KR20150138461A - Method for recovering flourine of comprising in waste water as etching process - Google Patents

Method for recovering flourine of comprising in waste water as etching process Download PDF

Info

Publication number
KR20150138461A
KR20150138461A KR1020140064919A KR20140064919A KR20150138461A KR 20150138461 A KR20150138461 A KR 20150138461A KR 1020140064919 A KR1020140064919 A KR 1020140064919A KR 20140064919 A KR20140064919 A KR 20140064919A KR 20150138461 A KR20150138461 A KR 20150138461A
Authority
KR
South Korea
Prior art keywords
exchange resin
etching process
fluorine
cation exchange
anion exchange
Prior art date
Application number
KR1020140064919A
Other languages
Korean (ko)
Other versions
KR101645595B1 (en
Inventor
안효권
이선삼
김재천
Original Assignee
방산테크놀로지(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 방산테크놀로지(주) filed Critical 방산테크놀로지(주)
Priority to KR1020140064919A priority Critical patent/KR101645595B1/en
Publication of KR20150138461A publication Critical patent/KR20150138461A/en
Application granted granted Critical
Publication of KR101645595B1 publication Critical patent/KR101645595B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis

Abstract

The present invention relates to a method for recovering fluorine contained in waste water generated from an etching process. More specifically, the method for recovering fluorine contained in waste water generated from an etching process comprises: an anion exchange resin treating step for circulating waste water generated in an etching process through a tank in which anion exchange resins are filled; a fluorine separation step for separating fluorine, adsorbed onto the anion exchange resins through the anion exchange resin treating step, by using an aqueous NaOH solution; a cation exchange resin treating step for circulating the aqueous NaOH solution, in which the fluorine separated through the fluorine separation step is contained, through a tank in which cation exchange resins are filled; and a concentration step for concentrating a mixture which has passed through the cation exchange resins through the cation exchange resin treating step. The method for recovering fluorine composed of the processes: recovers fluorine at a high recovery rate by circulating waste water generated in the etching process sequentially through the anion and cation exchange resins, thereby preventing secondary environmental contamination; and reuses the recovered fluorine in the etching process, thereby reducing costs of the etching process.

Description

에칭공정에서 발생하는 폐수에 함유된 불소성분의 회수방법 {METHOD FOR RECOVERING FLOURINE OF COMPRISING IN WASTE WATER AS ETCHING PROCESS}BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for recovering fluorine components contained in wastewater generated in an etching process,

본 발명은 에칭공정에서 발생하는 폐수에 함유된 불소성분의 회수방법에 관한 것으로, 더욱 상세하게는 음이온교환수지와 양이온교환수지에 에칭공정에서 발생하는 폐수를 차례로 통수시켜 불소성분을 높은 회수율로 회수하기 때문에 2차적인 환경오염을 예방할 수 있으며, 회수된 불소성분을 에칭공정에 재사용하여 에칭공정의 비용을 절감할 수 있는 에칭공정에서 발생하는 폐수에 함유된 불소성분의 회수방법에 관한 것이다.
The present invention relates to a method for recovering fluorine components contained in wastewater generated in an etching process, and more particularly, to a method for recovering fluorine components contained in wastewater generated in an etching process by sequentially passing anion exchange resin and cation exchange resin through wastewater generated in an etching process, The present invention relates to a method for recovering a fluorine component contained in wastewater generated in an etching process which can prevent secondary environmental pollution and can reduce the cost of the etching process by reusing the recovered fluorine component in the etching process.

유리 또는 유리 기판의 에칭에는 예를 들어, 농도 15중량% 정도의 불화수소산(이하, '불산'이라 한다.)이 사용되고 있는데, 이러한 불산은 통상 약 50중량%의 고농도 불산을 순수로 희석하여 제조된다.For example, hydrofluoric acid (hereinafter, referred to as "hydrofluoric acid") at a concentration of about 15% by weight is used for etching glass or a glass substrate. This hydrofluoric acid is usually produced by diluting a concentrated fluoric acid at a concentration of about 50% do.

