KR20150144441A - Metallocene catalyst for olefin polymerization, supported by electroconducting carbon support - Google Patents
Metallocene catalyst for olefin polymerization, supported by electroconducting carbon support Download PDFInfo
- Publication number
- KR20150144441A KR20150144441A KR1020140073088A KR20140073088A KR20150144441A KR 20150144441 A KR20150144441 A KR 20150144441A KR 1020140073088 A KR1020140073088 A KR 1020140073088A KR 20140073088 A KR20140073088 A KR 20140073088A KR 20150144441 A KR20150144441 A KR 20150144441A
- Authority
- KR
- South Korea
- Prior art keywords
- zirconium dichloride
- indenyl
- cyclopentadienyl
- bis
- zirconium
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/62—Refractory metals or compounds thereof
- C08F4/64—Titanium, zirconium, hafnium or compounds thereof
- C08F4/659—Component covered by group C08F4/64 containing a transition metal-carbon bond
- C08F4/6592—Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F10/00—Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/02—Carriers therefor
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
Abstract
Description
본 발명은 전기 전도성 탄소계 담지체에 담지된 올레핀 중합용 메탈로센 촉매; 이의 제조방법; 폴리올레핀-전기 전도성 탄소계 담지체 함유 복합체; 및 이의 제조방법에 관한 것이다.
The present invention relates to a metallocene catalyst for olefin polymerization supported on an electrically conductive carbon-based carrier; A method for producing the same; Polyolefin-electroconductive carbonaceous carrier-containing complex; And a method for producing the same.
폴리올레핀의 사용처로는 우리 실생활의 여러 가지 물건들이 포함된다. 예컨대, 쇼핑백, 비닐하우스, 어망, 담배포장지, 라면봉지, 요구르트병, 밧데리 케이스, 자동차 범퍼, 내장재, 신발 밑창, 세탁기 등이 있다.Uses of polyolefins include many things in our real life. For example, there are shopping bags, plastic houses, fishing nets, tobacco wrappers, noodles bags, yogurt bottles, battery cases, automobile bumpers, interior materials, shoe soles, washing machines and the like.
일반적으로 에틸렌 중합체, 프로필렌 중합체 및 에틸렌-알파올레핀 공중합체와 같은 올레핀 중합체 및 공중합체는 티타늄화합물과 알킬알루미늄 화합물로 이루어진 불균일계 촉매계에 의하여 제조되었다. 최근에 촉매활성이 극히 높은 균일계 촉매인 메탈로센 촉매가 개발되어, 메탈로센 촉매를 이용하여 폴리올레핀을 제조하게 되었다. Generally, olefin polymers and copolymers such as ethylene polymers, propylene polymers and ethylene-alpha olefin copolymers have been prepared by heterogeneous catalyst systems consisting of titanium compounds and alkyl aluminum compounds. Recently, a metallocene catalyst, which is a homogeneous catalyst with extremely high catalytic activity, has been developed and a polyolefin is produced using a metallocene catalyst.
메탈로센 촉매는 균일계 단일활성점 촉매로서 생성되는 폴리올레핀의 분자량 분포도와 화학조성분포(chemical compositional distribution)가 매우 좁고 균일하며 메탈로센 촉매의 리간드 구조에 따라 입체규칙성, 공단량체(comonomer) 응답성, 수소응답성을 자유로이 조절할 수 있고, 이와 연관된 폴리올레핀의 물성을 지글러-나타 촉매와 비교하여 대폭 향상시킬 수 있다.The metallocene catalyst is a homogeneous, single-site catalyst. The molecular weight distribution and chemical compositional distribution of the polyolefin produced are very narrow and homogeneous. Depending on the ligand structure of the metallocene catalyst, stereoregularity, comonomer, The responsiveness and the hydrogen responsiveness can be freely controlled, and the physical properties of the polyolefin associated therewith can be greatly improved as compared with the Ziegler-Natta catalyst.
한편, 메탈로센계 촉매는 주기율표 4족의 전이금속 (예: 티탄(titanium), 지르코늄(zirconium), 하프늄(hafnium))이 적어도 1개 이상의 시클로알칸디에닐기(cycloalkanedienyl groups) (예: 시클로펜타디에닐기 (cyclopentadienyls), 인데닐기(indenyls), 플로오레닐기(fluorenyls))로 이루어진 리간드와 결합된 구조를 갖는다. 이러한 형태의 메탈로센계 촉매는 공촉매와 함께 중합에 이용된다. 지르코노센과 같은 전이금속 화합물 및 유기알루미늄-옥시 화합물(알루미녹산)로 된 모든 올레핀 중합촉매는 높은 중합 활성으로 올레핀 중합체 및 공중합체를 제조할 수 있는 촉매로 알려져 있다.On the other hand, the metallocene-based catalyst is a catalyst in which a transition metal of Group 4 of the periodic table (for example, titanium, zirconium, hafnium) has at least one cycloalkanedienyl group (e.g., cyclopentadienyl Cyclopentadienyls, indenyls, fluorenyls) in the molecule. This type of metallocene catalyst is used for polymerization with a cocatalyst. All olefin polymerization catalysts comprising a transition metal compound such as zirconocene and an organoaluminum-oxy compound (aluminoxane) are known as catalysts capable of producing olefin polymers and copolymers with high polymerization activity.
이러한 메탈로센 촉매를 슬러리 또는 기상 올레핀 중합공정에 사용하기 위해서는 담지화(immobilization)가 반드시 필요하다. 이는 균일계 메탈로센 촉매를 슬러리, 기상 중합 공정에 투입하는 경우 생성 고분자의 엉김현상(agglomerate), 파울링(fouling), 시팅(sheeting), 관막힘(plugging) 현상 등의 공정상 치명적인 문제가 발생하고, 생성되는 폴리올레핀 고분자 입자 형상이 매우 불규칙하며, 겉보기 밀도가 낮아 제품 생산이 불가능하기 때문이다.Immobilization is indispensable for the use of such metallocene catalysts in slurry or gaseous olefin polymerization processes. This is due to the fact that when the homogeneous metallocene catalyst is added to the slurry and the gas phase polymerization process, there is a problem in the process such as agglomerate, fouling, sheeting and plugging of the produced polymer And the shape of the polyolefin polymer particle is very irregular, and the product density is low and the production of the product is impossible.
이러한 여러 가지 문제점을 해결하기 위하여 담지에 관한 연구가 진행되어졌고 실리카, 알루미나, 마그네슘 디클로라이드 등의 여러 다공성 무기물 또는 유기물에 메탈로센 단독 또는 메탈로센과 조촉매를 담지하여 메탈로센 담지촉매를 제조하고 이를 이용하여 슬러리 또는 기상 중합공정에 적용, 폴리올레핀을 중합하는 방법이 개발되어졌다.
In order to solve these various problems, researches have been carried out on the support, and a metallocene supported catalyst is supported on a porous inorganic or organic material such as silica, alumina, magnesium dichloride or the like by metallocene alone or metallocene and cocatalyst. A method of polymerizing a polyolefin has been developed.
한편, 최근에는 폴리올레핀 및 공중합체에 다양한 기능을 가진 나노구조물이 첨가된 고분자 나노복합체에 관한 연구가 활발히 진행되고 있다. 이러한 나노구조물 중에서 전기전도도 및 열전도도가 가장 우수한 나노물질은 그라핀으로 알려져 있다. 고분자의 전기전도도 및 열전도도를 향상시키기 위하여 그라핀을 첨가한 고분자 복합체가 개발되고 있는데, 대부분이 압출기내에서 고분자 용융상태에서 그라핀을 첨가한 용융혼합이나, 용매에 분산된 그라핀을 고분자 용액에 첨가한 용액혼합법으로 고분자 나노복합체를 제조하고 있다. 상기의 방법으로는 그라핀의 분산이 용이하지 않아 그라핀 고유의 성질을 발현하는데 문제점이 있다. 이를 해결하기 위한 일련의 연구 중에서 그라핀을 중합반응기 내에 분산시켜 바로 중합을 하는 인사이투(in situ) 중합법으로 고분자나노복합체 제조에 관해서도 보고되고 있다. 이러한 방법은 용융혼합법이나 용액혼합법에 비해 그라핀의 분산이 보다 효율적이지만, 그라핀의 응집으로 인하여 완전한 분산이 이루어지지 않고 있다.
Recently, researches on polymer nanocomposites having nanostructures having various functions in polyolefins and copolymers have been actively conducted. Among these nanostructures, nanomaterials with the highest electrical conductivity and thermal conductivity are known as graphene. In order to improve the electrical conductivity and thermal conductivity of polymers, graphene-added polymer composites have been developed. Most of them are produced by melt mixing in which graphenes are added in a molten polymer state in an extruder, or by mixing graphene dispersed in a solvent with a polymer solution To prepare a polymer nanocomposite. In the above method, the graphene dispersion is not easy and the graphene has inherent properties. Among a series of studies to solve this problem, the production of polymer nanocomposites has been reported by in situ polymerization method in which graphene is dispersed in a polymerization reactor and polymerized immediately. This method is more effective in dispersing the graphene than the melt mixing method or the solution mixing method, but is not completely dispersed due to graphene agglomeration.
