KR20160008094A - 운전자의 운전 성향을 이용한 하이브리드 차량의 제어 방법 - Google Patents

운전자의 운전 성향을 이용한 하이브리드 차량의 제어 방법 Download PDF

Info

Publication number
KR20160008094A
KR20160008094A KR1020150078837A KR20150078837A KR20160008094A KR 20160008094 A KR20160008094 A KR 20160008094A KR 1020150078837 A KR1020150078837 A KR 1020150078837A KR 20150078837 A KR20150078837 A KR 20150078837A KR 20160008094 A KR20160008094 A KR 20160008094A
Authority
KR
South Korea
Prior art keywords
engine
level
driver
satisfied
propensity
Prior art date
Application number
KR1020150078837A
Other languages
English (en)
Other versions
KR101588794B1 (ko
Inventor
최용각
한훈
박일권
Original Assignee
현대자동차주식회사
기아자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사, 기아자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR1020150078837A priority Critical patent/KR101588794B1/ko
Publication of KR20160008094A publication Critical patent/KR20160008094A/ko
Application granted granted Critical
Publication of KR101588794B1 publication Critical patent/KR101588794B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K28/00Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions
    • B60K28/02Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions responsive to conditions relating to the driver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/08Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
    • B60W40/09Driving style or behaviour
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/30Driving style
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • Y02T10/7258

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

본 발명은 운전 성향을 이용한 하이브리드 차량의 제어 방법에 관한 것이다. 본 발명의 실시예에 따른 운전 성향을 이용한 하이브리드 차량의 제어 방법은, 운전자의 운전 성향을 판단하기 위한 데이터를 기초로 운전 성향 레벨을 결정하는 단계; 엔진이 정지된 상태에서 엔진 기동 조건을 만족하는지 판단하는 단계; 및 상기 엔진 기동 조건을 만족하면, 엔진 기동 제어를 수행하는 단계;를 포함할 수 있다.