상기와 같이 에칭 등에 불산을 이용하는 공정에서는 실리카 성분 및 금속 성분을 포함하는 폐수가 발생하는데, 이러한 폐수는 반응에 이용되지 않은 불산을 다량 함유하고 있기 때문에 이를 회수하여 재이용하는 것이 바람직하다.In the process using hydrofluoric acid as described above, waste water containing a silica component and a metal component is generated. Since such waste water contains a large amount of hydrofluoric acid which is not used in the reaction, it is preferable to recover and recycle the hydrofluoric acid.

종래에 불산을 회수하는 방법으로는 일본 특허공개 제2003-12305호에 기재된 확산투석막을 이용한 방법이 주로 사용되는데, 확산 투석막을 이용한 불상의 회수 방법은 우선 필터 또는 원심 분리 장치를 사용하여 불산 폐액에서 슬러지(sludge)를 분리한 정제 원료에서 불산 폐액을 회수하고, 이어서 음이온 교환 필터를 이용한 확산 투석법에 의해 용해성분인 금속이온이나 규불산 등의 불순물을 폐수로부터 제거하여 정제 불산을 얻는 방법으로, 설비를 소형화할 수 있고, 온사이트로 불산을 재생할 수 있다는 장점이 있으나, 폐수에 함유된 불산의 회수율이 낮을 뿐만 아니라, 회수되는 불산의 순도가 높지 않은 문제점이 있었다.As a method of recovering hydrofluoric acid in the past, a method using a diffusion dialysis membrane described in Japanese Patent Application Laid-Open No. 2003-12305 is mainly used. In the method of recovering a Buddhist image using a diffusion dialysis membrane, A method for recovering a hydrofluoric acid waste liquid from a refined raw material from which a sludge is separated and then removing impurities such as metal ions or silicofluoric acid as dissolved components from wastewater by a diffusion dialysis method using an anion exchange filter to obtain purified hydrofluoric acid, The facility can be downsized and the hydrofluoric acid can be regenerated on site, but the recovery rate of hydrofluoric acid contained in the wastewater is low and the purity of recovered hydrofluoric acid is not high.

상기의 문제점을 해소하기 위해 상기와 같이 회수된 불산을 증류하여 불산의 순도를 높이는 방법이 시도되고 있으나, 상기와 같은 증류법은 폐수에 함유되어 있는 Si, B, Al, Ca 및 Zr 등과 같은 용존금속에 의해 증류관을 포함한 계 내에서 스케일링이 발생하기 때문에, 연속적으로 불산을 회수할 수 없을 뿐만 아니라, 복잡한 회수장치를 필요로 하는 문제점이 있었다.
In order to solve the above problems, there has been attempted a method of increasing the purity of hydrofluoric acid by distillation of the recovered hydrofluoric acid as described above. However, the distillation method as described above can be applied to a case where dissolved metals such as Si, B, Al, Ca and Zr Scaling occurs in the system including the distillation tube, so that not only hydrofluoric acid can be recovered continuously but also a complicated recovery device is required.

본 발명의 목적은 에칭공정에서 발생하는 폐수를 음이온교환수지와 양이온교환수지에 차례로 통수시켜 불소성분을 높은 회수율로 회수하기 때문에 폐수의 방류로 인한 2차적인 환경오염을 예방할 수 있는 에칭공정에서 발생하는 폐수에 함유된 불소성분의 회수방법을 제공하는 것이다.An object of the present invention is to provide a method and an apparatus for treating wastewater generated in an etching process in an anion exchange resin and a cation exchange resin in order to recover a fluorine component at a high recovery rate, And recovering the fluorine component contained in the wastewater.

본 발명의 다른 목적은 회수된 불소성분을 에칭공정에 재사용하기 적합한 농도로 농축하는 과정을 진행하여 에칭공정의 비용을 절감할 수 있도록 하는 에칭공정에서 발생하는 폐수에 함유된 불소성분의 회수방법을 제공하는 것이다.
Another object of the present invention is to provide a method of recovering fluorine components contained in wastewater generated in an etching process, in which the recovered fluorine component is concentrated to a concentration suitable for reuse in the etching process, thereby reducing the cost of the etching process .

