KR20180064753A - Methods for waste water treatment of Nitrogen trifluoride(NF3) process - Google Patents

Methods for waste water treatment of Nitrogen trifluoride(NF3) process Download PDF

Info

Publication number
KR20180064753A
KR20180064753A KR1020160165011A KR20160165011A KR20180064753A KR 20180064753 A KR20180064753 A KR 20180064753A KR 1020160165011 A KR1020160165011 A KR 1020160165011A KR 20160165011 A KR20160165011 A KR 20160165011A KR 20180064753 A KR20180064753 A KR 20180064753A
Authority
KR
South Korea
Prior art keywords
metal
wastewater
recovered
recovering
organic solvent
Prior art date
Application number
KR1020160165011A
Other languages
Korean (ko)
Inventor
라연화
조광국
구민수
Original Assignee
에스케이이노베이션 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이이노베이션 주식회사 filed Critical 에스케이이노베이션 주식회사
Priority to KR1020160165011A priority Critical patent/KR20180064753A/en
Publication of KR20180064753A publication Critical patent/KR20180064753A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/20Treatment of water, waste water, or sewage by degassing, i.e. liberation of dissolved gases
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/26Treatment of water, waste water, or sewage by extraction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • C02F1/583Treatment of water, waste water, or sewage by removing specified dissolved compounds by removing fluoride or fluorine compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • C02F1/586Treatment of water, waste water, or sewage by removing specified dissolved compounds by removing ammoniacal nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • C02F1/62Heavy metal compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Removal Of Specific Substances (AREA)
  • Physical Water Treatments (AREA)

Abstract

Provided is a process for treating wastewater by collecting, stage by stage, high purity metal, hydrofluoric acid, and ammonia components present in high concentration in wastewater generated in a process of producing nitrogen trifluoride (NF_3) gas. According to the present invention, it is possible not only to treat wastewater generated in the process of producing nitrogen trifluoride gas as a general waste according to environmental regulations, but also to reduce costs for wastewater treatment since the produced by-products can be recovered in high purity to be reused or sold outside, with little additional production of wastewater during the wastewater treatment.

Description

삼불화질소(NF3) 가스 제조 공정의 폐수처리 방법 {Methods for waste water treatment of Nitrogen trifluoride(NF3) process}BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to a method for treating waste water of a nitrogen trifluoride nitrogen (NF3)

본 발명은 삼불화질소(NF3) 가스의 제조 공정에서 발생된 폐수처리 방법 및 폐수에 존재하는 금속, 불산 및 암모니아 성분을 각각 회수하여 재활용하는 방법에 관한 것이다.The present invention relates to a method for treating wastewater generated in a process for producing nitrogen trifluoride (NF3) gas and a method for recovering and recycling metals, hydrofluoric acid and ammonia components present in wastewater, respectively.

삼불화질소(NF3) 가스는 반도체, LCD, 태양전지의 드라이 에칭제나 CVD 장치의 클리닝 가스 등으로 유용하게 사용되고 있다. 최근 반도체 산업의 활성화와 엑시마 레이저(Exima laser)용 가스로서도 그 사용량이 급격히 증가하고 있는 산업적으로 중요한 가스이다.Nitrogen trifluoride (NF 3 ) gas is usefully used as a dry etching agent for semiconductors, LCDs, solar cells, cleaning gas for CVD devices, and the like. Recently, it is industrially important gas that has been rapidly used in the semiconductor industry and also as an Exima laser gas.

