KR20150144310A - Composition for sub base with ferronickel slag and the method of manufacturing the same - Google Patents

Composition for sub base with ferronickel slag and the method of manufacturing the same Download PDF

Info

Publication number
KR20150144310A
KR20150144310A KR1020150173509A KR20150173509A KR20150144310A KR 20150144310 A KR20150144310 A KR 20150144310A KR 1020150173509 A KR1020150173509 A KR 1020150173509A KR 20150173509 A KR20150173509 A KR 20150173509A KR 20150144310 A KR20150144310 A KR 20150144310A
Authority
KR
South Korea
Prior art keywords
slag
aggregate
weight
ferronickel
parts
Prior art date
Application number
KR1020150173509A
Other languages
Korean (ko)
Inventor
조봉석
이훈하
Original Assignee
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 포항산업과학연구원 filed Critical 재단법인 포항산업과학연구원
Priority to KR1020150173509A priority Critical patent/KR20150144310A/en
Publication of KR20150144310A publication Critical patent/KR20150144310A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/14Waste materials; Refuse from metallurgical processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/14Waste materials; Refuse from metallurgical processes
    • C04B18/141Slags
    • C04B18/142Steelmaking slags, converter slags
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/14Waste materials; Refuse from metallurgical processes
    • C04B18/141Slags
    • C04B18/144Slags from the production of specific metals other than iron or of specific alloys, e.g. ferrochrome slags
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/06Oxides, Hydroxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Civil Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

The present invention relates to a sub-base aggregate composition using ferronickel slag and a manufacturing method thereof. Provided are a sub-base aggregate composition using ferronickel slag and a manufacturing method thereof, with respect to 100 parts by weight of the total sub-base aggregate composition, which comprises 50-99.99 parts by weight of converter slag and 0.01-50 parts by weight of ferronickel slag. According to the present invention, provided is a sub-base composition which is easy to be satisfied with a diameter in comparison with the conventional composition, and with excellent bearing capacity of the ground.

Description

페로니켈 슬래그를 사용한 로반재 골재 조성물 및 그 제조방법{Composition for sub base with ferronickel slag and the method of manufacturing the same}Technical Field [0001] The present invention relates to a composition for a loban ash aggregate using ferronickel slag and a method for producing the same,

본 발명은 페로니켈 슬래그를 사용한 로반재 골재 조성물 및 그 제조방법에 관한 것으로, 보다 상세하게는 기존의 전로 슬래그 로반재에 페로니켈 슬래그를 일정량 혼합 사용함으로써, 종래에 비해 입도 및 지반 지지력이 우수한 페로니켈 슬래그를 사용한 로반재 골재 조성물 및 그 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lozenge aggregate composition using ferronickel slag and a method for producing the same, and more particularly, to a ferroalloy slag composition using ferronickel slag, Nickel slag, and a method of manufacturing the same.

기존의 철강슬래그 중 전로슬래그는 제강공정에서 발생하는 부산물로서 마모율이 25~30% 수준으로 골재 강도가 매우 높은 특징이 있고, 도로용 로반재로 재활용되고 있다. Among conventional steel slag, converter slag is a by-product from the steelmaking process and has an abrasion strength of 25 ~ 30%, which is very high in strength, and is being recycled as a roadside lumber material.

그러나, 전로슬래그는 골재강도가 충분한 장점이 있는 반면, 오히려 과잉으로 골재강도가 높은 점으로 인해, 로반재용 골재 제조시 파쇄효율이 떨어지고 에너지 비용이 높아지는 특징이 있다. 이와 같은 이유로 로반재용 골재로 제조되었을 시 골재 입도가 제대로 맞지 않고, 조립한 골재 위주로 생산되어 도로용으로 시공되므로 로반재 포설 후, 다짐효율이 떨어지고 지지력이 약화되는 단점이 있다.However, the converter slag has a merit that aggregate strength is sufficient, but it is characterized by excessively high aggregate strength, resulting in a low crushing efficiency and high energy cost in the production of aggregate for ligneous materials. For this reason, it is disadvantageous in that the aggregate particle size is not properly adjusted when it is made of the aggregate for the mortar, and the aggregate is produced mainly for the assembled aggregate so that the compaction efficiency is lowered and the bearing capacity is weakened after the loam repositioning.

따라서, 높은 파쇄효율을 보유하고, 로반재용 골재 표준입도 만족이 용이하며, 로반재 골재로서의 소요의 성능을 발현할 수 있는 로반재 조성물 및 그 제조방법을 개발할 필요가 있다.Therefore, there is a need to develop a rosin material composition and a method for producing the rosin material composition, which can exhibit high performance as a lozenge aggregate, having a high crushing efficiency, easily satisfying standard granular materials for a rosin material, and the like.