본 발명의 목적은 에칭공정에서 발생하는 폐수를 음이온교환수지가 충전된 탱크에 통수시키는 음이온교환수지처리단계, 상기 음이온교환수지처리단계를 통해 음이온교환수지에 흡착된 불소성분을 가성소다수용액으로 분리하는 불소성분분리단계, 상기 불소성분분리단계를 통해 분리된 불소성분이 함유되어 있는 가성소다수용액을 양이온교환수지가 충전된 탱크에 통수시키는 양이온교환수지처리단계 및 상기 양이온교환수지처리단계를 통해 양이온교환수지를 통과한 혼합물을 농축하는 농축단계로 이루어지는 것을 특징으로 하는 에칭공정에서 발생하는 폐수에 함유된 불소성분의 회수방법을 제공함에 의해 달성된다.An object of the present invention is to provide an anion exchange resin treating step of treating waste water generated in an etching process to a tank filled with an anion exchange resin and separating the fluorine component adsorbed on the anion exchange resin into an aqueous solution of caustic soda A cation exchange resin treatment step of passing a caustic soda aqueous solution containing a fluorine component separated through the fluorine component separation step to a tank filled with the cation exchange resin, and a cation exchange resin treatment step of passing the cation And a concentrating step of concentrating the mixture which has passed through the exchange resin. The present invention provides a method for recovering fluorine components contained in waste water generated in an etching process.

본 발명의 바람직한 특징에 따르면, 상기 불소성분분리단계는 가성소다 수용액을 상기 음이온교환수지가 충전된 탱크에 40 내지 80분 동안 순환통수시켜 이루어지는 것으로 한다.According to a preferred feature of the present invention, the fluorine component separation step is performed by circulating a caustic soda aqueous solution in a tank filled with the anion exchange resin for 40 to 80 minutes.

본 발명의 더 바람직한 특징에 따르면, 상기 가성소다 수용액은 정제수 100 중량부에 가성소다 2 내지 2.5 중량부를 혼합하여 이루어지는 것으로 한다.According to a further preferred feature of the present invention, the caustic soda aqueous solution is prepared by mixing 2 to 2.5 parts by weight of caustic soda with 100 parts by weight of purified water.

본 발명의 더욱 바람직한 특징에 따르면, 상기 농축단계는 상기 양이온교환수지처리단계를 통해 양이온교환수지를 통과한 가성소다 수용액에 함유된 불소성분의 함량이 10 내지 15%가 되도록 농축하여 이루어지는 것으로 한다.According to a more preferred feature of the present invention, the concentration step is performed such that the content of the fluorine component contained in the caustic soda aqueous solution passed through the cation exchange resin through the cation exchange resin treatment step is 10 to 15%.

본 발명의 더욱 더 바람직한 특징에 따르면, 상기 농축단계는 80 내지 90℃의 온도로 이루어지는 것으로 한다.
According to a further preferred feature of the present invention, the concentration step is carried out at a temperature of 80 to 90 ° C.

본 발명에 따른 에칭공정에서 발생하는 폐수에 함유된 불소성분의 회수방법은 에칭공정에서 발생하는 폐수를 음이온교환수지와 양이온교환수지에 차례로 통수시켜 불소성분을 높은 회수율로 회수하기 때문에 폐수의 방류로 인한 2차적인 환경오염을 예방할 수 있는 탁월한 효과를 나타낸다.The method for recovering the fluorine component contained in the waste water generated in the etching process according to the present invention is a method for recovering the fluorine component at a high recovery rate by sequentially passing the waste water generated in the etching process to the anion exchange resin and the cation exchange resin, Which is an excellent effect of preventing secondary environmental pollution caused by water.

또한, 회수된 불소성분을 에칭공정에 재사용하기 적합한 농도로 농축하는 과정을 진행하여 에칭공정의 비용을 절감할 수 있는 탁월한 효과를 나타낸다.
Further, the recovered fluorine component is concentrated to a concentration suitable for re-use in the etching process, thereby exhibiting an excellent effect of reducing the cost of the etching process.