Description

운전자의 운전 성향을 이용한 하이브리드 차량의 제어 방법{METHOD FOR CONTROLLING HYBRID ELECTRIC VEHICLE USING DRIVING TENDENCY OF DRIVER}
본 발명은 하이브리드 차량의 제어 방법에 관한 것으로서, 보다 상세하게는 운전자의 운전 성향을 이용하여 하이브리드 차량을 제어하는 방법에 관한 것이다.
주지하는 바와 같이 하이브리드 차량(hybrid electric vehicle)은 내연기관(internal combustion engine)의 동력과 모터의 동력을 효율적으로 조합하여 사용한다.
상기 하이브리드 차량은 엔진, 모터, 엔진과 모터 사이에서 동력을 단속하는 엔진 클러치, 변속기, 차동기어장치, 배터리, 상기 엔진을 시동하거나 상기 엔진의 출력에 의해 발전하는 시동 발전기(ISG; integrated starter & generator), 및 차륜을 통상적으로 포함한다. 상기 시동 발전기는 HSG(hybrid starter & generator)라 호칭될 수 있다.
상기 하이브리드 차량은 운전자의 가속 페달과 브레이크 페달의 조작에 따른 가감속 의지, 차속, 배터리의 충전 상태(SOC; state of charge) 등에 따라 엔진 클러치를 결합하거나 해제하여, 모터의 동력만을 이용하는 EV 모드(electric vehicle mode); 엔진의 회전력을 주동력으로 하면서 모터의 회전력을 보조동력으로 이용하는 HEV 모드(hybrid electric vehicle mode); 차량의 제동 혹은 관성에 의한 주행시 제동 및 관성 에너지를 상기 모터의 발전을 통해 회수하여 배터리에 충전하는 회생제동 모드(regenerative braking mode); 등의 주행 모드의 운행을 제공한다.
상기 하이브리드 차량은 엔진의 기계적 에너지와 배터리의 전기 에너지를 함께 이용하고, 엔진과 모터의 최적 작동영역을 이용함은 물론 제동시에는 에너지를 회수하므로 연비 향상 및 효율적인 에너지 이용이 가능하다.
그러나, 하이브리드 차량의 연비 및 배터리의 SOC는 운전자의 운전 성향에 따라 편차가 발생한다.
또한, 상기 하이브리드 차량의 주행 성능과 관련한 운전자의 만족도는 하이브리드 차량이 운전자의 운전 성향에 맞게 주행하느냐에 달려 있다. 그런데, 운전자의 운전 성향은 다양한 반면 동일한 차종에 대해서는 하이브리드 차량의 성능 특성이 하나의 성능 특성으로 정해져 있기 때문에 운전자의 운전 성향과 하이브리드 차량의 반응 사이에는 차이가 발생할 수 있다. 이에 따라, 운전자는 종종 하이브리드 차량의 주행 성능에 대하여 불만을 제기하게 된다. 즉, 운전자의 운전 성향을 파악하고 운전자의 운전 성향에 적합하게 하이브리드 차량을 제어하면 주행 성능과 관련한 운전자의 만족도를 극대화할 수 있다.
따라서, 본 발명은 상기한 바와 같은 문제점을 해결하기 위하여 창출된 것으로, 본 발명이 해결하고자 하는 과제는 운전자의 운전 성향을 이용하여 배터리의 SOC를 최적화하고 연비를 향상시킬 수 있는 하이브리드 차량의 제어 방법을 제공하는 것이다.
본 발명의 실시예에 따른 운전 성향을 이용한 하이브리드 차량의 제어 방법은, 운전자의 운전 성향을 판단하기 위한 데이터를 기초로 운전 성향 레벨을 결정하는 단계; 차속 및 요구 토크를 기초로 엔진 토크 맵을 이용하여 목표 엔진 토크를 결정하는 단계; 상기 운전 성향 레벨이 설정된 레벨에 해당하는지 판단하는 단계; 상기 운전 성향 레벨이 상기 설정된 레벨에 해당하면, 상기 요구 토크가 엔진의 최적 운전점에 해당하는 토크 이상인지를 판단하는 단계; 및 상기 요구 토크가 상기 엔진의 최적 운전점에 해당하는 토크 이상이면, 상기 목표 엔진 토크를 보정하는 단계;를 포함한다.
상기 목표 엔진 토크를 보정하는 단계에서는, 상기 목표 엔진 토크를 엔진의 부분 부하 최대 토크까지 증가시켜 모터 보조 토크를 감소시킬 수 있다.
상기 제어 방법은 상기 요구 토크가 상기 엔진의 최적 운전점에 해당하는 토크 미만이면, 최종 목표 엔진 토크를 상기 엔진의 최적 운전점에 해당하는 토크로 설정하는 단계;를 더 포함할 수 있다.
본 발명의 실시예에 따른 운전 성향을 이용한 하이브리드 차량의 제어 방법은, 운전자의 운전 성향을 판단하기 위한 데이터를 기초로 운전 성향 레벨을 결정하는 단계; 아이들 락업 충전 진입 조건을 만족하는지 판단하는 단계; 및 상기 아이들 락업 충전 진입 조건을 만족하면, 아이들 락업 충전 제어를 수행하는 단계;를 포함하되, 상기 아이들 락업 충전 진입 조건은 엔진이 구동 상태이고, 하이브리드 차량이 타력 주행 상태이며, 배터리의 SOC가 아이들 락업 충전 진입 SOC 이하이면 만족되고, 상기 아이들 락업 충전 진입 SOC는 상기 운전 성향 레벨에 따라 설정될 수 있다.
상기 아이들 락업 충전 제어를 수행하는 단계에서는, 엔진 클러치의 결합 상태를 유지시키고, 모터와 시동 발전기의 발전을 통해 상기 배터리를 충전할 수 있다.
상기 제어 방법은 아이들 락업 충전 해제 조건을 만족하는지 판단하는 단계; 및 상기 아이들 락업 충전 해제 조건을 만족하면, 아이들 락업 충전 제어를 해제하는 단계;를 더 포함하되, 상기 아이들 락업 충전 해제 조건은 상기 타력 주행 상태가 해제되거나 배터리의 SOC가 아이들 락업 충전 해제 SOC 이상이면 만족되고, 상기 아이들 락업 충전 해제 SOC는 상기 운전 성향 레벨에 따라 설정될 수 있다.
본 발명의 실시예에 따른 하이브리드 차량의 제어 방법은, 운전자의 운전 성향을 판단하기 위한 데이터를 기초로 운전 성향 레벨을 결정하는 단계; 상기 운전 성향 레벨에 따라 변속 패턴을 설정하는 단계; 및 상기 변속 패턴에 따라 변속 제어를 수행하는 단계;를 포함할 수 있다.