본 발명의 목적은 그라핀과 같은 전기 전도성 탄소계 담지체 표면에서 고분자 사슬이 성장할 수 있는, 전기 전도성 탄소계 담지체에 담지된 올레핀 중합 및 공중합용 메탈로센 촉매를 제공하는 것이다.
An object of the present invention is to provide a metallocene catalyst for olefin polymerization and copolymerization supported on an electrically conductive carbon-based support, on which a polymer chain can grow on the surface of an electrically conductive carbon-based support such as graphene.
또한, 본 발명의 목적은 전기 전도성 탄소계 담지체에 담지된 올레핀 중합용 메탈로센 촉매를 사용하여, 그라핀과 같은 전기 전도성 탄소계 담지체가 고유의 성질을 유지하면서 완전한 분산이 가능한 폴리올레핀의 제조방법을 제공하는 것이다.
It is another object of the present invention to provide a process for producing a polyolefin capable of completely dispersing an electroconductive carbon-based support such as graphene while retaining its inherent properties, using a metallocene catalyst for olefin polymerization supported on the electroconductive carbon- Method.
본 발명의 제1양태는 전기 전도성 탄소계 담지체에 담지된 올레핀 중합용 메탈로센 촉매의 제조방법에 있어서, 전기 전도성 탄소계 담지체에 시클로펜타디에닐 골격을 가지는 유기화합물을 공유결합으로 연결시키는 제1단계; 및 제1단계의 결과물에 시클로펜타디에닐 골격의 배위자를 함유하는 주기율표 IVB족 전이금속 화합물을 반응시켜 담지체에 담지된 메탈로센 촉매를 형성시키는 제2단계를 포함하는 것이 특징인 메탈로센 담지 촉매 제조 방법을 제공한다.In a first aspect of the present invention, there is provided a process for preparing a metallocene catalyst for olefin polymerization supported on an electrically conductive carbon-based carrier, which comprises covalently linking an organic compound having a cyclopentadienyl skeleton to an electrically conductive carbon- ; And a second step of reacting the resulting product of the first step with a transition metal compound of the periodic table group IVB containing a cyclopentadienyl skeleton ligand to form a metallocene catalyst supported on the carrier. To provide a supported catalyst production method.
본 발명의 제2양태는 전기 전도성 탄소계 담지체에 담지된 올레핀 중합용 메탈로센 촉매로서, 전기 전도성 탄소계 담지체는 공유결합 가능한 작용기를 보유하도록 개질된 것이고, 전기 전도성 탄소계 담지체 상의 상기 작용기와 메탈로센 촉매 중 금속을 제외한 유기 작용기가 공유결합을 통해 연결된 것이 특징인 올레핀 중합용 메탈로센 담지 촉매를 제공한다.The second aspect of the present invention is a metallocene catalyst for olefin polymerization supported on an electrically conductive carbon-based carrier, wherein the electrically conductive carbon-based carrier is modified to have a covalent bondable functional group, and the electrically conductive carbon- Wherein the functional group and the metallocene catalyst are connected to each other via an organic functional group other than a metal via a covalent bond.
본 발명의 제3양태는 제2양태에 기재된, 전기전도성 탄소계 담지체에 공유결합을 통해 담지된 메탈로센 촉매 상에서 올레핀 중합체 또는 공중합체가 형성 및 성장된 폴리올레핀-전기 전도성 탄소계 담지체 함유 복합체를 제공한다.The third aspect of the present invention is a polyolefin-electroconductive carbon-based carrier containing an olefin polymer or a copolymer formed and grown on a metallocene catalyst supported via covalent bond on an electrically conductive carbon- Lt; / RTI >
본 발명의 제4양태는 제2양태에 기재된, 전기전도성 탄소계 담지체에 공유결합을 통해 담지된 메탈로센 촉매 하에서, 올레핀을 중합 또는 공중합시키는 단계를 포함하는 것이 특징인 폴리올레핀 제조방법을 제공한다.The fourth aspect of the present invention provides a process for producing a polyolefin, which comprises the step of polymerizing or copolymerizing an olefin under a metallocene catalyst supported via a covalent bond on an electrically conductive carbon-based carrier according to the second aspect do.
본 발명의 제4양태에 따른 폴리올레핀 제조방법에 의해 본 발명의 제3양태에 따른 폴리올레핀-전기 전도성 탄소계 담지체 함유 복합체를 제공할 수 있다.
The polyolefin-electroconductive carbon-based support containing complex according to the third aspect of the present invention can be provided by the process for producing a polyolefin according to the fourth aspect of the present invention.
이하, 본 발명을 자세히 설명한다.
Hereinafter, the present invention will be described in detail.
본 발명자들은 전기적, 열적, 기계적 성질이 우수한 그라핀과 같은 전기 전도성 탄소계 구조체를 올레핀 중합용 메탈로센 촉매의 담지체로 공유결합하여 사용하면, 그라핀에 올레핀이 성장하게 됨으로 그라핀이 우수하게 분산된 폴리올레핀-그라핀 나노복합체를 용이하게 제조할 수 있다는 것을 발견하였다. The present inventors have found that when an electrically conductive carbon-based structure such as graphene having excellent electrical, thermal, and mechanical properties is covalently bonded to a support of metallocene catalyst for olefin polymerization, olefin is grown in the graphene, It has been found that dispersed polyolefin-graphene nanocomposite can be easily produced.
따라서, 본 발명은 그라핀과 같이 전기전도도 및 열전도도가 우수한 나노물질이 폴리올레핀 및 공중합체에 균일하게 분산된 폴리올레핀 나노구조물을 제조하기 위해, 올레핀 중합용 메탈로센 촉매의 담지체로 그라핀과 같은 탄소계 담지체를 사용하고, 상기 탄소계 담지체에 메탈로센 촉매를 공유결합시킨 올레핀 중합용 메탈로센 담지 촉매를 개발하여 사용하는 것이 특징이다.Therefore, in order to produce a polyolefin nanostructure in which a nanomaterial having excellent electrical conductivity and thermal conductivity, such as graphene, is uniformly dispersed in a polyolefin and a copolymer, A metallocene supported catalyst for olefin polymerization wherein a carbon-based carrier is used and a metallocene catalyst is covalently bonded to the carbon-based carrier is developed and used.
또한, 본 발명은 상기 탄소계 담지체에 공유결합을 통해 담지된 메탈로센 촉매 상에서 올레핀 중합체 또는 공중합체를 형성 및 성장시켜 탄소계 담지체가 균일하게 분산된 폴리올레핀-전기 전도성 탄소계 담지체 함유 복합체를 제공하는 것이 특징이다.
Also, the present invention relates to a polyolefin-electrically conductive carbon-based carrier containing composite in which an olefin polymer or copolymer is formed and grown on a metallocene catalyst supported via a covalent bond on the carbon-based carrier to uniformly disperse the carbon- .
표 2 및 표 3에 제시된 바와 같이, 본 발명에 따른 신규 담지 촉매는 올레핀 중합체 및 공중합체를 보다 효율적으로 제조할 수 있으며, 특히 적은 양의 공촉매를 사용하고도 높은 활성을 나타내고, 분자량이 높은 폴리올레핀의 제조가 가능하다.
As shown in Table 2 and Table 3, the novel supported catalyst according to the present invention can more efficiently prepare olefin polymers and copolymers, and exhibits high activity even when a small amount of a cocatalyst is used, It is possible to prepare a polyolefin.
상기 탄소계 담지체는 그라파이트, 그라파이트 옥시드, 그라핀, 그라핀 옥시드 또는 이의 혼합물일 수 있다. The carbon-based carrier may be graphite, graphite oxide, graphene, graphen oxide, or a mixture thereof.
상기 전기 전도성 탄소계 구조체의 일례로 사용가능한 그라핀 및 그라파이트는 흑연 재료로써 여타 재료에서 얻을 수 없는 고온 윤활, 내열, 내식, 전기전도 및 정밀가공 등 매우 독특한 특성과 물성을 가지고 있다. 흑연은 내열성이 우수하고, 연화, 용융되지 않으며 증기압이 적으며, 일반 금속에 비하여 열팽창율이 극히 낮아서 고온에서의 치수 정밀도가 우수하다. 또한, 흑연은 금, 은, 동, 알루미늄 들을 제외한 대부분의 금속에 비하여 열전도율이 높으며, 열팽창율이 적고, 열전도율이 높아 급격한 온도변화에 견디는 내열 충격성이 우수하다.The graphene and graphite which can be used as an example of the electroconductive carbon-based structure are graphite materials and have very unique characteristics and properties such as high temperature lubrication, heat resistance, corrosion resistance, electric conduction and precision processing which can not be obtained from other materials. Graphite is excellent in heat resistance, softening, not melting, low in vapor pressure, and extremely low in coefficient of thermal expansion compared to ordinary metals, so that dimensional precision at high temperature is excellent. In addition, graphite has a higher thermal conductivity than most metals except gold, silver, copper and aluminum, has a low coefficient of thermal expansion, has a high thermal conductivity, and thus has excellent thermal shock resistance to withstand rapid temperature changes.