본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 종래에 비해 입도만족이 용이하고, 지반 지지력이 우수한 로반재 조성물 및 그 제조방법을 제공하는 것을 그 목적으로 한다.SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to provide a rosin composition and a method for producing the rosin composition.

본 발명의 일 견지에 의하면, 전체 로반재 골재 조성물 100중량부를 기준으로, 전로슬래그 50중량부 내지 99.99중량부 및 페로니켈 수쇄슬래그 0.01 내지 50중량부를 포함하는 페로니켈 슬래그를 사용한 로반재 골재 조성물이 제공된다.According to one aspect of the present invention, there is provided a lozenge aggregate composition using ferronickel slag comprising 50 to 99.99 parts by weight of a converter slag and 0.01 to 50 parts by weight of a ferronickel chain slag, based on 100 parts by weight of an entire loam- / RTI >

본 발명의 다른 견지에 의하면, 전로 슬래그 50중량부 내지 99.99중량부와 페로니켈 수쇄슬래그 0.01 내지 50중량부를 혼합하는 단계; 및 혼합된 슬래그를 입도 20-40mm의 크기로 파쇄하는 단계를 포함하는 페로니켈 슬래그를 사용한 로반재 골재 조성물 제조방법이 제공된다.According to another aspect of the present invention, there is provided a method for producing a slag, comprising: mixing 50 to 99.99 parts by weight of a converter slag with 0.01 to 50 parts by weight of a ferronickel chain slag; And crushing the mixed slag to a size of 20-40 mm in particle size.

본 발명에 따라 기존의 전로슬래그 로반재 골재에 페로니켈 슬래그 골재를 혼합 활용하면, 기존의 로반재 골재롤 활용되고 있는 마모율 25~30% 수준의 전로슬래그가 지닌 단점, 즉, 오히려 과잉으로 골재강도가 높은 점으로 인해, 로반재용 골재 제조시 파쇄효율이 떨어지고 에너지 비용이 높아지는 특징이 있으며, 로반재용 골재로 제조되었을 시 골재 입도가 제대로 맞지 않고, 조립한 골재 위주로 생산되어 도로용으로 시공되는 단점에 대하여, 마모율 70~75% 수준의 낮은 골재강도를 보유하는 페로니켈 슬래그가 혼합활용됨으로써 파쇄효율이 증가되고, 로반재용 골재의 표준입도를 안정적으로 만족시킬 수 있다.According to the present invention, when the ferroalloy slag aggregate is mixed with the existing converter slag lobstart aggregate, disadvantages of converter slag having a wear rate of 25 ~ 30%, that is, an excess of aggregate strength , The crushing efficiency is lowered and the energy cost is increased in manufacturing the aggregate for the rosin material. When the aggregate material is manufactured as the aggregate for the lumber material, the aggregate particle size is not properly adjusted and the aggregate material is produced mainly for the construction. , The crushing efficiency is increased by mixing the ferronickel slag having the low aggregate strength of 70 ~ 75%, and the standard granular aggregate can be stably satisfied.

또한, 기존의 전로슬래그는 제강 부원료로 활용된 CaO가 미반응한 채로 남게 되는 프리-CaO 등의 팽창특성이 있기 때문에 로반재 시공 후 도로의 팽창 융기 현상을 야기할 수 있어, 보통 3~6개월 대기 중에서 야적함으로써 최종적으로 수침팽창비(KS F 2580 철강슬래그의 80℃ 수침 팽창 시험방법)를 1.5% 이하로 품질 관리한 후 로반재 골재로 활용이 되고 있으나, 페로니켈 슬래그는 별도의 야적 존치기간을 거치지 않더라도 수침팽창비가 0.3% 이하이므로 기존 전로슬래그에 혼합 활용할 경우 팽창반응성에 대한 안정성이 보다 양호하다.In addition, since the existing converter slag has an expansion characteristic such as pre-CaO which remains as unreacted CaO used as a steelmaking additive, it can cause expansion bulging phenomenon of the road after the loam rebuilding, The quality of the water-swelling ratio (KS F 2580 steel slag 80 ° C water-swelling test method) is controlled to 1.5% or less by the use of air in the atmosphere, and is used as a raw material aggregate. However, ferronickel slag Since the water swelling ratio is not more than 0.3%, the stability against expansion reaction is better when mixed with conventional converter slag.