도 1은 본 발명에 따른 에칭공정에서 발생하는 폐수에 함유된 불소성분의 회수방법을 나타낸 순서도이다.1 is a flowchart showing a method for recovering fluorine components contained in wastewater generated in an etching process according to the present invention.

이하에는, 본 발명의 바람직한 실시예와 각 성분의 물성을 상세하게 설명하되, 이는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 발명을 용이하게 실시할 수 있을 정도로 상세하게 설명하기 위한 것이지, 이로 인해 본 발명의 기술적인 사상 및 범주가 한정되는 것을 의미하지는 않는다.
Hereinafter, preferred embodiments of the present invention and physical properties of the respective components will be described in detail with reference to the accompanying drawings. However, the present invention is not limited thereto, And this does not mean that the technical idea and scope of the present invention are limited.

본 발명에 따른 에칭공정에서 발생하는 폐수에 함유된 불소성분의 회수방법은 에칭공정에서 발생하는 폐수를 음이온교환수지가 충전된 탱크에 통수시키는 음이온교환수지처리단계(S101), 상기 음이온교환수지처리단계(S101)를 통해 음이온교환수지에 흡착된 불소성분을 가성소다수용액으로 분리하는 불소성분분리단계(S103), 상기 불소성분분리단계(S103)를 통해 분리된 불소성분이 함유되어 있는 가성소다수용액을 양이온교환수지가 충전된 탱크에 통수시키는 양이온교환수지처리단계(S105) 및 상기 양이온교환수지처리단계(S105)를 통해 양이온교환수지를 통과한 혼합물을 농축하는 농축단계(S107)로 이루어진다.
A method for recovering fluorine contained in waste water generated in an etching process according to the present invention includes an anion exchange resin treatment step (S101) of passing waste water generated in an etching process to a tank filled with an anion exchange resin, A fluorine component separation step (S103) of separating the fluorine component adsorbed on the anion exchange resin into an aqueous solution of caustic soda through step S101; a step (S103) of separating the fluorine component adsorbed on the anion exchange resin into the caustic soda aqueous solution A cation exchange resin treatment step (S105) for passing the cation exchange resin through a tank filled with the cation exchange resin, and a concentration step (S107) for concentrating the mixture passed through the cation exchange resin through the cation exchange resin treatment step (S105).

상기 음이온교환수지처리단계(S101)는 에칭공정에서 발생하는 폐수를 음이온교환수지가 충전된 탱크에 통수시키는 단계로, 에칭공정을 통해 발생하며 불소성분이 0.5% 함유되어 있는 폐수 2톤을 음이온교환수지 1루베(1m3)가 충전되어 있는 탱크로 통수시켜 이루어진다.The anion exchange resin treatment step (S101) is a step of passing the wastewater generated in the etching process to a tank filled with an anion exchange resin. The anion exchange And the tank is filled with resin 1 lube (1 m 3 ).

통상적으로 사용되는 음이온교환수지는 1ml당 7.8mg의 불소성분을 흡착할 수 있는데, 에칭공정에서 발생하는 폐수에 함유되어 있는 불소성분에 비해 음이온교환수지를 약 1.5배 과량으로 충전하여 폐수에 함유되어 있는 불소성분이 대부분 음이온교환수지에 흡착될 수 있도록 준비된 상태에서 통수과정을 진행하는 것이 바람직하다.A commonly used anion exchange resin is capable of adsorbing 7.8 mg of fluorine per ml. The anion exchange resin is contained in the wastewater by filling the anion exchange resin with about 1.5 times as much as the fluorine component contained in the wastewater generated in the etching process It is preferable to carry out the water passing process in a state in which most of the fluorine components are adsorbed on the anion exchange resin.

상기 음이온교환수지처리단계(S101)를 거친 폐수는 불소성분과 중금속 등이 제거되어 자연방류에 적합한 수질 상태를 나타낸다.
The wastewater that has undergone the anion exchange resin treatment step (S101) is removed from the fluorine component and the heavy metal, and exhibits a water quality suitable for natural discharge.