따라서, 폴리올레핀에 잘 분산되어 있는 그라핀 또는 그라파이트는 여러 분야에 사용되고 있는 폴리올레핀 성형물에 상기와 같은 그라핀 또는 그라파이트의 특성 또는 물성을 부여할 수 있으므로, 본 발명에 따른 폴리올레핀-전기 전도성 탄소계 담지체 함유 복합체는 고온내열재료, 구조재료, 특수기계부품 등으로 각 분야에서 광범위하게 이용될 수 있다. Therefore, graphene or graphite that is well dispersed in polyolefin can impart properties or physical properties of graphene or graphite to the polyolefin molding used in various fields. Therefore, the polyolefin-electrically conductive carbon- Containing composites can be widely used in various fields such as high temperature heat resistant materials, structural materials, and special mechanical parts.
본 발명의 일구체예에서, 본 발명에 따라 전기 전도성 탄소계 담지체에 담지된 올레핀 중합용 메탈로센 촉매는, In one embodiment of the present invention, the metallocene catalyst for olefin polymerization supported on the electrically conductive carbon-based carrier according to the present invention is a metallocene catalyst for olefin polymerization,
전기 전도성 탄소계 담지체에 시클로펜타디에닐 골격을 가지는 유기화합물을 공유결합으로 연결시키는 제1단계; 및 제1단계의 결과물에 시클로펜타디에닐 골격의 배위자를 함유하는 주기율표 IVB족 전이금속 화합물을 반응시켜 담지체에 담지된 메탈로센 촉매를 형성시키는 제2단계를 통해 제조될 수 있다.A first step of covalently bonding an organic compound having a cyclopentadienyl skeleton to an electrically conductive carbon-based carrier; And a second step of reacting the resulting product of the first step with a transition metal compound of group IVB of the periodic table containing a cyclopentadienyl skeleton ligand to form a supported metallocene catalyst on the support.
제1단계 이전에, 전기 전도성 탄소계 담지체가 공유결합 가능한 작용기를 보유하도록 표면개질시키는 단계를 더 포함할 수 있다.Before the first step, the method may further include the step of surface-modifying the electrically conductive carbon-based carrier so as to have a covalent bondable functional group.
상기 작용기의 비제한 적인 예로는 히드록시기(OH기), 카르복시기(COOH기)일 수 있다.Non-limiting examples of the functional group may be a hydroxyl group (OH group), or a carboxy group (COOH group).
탄소계 담지체에 공유결합된 메탈로센 촉매는 공유결합 전의 담지체 1g 당 0.0001 내지 100 mmol의 범위로 존재하는 것이 바람직하다.
It is preferable that the metallocene catalyst covalently bonded to the carbon-based carrier is present in the range of 0.0001 to 100 mmol per 1 g of the carrier before the covalent bond.
상기 제1단계에서 사용되는 시클로펜타디에닐 골격을 가지는 유기화합물은 하기 구조식 1 내지 3으로 구성된 군으로부터 선택될 수 있다.The organic compound having a cyclopentadienyl skeleton used in the first step may be selected from the group consisting of the following structural formulas 1 to 3.
[구조식 1][Structural formula 1]
[구조식 2][Structural formula 2]
[구조식 3][Structural Formula 3]
상기 구조식에서 R1, R6 및 R13는 수소원자이고, Wherein R1, R6 and R13 are hydrogen atoms,
R2 내지 R5, R7 내지 R12, 및 R14 내지 R21은 서로 동일 또는 상이한 것으로 각각 C1~20의 탄화수소, C1~20의 할로겐화 탄화수소, 실리콘함유기, 산소함유기, 질소함유기, 인함유기 또는 수소원자임.
R2 to R5, R7 to R12, and R14 to R21 are the same or different from each other and each represent a C1 to C20 hydrocarbon, C1 to C20 halogenated hydrocarbon, a silicon-containing group, an oxygen-containing group, a nitrogen- .
또한, 제2단계에서 사용되는 시클로펜타디에닐 골격을 가지는 배위자를 함유하는 주기율표 IVB족 전이금속 화합물은 하기 구조식 4 내지 6으로 구성된 군에서 선택될 수 있다.Further, the Group IVB transition metal compound of the periodic table containing a ligand having a cyclopentadienyl skeleton used in the second step can be selected from the group consisting of Structural Formulas 4 to 6 below.
[구조식 4][Structural Formula 4]
[구조식 5][Structural Formula 5]
[구조식 6][Structural Formula 6]
상기 구조식에서, In the above formula,
M1은 주기율표 IVB족의 전이금속원자이고, M1 is a transition metal atom of Group IVB of the periodic table,
X1, X2 및 X3는 서로 동일 또는 상이한 것으로 각각 탄화수소기, 할로겐화 탄화수소기, 산소함유기, 황함유기, 실리콘함유기, 수소원자 또는 할로겐원자이고,X1, X2 and X3 are the same or different and each represents a hydrocarbon group, a halogenated hydrocarbon group, an oxygen-containing group, a sulfur-containing group, a silicon-containing group, a hydrogen atom or a halogen atom,
R22 내지 R42는 서로 동일 또는 상이한 것으로 각각 C1~20의 탄화수소기, C1~20의 할로겐화 탄화수소기, 실리콘함유기, 산소함유기, 질소함유기, 인함유기 또는 수소원자임.
R22 to R42 are the same or different from each other and each is a hydrocarbon group of C1 to 20, a halogenated hydrocarbon group of C1 to 20, a silicon-containing group, an oxygen-containing group, a nitrogen-containing group, a phosphorus organic group or a hydrogen atom.
일구체예로서, 본 발명에 따라 전기 전도성 탄소계 담지체에 담지된 올레핀 중합용 메탈로센 촉매는, 하기와 같은 단계들을 통해 준비될 수 있다:In one embodiment, the metallocene catalyst for olefin polymerization carried on the electrically conductive carbon-based support according to the present invention can be prepared by the following steps:
그라파이트를 산화시켜 그라핀 산화물(화학식 A)를 형성시키는 (i) 단계;(I) oxidizing the graphite to form a graphene oxide (Formula A);
그라핀 산화물(화학식 A)에 SOCl2 등을 반응시켜 염소화 그라핀(화학식 B)을 형성시키는 (ii) 단계;(Ii) reacting graphene oxide (Formula A) with SOCl 2 or the like to form chlorinated graphene (Formula B);
염소화 그라핀(화학식 B)에 시클로펜타디에닐 골격을 가지는 유기화합물을 반응시켜 화학식 C의 화합물을 형성시키는 (iii) 단계; 및(Iii) reacting chlorinated graphene (Formula B) with an organic compound having a cyclopentadienyl skeleton to form a compound of Formula C; And
화학식 C의 화합물에 노르말부틸리튬(n-BuLi)을 반응시키고, 시클로펜타디에닐 지르코늄 트리클로라이드로 대표되는 시클로펜타디에닐 골격의 배위자를 함유하는 주기율표 IVB족 전이금속 화합물을 반응시켜 그라핀 담지 메탈로세 촉매(화학식 D)를 형성시키는 (iv) 단계.Reacting the compound of formula (C) with n-butyllithium (n-BuLi) and reacting the transition metal group IVB transition metal compound containing a cyclopentadienyl skeleton ligand represented by cyclopentadienyl zirconium trichloride to form graphene metal (Iv) forming a rosese catalyst (Formula D).
[화학식 A](A)
[화학식 B][Chemical Formula B]
[화학식 C]≪ RTI ID = 0.0 &
[화학식 D][Chemical Formula D]
본 발명에 따라 전기 전도성 탄소계 담지체에 담지된 올레핀 중합용 메탈로센 촉매는 전기 전도성 탄소계 담지체는 공유결합 가능한 작용기를 보유하도록 개질된 것이고, 전기 전도성 탄소계 담지체 상의 상기 작용기와 메탈로센 촉매 중 금속을 제외한 유기 작용기가 공유결합을 통해 연결된 것이 특징이다.The metallocene catalyst for olefin polymerization supported on the electrically conductive carbon-based carrier according to the present invention is a catalyst in which the electrically conductive carbon-based carrier is modified to have a covalent bondable functional group, and the functional group on the electrically conductive carbon- It is characterized in that organic functional groups other than metals in the catalyst are connected through covalent bonds.
본 발명에서 메탈로센 촉매는 에틸렌을 포함하는 알파-올레핀 중합체 또는 공중합체를 제조할 수 있는 한 특별히 제한되지 않는다.