도 1은 본 발명에 따른 로반재 골재 조성물의 제조방법을 간략히 보여주는 흐름도이다.
도 2는 종래의 로반재용 전로슬래그 골재의 입도분포곡선을 나타낸 것이다.
도 3은 본 발명에 따라 전로 슬래그와 페로니켈 슬래그를 혼합하여 제조된 로반재 골재 조성물의 입도분포곡선을 나타낸 것이다.
도 4는 전로 슬래그와 페로니켈 슬래그의 혼합비에 따른 로반재 골재 조성물의 다짐도를 평가하기 위해 압축강도를 측정한 결과이다.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a flow chart briefly illustrating a method for producing a lozenge aggregate composition according to the present invention.
Fig. 2 shows a particle size distribution curve of a conventional converter slag aggregate for a floor board.
FIG. 3 is a graph showing the particle size distribution curve of a lozenge aggregate composition prepared by mixing a converter slag and ferronickel slag according to the present invention.
Fig. 4 shows the result of measuring compressive strength to evaluate the degree of compaction of the lozenge aggregate composition according to the mixing ratio of converter slag and ferronickel slag.

이하, 도면을 참조하여 본 발명을 보다 구체적으로 설명한다.Hereinafter, the present invention will be described more specifically with reference to the drawings.

본 발명자들은 로반재 골재 제조시 기존에 사용되는 전로 슬래그와 함께 페로니켈 제조시 발생되는 페로니켈 슬래그를 혼합하여 제조할 경우 종래에 비해 입도만족이 용이하고, 지반 지지력이 우수함을 예기치 않게 발견하여 본 발명을 완성하였다.The present inventors have unexpectedly discovered that when the furnace slag is manufactured by mixing the conventionally used converter slag with the ferronickel slag produced in the production of ferronickel, the grain size is more easily satisfied and the ground supporting force is superior to the conventional one Thereby completing the invention.

철강제품 중 스테인리스강 제조시 원료로 활용되는 페로니켈(Ferronickel)을 안정적으로 공급하기 위하여 최근 국내에서도 페로니켈 제련소가 설립되어 연산 15만톤(순니켈 3만톤)의 생산체재를 갖추고 있다. 생산방식은, Ni 광석을 이용하여 전기로 형식의 로에서 코크스 등으로 Ni 광석을 환원처리하여 페로니켈을 제조하고, 이때 발생되는 슬래그가 페로니켈 슬래그이다. 페로니켈 슬래그는 연간 약 100만 톤 규모로 그 발생량이 막대하며, 수쇄 및 서냉 방식에 의하여 배출되고 있다. In order to supply Ferronickel, which is used as a raw material in the production of stainless steel among steel products, a ferronickel smelter has recently been established in Korea and has a production capacity of 150,000 tons (net nickel 30,000 tons). In the production method, Ni ore is subjected to reduction treatment of Ni ore by using coke or the like in an electric furnace type furnace using Ni ore, and the ferrite produced at this time is ferronickel slag. Ferronickel slag is produced in a volume of about 1 million tons per year, which is produced by water chain and slow cooling method.

기존의 철강슬래그 즉, 고로슬래그 및 제강슬래그 등은 CaO와 SiO2 성분으로 구성되어 있는 점에 반해 페로니켈 슬래그의 주성분은 25~40중량%의 MgO와 45~60중량%의 SiO2로 구성되어 있으며 냉각방식에 따라 엔스타타이트(Enstatite)(MgO·SiO2)상과 포르스테라이트(Forsterite)(2MgO·SiO2)상으로 결정화되는 특징이 있다.Conventional steel slag, that is, blast furnace slag and steel making slag, is composed of CaO and SiO 2 components, whereas the main component of ferronickel slag is composed of 25 ~ 40 wt% MgO and 45 ~ 60 wt% SiO 2 It is characterized by crystallization on Enstatite (MgO · SiO 2 ) phase and Forsterite (2MgO · SiO 2 ) according to the cooling method.

서냉 방식에 의해 배출되는 페로니켈 괴재슬래그는 발생형태가 괴상(塊狀)이며, 1500℃ 이상의 고온용융단계를 거쳐 생성되기 때문에 환경적으로 유해성이 없으므로 로반재용 골재로서의 활용가능성이 매우 높게 평가되나, 마모율이 70~75%로 수준으로, 골재 강도가 매우 낮아 로반재 골재로서의 기준물성에 미치지 못하는 실정이다.Since the ferronickel sponge slag discharged by the slow cooling method is massive in shape and is produced through a high temperature melting step of 1500 ° C. or higher, the slag is highly environmentally harmful and therefore highly utilizable as an aggregate for roving lumber. However, The abrasion rate is 70 ~ 75%, and the strength of the aggregate is very low, so it does not meet the reference properties as the raw aggregate.