상기 운전 성향 레벨은 마일드 레벨, 정상 레벨, 공격 레벨, 및 레이서 레벨 중 어느 하나이고, 상기 변속 패턴은 상기 마일드 레벨에 대응하는 마일드 변속 패턴, 상기 정상 레벨에 대응하는 정상 변속 패턴, 상기 공격 레벨에 대응하는 공격 변속 패턴, 및 상기 레이서 레벨에 대응하는 레이서 변속 패턴 중 어느 하나일 수 있다.
상기 제어 방법은 상기 운전 성향 레벨에 따라 크립 토크 맵을 설정하는 단계; 및 차속 및 변속단을 기초로 상기 크립 토크 맵을 이용하여 크립 토크 제어를 수행하는 단계;를 더 포함하고, 상기 변속단은 상기 변속 패턴을 기초로 결정될 수 있다.
본 발명의 실시예에 따른 운전 성향을 이용한 하이브리드 차량의 제어 방법은, 운전자의 운전 성향을 판단하기 위한 데이터를 기초로 운전 성향 레벨을 결정하는 단계; 엔진이 정지된 상태에서 엔진 기동 조건을 만족하는지 판단하는 단계; 및 상기 엔진 기동 조건을 만족하면, 엔진 기동 제어를 수행하는 단계;를 포함하되, 상기 엔진 기동 조건은 운전자의 요구 파워가 제1 임계값 이상이면 만족되고, 상기 제1 임계값은 상기 운전 성향 레벨에 따라 설정될 수 있다.
상기 엔진 기동 조건은 누적 주행 에너지가 제2 임계값 이상이면 만족되고, 상기 누적 주행 에너지는 가속 페달의 위치값의 변화율이 양의 값인 구간에서 설정된 시간 동안의 요구 파워를 기초로 계산되며, 상기 제2 임계값은 상기 운전 성향 레벨에 따라 설정될 수 있다.
상기 제어 방법은, 엔진이 기동된 상태에서 엔진 정지 조건을 만족하는지 판단하는 단계; 및 상기 엔진 정지 조건을 만족하면, 엔진 정지 제어를 수행하는 단계;를 더 포함하되, 상기 엔진 정지 조건은 운전자의 요구 파워가 제3 임계값 이하이면 만족되고, 상기 제3 임계값은 상기 운전 성향 레벨에 따라 설정될 수 있다.
상술한 바와 같이 본 발명의 실시예에 따르면, 운전자의 운전 성향을 이용하여 하이브리드 차량을 제어함에 따라 배터리의 SOC를 최적화하고 연비를 향상시킬 수 있다. 또한, 운전자의 의지를 보다 정확히 변속에 반영할 수 있다.
도 1은 본 발명의 실시예에 따른 하이브리드 차량 제어 시스템을 도시한 블록도이다.
도 2는 본 발명의 실시예에 따른 운전 성향을 이용하여 엔진 토크를 제어하는 방법의 흐름도이다.
도 3은 본 발명의 실시예에 따른 엔진 토크 맵을 도시한 도면이다.
도 4는 본 발명의 실시예에 따른 운전 성향을 이용하여 배터리를 충전하는 방법의 흐름도이다.
도 5는 본 발명의 실시예에 따른 배터리를 충전하는 방법을 설명하기 위한 도면이다.
도 6은 본 발명의 실시예에 따른 운전 성향을 이용하여 변속 제어 및 크립 토크 제어를 수행하는 방법의 흐름도이다.
도 7은 본 발명의 실시예에 따른 변속 패턴을 예시한 도면이다.
도 8은 본 발명의 실시예에 따른 운전 성향을 이용하여 엔진 기동 제어를 수행하는 방법의 흐름도이다.
이하에서는 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다.
또한, 도면에서 나타난 각 구성은 설명의 편의를 위해 임의로 나타내었으므로, 본 발명이 반드시 도면에 도시된 바에 한정되지 않는다.
도 1은 본 발명의 실시예에 따른 하이브리드 차량의 제어 시스템을 도시한 블록도이다.
도 1에 도시된 바와 같이, 본 발명의 실시예에 따른 하이브리드 차량의 제어 시스템은 엔진(10), 모터(20), 엔진(10)과 모터(20) 사이에서 동력을 단속하는 엔진 클러치(30), 변속기(40), 배터리(50), 엔진(10)을 시동하거나 엔진(10)의 출력에 의해 발전하는 시동 발전기(60), 차동기어장치(70), 휠(80), 데이터 검출부(90), 및 제어 유닛(100)을 포함한다.
하이브리드 차량의 동력 전달은 엔진(10) 또는 모터(20)에서 발생된 동력이 변속기(40)의 입력축에 선택적으로 전달되고, 변속기(40)의 출력단으로부터 출력된 동력이 차동기어장치(70)를 경유하여 차축에 전달된다. 차축이 휠(80)을 회전시킴으로써 엔진(10) 또는 모터(20)에서 발생된 동력에 의해 하이브리드 차량이 주행한다.
배터리(50)는 고전압이 저장되며 EV 모드 및 HEV 모드에서 모터(20)에 구동전압을 공급하고, 회생제동 모드에서 모터(20)를 통해 회수되는 전기를 통해 충전될 수 있다.
제어 유닛(100)은 하이브리드 차량의 상태에 따라 엔진(10) 및 모터(20)의 출력 토크를 제어하고, 운전 조건 및 배터리(50)의 충전 상태(state of charge; SOC)에 따라 EV 모드, HEV 모드, 및 회생제동 모드로 하이브리드 차량을 구동시킨다.
데이터 검출부(90)는 운전자의 운전 성향을 판단하기 위한 데이터를 검출하며, 데이터 검출부(90)에서 검출된 데이터는 제어 유닛(100)으로 전달된다.
데이터 검출부(90)는 가속 페달 위치 검출부(91), 브레이크 페달 위치 검출부(92), 차속 검출부(93), SOC 검출부(94), 차간 거리 검출부(95), 엔진 회전수 검출부(96), 및 변속단 검출부(97)를 포함할 수 있다.
가속 페달 위치 검출부(91)는 가속 페달의 위치값(가속 페달이 눌린 정도)을 측정하여 이에 대한 신호를 제어 유닛(100)에 전달한다. 가속 페달이 완전히 눌린 경우에는 가속 페달의 위치값이 100%이고, 가속 페달이 눌리지 않은 경우에는 가속 페달의 위치값이 0%이다. 가속 페달 위치 검출부(91)를 사용하는 대신 흡기 통로에 장착된 스로틀 밸브 개도 검출부를 사용할 수 있다. 따라서, 본 명세서 및 특허청구범위에서 가속 페달 위치 검출부(91)는 스로틀 밸브 개도 검출부를 포함하고 가속 페달 위치값은 스로틀 밸브의 개도를 포함하는 것으로 보아야 할 것이다.