In the present invention, the metallocene catalyst is not particularly limited as long as it is capable of producing alpha-olefin polymers or copolymers containing ethylene.
메탈로센 촉매는 이전의 지글러-나타 촉매에 비해 분자량, 분자량 분포도 및 입체 규칙성 조절이 용이하다. 메탈로센 촉매를 사용하면 좁은 분자량 분포도와 높은 입체규칙성, 용이한 공단량체 삽입성 및 균일한 공중합 조성을 지닌 공중합체를 제조할 수 있다. 메탈로센 촉매를 이용하여 제조한 공중합체가 높은 입체 규칙성, 좁은 분자량분포도 및 여러 가지 좋은 물성을 나타내는 이유는 지글러-나타 촉매와는 달리 단일 활성점으로 이루어져 있어서 사슬이 안정적으로 증가하고, 메탈로센 촉매 구조 특이성에 의하여 삽입방향이 결정되기 때문이다. 이러한 배위중합의 여러 가지 중합 조건의 변화에 따라 촉매 활성도, 중합체의 구조, 조성, 중합체의 물성을 변화시킬 수 있다. 본 발명은 상기 중합 조건 변화의 하나로 전기 전도성 탄소계 담지체에 공유결합을 통해 담지된 올레핀 중합용 메탈로센 촉매를 사용하는 것이 특징이다.
Metallocene catalysts are easier to control molecular weight, molecular weight distribution and stereoregularity than previous Ziegler-Natta catalysts. When a metallocene catalyst is used, a copolymer having a narrow molecular weight distribution, high stereoregularity, easy comonomer incorporation property and uniform copolymerization composition can be produced. Unlike the Ziegler-Natta catalyst, the copolymer produced by using the metallocene catalyst exhibits high stereoregularity, narrow molecular weight distribution and various good physical properties because the chain is composed of single active sites and the chain is stably increased. This is because the insertion direction is determined by the specificity of the rossen catalyst structure. The catalytic activity, the structure of the polymer, the composition, and the physical properties of the polymer can be changed according to various polymerization conditions of the coordination polymerization. The present invention is characterized in that a metallocene catalyst for olefin polymerization supported via covalent bonds in an electrically conductive carbon-based carrier is used as one of the polymerization conditions.
본 발명은 본 발명의 신규 담지 메탈로센 촉매를 올레핀 중합반응시 사용하여, 전기 전도성 탄소계 담지체에 담지된 메탈로센 촉매 상에서 올레핀 중합체 또는 공중합체가 형성 및 성장된 폴리올레핀-전기 전도성 탄소계 담지체 함유 복합체를 제조할 수 있다.The present invention relates to a process for producing a polyolefin-electrically conductive carbon-based catalyst in which an olefin polymer or a copolymer is formed and grown on a metallocene catalyst supported on an electrically conductive carbon-based carrier by using the newly supported metallocene catalyst of the present invention in an olefin polymerization reaction A carrier-containing complex can be produced.
본 발명의 올레핀 중합 및 공중합 방법은 본 발명에 따라 전기 전도성 탄소계 담지체에 담지된 메탈로센 촉매의 존재 하에서 올레핀을 단독중합하거나 또는 주단량체로서 에틸렌과 공단량체로서 에틸렌 이외의 다른 알파-올레핀을 공중합하는 것이다. The olefin polymerization and copolymerization method of the present invention can be carried out by homopolymerizing an olefin in the presence of a metallocene catalyst supported on an electroconductive carbon-based support according to the present invention, or by copolymerizing ethylene as a main monomer and another alpha-olefin other than ethylene as a comonomer .
본 발명의 올레핀 중합 및 공중합 시 사용되는 촉매 시스템은 본 발명에 따른 담지 메탈로센 촉매 외에, 알킬알루미녹산 조촉매, 유기알루미늄 조촉매 또는 붕소화합물 조촉매, 또는 이들의 혼합물을 더 포함할 수 있다.The catalyst system used in the olefin polymerization and copolymerization of the present invention may further comprise, in addition to the supported metallocene catalyst according to the present invention, an alkylaluminoxane cocatalyst, an organoaluminum cocatalyst or a boron compound cocatalyst, or a mixture thereof .
알킬알루미녹산은 하기 화학식 1로 표시될 수 있다.The alkylaluminoxane may be represented by the following formula (1).
[화학식 1][Chemical Formula 1]
상기 화학식 1에서, Ra는 수소원자, C1~20 알킬기, C3~20 시클로알킬기, 치환된 시클로알킬기, C6~40 아릴기, 알킬아릴기, 또는 아릴알킬기이며, n은 0에서 100사이의 정수임.Ra is a hydrogen atom, a C1-20 alkyl group, a C3-20 cycloalkyl group, a substituted cycloalkyl group, a C6-40 aryl group, an alkylaryl group, or an arylalkyl group, and n is an integer of 0-100.
알킬알루미녹산 (alkylaluminoxane)의 비제한적인 예로는 메틸알루미녹산(methylaluminoxane), 에틸알루미녹산 (ethyl-aluminoxane), n-부틸알루미녹산(n-butylaluminoxane), n-헥실알루미녹산(n-hexyl-aluminoxane) 및 개량된 알킬알루미녹산(moddified alkylaluminoxane)이 있다. 이때, 알킬기는 (C1-C20)일 수 있다.Non-limiting examples of alkylaluminoxanes include methylaluminoxane, ethyl-aluminoxane, n-butylaluminoxane, n-hexyl-aluminoxane, ) And modified alkylaluminoxanes. Here, the alkyl group may be (C1-C20).
담지 메탈로센 촉매와 알킬알루미녹산 조촉매 두 성분의 몰비는 전이금속 M : 알루미늄 원자의 몰비 기준으로 1:10 내지 1:10000이 적당하며, 특히 1:50 내지 1:500이 바람직하다.
The molar ratio of the supported metallocene catalyst to the alkylaluminoxane cocatalyst is preferably 1:10 to 1: 10000, more preferably 1:50 to 1: 500, based on the molar ratio of the transition metal M: aluminum atom.
상기 유기알루미늄은 하기 화학식 2로 표시될 수 있다.The organoaluminum may be represented by the following formula (2).
[화학식 2](2)
상기 화학식 2에서, Rb, Rc, 및 Rd는 서로 같거나 다르며, 수소원자, 할로겐기, C1~20 알킬기, 치환된 알킬기, C3~20 시클로알킬기, 치환된 시클로알킬기, C6~40 아릴기, 알킬아릴기 및 아릴알킬기이며, Rb, Rc, 및 Rd중에서 적어도 하나 이상은 알킬기임.Wherein Rb, Rc and Rd are the same or different from each other and each represents a hydrogen atom, a halogen group, a C1-20 alkyl group, a substituted alkyl group, a C3-20 cycloalkyl group, a substituted cycloalkyl group, a C6-40 aryl group, An aryl group and an arylalkyl group, and at least one of Rb, Rc and Rd is an alkyl group.
상기 알킬알루미늄은 트리메틸알루미늄, 디메틸알루미늄클로리드, 디메틸알루미늄 메톡시드, 메틸알루미늄 디클로리드, 트리에틸알루미늄, 디에틸알루미늄 클로리드, 디에틸알루미늄 메톡시드, 에틸알루미늄 디클로리드, 트리노말프로필알루미늄, 디노말프로필알루미늄 클로리드, 노말프로필알루미늄 클로리드, 트리노말부틸알루미늄, 트리프로필알루미늄, 트리이소프로필알루미늄, 트리이소부틸알루미늄 및 디이소부틸알루미늄 하이드리드로 이루어진 군으로부터 1 종 이상 선택될 수 있다.
The alkylaluminum may be selected from the group consisting of trimethylaluminum, dimethylaluminum chloride, dimethylaluminum methoxide, methylaluminum dichloride, triethylaluminum, diethylaluminum chloride, diethylaluminum methoxide, ethylaluminum dichloride, At least one selected from the group consisting of dinonopropyl aluminum chloride, normal propyl aluminum chloride, trinormal butyl aluminum, tripropyl aluminum, triisopropyl aluminum, triisobutyl aluminum and diisobutyl aluminum hydride.
본 발명에 따른 제조방법에서 사용가능한 올레핀계 단량체의 예로는 에틸렌, 알파올레핀, 사이클로 올레핀 등이 있으며, 디엔계 단량체, 트리엔계, 스티렌계 및 고리형 올레핀도 가능하다.Examples of the olefin-based monomer that can be used in the production method according to the present invention include ethylene, alpha olefins, cycloolefins and the like, and diene monomers, triene-based, styrene-based and cyclic olefins are also possible.