기존의 전로슬래그는 제강 부원료로 활용된 CaO가 미반응한 채로 남게 되는 프리-CaO 등의 팽창특성이 있기 때문에 로반재 시공 후 도로의 팽창 융기 현상을 야기할 수 있다. 따라서, 보통 3~6개월 대기 중에서 야적함으로써 최종적으로 수침팽창비(KS F 2580 철강슬래그의 80℃ 수침 팽창 시험방법)를 1.5% 이하로 품질 관리한 후 로반재 골재로 활용이 되고 있다. 그러나, 페로니켈 슬래그는 별도의 야적 존치기간을 거치지 않더라도 수침팽창비가 0.3% 이하이므로 기존 전로슬래그에 혼합 활용할 경우 팽창반응성에 대한 안정성이 보다 양호하여 로반재 골재 제조시 유리한 특성이 있다.Conventional converter slag may cause expansion bulging phenomenon of the road after reconstruction because it has expansion characteristic such as pre-CaO that CaO used as steelmaking additive remains unreacted. Therefore, it is usually used as raw material aggregate after 3 ~ 6 months in the atmosphere, so that the final water swelling ratio (KS F 2580 steel slag 80 ° C water immersion test method) is controlled to 1.5% or less. However, the ferronickel slag has a water swelling ratio of 0.3% or less even if it does not undergo a separate field maintenance period. Therefore, when mixed with conventional converter slag, stability against expansion reactivity is better, which is advantageous in manufacturing raw aggregate.

이에 본 발명에서는 로반재 골재 조성물로서 50중량부 내지 99.99중량부의 전로슬래그 및 0.01 내지50중량부의 페로니켈 슬래그를 포함하는 것을 특징으로 한다.Accordingly, the present invention is characterized in that it comprises 50 to 99.99 parts by weight of converter slag and 0.01 to 50 parts by weight of ferronickel slag as a lozenge aggregate composition.

본 발명에 사용되는 페로니켈 슬래그는 Ni 광석을 이용하여 전기로 형식의 로에서 코크스 등으로 Ni 광석을 환원처리하여 페로니켈을 제조할때 발생되는 슬래그이며, 일반적으로 40 내지 70중량%의 SiO2, 20 내지 40중량%의 MgO, 0.01 내지 5중량%의 CaO, 0.01 내지 5중량%의 Al2O3, 1 내지 10중량%의 FeO를 포함하여 이루어진다.Ferro-nickel slag to be used in the present invention is a slag using a Ni ore occurs when producing a ferro-nickel to reduction treatment to Ni ore with coke, such as in the form a of the electric furnace, in general, SiO 2 of 40 to 70% by weight , 20 to 40 wt% of MgO, 0.01 to 5 wt% of CaO, 0.01 to 5 wt% of Al 2 O 3 , and 1 to 10 wt% of FeO.

또한, 상기 로반재 골재는 특별히 제한되는 것은 아니나, 20-40mm의 골재 표준입도에 만족하는 입도분포를 갖는 것이 바람직하다. 보다 바람직하게, 상기 로반재 골재는 20mm, 25mm, 30mm 또는 40mm의 골재 표준입도에 만족하는 입도분포를 갖는다.Further, the above-mentioned lozenge aggregate is not particularly limited, but preferably has a particle size distribution satisfying the standard grain size of 20-40 mm. More preferably, the lozenge aggregate has a particle size distribution satisfying an aggregate standard size of 20 mm, 25 mm, 30 mm or 40 mm.

본 발명의 로반재 조성물에 있어서, 상기 페로니켈슬래그의 함량은 전체 로반재 조성물의 100중량부에 대하여 0.01 내지 50중량부인 것이 바람직하다. 페로니켈슬래그의 함량이 0.01중량부 미만으로 너무 낮게 혼합될 경우에는 파쇄효율이 저하되고, 로반재용 골재의 표준입도를 안정적으로 만족시킬 수 없어 바람직하지 않으며, 또한 50중량부를 초과할 경우에는 전체 로반재 골재의 강도가 저하하여 오히려 마모율이 떨어지기 때문에 바람직하지 않다. In the lozenge composition of the present invention, the content of the ferronickel slag is preferably 0.01 to 50 parts by weight based on 100 parts by weight of the total content of the lozenge composition. When the content of the ferronickel slag is too low to be mixed with less than 0.01 part by weight, the crushing efficiency is lowered and the standard granulometry of the aggregate for roving is not satisfactorily stably satisfactory. When the content is more than 50 parts by weight, The strength of the ash aggregate is lowered and the wear rate is lowered, which is not preferable.