브레이크 페달 위치 검출부(92)는 브레이크 페달의 위치값(브레이크 페달이 눌린 정도)을 측정하여 이에 대한 신호를 제어 유닛(100)에 전달한다. 브레이크 페달이 완전히 눌린 경우에는 브레이크 페달의 위치값이 100%이고, 브레이크 페달이 눌리지 않은 경우에는 브레이크 페달의 위치값이 0%이다.
차속 검출부(93)는 차속을 검출하고 이에 대한 신호를 제어 유닛(100)에 전달한다. 차속 검출부(93)는 차량의 휠에 장착될 수 있다.
한편, 상기 가속 페달 위치 검출부(91)의 신호와 상기 차속 검출부(93)의 신호를 기초로 변속 패턴을 이용하여 목표 변속단이 계산될 수 있으며, 목표 변속단으로의 변속이 제어된다. 즉, 복수개의 유성기어세트와 복수개의 마찰요소가 구비된 자동변속기의 경우에는 복수개의 마찰요소에 공급되거나 복수개의 마찰요소로부터 해제되는 유압이 조절된다. 또한, 이중 클러치 변속기의 경우에는 복수개의 싱크로나이저 기구 및 액츄에이터에 가해지는 전류가 제어된다.
SOC 검출부(94)는 배터리(50)의 SOC를 검출하고 이에 대한 신호를 제어 유닛(100)에 전달한다. 배터리(50)의 SOC를 직접 검출하는 대신 배터리(50)의 전류 및 전압을 측정하고 이로부터 배터리(50)의 SOC를 예측할 수도 있다.
차간 거리 검출부(95)는 상기 하이브리드 차량과 앞차와의 거리를 검출한다. 차간 거리 검출부(95)로는 초음파 센서, 적외선 센서 등 다양한 센서들이 사용될 수 있다.
엔진 회전수 검출부(96)는 크랭크 샤프트의 위상 변화로부터 엔진의 회전수를 검출하고 이에 대한 신호를 제어 유닛(100)에 전달한다.
변속단 검출부(97)는 현재 체결되어 있는 변속단을 검출한다.
제어 유닛(100)은 설정된 프로그램에 의하여 동작하는 하나 이상의 마이크로프로세서로 구현될 수 있으며, 상기 설정된 프로그램은 후술하는 본 발명의 실시예에 따른 하이브리드 차량의 제어 방법에 포함된 각 단계를 수행하기 위한 일련의 명령을 포함하는 것으로 할 수 있다.
제어 유닛(100)은 데이터 검출부(90)에서 검출된 데이터를 기초로 운전자의 운전 성향 레벨을 결정한다. 상기 운전 성향 레벨은 상기 데이터를 기초로 계산되는 운전 성향 지수에 따라 결정될 수 있다. 상기 운전 성향 지수는 운전자의 성향과 관련된 복수개의 룰을 얼마나 잘 만족하는지를 기초로 계산될 수 있다. 상기 복수개의 룰은 당업자가 운전자의 운전 성향을 판단하기에 적절하다고 생각하는 가정으로 미리 정해질 수 있다. 예를 들어, 상기 운전 성향 지수는 가속 페달의 위치값, 가속 페달의 위치값의 변화율, 브레이크 페달의 위치값, 브레이크 페달의 위치값의 변화율, 차속, 가속도, 차간 거리, 및 차간 거리 변화율 등을 기초로 계산될 수 있다.
상기 운전 성향 레벨은 마일드 레벨(mild level), 정상 레벨(normal level), 공격 레벨(aggressive level), 및 레이서 레벨(racer level) 중 어느 하나일 수 있다. 상기 마일드 레벨, 정상 레벨, 공격 레벨, 및 레이서 레벨 순서로 연비 및 배터리(50)의 SOC가 저하되는 경향이 있다.
상기 운전 성향 지수를 계산하는 방법, 상기 운전 성향 레벨의 개수, 및 운전 성향 레벨을 결정하는 방법은 이에 한정되지 않으며, 당업자에 의해 다양하게 구현될 수 있다.
제어 유닛(100)은 결정된 운전 성향 레벨에 따라 하이브리드 차량을 제어한다. 즉, 제어 유닛(100)는 운전 성향 레벨에 따라 엔진 토크를 제어하고, 배터리의 SOC를 제어하며, 변속 제어를 수행하고, 크립 토크 제어를 수행하며, 엔진 기동 제어를 수행한다.
이와 같이, 운전 성향을 이용하여 하이브리드 차량을 적절히 제어함에 따라 연비 및 배터리의 SOC를 개선시킬 수 있고, 운전 성향에 적합하게 변속이 수행될 수 있다.
이하, 도 2 내지 도 8을 참고로 하이브리드 차량을 제어하는 방법을 구체적으로 설명하기로 한다.
도 2는 본 발명의 실시예에 따른 운전 성향을 이용하여 엔진 토크를 제어하는 방법의 흐름도이다. 도 3은 본 발명의 실시예에 따른 엔진 토크 맵을 도시한 도면이다.
도 2 및 도3에 도시된 바와 같이, 본 발명의 실시예에 따른 엔진 토크를 제어하는 방법은 운전자의 운전 성향을 판단하기 위한 데이터를 기초로 운전 성향 레벨을 결정함으로써 시작된다(S110). 즉, 제어 유닛(100)은 데이터 검출부(90)에서 검출된 데이터를 기초로 운전 성향 지수를 계산하고, 운전 성향 지수에 따라 운전자의 운전 성향 레벨을 결정한다. 상기 운전 성향 레벨은 마일드 레벨, 정상 레벨, 공격 레벨, 및 레이서 레벨 중 어느 하나일 수 있다.
제어 유닛(100)은 차속 및 요구 토크를 기초로 엔진 토크 맵을 이용하여 목표 엔진 토크를 설정한다(S120). 상기 운전자의 요구 토크는 가속 페달의 위치값 및 차속을 기초로 계산될 수 있으며, 상기 엔진 토크 맵에는 주어진 조건에 해당하는 목표 엔진 토크가 저장되어 있다. 통상적으로 엔진의 최적 운전점(optimal operatiing point)에 해당하는 토크가 목표 엔진 토크로 설정된다.
운전 성향 레벨이 결정되면, 제어 유닛(100)은 운전 성향 레벨이 설정된 레벨에 해당하는지 판단한다(S130). 상기 설정된 레벨은 상기 공격 레벨 또는 레이서 레벨일 수 있으나, 이에 한정되지 않는다.