상기 단량체의 예로는 에틸렌, 프로필렌, 1-부텐, 1-펜텐, 1-헥센, 1-옥텐, 1-데센, 1-도데센, 1-테트라데센, 1-헥사데센, 1-옥타데센, 1-에이코센, 4-메틸-1-펜텐, 3-메틸-1-펜텐 및 3-메틸-1-부텐, 스티렌, p-메틸스티렌, 알릴벤젠, 디비닐벤젠, 비닐시클로헥산, 비닐시클로헵탄, 시클로펜텐, 시클로헵텐, 노르보르넨, 테트라시클로도데센, 이소프렌, 1,3-부타디엔, 1,4-펜타디엔, 1,4-헥사디엔, 사이클로펜타디엔를 들수 있으며, 이들 단량체를 단독 또는 2종 이상 혼합하여 중합할 수 있다.
Examples of such monomers include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, Butene, styrene, p-methylstyrene, allylbenzene, divinylbenzene, vinylcyclohexane, vinylcycloheptane, vinylcyclohexane, 1,3-butadiene, 1,4-pentadiene, 1,4-hexadiene and cyclopentadiene, and these monomers may be used singly or in combination of two or more kinds of monomers such as cyclopentene, cycloheptene, norbornene, tetracyclododecene, isoprene, Or more.
본 발명에 따른 올레핀 중합방법은, 사용되는 담지 촉매를 제외하고는, 올레핀의 중합기술 분야에서 실시되고 있는 통상의 중합방법이 적용될 수 있다. 예컨대, 올레핀 중합체 및 공중합체를 중합하기 위한 중합온도는 0∼150℃이고 바람직하게는 30∼120℃이다. 중합반응은 용액, 슬러리 또는 기상 공정에 의해 공지된 방식으로 연속적으로 또는 배치식으로 수행될 수 있다. 또한, 본 발명에 따른 중합방법에 의해 단독중합체, 공중합체 또는 블록 공중합체를 제조할 수 있다.
In the olefin polymerization method according to the present invention, a conventional polymerization method practiced in the art of olefin polymerization can be applied except for the supported catalyst to be used. For example, the polymerization temperature for polymerizing the olefin polymer and the copolymer is 0 to 150 캜, and preferably 30 to 120 캜. The polymerization reaction can be carried out continuously or batchwise in a known manner by solution, slurry or gas phase process. Further, a homopolymer, a copolymer or a block copolymer can be produced by the polymerization method according to the present invention.
용융지수는 일정한 부하와 온도에서 10분동안 모세관을 흐르는 수지의 무게를 나타내며, 일반적으로 분자량과 용융지수와의 관계는 반비례이다. 따라서, PE의 경우 높은 분자량 값을 갖는 PE는 저용융지수 값을 갖고, 반대로 낮은 분자량 값의 PE는 고용융지수 값을 갖는다.The melt index refers to the weight of resin flowing through a capillary for 10 minutes at a constant load and temperature. In general, the relationship between molecular weight and melt index is inversely proportional. Therefore, in the case of PE, PE having a high molecular weight value has a low melt index value, and conversely, PE having a low molecular weight value has a high melt index value.
본 발명에 따른 폴리올레핀-전기 전도성 탄소계 담지체 함유 복합체는 용융지수(Melt Index, g/10min)가 0.1 ~ 50일 수 있다. The polyolefin-electroconductive carbonaceous carrier-containing composite according to the present invention may have a melt index (g / 10 min) of 0.1 to 50.
또한, Choi 등의 문헌[“Generation of Ultra-High-Molecular-weight Polyethylene from Metallocenes Immobizlied onto N-Doped Graphene Nanoplatelets”, Macromol. Rapid Commun., 2013, 34, 533-538]에는 그라파이트 옥시드에 Cp2ZrCl2를 반응시키고, 톨루엔으로 10회 세척후 Zr 함량을 측정한 결과 3.2 중량%이었지만, 이 담지촉매를 80℃에서 톨루엔으로 반복하여 3회 세척하였을 때, Zr 함량이 1.9 중량%로 40%의 메탈로센이 담지체에서 떨어져 나왔다. 그러나, 본 발명의 촉매는 단순한 물리적 흡착방법이 아니고, 메탈로센의 리간드인 시클로펜타디에닐 및 그 유도체를 그라핀 옥시드에 공유결합을 통하여 고정한 화학적 방법이기 때문에, 본 발명의 폴리올레핀은 그라핀이 함유된 고분자나노복합체를 제조할 수 있는 가장 효과적인 방법이라 할 수 있다.
Also, Choi et al., &Quot; Generation of Ultra-High-Molecular-Weight Polyethylene from Metallocenes Immobizzed onto N-Doped Graphene Nanoplatelets ", Macromol. Rapid Commun., 2013, 34, 533-538] reported that Cp 2 ZrCl 2 was reacted with graphite oxide, and after washing with toluene 10 times, Zr content was 3.2% by weight, , The Zr content was 1.9% by weight and 40% of the metallocene was separated from the support. However, since the catalyst of the present invention is not a simple physical adsorption method but is a chemical method of fixing cyclopentadienyl and derivatives thereof, which are ligands of metallocene, through covalent bonding to graphene oxide, Is the most effective method for preparing the polymer nanocomposite.
본 발명에 따르면 전기 전도성 탄소계 담지체(예, 그라핀)에 올레핀이 성장하게 됨으로 전기적, 열적, 기계적 성질이 우수한 전기 전도성 탄소계 담지체가 우수하게 분산된 폴리올레핀-전기 전도성 탄소계 담지체 나노복합체를 용이하게 제조할 수 있다.
According to the present invention, an olefin is grown on an electrically conductive carbon-based carrier (e.g., graphene), so that the electrically conductive carbon-based carrier excellent in electrical, thermal, and mechanical properties is dispersed in an excellent manner. Can be easily produced.
이하, 실시예를 통하여 본 발명을 보다 상세히 설명한다. 다만, 이들 실시예는 본 발명을 예시적으로 설명하기 위한 것에 불과하므로 본 발명의 범위가 이들 실시예에 의해 한정되는 것으로 해석되어서는 아니된다.
Hereinafter, the present invention will be described in more detail by way of examples. It should be understood, however, that these examples are for illustrative purposes only and are not to be construed as limiting the scope of the invention.
<촉매활성 측정방법>≪ Method for measuring catalytic activity &
촉매활성은 시간당 생성된 폴리올레핀의 양을 사용한 담지 메탈로센 촉매의 중심금속의 농도로 표현하였다.
The catalytic activity was expressed as the concentration of the central metal of the supported metallocene catalyst using the amount of polyolefin produced per hour.
<용융지수(<Melt Index ( meltmelt indexindex , , MIMI ) 측정방법>) Measurement method>
폴리에틸렌은 190℃, 폴리프로필렌은 230℃로 각각 가열한 다음 실린더에 2160g의 부하를 가할 피스톤을 제위치에 놓고 오리피스(내경: 2.09mm, 길이: 8mm)를 일정시간(분단위)동안 통과하여 나온 수지의 중량을 측정하여 10분동안의 통과량으로 환산하였다.
After the polyethylene was heated to 190 ° C and the polypropylene was heated to 230 ° C, the piston to be loaded with 2160g of the cylinder was put in position and the orifice (inner diameter: 2.09mm, length: 8mm) The weight of the resin was measured and converted into the amount of passage for 10 minutes.
실시예Example 1 : 담지 촉매(A) 제조 1: Preparation of supported catalyst (A)
그라핀 옥시드 0.1g을 Schlenk tube에 넣고 염화 티오닐(SOCl2) 30ml를 가하여 초음파 장치를 사용하여 분산시켰다. 이후 반응용기를 80℃에서 24시간 교반하면서 반응시켰다. 반응 종료후 미반응 염화 티오닐을 제거하고, 정제된 테트라히드로퓨란을 이용하여 염소화된 그라핀을 세척하였다. 염소화된 그라핀을 30ml의 정제된 테트라히드로퓨란에 분산시키고, -78℃에서 시클로펜타디에닐화나트륨 10mmol(5ml) 을 용액적하법을 이용하여 넣어주고 24시간 반응시켰다. 이후 정제된 테트라히드로퓨란을 이용하여 세척을 하고, 노르말헥산으로 3회 세척하여 그라핀에 시클로펜타디에닐이 공유결합으로 연결된 그라핀 담지화합물(시클로펜타디에닐화된 그라핀)을 얻었다. 0.1 g of graphene oxide was placed in a Schlenk tube, 30 ml of thionyl chloride (SOCl 2 ) was added and dispersed using an ultrasonic device. Thereafter, the reaction vessel was reacted with stirring at 80 DEG C for 24 hours. After completion of the reaction, unreacted thionyl chloride was removed, and the chlorinated graphene was washed with purified tetrahydrofuran. Chlorinated graphene was dispersed in 30 ml of purified tetrahydrofuran, and 10 mmol (5 ml) of cyclopentadienyl sodium was added dropwise at -78 캜, and the mixture was reacted for 24 hours. Thereafter, the precipitate was washed with purified tetrahydrofuran, and washed three times with normal hexane to obtain a graphene carrying compound (cyclopentadienylated graphene) in which cyclopentadienyl was covalently linked to the graphene.