상기 불소성분분리단계(S103)는 상기 음이온교환수지처리단계(S101)를 통해 음이온교환수지에 흡착된 불소성분을 가성소다수용액으로 분리하는 단계로, 상기 음이온교환수지처리단계(S101)를 통해 음이온교환수지에 흡착된 불소성분을 음이온교환수지로부터 분리하기 위해 가성소다 수용액을 상기 음이온교환수지가 충전되어 있는 탱크에 40 내지 80분 동안 순환통수시켜 이루어진다.The fluorine component separation step (S103) separates the fluorine component adsorbed on the anion exchange resin through the anion exchange resin treatment step (S101) into an aqueous solution of caustic soda, and the anion exchange resin treatment step (S101) Exchange resin for 40 to 80 minutes in order to separate the fluorine component adsorbed on the exchange resin from the anion exchange resin in a tank filled with the anion exchange resin.

상기와 같은 불소성분분리단계를 거치면, 음이온교환수지에 부착되어 있던 불소성분이 NaF의 형태로 전환되어 분리된다.When the fluorine component separation step as described above is carried out, the fluorine component attached to the anion exchange resin is converted into the NaF form and separated.

이때, 상기 가성소다 수용액의 통수량은 상기 음이온교환수지처리단계에서 처리되는 폐수의 약 절반 정도이며, 상기 가성소다 수용액은 정제수 100 중량부에 가성소다 2 내지 2.5 중량부를 혼합하여 이루어지는 것이 바람직하다.
At this time, the flow rate of the caustic soda aqueous solution is about half of the wastewater treated in the anion exchange resin treatment step, and the caustic soda aqueous solution is preferably prepared by mixing 2 to 2.5 parts by weight of caustic soda with 100 parts by weight of purified water.

상기 양이온교환수지처리단계(S105)는 상기 불소성분분리단계(S103)를 통해 분리된 불소성분이 함유되어 있는 가성소다수용액을 양이온교환수지가 충전된 탱크에 통수시키는 단계로, 상기 불소성분분리단계(S103)를 통해 분리된 불소성분이 함유되어 있는 가성소다수용액을 양이온교환수지 1루베(1m3)가 충전되어 있는 탱크에 통수시켜 가성소다 수용액에 NaF의 형태로 함유되어 있던 불소성분을 HF의 형태로 전환하는 단계다.The step S105 of treating the cation exchange resin is a step of passing the aqueous solution of caustic soda containing the fluorine component separated through the fluorine component separation step (S103) into a tank filled with the cation exchange resin, by water through a sodium hydroxide aqueous solution to contain the fluorine component separated through (S103) in a tank that is filled with a cation exchange resin 1 Loeve (1m 3) of the fluorine component which is contained in the form of NaF in caustic soda aqueous solution of HF It is a step to convert to form.

이때, 상기 양이온교환수지처리단계(S105)를 거친 혼합물에는 불소성분이 약 1%정도 함유되게 된다.
At this time, the mixture having been subjected to the cation exchange resin treatment step (S105) contains about 1% of fluorine component.

상기 농축단계(S107)는 상기 양이온교환수지처리단계(S105)를 통해 양이온교환수지를 통과한 혼합물을 농축하는 단계로, 상기 양이온교환수지처리단계(S105)를 통해 양이온교환수지를 통과한 가성소다 수용액에 함유된 불소성분의 함량을 에칭공정에 적합한 농도인 10 내지 15%로 농축하여 이루어진다.The concentration step (S107) is a step of concentrating the mixture which has passed through the cation exchange resin through the cation exchange resin treatment step (S105), and the caustic soda The concentration of the fluorine component contained in the aqueous solution is concentrated to 10 to 15%, which is a concentration suitable for the etching process.