일반적으로, 삼불화질소 가스는 암모니아(NH3)-불화수소(HF)계 용융염으로 이루어진 전해액을 전해조 내에서 전기 분해하는 방법으로 제조되며, 양극과 음극의 전극으로서 금속 플레이트를 주로 사용한다. 이때 발생하는 폐수에는 반응원료인 암모늄 및 불소 성분이 존재하며, 전기분해 과정에서 용출된 금속 성분들이 함유되어 있다. 폐수중의 불소 성분 농도는 통상 10~15wt%, 암모늄 성분 1~2wt%, 금속 성분 0.2wt% 이하이다. 상기 성분들은 수중 생물 및 인체에 매우 유해한 물질이므로, 함량을 엄격하게 규제하고 있다. Generally, the nitrogen trifluoride gas is produced by a method of electrolyzing an electrolytic solution containing ammonia (NH 3 ) - hydrogen fluoride (HF) based molten salt in an electrolytic bath, and a metal plate is mainly used as an anode and a cathode electrode. The wastewater generated at this time contains ammonium and fluorine components as reaction raw materials and contains metal components eluted during electrolysis. The concentration of the fluorine component in the wastewater is generally 10 to 15 wt%, the ammonium component 1 to 2 wt%, and the metal component 0.2 wt% or less. These ingredients are very harmful to aquatic organisms and the human body, and therefore their contents are strictly regulated.

폐수 중 금속을 제거하는 방법은 강산성 양이온교환수지를 이용하는 방법, 산 침출공정을 이용하는 침전법, 전기투석법, 증발농축법 등이 있으나 삼불화질소 제조공정에서 발생하는 폐수 중 불소성분 및 암모늄 성분의 영향으로 폐수를 효과적으로 처리하지 못하거나 기존 폐수 대비 발생되는 폐수가 많으며, 장치를 부식시키는 등의 단점이 있다. 또한 상기 방법의 경우 공정이 복잡하여 금속 손실 가능성이 높아 회수율이 낮고, 대량으로 처리하기 어려우며, 반응속도가 늦다는 단점이 있다.Methods for removing metals from wastewater include a method using strongly acidic cation exchange resin, a precipitation method using an acid leaching process, an electrodialysis method, and an evaporation concentration method. However, in the waste water produced in the nitrogen trifluoride manufacturing process, the fluorine component and the ammonium component There is a disadvantage that the wastewater can not be effectively treated due to the influence of the wastewater, the wastewater generated in comparison with the existing wastewater is generated, and the apparatus is corroded. In addition, the above process has a disadvantage in that the process is complicated and the possibility of metal loss is high, so that the recovery rate is low, it is difficult to treat in a large amount, and the reaction rate is slow.

폐수 중의 불소를 제거시키는 방법으로는, 수산화칼슘(Ca(OH)2), 염화칼슘(CaCl2) 등의 칼슘화합물을 폐수에 첨가하여, 불소 이온을 불용성 불화칼슘염(CaF2)으로 침전시키는 방법이 가장 일반적이나 (일본 등록특허 제2858478호) 삼불화질소 제조공정에서 발생하는 폐수 중 고농도의 금속성분이 존재하기 때문에 고순도의 불화칼슘염으로 회수하기 어렵다.As a method for removing fluorine in wastewater, there is a method in which a calcium compound such as calcium hydroxide (Ca (OH) 2 ) or calcium chloride (CaCl 2 ) is added to wastewater and the fluoride ion is precipitated with an insoluble calcium fluoride salt (CaF 2 ) (Japanese Patent No. 2858478). However, since there is a high concentration of the metal component in the wastewater generated in the nitrogen trifluoride production process, it is difficult to recover it as a calcium fluoride salt of high purity.

폐수 중 암모늄을 제거하는 방법은 통상적으로 암모니아 스트리핑법을 사용한다(한국 등록특허 제10-1200156호). 폐수에 염기를 첨가하여 pH를 10이상 맞추면 암모늄이 암모니아 가스로 전환되어 회수할 수 있다. 하지만 삼불화질소 제조공정에서 발생하는 폐수 중 불소성분의 영향으로 암모니아를 순수하게 회수하지 못하거나 금속성분의 영향으로 막힘현상(plugging)이 생기는 문제가 발생한다.Ammonia stripping is typically used to remove ammonium from wastewater (Korean Patent No. 10-1200156). When the pH is adjusted to 10 or more by adding a base to the wastewater, ammonium can be converted into ammonia gas and recovered. However, ammonia can not be recovered purely due to the influence of the fluorine component in the wastewater generated in the nitrogen trifluoride production process, or plugging may occur due to the influence of the metal component.