도 1에 본 발명에 따른 로반재 골재 조성물의 제조방법을 간략히 도시하였다.FIG. 1 schematically shows a method for producing a lozenge aggregate composition according to the present invention.

본 발명의 골재 조성물 제조방법은 전로 슬래그 50중량부 내지 99.99중량부와 페로니켈 슬래그 0.01 내지 50중량부를 혼합하는 단계; 및 혼합된 슬래그를 입도 20-40mm의 크기로 파쇄하는 단계를 포함한다. 본 발명에 따라 슬래그의 파쇄는 전로 슬래그 및 페로니켈 슬래그를 각각 파쇄하지 않고, 상기 두 슬래그를 혼합하여 그 혼합 슬래그를 파쇄한다. 이와 같이 강도가 상대적으로 낮은 페로니켈 슬래그를 함께 사용함으로써 파쇄효율을 증가시켜 에너지 비용을 낮출 수 있어, 결국 로반재용 골재의 입도를 용이하게 조절할 수 있다. The method for producing an aggregate composition of the present invention comprises mixing 50 to 99.99 parts by weight of a converter slag and 0.01 to 50 parts by weight of a ferronickel slag; And crushing the mixed slag to a size of 20-40 mm in particle size. According to the present invention, the crushing of the slag does not break down the converter slag and the ferronickel slag, respectively, but mixes the two slag to crush the mixed slag. By using the ferronickel slag having a relatively low strength in this way, the crushing efficiency can be increased and the energy cost can be lowered, so that the particle size of the aggregate for the lumber material can be easily controlled.

이때 상기 전로 슬래그와 페로니켈 슬래그의 혼합비를 상기와 같이 한정한 이유는 앞서 설명한 바와 같다. The reason why the mixing ratio of the converter slag and the ferronickel slag is limited as described above is as described above.

또한, 상기 페로니켈 슬래그는 SiO2 40 내지 70중량%, MgO 20 내지 40중량%, CaO 0.01 내지 5중량%, Al2O3 0.01 내지 5중량%, FeO 1 내지 10중량%를 포함하는 것이 사용될 수 있다.In addition, the ferro-nickel slag is used to include a SiO 2 40 to 70 wt%, MgO 20 to 40 wt%, CaO 0.01 to 5% by weight, Al 2 O 3 0.01 to 5% by weight, FeO 1 to 10% by weight .

본 발명에 따른 로반재 조성물은 도로 로반재의 기층 및 보조기층용으로 사용될 수 있다. The rosin composition according to the present invention can be used for the base layer and the auxiliary layer of the road furnishing.

이하, 실시예를 통하여 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail by way of examples.

<실시예><Examples>

비교예Comparative Example 1 One

기존방식으로서 전로 슬래그만을 사용하여 로반재용 골재로서 40mm 표준입도로 파쇄 및 입도조정하였다. 제조된 골재에 대해 5개의 시료를 선택하여 입도분포곡선을 조사하여 보조기층용 40mm 골재의 표준입도분포곡선과 비교하여 그 결과를 도 2에 나타내었다. Crushing and particle size were adjusted to 40 mm standard particle size as aggregate for mortar using only converter slag as the conventional method. Five samples of the manufactured aggregate were selected and the particle size distribution curve was compared with the standard particle size distribution curve of the 40 mm aggregate for the auxiliary layer. The results are shown in FIG.

도 2에 나타낸 바와 같이, 전로슬래그만을 사용하여 40mm 로반재 골재 제조하였을 경우, 보조기층용 40mm 골재의 표준입도분포곡선 범위 밖으로 벗어나는 것을 알 수 있다.As shown in FIG. 2, when 40 mm thick rebar aggregate was produced using only converter slag, it was found that the standard particle size distribution curve of the 40 mm aggregate for the auxiliary layer was deviated from the range of the standard particle size distribution curve.

실시예Example 1 One

전로 슬래그와 페로니켈 슬래그를 하기 표 1에 나타낸 바와 같이 “KS F 2535 도로용철강슬래그“의 25mm 골재 표준입도에 적합하도록 파쇄한 후 표 2에 나타낸 바와 같이 그 혼합비를 달리하여 혼합하여 25mm 골재 로반재 골재 조성물을 제조하였다. 제조된 로반 골재 조성물에 대해 골재 마모율을 시험하였다.The converter slag and the ferronickel slag were crushed to conform to the standard grain size of 25 mm aggregate of &quot; KS F 2535 road steel slag &quot; as shown in the following Table 1, and mixed with different mixing ratios as shown in Table 2, A re-aggregate composition was prepared. The aggregate abrasion rate was tested for the prepared rosin aggregate composition.