S130 단계에서 상기 운전 성향 레벨이 상기 설정된 레벨에 해당하지 않으면, 제어 유닛(100)은 상기 엔진의 최적 운전점에 해당하는 토크를 최종 목표 엔진 토크로 설정할 수 있다(S160).
S130 단계에서 상기 운전 성향 레벨이 상기 설정된 레벨에 해당하면, 제어 유닛(100)은 상기 요구 토크가 상기 엔진의 최적 운전점에 해당하는 토크 이상인지를 판단한다(S140).
S140 단계에서 상기 요구 토크가 상기 엔진의 최적 운전점에 해당하는 토크 미만이면, 제어 유닛(100)은 상기 엔진의 최적 운전점에 해당하는 토크를 최종 목표 엔진 토크로 설정할 수 있다(S160).
S140 단계에서 상기 요구 토크가 상기 엔진의 최적 운전점에 해당하는 토크 이상이면, 제어 유닛(100)은 상기 목표 엔진 토크를 보정한다(S150). 이때, 제어 유닛(100)은 상기 목표 엔진 토크를 엔진의 부분 부하 최대(part-load max) 토크까지 증가시킬 수 있다. 제어 유닛(100)은 보정된 목표 엔진 토크를 최종 목표 엔진 토크로 설정할 수 있다(S160).
상기 요구 토크는 목표 엔진 토크와 모터 보조(assist) 토크의 합으로 구현된다. 따라서, 엔진의 최적 운전점에 해당하는 토크를 목표 엔진 토크로 설정하는 경우 요구 토크가 과도하게 증가하면 모터 보조 토크가 과도하게 증가하여 배터리(50)의 SOC가 과도하게 저하된다. 반면에, 엔진의 부분 부하 최대 토크까지 목표 엔진 토크를 출력하면 모터 보조 토크를 감소시킬 수 있다. 따라서, 배터리(50)의 SOC가 과도하게 저하되는 것을 방지할 수 있다.
도 4는 본 발명의 실시예에 따른 운전 성향을 이용하여 배터리를 충전하는 방법의 흐름도이다. 도 5는 본 발명의 실시예에 따른 배터리를 충전하는 방법을 설명하기 위한 도면이다.
도 4에 도시된 바와 같이, 본 발명의 실시예에 따른 배터리(50)를 충전하는 방법은 운전자의 운전 성향을 판단하기 위한 데이터를 기초로 운전 성향 레벨을 결정함으로써 시작된다(S210). 즉, 제어 유닛(100)은 데이터 검출부(90)에서 검출된 데이터를 기초로 운전 성향 지수를 계산하고, 운전 성향 지수에 따라 운전자의 운전 성향 레벨을 결정한다. 상기 운전 성향 레벨은 마일드 레벨, 정상 레벨, 공격 레벨, 및 레이서 레벨 중 어느 하나일 수 있다.
제어 유닛(100)은 아이들 락업(idle lock-up) 충전 진입 조건을 만족하는지 판단한다(S220). 아이들 락업 충전 진입 조건은 엔진(10)이 구동 상태이고, 하이브리드 차량이 타력 주행 상태이며, 배터리(50)의 SOC가 아이들 락업 충전 진입 SOC 이하이면 만족되는 것으로 할 수 있다. 타력 주행 상태는 가속 페달의 위치값 및 브레이크 페달의 위치값을 기초로 판단할 수 있다.
상기 아이들 락업 충전 진입 SOC는 상기 운전 성향 레벨에 따라 설정된다. 즉, 공격 레벨에 따른 아이들 락업 충전 진입 SOC는 정상 레벨에 따른 아이들 락업 충전 진입 SOC 보다 크도록 설정될 수 있다.
S220 단계에서 아이들 락업 충전 진입 조건을 만족하지 않으면, 본 발명의 실시예에 따른 운전 성향을 이용하여 배터리를 충전하는 방법은 종료된다.
S220 단계에서 아이들 락업 충전 진입 조건을 만족하면, 제어 유닛(100)은 아이들 락업 충전 제어(idle lock-up charge control)를 수행한다(S230).
종래 기술의 경우, 배터리(50)를 충전하기 위하여 파트 로드 충전 제어(part-load charge control), 아이들 충전 제어(idle charge control), 및 파워 제한 제어(power limit control)를 수행하였다. 파트 로드 충전 제어는 운전자가 가속 페달을 누른 상태에서 엔진(10)의 동력으로 모터(20)를 회전시켜 배터리(50)를 충전하는 것이다. 파트 로드 충전 제어는 전체 SOC 영역에서 차속이 있는 상태에서 엔진(10)의 여유 동력을 이용하여 SOC를 유지하는 것이다. 아이들 충전 제어는 낮아진 SOC 상태를 벗어나기 위해 가속 페달의 위치값, 브레이크 페달의 위치값, 및 차속에 관계없이 엔진(10)의 동력으로 시동 발전기(60)를 회전시켜 배터리(50)를 충전하는 것이다. 파워 제한 제어는 과도하게 낮아진 SOC 상태를 벗어나기 위해 전장품에서 사용되는 전력을 제한하는 것이다.
아이들 락업 충전 제어는 모터(20)와 시동 발전기(60)를 모두 이용하여 배터리(50)를 충전하는 것이다. 아이들 락업 충전 진입 조건을 만족하면, 제어 유닛(100)은 엔진 클러치(30)의 결합 상태를 유지시키고, 모터(20)와 시동 발전기(60)의 발전을 통해 배터리(50)를 충전시킨다. 도 5에 도시된 바와 같이, 엔진(10)의 동력 및 휠(80)의 회전력을 모두 이용하여 모터(20)와 시동 발전기(60)가 발전하므로 시동 발전기(60)만을 이용하는 아이들 충전 제어 보다 충전 효율이 좋다. 따라서, 가속 또는 감속이 잦은 가혹 조건에서 운전하는 운전자의 경우에도 배터리(50)의 SOC를 정상 범위에 유지시킬 수 있다.
그 후, 제어 유닛(100)은 아이들 락업 충전 해제 조건을 만족하는지 판단한다(S240). 아이들 락업 충전 해제 조건은 상기 타력 주행 상태가 해제되거나 배터리의 SOC가 아이들 락업 충전 해제 SOC 이상이면 만족되는 것으로 할 수 있다.
상기 아이들 락업 해제 SOC는 상기 운전 성향 레벨에 따라 설정된다. 즉, 공격 레벨에 따른 아이들 락업 해제 SOC는 정상 레벨에 따른 아이들 락업 해제 SOC 보다 크도록 설정될 수 있다.