이때, 상기 농축단계(S107)는 80 내지 90℃의 온도로 이루어지는 것이 바람직한데, 상기 농축단계(S107)의 온도가 80℃미만이면 농축공정의 효율성이 저하되며, 상기 농축단계(S107)의 온도가 90℃를 초과하게 되면 에너지소비 측면에서 바람직하지 않다.At this time, it is preferable that the concentration step (S107) is performed at a temperature of 80 to 90 ° C. If the temperature of the concentration step (S 107) is lower than 80 ° C., the efficiency of the concentration step is lowered. Exceeds 90 占 폚 is not preferable from the viewpoint of energy consumption.

상기의 농축단계(S107)를 거치면, 에칭공정에서 발생하는 폐수에 함유된 불소성분이 회수될 뿐만 아니라, 에칭공정에 사용하기 적합한 농도를 나타내기 때문에 불소성분의 재사용을 통해 에칭공정의 비용을 절감할 수 있다.
Since the fluorine component contained in the wastewater generated in the etching process is recovered by the concentration step (S107), the concentration suitable for use in the etching process is shown, so that the cost of the etching process can be reduced by reusing the fluorine component can do.

이하에서는, 본 발명에 따른 에칭공정에서 발생하는 폐수에 함유된 불소성분의 회수방법을 실시예를 들어 설명하기로 한다.
Hereinafter, a method of recovering the fluorine component contained in the wastewater generated in the etching process according to the present invention will be described with reference to examples.

<실시예 1>&Lt; Example 1 >

음이온교환수지 1루베(1㎥)가 충전된 탱크에 에칭공정을 통해 발생한 폐수(불소성분이 0.5% 함유) 2톤을 통과시킨 후에, 가성소다 수용액(정제수 1톤에 가성소다 21Kg 용융)을 상기 음이온교환수지가 충전된 탱크에 60분간 순환방식으로 통수시키고, 순환방식으로 통수된 가성소다 수용액을 양이온교환수지 1루베(1㎥)가 충진된 탱크에 통수시킨 후에, 양이온교환수지를 통수한 혼합물을 85℃의 온도에서 7시간 동안 가열하였다.
After passing 2 tons of waste water (containing 0.5% of fluorine component) generated through the etching process into a tank filled with an anion exchange resin 1 lube (1 m 3), a caustic soda aqueous solution (21 kg of caustic soda dissolved in 1 ton of purified water) Exchanged resin was circulated for 60 minutes in a tank filled with anion exchange resin, and the aqueous solution of caustic soda circulated in circulation was passed through a tank filled with one cubic of cation exchange resin, Was heated at a temperature of 85 &lt; 0 &gt; C for 7 hours.

상기 실시예 1을 통해 제조된 혼합물의 불소함유량, 농도 및 회수율을 측정하여 아래 표 1에 나타내었다.The fluorine content, concentration and recovery rate of the mixture prepared in Example 1 were measured and are shown in Table 1 below.

{단, 불소의 함유량, 농도 및 회수율을 이온적극법(Electrochemical Analysis)을 이용하여 측정하였다.}
(However, the content of fluorine, the concentration and the recovery rate were measured by using the Electrochemical Analysis.)

<표 1><Table 1>

Figure pat00001
Figure pat00001

위에 표 1에 나타낸 것처럼, 본 발명의 실시예 1을 통해 이루어지는 에칭공정에서 발생하는 폐수에 함유된 불소성분의 회수방법은 에칭공정에서 발생하는 폐수를 음이온교환수지와 양이온교환수지에 차례로 통수시켜 불소성분을 높은 회수율로 회수하기 때문에 폐수의 방류로 인한 2차적인 환경오염을 예방할 수 있으며, 회수된 불소성분이 에칭공정에 재사용하기 적합한 농도를 나타낸다.
As shown in Table 1 above, in the method for recovering the fluorine component contained in the wastewater generated in the etching process performed in Example 1 of the present invention, the wastewater generated in the etching process is sequentially passed through the anion exchange resin and the cation exchange resin, By recovering the components at a high recovery rate, it is possible to prevent secondary environmental pollution due to discharge of the wastewater, and the recovered fluorine component exhibits a concentration suitable for reuse in the etching process.