25mm 입도규격25mm size specification 입도별구성비율(%)Percent composition by size (%) 13~25mm13 ~ 25mm 28.528.5 5~13mm5 to 13 mm 23.523.5 2.5~5mm2.5 to 5 mm 10.510.5 0.4~2.5mm0.4 to 2.5 mm 17.517.5 0.08~0.4mm0.08 to 0.4 mm 1414 0~0.08mm0 to 0.08 mm 66 gun 100100

마모율 시험은 "KS F 2508 로스앤젤레스 시험기에 의한 굵은골재의 마모시험방법"에 준하여 평가하였으며, 평가방법은 5~13mm의 전로슬래그 및 페로니켈 슬래그를 샘플링하여 건조한 후, 마모시험장치에 혼합율에 따라 총 5000±10g을 투입하였다. 이때, 강구 8ea, 총3,330±25g 투입하여 30~33RPM의 속도로 마모시험장치를 500회 회전시켰다. 회전 종료 후 시료를 빼내서 1.7mm 체에 남는 시료의 질량을 측정하였다. 마모율 산정을 위한 계산식은 다음과 같다.The abrasion rate test was carried out in accordance with "KS F 2508 Los Angeles Tester for Wear Test of Coarse Aggregate". The evaluation method was to sample and dry converter slag and ferronickel slag of 5 ~ 13 mm, A total of 5000 ± 10 g was added. At this time, the abrasion test apparatus was rotated 500 times at a speed of 30 to 33 RPM by putting 3,330 ± 25 g of steel ball 8ea. After the completion of the rotation, the sample was taken out and the mass of the sample remaining in the 1.7 mm sieve was measured. The calculation formula for calculating the wear rate is as follows.

[식 1][Formula 1]

마모율(%) = [(M1-M2)/M1] × 100Wear rate (%) = [(M1-M2) / M1] 100

(M1:투입전 시료질량, M2:시험 후 1.7mm 체에 남은 시료량)(M1: mass of sample before injection, M2: amount of sample remaining in 1.7 mm sieve after test)

그 결과를 하기 표 2에 나타내었다.The results are shown in Table 2 below.

구분division 제강슬래그Steel slag 페로니켈 슬래그Ferronickel slag 마모율(%)Wear rate (%) 혼합율(%)Mixing rate (%) 100100 00 29.629.6 7070 3030 35.835.8 5050 5050 45.945.9 3030 7070 60.460.4 00 100100 74.574.5 KS F 2535 도로용
철강슬래그 마모율기준
KS F 2535 for road
Steel slag abrasion standard
-- -- 50 이하Less than 50

상기 표 1로부터 알 수 있는 바와 같이, 일반적으로 로반재 기준으로 마모율 50% 이하로 하고 있으나, 페로니켈 슬래그의 함유량이 전체 중량 중 50%를 초과할 경우에는 마모율이 50% 이상으로 전체적인 골재강도가 저하되었다.As can be seen from the above Table 1, the abrasion rate is generally 50% or less based on the rosin content, but when the content of the ferronickel slag exceeds 50% of the total weight, the abrasion rate is 50% or more, .

실시예Example 2 2

전로 슬래그와 페로니켈 슬래그를 혼합하여 로반재 골재 제조시 입도범위 만족여부를 평가할 필요가 있으므로, 로반재용 골재로서 40mm 표준입도로 파쇄 및 입도 조정하였다. 이때, 전로 슬래그와 페로니켈 슬래그의 혼합비는 100:0, 70:30, 50:50, 30:70, 0:100으로 하였다. 그 결과를 도 3에 나타내었다.Since it is necessary to evaluate the range of grain size to be satisfied when manufacturing the lozenge aggregate by mixing the converter slag and the ferronickel slag, crushing and grain size were adjusted to 40 mm standard grain size as the aggregate for the ligneous material. At this time, the mixing ratio of the converter slag to the ferronickel slag was 100: 0, 70:30, 50:50, 30:70, and 0: 100. The results are shown in Fig.

도 3에 나타낸 바와 같이, 전로 슬래그와 페로니켈 슬래그의 혼합비가 70:30 및 50:50의 경우가 40mm 표준입도 상한선 및 하한선에 안정적으로 포함되는 것을 확인할 수 있었다.As shown in Fig. 3, it was confirmed that the mixing ratios of the converter slag and the ferronickel slag were 70:30 and 50:50, respectively, stably included in the upper limit and lower limit of 40 mm standard particle size.