한편, 한국 등록특허 제10-0559919호에서는 삼불화질소 가스의 제조에서 NH3/HF 또는 NH3/HF/MFz 액상 폐기 용융물을 감소시키거나 제거하는 방법을 제공하여, 본 발명과 해결과제를 달리하고 있다.Korean Patent No. 10-0559919 discloses a method for reducing or eliminating NH 3 / HF or NH 3 / HF / MFz liquid waste melt in the production of nitrogen trifluoride gas, .

한국 특허등록번호 제10-0559919호Korean Patent Registration No. 10-0559919 한국 특허등록번호 제10-1200156호Korean Patent Registration No. 10-1200156 일본 특허등록번호 제2858478호Japanese Patent Registration No. 2858478

본 발명은 삼불화질소 가스를 제조하는 공정에서 발생한 폐수를 처리하는데, 상기 선행기술이 해결하지 못한 불순물들을 장치 부식의 문제가 없고, 폐수처리 시 추가 발생되는 폐수가 거의 없으며, 발생된 부산물을 고순도로 회수하여 재사용하거나 외부 판매가 가능하여 폐수 처리 비용을 절감할 수 있는 새로운 방법을 제공한다.The present invention relates to a method for treating waste water generated in a process for producing nitrogen trifluoride gas, wherein there is no problem of erosion of the impurities that the prior art has not solved, the wastewater is additionally generated in the wastewater treatment, And can be reused or sold externally, thereby providing a new method for reducing waste water treatment costs.

상기 문제를 종합적으로 해결하고자, 본 발명은 삼불화질소 가스의 제조 공정에서 발생된 폐수에 고농도로 존재하는 금속, 불산 및 암모니아 성분을 단계별로 고순도로 회수하여 폐수를 처리하는 공정을 제공한다.In order to solve the above problem, the present invention provides a process for recovering metal, hydrofluoric acid and ammonia components present at a high concentration in wastewater generated in a process for producing nitrogen trifluoride gas in high purity stepwise to treat wastewater.

구체적으로, 본 발명에 따른 삼불화질소 가스의 제조 공정에서 발생된 폐수로부터 금속, 불산, 및 암모니아를 회수하는 방법은,Specifically, the method for recovering metal, hydrofluoric acid, and ammonia from wastewater generated in the process for producing nitrogen trifluoride gas according to the present invention,

a) 유기용매 추출법으로 상기 폐수로부터 금속을 회수하는 단계;a) recovering the metal from the wastewater by an organic solvent extraction method;

b) 상기 금속이 회수된 폐수에 금속수산화물을 공급하여 불소를 불용성 불화금속염으로 전환시켜 회수하는 단계; 및b) supplying a metal hydroxide to the wastewater from which the metal is recovered to convert fluorine to an insoluble metal fluoride salt and recovering the metal hydroxide; And

c) 상기 불소가 회수된 폐수를 가열 및 스트리핑하여 암모늄을 암모니아로 전환시켜 회수하는 단계를 포함한다.c) heating and stripping the wastewater from which the fluorine has been recovered to convert ammonium to ammonia and recover.

또한, 본 발명에 따르면, a) 단계에서 회수된 금속이 함유된 유기 용매를 산으로 역추출하여 금속이 용해된 수용액을 회수하는 단계; 및 상기 금속이 용해된 수용액으로부터 금속을 회수하는 단계를 추가로 포함할 수 있다. 여기에서 유기용매는 수성상/유기상 비율이 0.1-1의 범위가 되도록 투입하는 것이 바람직하다.Further, according to the present invention, there is provided a method for recovering a metal-containing aqueous solution, comprising the steps of: back-extracting an organic solvent containing metal recovered in step a) with an acid to recover an aqueous solution of the metal dissolved therein; And recovering the metal from the aqueous solution in which the metal is dissolved. It is preferable that the organic solvent is added so that the aqueous phase / organic phase ratio is in the range of 0.1-1.