S101 ; 음이온교환수지처리단계
S103 ; 불소성분분리단계
S105 ; 양이온교환수지처리단계
S107 ; 농축단계
S101; Anion exchange resin treatment step
S103; Fluorine component separation step
S105; Cation exchange resin treatment step
S107; Concentration stage

Claims (5)

에칭공정에서 발생하는 폐수를 음이온교환수지가 충전된 탱크에 통수시키는 음이온교환수지처리단계;
상기 음이온교환수지처리단계를 통해 음이온교환수지에 흡착된 불소성분을 가성소다수용액으로 분리하는 불소성분분리단계;
상기 불소성분분리단계를 통해 분리된 불소성분이 함유되어 있는 가성소다수용액을 양이온교환수지가 충전된 탱크에 통수시키는 양이온교환수지처리단계; 및
상기 양이온교환수지처리단계를 통해 양이온교환수지를 통과한 혼합물을 농축하는 농축단계;로 이루어지는 것을 특징으로 하는 에칭공정에서 발생하는 폐수에 함유된 불소성분의 회수방법.
An anion exchange resin treatment step of passing the wastewater generated in the etching process to a tank filled with an anion exchange resin;
A fluorine component separation step of separating the fluorine component adsorbed on the anion exchange resin into the caustic soda aqueous solution through the anion exchange resin treatment step;
A cation exchange resin treatment step of passing the caustic soda aqueous solution containing the fluorine component separated through the fluorine component separation step into a tank filled with the cation exchange resin; And
And a concentration step of concentrating the mixture having passed through the cation exchange resin through the cation exchange resin treatment step. The method for recovering fluorine components contained in waste water generated in an etching process.
청구항 1에 있어서,
상기 불소성분분리단계는 가성소다 수용액을 상기 음이온교환수지가 충전된 탱크에 40 내지 80분 동안 순환통수시켜 이루어지는 것을 특징으로 하는 에칭공정에서 발생하는 폐수에 함유된 불소성분의 회수방법.
The method according to claim 1,
Wherein the fluorine component separation step comprises circulating a caustic soda aqueous solution in a tank filled with the anion exchange resin for 40 to 80 minutes to recover the fluorine component contained in the wastewater.
청구항 1 또는 2에 있어서,
상기 가성소다 수용액은 정제수 100 중량부에 가성소다 2 내지 2.5 중량부를 혼합하여 이루어지는 것을 특징으로 하는 에칭공정에서 발생하는 폐수에 함유된 불소성분의 회수방법.
The method according to claim 1 or 2,
Wherein the caustic soda aqueous solution is prepared by mixing 2 to 2.5 parts by weight of caustic soda with 100 parts by weight of purified water.
청구항 1에 있어서,
상기 농축단계는 상기 양이온교환수지처리단계를 통해 양이온교환수지를 통과한 가성소다 수용액에 함유된 불소성분의 함량이 10 내지 15%가 되도록 농축하여 이루어지는 것을 특징으로 하는 에칭공정에서 발생하는 폐수에 함유된 불소성분의 회수방법.
The method according to claim 1,
Wherein the concentration step is performed by concentrating the aqueous solution of caustic soda having passed through the cation exchange resin through the cation exchange resin treatment step so that the content of the fluorine component contained in the solution is 10 to 15% And recovering the fluorine component.
청구항 1 또는 4에 있어서,
상기 농축단계는 80 내지 90℃의 온도로 이루어지는 것을 특징으로 하는 에칭공정에서 발생하는 폐수에 함유된 불소성분의 회수방법.
The method according to claim 1 or 4,
Wherein the concentration step is carried out at a temperature of 80 to 90 DEG C. 5. A method for recovering a fluorine component contained in waste water generated in an etching process.
KR1020140064919A 2014-05-29 2014-05-29 Method for recovering flourine of comprising in waste water as etching process KR101645595B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140064919A KR101645595B1 (en) 2014-05-29 2014-05-29 Method for recovering flourine of comprising in waste water as etching process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140064919A KR101645595B1 (en) 2014-05-29 2014-05-29 Method for recovering flourine of comprising in waste water as etching process

Publications (2)