시클로펜타디에닐화된 그라핀을 -78℃에서 노르말부틸리튬 10mmol(4ml)을 용액적하법을 이용하여 넣어주고, 상온에서 12시간 반응시켰다. 이후 미반응 노르말 부틸리튬을 노르말헥산으로 세척하고 진공건조하였다. 상온에서 테트라히드로퓨란에 용해된 시클로펜타디에닐지르코늄 트리클로라이드 10mmol를 용액적하법을 이용하여 넣어주어 24시간 반응시켰다. 반응 종료후 미반응 시클로펜타디에닐지르코늄 트리클로라이드를 제거하고 정제된 테트라히드로퓨란을 이용하여 세척을 실시하고, 진공 건조하여 담지 촉매(A)를 제조하였다.
Cyclopentadienylated graphene was added dropwise with 10 mmol (4 ml) of n-butyllithium at -78 ° C by the dropwise addition, and the reaction was allowed to proceed at room temperature for 12 hours. Unreacted normal butyllithium was then washed with normal hexane and vacuum dried. 10 mmol of cyclopentadienyl zirconium trichloride dissolved in tetrahydrofuran was added dropwise at room temperature and reacted for 24 hours. After completion of the reaction, the unreacted cyclopentadienyl zirconium trichloride was removed and washed with purified tetrahydrofuran, followed by vacuum drying to prepare a supported catalyst (A).
실시예Example 2 : 담지 촉매(B)의 제조 2: Preparation of Supported Catalyst (B)
그라핀 옥시드 0.1g을 Schlenk tube에 넣고 염화 티오닐 30ml를 가하여 초음파 장치를 사용하여 분산시켰다. 이후 반응용기를 80℃에서 24시간 교반하면서 반응시켰다. 반응 종료후 미반응 염화 티오닐을 제거하고, 정제된 테트라히드로퓨란을 이용하여 염소화된 그라핀을 세척하였다. 염소화된 그라핀을 30ml의 정제된 테트라히드로퓨란에 분산시키고, -78℃에서 인데닐화나트륨 10mmol(5ml) 을 용액적하법을 이용하여 과량으로 넣어주고 24시간 반응시켰다. 이후 정제된 테트라히드로퓨란을 이용하여 세척하고, 노르말헥산으로 3회 세척하여 그라핀에 인데닐이 공유결합으로 연결된 그라핀 담지화합물(인데닐화된 그라핀)을 얻었다.0.1 g of graphene oxide was placed in a Schlenk tube, 30 ml of thionyl chloride was added and dispersed using an ultrasonic device. Thereafter, the reaction vessel was reacted with stirring at 80 DEG C for 24 hours. After completion of the reaction, unreacted thionyl chloride was removed, and the chlorinated graphene was washed with purified tetrahydrofuran. Chlorinated graphene was dispersed in 30 ml of purified tetrahydrofuran, and 10 mmol (5 ml) of sodium decyl adenylate was added thereto at -78 ° C in an excess amount by a dropwise addition method, followed by reaction for 24 hours. Thereafter, the precipitate was washed with purified tetrahydrofuran, and washed three times with normal hexane to obtain a graphen carrying compound (indenylated graphene) in which indenyl was covalently linked to graphene.
인데닐화된 그라핀을 -78℃에서 노르말부틸리튬 10mmol(4ml)을 용액적하법을 이용하여 넣어주고 12시간 반응시켰다. 이후 미반응 노르말 부틸리튬을 제거하고, 상온에서 인데닐지르코늄 트리클로라이드 10mmol를 용액적하법을 이용하여 과량으로 넣어주어 24시간 반응시켰다. 반응 종료후 미반응 인데닐지르코늄 트리클로라이드를 제거하고 정제된 테트라히드로퓨란을 이용하여 세척을 실시하고, 진공 건조하여 담지 촉매(B)를 제조하였다.
The indenylated graphene was added with 10 mmol (4 ml) of n-butyllithium at -78 ° C by the dropwise addition method, and the reaction was carried out for 12 hours. Subsequently, unreacted normal butyllithium was removed, and 10 mmol of indenyl zirconium trichloride was added in an excess amount using a solution dropping method at room temperature, followed by reaction for 24 hours. After completion of the reaction, unreacted indenyl zirconium trichloride was removed and washed with purified tetrahydrofuran, followed by vacuum drying to prepare a supported catalyst (B).
실시예Example 3 : 담지 촉매(C)의 제조 3: Preparation of Supported Catalyst (C)
그라핀 옥시드 0.1g을 Schlenk tube에 넣고 염화 티오닐 30ml를 가하여 초음파 장치를 사용하여 분산시켰다. 이후 반응용기를 80℃에서 24시간 교반하면서 반응시켰다. 반응 종료후 미반응 염화 티오닐을 제거하고, 정제된 테트라히드로퓨란을 이용하여 염소화된 그라핀을 세척하였다. 염소화된 그라핀을 30ml의 정제된 테트라히드로퓨란에 분산시키고, -78℃에서 노르말부틸시클로펜타디에닐화나트륨 10mmol(5ml) 을 용액적하법을 이용하여 과량으로 넣어주고 24시간 반응시켰다. 이후 정제된 테트라히드로퓨란을 이용하여 세척하고, 노르말헥산으로 3회 세척하여 그라핀에 노르말부틸시클로펜타디에닐이 공유결합으로 연결된 그라핀 담지화합물(노르말부틸 시클로펜타디에닐화된 그라핀)을 얻었다.0.1 g of graphene oxide was placed in a Schlenk tube, 30 ml of thionyl chloride was added and dispersed using an ultrasonic device. Thereafter, the reaction vessel was reacted with stirring at 80 DEG C for 24 hours. After completion of the reaction, unreacted thionyl chloride was removed, and the chlorinated graphene was washed with purified tetrahydrofuran. Chlorinated graphene was dispersed in 30 ml of purified tetrahydrofuran, and 10 mmol (5 ml) of sodium butylcyclopentadienylated sodium was added at -78 캜 in an excess amount by a dropwise addition method, followed by reaction for 24 hours. Thereafter, the resultant was washed with purified tetrahydrofuran and washed three times with normal hexane to obtain a graphen carrying compound (normal butyl cyclopentadienylated graphene) linked with covalent bond to graphene by n-butylcyclopentadienyl .
노르말부틸시클로펜타디에닐화된 그라핀을 -78℃에서 노르말부틸리튬 10mmol(4ml)을 용액적하법을 이용하여 넣어주고 12시간 반응시켰다. 이후 미반응 노르말 부틸리튬을 제거하고, 상온에서 노르말부틸시클로펜타디에닐지르코늄 트리클로라이드 10mmol를 용액적하법을 이용하여 과량으로 넣어주어 24시간 반응시켰다. 반응 종료후 미반응 노르말부틸시클로펜타디에닐지르코늄 트리클로라이드를 제거하고 정제된 테트라히드로퓨란을 이용하여 세척을 실시하고, 진공 건조하여 담지 촉매(C)를 제조하였다.
N-butylcyclopentadienylated graphene was added dropwise with 10 mmol (4 ml) of n-butyllithium at -78 ° C by the dropwise addition, and the mixture was reacted for 12 hours. Thereafter, unreacted normal butyllithium was removed, and 10 mmol of normal butylcyclopentadienyl zirconium trichloride was added thereto at room temperature in an excess amount by a dropwise addition method, followed by reaction for 24 hours. After completion of the reaction, the unreacted normal butyl cyclopentadienyl zirconium trichloride was removed, washed with purified tetrahydrofuran, and vacuum dried to prepare a supported catalyst (C).
하기 표 1은, 실시예 1, 2 및 3에서 제조된 담지 메탈로센 촉매 중 지르코늄 함량을 ICP-AES로 분석한 결과를 나타낸 것이다.Table 1 below shows the results of analysis of zirconium content in the supported metallocene catalysts prepared in Examples 1, 2 and 3 by ICP-AES.
비교예Comparative Example 1: 에틸렌 중합 1: Ethylene polymerization
담지촉매와 비교하기 위하여, 실시예 1의 담지전 메탈로센 구조와 동일한 지르코노센 디클로라이드를 촉매로 사용하여 에틸렌 중합을 하였다. For comparison with the supported catalyst, the ethylene polymerization was carried out using the same zirconocene dichloride as the metallocene structure before carrying out of Example 1 as a catalyst.
중합은 1 리터 고압반응기에서 이루어졌는데, 톨루엔 400ml를 사용하였고, Al/Zr의 비가 5000이 되도록 공촉매로서 메틸알루미녹산을 첨가하고, 지르코노센 디클로라이드 (0.00001 mol)을 첨가하였다. 에틸렌 중합은 8기압의 에틸렌 압력과 50℃의 중합온도에서 1시간 동안 이루어졌다.