바람직하게는, 상기 a) 단계에서 금속들을 포함한 유기 용매를 황산용액에 의해 역추출하고, 역추출액 중 금속을 농출함으로써, 금속 불순물을 효과적으로 제거 및 회수할 수 있다.Preferably, in step (a), the organic solvent containing the metals is back-extracted with the sulfuric acid solution, and the metal in the back extract is extracted, whereby metal impurities can be effectively removed and recovered.

상기 금속이 용해된 수용액으로부터 금속을 회수하는 방법으로는 전해채취(elctro-winning)를 사용하는 것이 보다 바람직하다.As a method for recovering the metal from the aqueous solution in which the metal is dissolved, it is more preferable to use electrolytic-winning.

본 발명을 경제적으로 운용하기 위하여, 금속을 회수한 고순도 유기용매를 재순환시켜 a)단계에서 재활용하는 것이 바람직하다.In order to economically operate the present invention, it is preferable that the high purity organic solvent from which the metal is recovered is recycled and recycled in the step a).

본 발명에 따라 불소를 회수하기 위한 금속수산화물은 수산화칼슘(Ca(OH)2)인 것이 바람직하다. 이에 따라 회수된 불화금속염은 황산과 고온에서 반응시켜 불화수소를 수득하여 NF3 생산용 원료로 재사용 가능하다.The metal hydroxide for recovering fluorine according to the present invention is preferably calcium hydroxide (Ca (OH) 2 ). Accordingly, the recovered fluoride metal salt is reacted with sulfuric acid at a high temperature to obtain hydrogen fluoride, which can be reused as a raw material for producing NF3.

본 발명의 실시형태에 의하면, 삼불화질소 가스의 제조 공정에서 발생된 폐수처리 시 추가 발생되는 폐수가 거의 없고, 발생된 부산물을 고순도로 회수하여 재사용하거나 외부 판매가 가능하여 폐수 처리 비용을 절감할 수 있다.According to the embodiment of the present invention, there is almost no wastewater additionally generated during wastewater treatment in the process of producing nitrogen trifluoride gas, and the produced by-products can be recovered in high purity and reused or sold outside, have.

도 1은 폐수 처리 및 각각의 부산물 회수 공정도이다.Fig. 1 is a process chart of wastewater treatment and each by-product recovery.

이하, 본 발명의 바람직한 실시 형태를 설명한다. 그러나, 본 발명의 실시 형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시 형태로 한정되는 것은 아니다. Hereinafter, preferred embodiments of the present invention will be described. However, the embodiments of the present invention can be modified into various other forms, and the scope of the present invention is not limited to the embodiments described below.

본 발명에 따르면 상기 폐수처리 단계는 순차적으로 금속을 제거하는 단계, 불소 성분을 제거하는 단계 및 암모니아를 제거하는 단계를 포함한다.According to the present invention, the wastewater treatment step includes sequentially removing the metal, removing the fluorine component, and removing ammonia.

또한, 제거한 금속을 전해채취법으로 회수하는 단계, 불소 성분을 불화금속염 형태로 회수하는 단계 및 암모늄 성분을 암모니아로 고순도로 회수하는 단계를 포함한다.The method also includes recovering the removed metal by an electrolytic extraction method, recovering the fluorine component in the form of a metal fluoride salt, and recovering the ammonium component in high purity with ammonia.

본 발명의 일 구체예에 따르면 상기 금속을 추출하는 단계는 연속추출기(상온, 상압, 30단) 내에서 유기용매를 사용하여 수성상/유기상 비율이 0.1-1의 범위에서 금속을 용매 추출한다. 상기 비율이 0.1 미만이면 추출율이 떨이질 수 있고, 1을 초과하면 용매 사용에 많아 장비가 커지고, 유틸리티 비용이 많이 드는 문제가 있다.According to one embodiment of the present invention, the metal is extracted by using an organic solvent in a continuous extractor (room temperature, atmospheric pressure, 30 stages), and the metal is solvent extracted in the range of 0.1-1. If the ratio is less than 0.1, the extraction rate may be decreased. If the ratio is more than 1, there is a large amount of solvent, which increases equipment and increases the utility cost.