S240 단계에서 아이들 락업 충전 해제 조건을 만족하지 않으면, 제어 유닛(100)은 S230 단계로 진행한다. S240 단계에서 아이들 락업 충전 해제 조건을 만족하면, 제어 유닛(100)은 아이들 락업 충전 제어를 해제하고(S250), 본 발명의 실시예에 따른 운전 성향을 이용한 배터리를 충전하는 방법을 종료한다.
도 6은 본 발명의 실시예에 따른 운전 성향을 이용하여 변속 제어 및 크립 토크 제어를 수행하는 방법의 흐름도이다. 도 7은 본 발명의 실시예에 따른 변속 패턴을 예시한 도면이다.
도 6에 도시된 바와 같이, 본 발명의 실시예에 따른 변속 제어 및 크립 토크 제어를 수행하는 방법은 운전자의 운전 성향을 판단하기 위한 데이터를 기초로 운전 성향 레벨을 결정함으로써 시작된다(S310). 즉, 제어 유닛(100)은 데이터 검출부(90)에서 검출된 데이터를 기초로 운전 성향 지수를 계산하고, 운전 성향 지수에 따라 운전자의 운전 성향 레벨을 결정한다. 상기 운전 성향 레벨은 마일드 레벨, 정상 레벨, 공격 레벨, 및 레이서 레벨 중 어느 하나일 수 있다.
제어 유닛(100)은 상기 운전 성향 레벨에 따라 변속 패턴과 크립 토크 맵을 설정한다(S320). 도 7에 도시된 바와 같이, 운전 성향 레벨에 따라 변속 패턴이 다르게 설정될 수 있다. 상기 변속 패턴은 마일드 레벨에 대응하는 마일드 변속 패턴, 정상 레벨에 대응하는 정상 변속 패턴, 공격 레벨에 대응하는 공격 변속 패턴, 및 레이서 레벨에 대응하는 레이서 변속 패턴 중 어느 하나일 수 있다. 크립 토크 맵에는 주어진 조건에 해당하는 목표 크립 토크가 저장되어 있다. 크립 주행이란 운전자가 가속 페달을 밟지 않은 상태에서 모터(20)의 토크만으로 하이브리드 차량이 이동하는 것을 의미한다. 목표 크립 토크는 크립 주행시 요구되는 토크이다.
제어 유닛(100)은 상기 변속 패턴에 따라 변속 제어를 수행한다(S330). 도 7에 도시된 바와 같이, 운전 성향 레벨이 정상 레벨인 경우에는 공격 레벨인 경우 보다 상대적으로 낮은 차속에서 변속될 수 있다. 따라서, 운전자의 운전 성향에 적합한 변속감을 제공할 수 있으며, 운전 성향 레벨이 공격 레벨 또는 레이서 레벨인 경우 엔진(10)의 평균 RPM이 상승하여 배터리(50)의 SOC를 정상 범위에 유지시킬 수 있다. 또한, 제어 유닛(100)은 차속 및 변속단을 기초로 상기 크립 토크 맵을 이용하여 크립 토크 제어를 수행한다. 상기 변속단은 상기 운전 성향 레벨에 따라 설정된 변속 패턴을 기초로 결정될 수 있다. 따라서, 운전자의 운전 성향에 적합한 크립 토크를 생성할 수 있다.
도 8은 본 발명의 실시예에 따른 운전 성향을 이용하여 엔진 기동 제어를 수행하는 방법의 흐름도이다.
도 8에 도시된 바와 같이, 본 발명의 실시예에 따른 엔진 기동 제어를 수행하는 방법은 운전자의 운전 성향을 판단하기 위한 데이터를 기초로 운전 성향 레벨을 결정함으로써 시작된다(S410). 즉, 제어 유닛(100)은 데이터 검출부(90)에서 검출된 데이터를 기초로 운전 성향 지수를 계산하고, 운전 성향 지수에 따라 운전 성향 레벨을 결정한다. 상기 운전 성향 레벨은 마일드 레벨, 정상 레벨, 공격 레벨, 및 레이서 레벨 중 어느 하나일 수 있다.
제어 유닛(100)은 엔진이 정지된 상태에서 엔진 기동 조건을 만족하는지 판단한다(S420). 엔진 기동 조건은 운전자의 요구 파워가 제1 임계값 이상이면 만족되는 것으로 할 수 있다. 상기 운전자의 요구 파워는 요구 토크 및 차속을 기초로 계산될 수 있으며, 상기 제1 임계값은 운전 성향 레벨에 따라 설정된다. 즉, 공격 레벨에 따른 제1 임계값은 정상 레벨에 따른 제1 임계값 보다 작도록 설정될 수 있다.
또한, 상기 엔진 기동 조건은 누적 주행 에너지가 제2 임계값 이상이면 만족되는 것으로 할 수 있다. 상기 누적 주행 에너지는 가속 페달의 위치값의 변화율이 양의 값인 구간에서 설정된 시간 동안의 요구 파워를 기초로 계산될 수 있다. 상기 제2 임계값은 운전 성향 레벨에 따라 설정된다. 즉, 공격 레벨에 따른 제2 임계값은 정상 레벨에 따른 제2 임계값 보다 작도록 설정될 수 있다.
S420 단계에서 엔진 기동 조건을 만족하지 않으면, 본 발명의 실시예에 따른 운전 성향을 이용하여 엔진 기동 제어를 수행하는 방법은 종료된다.
S420 단계에서 엔진 기동 조건을 만족하면, 제어 유닛(100)은 엔진 기동 제어를 수행한다(S430). 엔진 기동 제어에 따라 EV 모드에서 HEV 모드로 전환될 수 있다.
그 후, 제어 유닛(100)은 엔진 정지 조건을 만족하는지 판단한다(S440). 엔진 정지 조건은 운전자의 요구 파워가 제3 임계값 이하이면 만족되는 것으로 할 수 있다. 상기 제3 임계값은 운전 성향 레벨에 따라 설정된다. 즉, 공격 레벨에 따른 제3 임계값은 정상 레벨에 따른 제3 임계값 보다 크도록 설정될 수 있다.
S440 단계에서 엔진 정지 조건을 만족하면, 제어 유닛(100)은 엔진 정지 제어를 수행하고(S450), 본 발명의 실시예에 따른 운전 성향을 이용한 엔진 기동 제어를 수행하는 방법을 종료한다.
상술한 바와 같이 본 발명의 실시예에 따르면, 운전자의 운전 성향을 이용하여 하이브리드 차량을 제어함에 따라 배터리(50)의 SOC를 최적화하고 연비를 향상시킬 수 있다. 또한, 운전자의 의지를 보다 정확히 변속에 반영할 수 있다.
이상에서 본 발명의 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.
10: 엔진 20: 모터
30: 엔진 클러치 40: 변속기
50: 배터리 60: 시동 발전기
70: 차동기어장치 80: 휠
90: 데이터 검출부 100: 제어 유닛