실시예Example 3 3

전로슬래그와 페로니켈 슬래그를 혼합하여 로반재 골재 제조 시 다짐도를 평가할 필요가 있다. 평가방법은 "KS F 2312 흙의 다짐시험방법"을 적용하였다. 우선 전로 슬래그와 페로니켈 슬래그의 혼합비룰 100:0, 70:30, 50:50, 30:70, 0:100으로 설정하여 25mm 로반재 골재를 제조하였다. 최적 함수비는 6~7% 수준으로 조정하여 24시간 보관 후, Ø10×20cm 몰드에 시료를 1/2씩 넣고 92회씩 4.5kg 자동램머를 활용하여 다짐을 실시하였다. 슬래그 시료로 채워진 몰드는 습윤 챔버에서 상대습도 95%, 온도 20℃의 환경조건에서 28일, 80일, 180일 동안 양생한 후, 압축강도를 평가하였다. 압축강도는 KS F 5105 시험법(수경성 시멘트 모르타르의 압축강도 시험방법)에 준하여 30톤 용량의 전용 압축강도 시험기를 사용하여 측정하였다. 측정 결과는 도 4에 도시하였다.It is necessary to evaluate the degree of compaction in the production of raw waste aggregate by mixing converter slag and ferronickel slag. For the evaluation method, "KS F 2312 soil compaction test method" was applied. First, the mixture ratio of converter slag and ferronickel slag was set to 100: 0, 70:30, 50:50, 30:70, 0: 100 to prepare a 25 mm thick rebar aggregate. Optimum water content was adjusted to 6 ~ 7% level. After storing for 24 hours, ½ × 20cm sample was placed in Ø10 × 20cm mold and compaction was carried out 92 times by using 4.5kg automatic rammer. The molds filled with the slag samples were cured for 28 days, 80 days and 180 days in a wet chamber at an ambient temperature of 95% relative humidity and a temperature of 20 ° C, and then the compressive strength was evaluated. The compressive strength was measured by a dedicated compressive strength tester of 30 tons capacity according to the KS F 5105 test method (compressive strength test method of hydraulic cement mortar). The measurement results are shown in Fig.

도 4에 나타낸 바와 같이, 다짐도를 평가하기 위해 압축강도를 측정한 결과 전로 슬래그와 페로니켈 슬래그의 혼합비가 70:30 > 50:50 > 30:70 > 100:0 > 0:100의 순으로 다짐도가 우수한 것으로 나타났다. 따라서, 전로 슬래그 단독으로 활용되는 로반재에 비하여 전로슬래그와 페로니켈 슬래그를 혼합활용 시 다짐도가 양호하게 평가되었다.As shown in FIG. 4, the compressive strength was measured to evaluate the degree of compaction. As a result, the mixing ratio of the converter slag and ferronickel slag was 70:30> 50:50> 30:70> 100: 0> 0: Respectively. Therefore, compaction of the converter slag and ferronickel slag was evaluated better than that of the converter slag alone.

이상, 구체적인 실시예에 관해서 설명하였으나, 본 발명의 범위에서 벗어나지 않는 한도 내에서 여러 가지 변형이 가능함은 당해 분야에서 통상의 지식을 가진 자에게 있어서 자명하다 할 것이다.While the present invention has been described in connection with certain exemplary embodiments, it will be understood by those skilled in the art that various changes may be made without departing from the scope of the present invention.

Claims (4)

