평 편파 공간 전파로 변환하기 위한 변환기를 더 포함함을 특징으로 하는 평면 위상 어레이 안테나.
The method according to claim 1,
Further comprising a transducer for converting a vertical polarized wave in the plane waveguide into a horizontally polarized space propagation formed along an outer boundary of the plane waveguide.
제16항에 있어서, 상기 평면 도파로 내 수직 편파 전파의 수평 편파 공간 전파로의 변환을 제공하는 상기 변환기는 지수적 변이 형태의 테이퍼들과 결합된 수평 방향 다이폴들을 포함하는 평면 위상 어레이 안테나.17. The planar phased array antenna of claim 16, wherein the transducer providing the conversion of the horizontally polarized spatial propagation path of the vertical polarization propagation in the planar waveguide comprises horizontal directional dipoles combined with tapers of exponential transition type. 제16항에 있어서, 상기 지수적 변이 형태의 테이퍼들은 상기 평면 도파로의 엣지에서 상기 평면 도파로의 확장 구조로 제공되어 전파의 분할 및 분배를 수행함을 특징으로 하는 평면 위상 어레이 안테나.17. The planar phased array antenna of claim 16, wherein the exponential transition tapers are provided in an extended structure of the planar waveguide at an edge of the planar waveguide to perform division and distribution of the radio wave. 제18항에 있어서, 상기 수평 방향 다이폴들은 상기 분할 및 분배되는 전파들을 방사하는 평면 위상 어레이 안테나.19. The planar phased array antenna of claim 18, wherein the horizontal dipoles radiate the divided and distributed radio waves. 제17항에 있어서, 상기 수평 방향 다이폴들의 방사 방향 전단에는 방사 빔의 방향을 유도하는 디렉터가 형성됨을 특징으로 하는 평면 위상 어레이 안테나.18. The planar phased array antenna of claim 17, wherein a director is formed in the radial direction of the horizontal direction dipoles to direct the direction of the radiation beam.
KR1020150090368A 2014-07-15 2015-06-25 Planar linear phase array antenna with enhanced beam scanning KR102279931B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/800,034 US9590315B2 (en) 2014-07-15 2015-07-15 Planar linear phase array antenna with enhanced beam scanning

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2014129187 2014-07-15
RU2014129187/28A RU2583869C2 (en) 2014-07-15 2014-07-15 Planar linear phased array antenna with the extension beam scanning

Publications (2)

Publication Number Publication Date
KR20160008958A true KR20160008958A (en) 2016-01-25
KR102279931B1 KR102279931B1 (en) 2021-07-23

Family

ID=55306894

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150090368A KR102279931B1 (en) 2014-07-15 2015-06-25 Planar linear phase array antenna with enhanced beam scanning

Country Status (2)

Country Link
KR (1) KR102279931B1 (en)
RU (1) RU2583869C2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110326162A (en) * 2016-09-15 2019-10-11 艾尔康系统有限责任公司 Antenna assembly and the method for emitting electromagnetic wave using antenna assembly
WO2021138095A1 (en) * 2019-12-30 2021-07-08 Kymeta Corporation Radial feed segmentation using wedge plates radial waveguide

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU199128U1 (en) * 2019-12-24 2020-08-17 Федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина) Reflective antenna array

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6496155B1 (en) * 2000-03-29 2002-12-17 Hrl Laboratories, Llc. End-fire antenna or array on surface with tunable impedance

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6987493B2 (en) * 2002-04-15 2006-01-17 Paratek Microwave, Inc. Electronically steerable passive array antenna
RU2273926C1 (en) * 2004-07-16 2006-04-10 Федеральное Государственное Унитарное Предприятие "Государственный Рязанский Приборный Завод" Two-band phased antenna system using electronic beam control
RU2352033C1 (en) * 2007-07-20 2009-04-10 Открытое акционерное общество "Концерн радиостроения "Вега" Hybrid optical-type antenna with dilated angles of areal scanning

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6496155B1 (en) * 2000-03-29 2002-12-17 Hrl Laboratories, Llc. End-fire antenna or array on surface with tunable impedance

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110326162A (en) * 2016-09-15 2019-10-11 艾尔康系统有限责任公司 Antenna assembly and the method for emitting electromagnetic wave using antenna assembly
WO2021138095A1 (en) * 2019-12-30 2021-07-08 Kymeta Corporation Radial feed segmentation using wedge plates radial waveguide
US11855347B2 (en) 2019-12-30 2023-12-26 Kymeta Corporation Radial feed segmentation using wedge plates radial waveguide

Also Published As

Publication number Publication date
RU2583869C2 (en) 2016-05-10
RU2014129187A (en) 2016-02-10
KR102279931B1 (en) 2021-07-23

Similar Documents

Publication Publication Date Title
US9590315B2 (en) Planar linear phase array antenna with enhanced beam scanning
Bai et al. Modified compact antipodal Vivaldi antenna for 4–50-GHz UWB application
JP3958350B2 (en) High frequency device
US6864852B2 (en) High gain antenna for wireless applications
US8284102B2 (en) Displaced feed parallel plate antenna
AU613645B2 (en) Broadband notch antenna
US9318811B1 (en) Methods and designs for ultra-wide band(UWB) array antennas with superior performance and attributes
JPH02228104A (en) Wide band antenna
TW200843201A (en) Metamaterial antenna arrays with radiation pattern shaping and beam switching
CN105789877A (en) Four-beam microstrip transmission array antenna based on super-surface, and design method for four-beam microstrip transmission array antenna
EP3038206B1 (en) Augmented e-plane taper techniques in variable inclination continuous transverse stub antenna arrays
GB2564501A (en) A surface array antenna
CN108923112B (en) Antenna device and terminal equipment
KR102279931B1 (en) Planar linear phase array antenna with enhanced beam scanning
RU2435263C1 (en) Dual-band antenna
CN112271444B (en) High-gain dual-polarization SIW-CTS antenna array
Tekkouk et al. Folded Rotman lens multibeam antenna in SIW technology at 24 GHz
CN107546478B (en) Wide-angle scanning phased array antenna adopting special directional diagram array elements and design method
CN110190393B (en) High-gain gradient slot line antenna loaded by metal column lens
US20220278450A1 (en) Low-Profile Low-Cost Phased-Array Antenna-in-Package
CN111262023B (en) Novel low-profile phased array antenna based on near-field air feed mechanism
Chaharmir et al. Single-band and dual-band multilayer transmitarray antennas
EP3918668A1 (en) Leaky wave antenna
JP3701578B2 (en) Horizontal and vertical polarization antenna device
KR102293354B1 (en) Omni-directional antenna for mobile communication service

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right