Claims (3)

  1. 운전자의 운전 성향을 판단하기 위한 데이터를 기초로 운전 성향 레벨을 결정하는 단계;
    엔진이 정지된 상태에서 엔진 기동 조건을 만족하는지 판단하는 단계; 및
    상기 엔진 기동 조건을 만족하면, 엔진 기동 제어를 수행하는 단계;
    를 포함하되,
    상기 엔진 기동 조건은 운전자의 요구 파워가 제1 임계값 이상이면 만족되고,
    상기 제1 임계값은 상기 운전 성향 레벨에 따라 설정되는 것을 특징으로 하는 운전 성향을 이용한 하이브리드 차량의 제어 방법.
  2. 제1항에 있어서,
    상기 엔진 기동 조건은 누적 주행 에너지가 제2 임계값 이상이면 만족되고, 상기 누적 주행 에너지는 가속 페달의 위치값의 변화율이 양의 값인 구간에서 설정된 시간 동안의 요구 파워를 기초로 계산되며, 상기 제2 임계값은 상기 운전 성향 레벨에 따라 설정되는 것을 특징으로 하는 운전 성향을 이용한 하이브리드 차량의 제어 방법.
  3. 제1항에 있어서,
    엔진이 기동된 상태에서 엔진 정지 조건을 만족하는지 판단하는 단계; 및
    상기 엔진 정지 조건을 만족하면, 엔진 정지 제어를 수행하는 단계;
    를 더 포함하되,
    상기 엔진 정지 조건은 운전자의 요구 파워가 제3 임계값 이하이면 만족되고,
    상기 제3 임계값은 상기 운전 성향 레벨에 따라 설정되는 것을 특징으로 하는 운전 성향을 이용한 하이브리드 차량의 제어 방법.
KR1020150078837A 2015-06-03 2015-06-03 운전자의 운전 성향을 이용한 하이브리드 차량의 제어 방법 KR101588794B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150078837A KR101588794B1 (ko) 2015-06-03 2015-06-03 운전자의 운전 성향을 이용한 하이브리드 차량의 제어 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150078837A KR101588794B1 (ko) 2015-06-03 2015-06-03 운전자의 운전 성향을 이용한 하이브리드 차량의 제어 방법