The polymerization was carried out in a 1 liter high-pressure reactor. 400 ml of toluene was used, and methylaluminoxane was added as a cocatalyst so that the ratio of Al / Zr was 5000, and zirconocene dichloride (0.00001 mol) was added. The ethylene polymerization was carried out for 1 hour at an ethylene pressure of 8 atm and a polymerization temperature of 50 < 0 > C.
실시예Example 4: 에틸렌 중합 4: polymerization of ethylene
실시예 1, 2 및 3에서 제조된 담지촉매를 사용하여 에틸렌을 중합하였다. Ethylene was polymerized using the supported catalysts prepared in Examples 1, 2 and 3.
에틸렌 중합은 1 리터 고압반응기에서 이루어졌는데, 노르말헥산 400 ml를 사용하였고, Al/Zr의 비가 500이 되도록 공촉매로서 메틸알루미녹산을 첨가하고, 담지 메탈로센촉매 0.05g을 첨가하였다. 에틸렌 중합은 8기압의 에틸렌 압력과 50℃의 중합온도에서 1시간 동안 이루어졌다.
Ethylene polymerization was carried out in a 1 liter high-pressure reactor. 400 ml of n-hexane was used, and methylaluminoxane was added as a cocatalyst so that the ratio of Al / Zr was 500, and 0.05 g of the supported metallocene catalyst was added. The ethylene polymerization was carried out for 1 hour at an ethylene pressure of 8 atm and a polymerization temperature of 50 < 0 > C.
하기 표 2는 실시예 4 및 비교예 1의 에틸렌 중합 결과를 나타낸 것이다. Table 2 below shows the results of ethylene polymerization of Example 4 and Comparative Example 1.
(Kg-PE/mol-Zr-hr)Catalytic activity
(Kg-PE / mol-Zr-hr)
(g/10min)Melt Index
(g / 10 min)
상기 표 2에서 볼 수 있듯이, 그라핀 담지 메탈로센촉매의 활성이 지르코노센 디클로라이드를 사용한 경우 보다는 다소 낮지만, 적은 양의 알루미녹산을 사용한 담지 메탈로센의 활성으로는 비교적 높은 값을 나타내었다. 생성된 폴리에틸렌의 분자량은 그라핀 담지메탈로센을 사용한 경우 높게 나타났다.
As can be seen from the above Table 2, the activity of the graphene supported metallocene catalyst is somewhat lower than that of zirconocene dichloride, but the activity of the supported metallocene using a small amount of aluminoxane is relatively high Respectively. The molecular weight of the produced polyethylene was higher when the graphene supported metallocene was used.
비교예Comparative Example 2: 에틸렌/1- 2: Ethylene / 1- 헥센Hexen 공중합 Copolymerization
담지촉매와 비교하기 위하여, 실시예 1의 담지전 메탈로센 구조와 동일한 지르코노센 디클로라이드를 촉매로 사용하여 에틸렌과 1-헥센 공중합을 하였다. 정제된 1-헥센 10ml를 첨가한 것을 제외하고는 비교예 1과 동일하게 공중합을 실시하였다.
For comparison with the supported catalyst, ethylene and 1-hexene copolymerization were carried out using the same zirconocene dichloride as the metallocene structure before carrying out of Example 1 as a catalyst. Copolymerization was carried out in the same manner as in Comparative Example 1, except that 10 ml of purified 1-hexene was added.
실시예Example 5: 에틸렌/1- 5: Ethylene / 1- 헥센Hexen 공중합 Copolymerization
상기 실시예 1, 2 및 3에서 제조된 담지촉매를 사용하여 에틸렌과 1-헥센 공중합을 실시하였다. 중합은 1 리터 고압반응기에서 이루어졌는데, 노르말헥산 400 ml를 사용하였고, 정제된 1-헥센 10ml를 투입하였다. 이후 중합법은 상기 실시예 4와 동일한 조건에서 실시하였다.Ethylene and 1-hexene copolymerization were carried out using the supported catalysts prepared in Examples 1, 2 and 3 above. The polymerization was carried out in a 1 liter high-pressure reactor, where 400 ml of n-hexane was used and 10 ml of refined 1-hexene was added. The polymerization was carried out under the same conditions as in Example 4 above.
(mol%)1-hexene content
(mol%)
(Kg-PE/mol-Zr-hr)Catalytic activity
(Kg-PE / mol-Zr-hr)
(g/10min)Melt Index
(g / 10 min)
Claims (13)
전기 전도성 탄소계 담지체에 시클로펜타디에닐 골격을 가지는 유기화합물을 공유결합으로 연결시키는 제1단계; 및
제1단계의 결과물에 시클로펜타디에닐 골격의 배위자를 함유하는 주기율표 IVB족 전이금속 화합물을 반응시켜 담지체에 담지된 메탈로센 촉매를 형성시키는 제2단계를 포함하는 것이 특징인 메탈로센 담지 촉매 제조 방법.
A method of producing a metallocene catalyst for olefin polymerization carried on an electrically conductive carbon-based carrier,
A first step of covalently bonding an organic compound having a cyclopentadienyl skeleton to an electrically conductive carbon-based carrier; And
And a second step of reacting the resultant product of the first step with a transition metal compound of group IVB of the periodic table containing a cyclopentadienyl skeleton ligand to form a metallocene catalyst supported on the carrier. Catalyst.
The method of claim 1, wherein the carbon-based carrier is selected from the group consisting of graphene, graphite oxide, graphite, and graphite oxide.
[구조식 1]
[구조식 2]
[구조식 3]
상기 구조식에서 R1, R6 및 R13는 수소원자이고,
R2 내지 R5, R7 내지 R12, 및 R14 내지 R21은 서로 동일 또는 상이한 것으로 각각 C1~20의 탄화수소, C1~20의 할로겐화 탄화수소, 실리콘함유기, 산소함유기, 질소함유기, 인함유기 또는 수소원자임.
The method of claim 1, wherein the organic compound having a cyclopentadienyl skeleton is represented by a structural formula selected from the group consisting of Structural Formulas 1 to 3 below.
[Structural formula 1]
[Structural formula 2]
[Structural Formula 3]
Wherein R1, R6 and R13 are hydrogen atoms,
R2 to R5, R7 to R12, and R14 to R21 are the same or different from each other and each represent a C1 to C20 hydrocarbon, C1 to C20 halogenated hydrocarbon, a silicon-containing group, an oxygen-containing group, a nitrogen- .
[구조식 4]
[구조식 5]
[구조식 6]
상기 구조식에서,
M1은 주기율표 IVB족의 전이금속원자이고,
X1, X2 및 X3는 서로 동일 또는 상이한 것으로 각각 탄화수소기, 할로겐화 탄화수소기, 산소함유기, 황함유기, 실리콘함유기, 수소원자 또는 할로겐원자이고,
R22 내지 R42는 서로 동일 또는 상이한 것으로 각각 C1~20의 탄화수소기, C1~20의 할로겐화 탄화수소기, 실리콘함유기, 산소함유기, 질소함유기, 인함유기 또는 수소원자임.
The method for preparing a metallocene supported catalyst according to claim 1, wherein the transition metal compound of Group IVB of Periodic Table IV containing a ligand having a cyclopentadienyl skeleton is represented by a structural formula selected from the group consisting of Structural Formulas 4 to 6.
[Structural Formula 4]
[Structural Formula 5]
[Structural Formula 6]
In the above formula,
M1 is a transition metal atom of Group IVB of the periodic table,
X1, X2 and X3 are the same or different and each represents a hydrocarbon group, a halogenated hydrocarbon group, an oxygen-containing group, a sulfur-containing group, a silicon-containing group, a hydrogen atom or a halogen atom,
R22 to R42 are the same or different from each other and each is a hydrocarbon group of C1 to 20, a halogenated hydrocarbon group of C1 to 20, a silicon-containing group, an oxygen-containing group, a nitrogen-containing group, a phosphorus organic group or a hydrogen atom.
전기 전도성 탄소계 담지체는 공유결합 가능한 작용기를 보유하도록 개질된 것이고, 전기 전도성 탄소계 담지체 상의 상기 작용기와 메탈로센 촉매 중 유기 작용기가 공유결합을 통해 연결된 것이 특징인 올레핀 중합용 메탈로센 담지 촉매.
A metallocene catalyst for olefin polymerization supported on an electrically conductive carbon-based carrier,
The electrically conductive carbon-based carrier is modified to have a covalent bond functional group, and the functional group on the electrically conductive carbon-based carrier and the organic functional group in the metallocene catalyst are covalently linked. Supported catalyst.