Publication Number Publication Date
KR20150138461A true KR20150138461A (en) 2015-12-10
KR101645595B1 KR101645595B1 (en) 2016-08-09

Family

ID=54978877

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140064919A KR101645595B1 (en) 2014-05-29 2014-05-29 Method for recovering flourine of comprising in waste water as etching process

Country Status (1)

Country Link
KR (1) KR101645595B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07232915A (en) * 1992-07-21 1995-09-05 Nomura Micro Sci Co Ltd Method for recovering fluorine in waste water
JPH11156355A (en) * 1997-11-21 1999-06-15 Kurita Water Ind Ltd Method for treating fluorine-containing water
KR100553026B1 (en) * 2002-11-28 2006-02-15 가부시키가이샤 사사꾸라 Method and apparatus for treatment of hydrofluoric acid drainage
KR20130115785A (en) * 2012-04-13 2013-10-22 재단법인 포항산업과학연구원 Method and apparatus for treating fluoride ion contained wastewater and regenerating the wastewater

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07232915A (en) * 1992-07-21 1995-09-05 Nomura Micro Sci Co Ltd Method for recovering fluorine in waste water
JPH11156355A (en) * 1997-11-21 1999-06-15 Kurita Water Ind Ltd Method for treating fluorine-containing water
KR100553026B1 (en) * 2002-11-28 2006-02-15 가부시키가이샤 사사꾸라 Method and apparatus for treatment of hydrofluoric acid drainage
KR20130115785A (en) * 2012-04-13 2013-10-22 재단법인 포항산업과학연구원 Method and apparatus for treating fluoride ion contained wastewater and regenerating the wastewater

Also Published As

Publication number Publication date
KR101645595B1 (en) 2016-08-09

Similar Documents

Publication Publication Date Title
US10662075B2 (en) Method and apparatus for the recovery and deep treatment of polluted acid
TWI534092B (en) A waste water treatment method containing fluorine and silicon, a method for producing calcium fluoride, and a waste water treatment apparatus
CN106746113B (en) Process and system for recycling and reusing fluorine-containing wastewater in photovoltaic industry
EP2867388B1 (en) Process and apparatus for generating or recovering hydrochloric acid from metal salt solutions
JP4810436B2 (en) Processing method for waste developer
CN105859005A (en) Method and system for treating stainless steel cold-rolling and pickling waste acid
CN112759165A (en) Mine strong brine zero-discharge treatment method and system
TWI613153B (en) Treatment device for ammonia-containing wastewater and treatment method for ammonia-containing wastewater
CN110759554A (en) Recycling and zero-discharge treatment method for ammonium adipate wastewater generated in aluminum foil formation
CN110330164A (en) A kind of method of alkalinity high fluorine Sewage treatment fluorine resource and sodium resource with high salt
JP2009023847A (en) Method for producing hydriodic acid
JP5844558B2 (en) Recycling method for waste liquid containing tetraalkylammonium hydroxide
KR101645595B1 (en) Method for recovering flourine of comprising in waste water as etching process
CN106698790A (en) Comprehensive recycling method for graphite production wastewater
JPH0592187A (en) Treatment of fluorine-containing water
TW201414679A (en) Processing method for collecting waste water containing ammonia and apparatus thereof
KR20180064753A (en) Methods for waste water treatment of Nitrogen trifluoride(NF3) process
US6936177B2 (en) Method for removing metal from wastewater
TW201305064A (en) Processing method for collecting waste liquid containing fluorine and apparatus thereof
CN108623052A (en) The recovery method of tetramethylammonium hydroxide in the secondary liquid waste of development waste liquid
CN214611993U (en) Mine strong brine zero release processing system
JP2011125812A (en) Method for treating wastewater containing fluorine and silicon, method for producing calcium fluoride, and apparatus for treating fluorine-containing wastewater
CN105273760A (en) Waste water zero-discharge acetylene production technology
JP7115123B2 (en) Lithium purification method
CN113371749A (en) Method for treating calcium-containing sludge in semiconductor industry

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
FPAY Annual fee payment

Payment date: 20190612

Year of fee payment: 4