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020140085346A Division KR101542988B1 (ko) 2014-07-08 2014-07-08 운전자의 운전 성향을 이용한 하이브리드 차량의 제어 방법

Publications (2)

Publication Number Publication Date
KR20160008094A true KR20160008094A (ko) 2016-01-21
KR101588794B1 KR101588794B1 (ko) 2016-01-27

Family

ID=55308583

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150078837A KR101588794B1 (ko) 2015-06-03 2015-06-03 운전자의 운전 성향을 이용한 하이브리드 차량의 제어 방법

Country Status (1)

Country Link
KR (1) KR101588794B1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101838512B1 (ko) 2017-04-04 2018-03-14 현대자동차주식회사 하이브리드 자동차 및 그를 위한 충전 모드 제어 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010052610A (ja) * 2008-08-29 2010-03-11 Fujitsu Ten Ltd ハイブリット車の制御装置、及び制御方法
KR20130074193A (ko) * 2011-12-26 2013-07-04 현대자동차주식회사 하이브리드 차량의 ev/hev모드 천이 제어방법
KR20130136780A (ko) * 2012-06-05 2013-12-13 현대자동차주식회사 친환경 차량의 모터토크 제어장치 및 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010052610A (ja) * 2008-08-29 2010-03-11 Fujitsu Ten Ltd ハイブリット車の制御装置、及び制御方法
KR20130074193A (ko) * 2011-12-26 2013-07-04 현대자동차주식회사 하이브리드 차량의 ev/hev모드 천이 제어방법
KR20130136780A (ko) * 2012-06-05 2013-12-13 현대자동차주식회사 친환경 차량의 모터토크 제어장치 및 방법

Also Published As

Publication number Publication date
KR101588794B1 (ko) 2016-01-27

Similar Documents

Publication Publication Date Title
KR101542988B1 (ko) 운전자의 운전 성향을 이용한 하이브리드 차량의 제어 방법
US9475486B2 (en) Controller for hybrid vehicle
US7967091B2 (en) Hybrid electric vehicle powertrain with engine start and transmission shift arbitration
US8370014B2 (en) Control apparatus and method for controlling a hybrid vehicle
US8668621B2 (en) Control device
US7498757B2 (en) Control device for a hybrid electric vehicle
KR101393543B1 (ko) 하이브리드 자동차의 엔진 기동 제어 방법 및 시스템
KR101776721B1 (ko) 구동 모터를 구비한 차량의 제어 방법 및 장치
KR101371482B1 (ko) 하이브리드 차량의 엔진클러치의 전달토크 학습 시스템 및 방법
US20120330505A1 (en) Vehicle control device
KR101588793B1 (ko) 운전자의 운전 성향을 이용한 하이브리드 차량의 제어 방법
US9623861B2 (en) Hybrid vehicle
KR101566736B1 (ko) 하이브리드 차량의 전부하 모드 제어 장치 및 방법
US20090298641A1 (en) Braking method and device with energy recovery in particular for a vehicle equipped with hybrid traction system
KR20180067984A (ko) 마일드 하이브리드 차량의 mhsg 제어 방법 및 장치
KR101724465B1 (ko) 하이브리드 차량의 엔진 기동 제어 방법 및 장치
KR101588794B1 (ko) 운전자의 운전 성향을 이용한 하이브리드 차량의 제어 방법
KR20180070341A (ko) 하이브리드 자동차 및 그를 위한 모드 전환 제어 방법
KR20180068197A (ko) 클러치 페달 학습 방법 및 장치
KR101510343B1 (ko) 플러그인 하이브리드 자동차의 방전지향모드 제어장치 및 방법
US11226017B2 (en) Engine clutch disengagement control method for hybrid electric vehicle
JP2004211575A (ja) 車輌の制御装置
US11440419B2 (en) Method of controlling gear shifting in electric vehicle
JP4269339B2 (ja) 車両の制御装置
JP2019034656A (ja) ハイブリッド車両の駆動トルク制御装置および駆動トルク制御方法

Legal Events

Date Code Title Description
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20181213

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20191210

Year of fee payment: 5