The process of claim 5, wherein the metallocene catalyst is selected from the group consisting of bis (cyclopentadienyl) zirconium dichloride, bis (cyclopentadienyl) zirconium methyl chloride, bis (cyclopentadienyl) zirconium dimethyl, bis (Methylcyclopentadienyl) zirconium dichloride, bis (ethylcyclopentadienyl) zirconium dichloride, bis (ethylcyclopentadienyl) zirconium dichloride, bis (ethylcyclopentadienyl) zirconium dichloride, bis Zirconium dichloride, bis (pentamethylcyclopentadienyl) zirconium dichloride, bis (pentamethylcyclopentadienyl) zirconium dichloride, bis (pentamethylcyclopentadienyl) zirconium dichloride, bis (N-butyl-cyclopentadienyl) zirconium dichloride, bis (n-butyl-cyclopentadienyl) zirconium dichloride Zirconium dichloride, bis (indenyl) zirconium methyl chloride, bis (indenyl) zirconium dimethyl, bis (2-methyl- Indenyl) zirconium dichloride, bis (2-phenyl-indenyl) zirconium dichloride, bis (2-methyl-indenyl) zirconium dichloride, bis (Cyclopentadienyl) zirconium dichloride, dimethylsilylbis (cyclopentadienyl) zirconium methyl chloride, dimethylsilylbis (cyclopentadienyl) zirconium dichloride, dimethylsilylbis (Indenyl) zirconium dichloride, dimethylsilyl (indenyl) zirconium methyl chloride, dimethylsilyl (indenyl) zirconium dichloride, Zirconium dichloride, dimethylsilylbis (2-methyl-indenyl) zirconium methyl chloride, dimethylsilylbis (2-methyl-indenyl) zirconium dimethyl, dimethylsilyldimethylsilylbis (Indenyl cyclopentadienyl) zirconium dichloride, dimethylsilyl (indenyl cyclopentadienyl) zirconium methyl chloride, dimethylsilyl (indenyl cyclopentadienyl) zirconium dimethyl, dimethylsilyl (fluorenylcyclopentane (Cyclopentadienyl) zirconium dichloride, ethylenbis (cyclopentadienyl) zirconium dichloride, dimethylsilyl (fluorenylcyclopentadienyl) zirconium dichloride, (Cyclopentadienyl) zirconium methyl chloride, ethylene bis (cyclopentadienyl) zirconium dimethyl, ethylene bis (indenyl) (2-methyl-indenyl) zirconium dichloride, ethylene bis (indenyl) zirconium dichloride, ethylene bis (indenyl) zirconium dimethyl, ethylene bis (Indenyl cyclopentadienyl) zirconium dichloride, ethylene (indenyl cyclopentadienyl) zirconium methyl chloride, enylene (including indenyl cyclopentadienyl) zirconium dichloride, ethylene Zirconium dichloride, ethylene (fluorenylcyclopentadienyl) zirconium dichloride, ethylene (fluorenylcyclopentadienyl) zirconium dimethyl, ethylene (fluorenylcyclopentadienyl) zirconium dichloride, ethylene (Cyclopentadienyl) zirconium dichloride, isopropylbis (cyclopentadienyl) zirconium methyl chloride, isopropylbis (Indenyl) zirconium dichloride, isopropyl bis (indenyl) zirconium methyl chloride, isopropyl bis (indenyl) zirconium dimethyl, isopropyl bis (indenyl) zirconium dichloride, (2-methyl-indenyl) zirconium dichloride, isopropyl (indenyl cyclopentadienyl) zirconium dichloride, isopropyl (2-methyl-indenyl) zirconium dichloride, isopropyl (Cyclopentadienyl) zirconium dichloride, isopropyl (fluorenylcyclopentadienyl) zirconium dichloride, isopropyl (fluorenylcyclopentadienyl) zirconium dichloride, isopropyl Dienyl) zirconium methyl chloride, isopropyl (fluorenylcyclopentadienyl) zirconium dimethyl, and the like. Jingin olefin polymerization catalyst to a metallocene supported for.
The metallocene supported catalyst for olefin polymerization according to claim 5, wherein the carbon-based carrier is graphite or graphene.
6. The metallocene supported catalyst for olefin polymerization according to claim 5, wherein the electrically conductive carbon-based carrier modified to have a covalent bondable functional group is graphen oxide.
The metallocene supported catalyst for olefin polymerization according to claim 5, which is produced by the process according to any one of claims 1 to 4.
The polyolefin-electrically conductive carbon-based carrier according to any one of claims 5 to 8, wherein the olefin polymer or copolymer is formed and grown on the metallocene catalyst supported on the electrically conductive carbon- Containing complex.
8. A process for producing a polyolefin according to any one of claims 5 to 8, which comprises polymerizing or copolymerizing an olefin under a metallocene catalyst supported via covalent bond on an electrically conductive carbon-based carrier.
12. The process for producing a polyolefin according to claim 11, wherein the olefin is an alpha -olefin or a cycloolefin having 2 to 12 carbon atoms.
12. The method for producing a polyolefin according to claim 11, wherein the polyolefin to be produced is the polyolefin-electroconductive carbon-based carrier-containing complex according to claim 10.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020140073088A KR101593803B1 (en) | 2014-06-16 | 2014-06-16 | Metallocene catalyst for olefin polymerization, supported by electroconducting carbon support |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020140073088A KR101593803B1 (en) | 2014-06-16 | 2014-06-16 | Metallocene catalyst for olefin polymerization, supported by electroconducting carbon support |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20150144441A true KR20150144441A (en) | 2015-12-28 |
KR101593803B1 KR101593803B1 (en) | 2016-02-15 |
Family
ID=55084751
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020140073088A KR101593803B1 (en) | 2014-06-16 | 2014-06-16 | Metallocene catalyst for olefin polymerization, supported by electroconducting carbon support |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101593803B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115975082A (en) * | 2023-03-02 | 2023-04-18 | 安徽工业大学 | Graphene metallocene catalyst and preparation method thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102486898B1 (en) * | 2021-02-09 | 2023-01-10 | 경북대학교 산학협력단 | Cobalt Complex Catalyst Containing Imine Ligand for Polymerization of Cyclic Olefin and Method for Preparing Cyclic Olefin Polymer Using the Same |
-
2014
- 2014-06-16 KR KR1020140073088A patent/KR101593803B1/en active IP Right Grant
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115975082A (en) * | 2023-03-02 | 2023-04-18 | 安徽工业大学 | Graphene metallocene catalyst and preparation method thereof |
CN115975082B (en) * | 2023-03-02 | 2024-03-26 | 安徽工业大学 | Graphene metallocene catalyst and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
KR101593803B1 (en) | 2016-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101711788B1 (en) | Hybride catalyst compositon, preparation method thereof, and manufactured polyolefin using the same | |
KR101797890B1 (en) | Hybride catalyst compositon, preparation method thereof, and manufactured polyolefin using the same | |
US10975173B2 (en) | High-processability high-density ethylene-based polymer using hybrid supported metallocene catalyst, and preparation method therefor | |
CN109415451B (en) | High density ethylene polymer using supported hybrid metallocene catalyst and method for preparing the same | |
KR100738851B1 (en) | Process for producing olefin polymers | |
JP5154754B2 (en) | Ethylene polymer and molded product obtained therefrom | |
JP6803928B2 (en) | High-density ethylene-based polymer using a hybrid-supported metallocene catalyst and manufacturing method | |
KR101773722B1 (en) | High density ethylene polymer with excellent processability using supported hybrid metallocene catalyst and methods for producing the same | |
US20040068066A1 (en) | Dual-site oflfin polymerisation catalyst composition | |
JP5587556B2 (en) | Ethylene polymer, thermoplastic resin composition containing the ethylene polymer, and molded product obtained therefrom | |
KR20190071187A (en) | Ethylene polymer having excellent long-term resistance to stress and pipe using the same | |
KR101412846B1 (en) | Method For Preparing Polyolefin And Polyolefin Therefrom | |
KR101593803B1 (en) | Metallocene catalyst for olefin polymerization, supported by electroconducting carbon support | |
KR101735447B1 (en) | method of preparing polyolefin nanocomposite including dispersed carbon support on the polyolefin and nanocomposite prepared thereby | |
KR20210045201A (en) | Process for Preparing a Hybrid Catalyst for Polymerizing an Olefin, Hybrid Catalyst for Polymerizing an Olefin, and Polyolefin | |
JP2009197226A (en) | Ethylene copolymer, thermoplastic resin composition containing the ethylene copolymer, and molded product obtained from them | |
KR101593804B1 (en) | Metallocene catalyst for Syndiotactic Styrene polymerization, supported by electroconducting carbon support | |
JPH1077371A (en) | Polyethylene composition | |
JP6559490B2 (en) | Olefin polymerization catalyst and method for synthesizing ethylene polymer | |
CN112020521A (en) | Olefin-based copolymer and method for preparing the same | |
KR101593805B1 (en) | - Polyolefinelectroconducting carbon support containing composite and Supported cocatalyst for olefin polymerizationmetallocene catalyst | |
JP3660066B2 (en) | Method for producing polyethylene composition with improved melt tension | |
JP5269756B2 (en) | Process for producing olefin polymer | |
JPH09151214A (en) | Polypropylene molding and preparation of its base resin | |
KR20230076779A (en) | Polyolefin Having Excellent Processability and Process for Preparing the Same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20190201 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20200203 Year of fee payment: 5 |