전체 로반재 골재 조성물 100중량부를 기준으로, 전로슬래그 50 내지 70중량부 및 페로니켈 괴재슬래그 30 내지 50중량부를 포함하며,
30-40mm의 골재 표준입도에 만족하는 입도분포를 갖는 것을 특징으로 하는 페로니켈 슬래그를 사용한 로반재 골재 조성물.
50 to 70 parts by weight of a converter slag and 30 to 50 parts by weight of a ferronickel sponge slag, based on 100 parts by weight of an aggregate total aggregate composition,
Wherein the aggregate has a particle size distribution satisfying the standard particle size of 30 to 40 mm.
제 1항에 있어서, 상기 페로니켈 괴재슬래그는 SiO2 40 내지 70중량%, MgO 20 내지 40중량%, CaO 0.01 내지 5중량%, Al2O3 0.01 내지 5중량%, FeO 1 내지 10중량%를 포함하는 것을 특징으로 하는 로반재 골재 조성물.
The method of claim 1, wherein the ferronickel sponge slag comprises 40 to 70 wt% SiO 2 , 20 to 40 wt% MgO, 0.01 to 5 wt% CaO, 0.01 to 5 wt% Al 2 O 3 , 1 to 10 wt% Wherein the aggregate composition comprises:
전체 로반재 골재 조성물 100중량부를 기준으로, 전로 슬래그 50 내지 70중량부와 페로니켈 괴재슬래그 30 내지 50중량부를 혼합하는 단계; 및 혼합된 슬래그를 파쇄하는 단계를 포함하는 페로니켈 슬래그를 사용한 로반재 골재 조성물 제조방법.
Mixing 50 to 70 parts by weight of the converter slag and 30 to 50 parts by weight of the ferro nickel spent slag, based on 100 parts by weight of the total freeboard aggregate composition; And crushing the mixed slag. &Lt; RTI ID = 0.0 &gt; 11. &lt; / RTI &gt;
제 3항에 있어서, 상기 페로니켈 괴재슬래그는 SiO2 40 내지 70중량%, MgO 20 내지 40중량%, CaO 0.01 내지 5중량%, Al2O3 0.01 내지 5중량%, FeO 1 내지 10중량%를 포함하는 것을 특징으로 하는 페로니켈 슬래그를 사용한 로반재 골재 조성물 제조방법.4. The method of claim 3 wherein the ferro-nickel lump ore slag SiO 2 40 to 70 wt%, MgO 20 to 40 wt%, CaO 0.01% to 5% by weight, Al 2 O 3 0.01 to 5% by weight, FeO 1 to 10% by weight Wherein the molten slag is a granular slag.
KR1020150173509A 2015-12-07 2015-12-07 Composition for sub base with ferronickel slag and the method of manufacturing the same KR20150144310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150173509A KR20150144310A (en) 2015-12-07 2015-12-07 Composition for sub base with ferronickel slag and the method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150173509A KR20150144310A (en) 2015-12-07 2015-12-07 Composition for sub base with ferronickel slag and the method of manufacturing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR20090133095A Division KR20110076395A (en) 2009-12-29 2009-12-29 Composition for sub base with ferronickel slag and the method of manufacturing the same

Publications (1)

Publication Number Publication Date
KR20150144310A true KR20150144310A (en) 2015-12-24

Family

ID=55084319

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150173509A KR20150144310A (en) 2015-12-07 2015-12-07 Composition for sub base with ferronickel slag and the method of manufacturing the same

Country Status (1)

Country Link
KR (1) KR20150144310A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110590196A (en) * 2019-10-22 2019-12-20 中南大学 Machine-made sand and application thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110590196A (en) * 2019-10-22 2019-12-20 中南大学 Machine-made sand and application thereof

Similar Documents

Publication Publication Date Title
KR101372676B1 (en) Concrete composition with iron and steelmaking slag
CN109553333A (en) A kind of grinding coagulation soil and preparation method thereof
KR101359277B1 (en) Concrete composition having improved initial strength and concrete structure prepared by the same
KR101999010B1 (en) Complexed slag fine aggregate comprising ferronickel furnace slag and granulated blast furnace slag
KR101359187B1 (en) Concrete composition with reduced shrinkage property and concrete structure prepared by the same
Opeyemi et al. The suitability of partial replacement of cement with rice husk ash and bone powder in concrete structures
Arum et al. Partial replacement of portland cement by granulated cupola slag—sustainable option for concrete of low permeability
TWI543957B (en) Method for manufacturing hydrated solidified body and hydrated solidified body
KR20160033522A (en) Solidifying composition for improvement of high water content and weak ground using reduction slag and method for solidifying soil using the same
CN105541217A (en) Impermeable concrete prepared from steel slags
JP5744387B2 (en) Method for producing mud-containing solidified body
KR101158302B1 (en) Latex modified concrete composition containing by-product of steel and method of thereof
CN105174823A (en) Asphalt concrete packing and asphalt concrete
KR101904172B1 (en) High Early Cement Composition for Road Pavement and Pavement Method Using Thereof
KR20150144310A (en) Composition for sub base with ferronickel slag and the method of manufacturing the same
JP2012219479A (en) Material using steel slag for sand drainage and sand compaction pile
CN108383457A (en) A kind of high intensity dry slag pervious concrete and preparation method thereof
KR20110005018A (en) Cement composition containing blast furnance air-cooled slag and method for manufacturing the same
KR20110076395A (en) Composition for sub base with ferronickel slag and the method of manufacturing the same
JP6564674B2 (en) Cement composition and hardened cement body
KR101146373B1 (en) High-strenght centrifugal concrete powder mineral admixture composition
JP5195866B2 (en) Method for producing hardened slag
JP2018172245A (en) Method for producing solidified body
JP2013028518A (en) Artificial stone made of expansion-controlled iron and steel slag hydration-solidified body, and method for producing the same
JP7253981B2 (en) Method for producing iron and steel slag hydrated solid

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E601 Decision to refuse application