본 발명에 따른 금속 추출용 유기 용매는 산성용매 또는 킬레이트제(chelating agent) 또는 이들의 혼합물 등을 사용할 수 있으나, 이에 한정되는 것은 아니다. 산성용매로는 탄화수소 카르복시산이 바람직하며, 보다 바람직하게는 네오데카노익산(neodecanoic acid: 상품명 버서틱산(versatic acid))이 바람직하다. The organic solvent for metal extraction according to the present invention may be an acidic solvent, a chelating agent or a mixture thereof, but is not limited thereto. The acidic solvent is preferably a hydrocarbon carboxylic acid, more preferably neodecanoic acid (trade name: versatic acid).

킬레이트제로는 고인화점의 탄화수소 다일루언트(예: 등유)내의 지방족 하이드록시 알킬 옥심류를 추가로 사용할 수 있다. 지방족 하이드록시 알킬 옥심류로는 5,8-디에틸-7-하이드록시도데칸-6-옥심이 바람직하다(상품명 Lix63, BASF사). As the chelating agent, aliphatic hydroxyalkyloximes in a hydrocarbon group having high flash point, such as kerosene, may be further used. As the aliphatic hydroxyalkyloximes, 5,8-diethyl-7-hydroxydodecane-6-oxime is preferable (trade name Lix63, BASF).

유기용매는 산성용매 및 킬레이트제를 5~9:5~1의 부피비로 혼합하여 사용할 수 있다. 상기 부피비가 5:5 미만이면 비용이 비싸지는 문제가 있고, 9:1를 초과하면 추출율이 떨어지는 문제가 있다The organic solvent may be mixed with an acidic solvent and a chelating agent in a volume ratio of 5: 9: 5-1. When the volume ratio is less than 5: 5, there is a problem that the cost is high. When the volume ratio is more than 9: 1,

금속을 추출한 후 금속 제거 폐수에는 각각의 금속함량이 5ppm 이하로 존재하는 것이 바람직하다. 금속함량이 5 ppm을 초과하면 환경문제 등을 초래한다.It is preferable that the metal content of the metal removal wastewater after metal extraction is 5 ppm or less. If the metal content exceeds 5 ppm, it causes environmental problems and the like.

금속이 함유된 유기용매는 역추출기(30℃, 상압, 50단) 내에서 0.5-5M의 황산을 사용하여 탈거함으로써 용매는 회수하여 재사용하고 금속은 전해채취법으로 회수하며, 전해채취에서 회수된 황산은 역추출기로 재순환되어 재사용된다. 황산 농도가 0.5M 미만이면 금속 탈거 효과가 부족한 문제가 있고, 5M을 초과하면 장치 부식의 문제를 일으킨다.The organic solvent containing the metal is stripped using 0.5-5 M sulfuric acid in a reverse extractor (30 ° C, normal pressure, 50 stages), the solvent is recovered and reused, the metal is recovered by the electrolytic sampling method, Is recycled back to the reverse extractor. When the sulfuric acid concentration is less than 0.5M, there is a problem that the metal removal effect is insufficient. When the sulfuric acid concentration is more than 5M, the apparatus corrosion problem occurs.

상기 전해채취 장치는, 통상의 장치로서 도시하지는 않았으나, 전해조, 용액 공급수단, 전원 및 취출부를 구비할 수 있다. 상기 전해조의 내부는 이온투과성의 격막에 의하여 양극실과 음극실로 구획되어 있으며, 원수 공급수단은 공급 유량을 조절하기 위한 펌프를 구비할 수 있다. 전해조로 도입된 탈거액은 상기 양극실 및 음극실 내에 각각 설치되어 있는 양극 및 음극의 전해 전류에 의해 음이온과 양이온 성분으로 각기 전기 분해되고, 이온 경향에 따라 양극실과 음극실로 분리 이동하게 된다. 그 결과, 양극실에는 황산이 수집되고, 음극실에서는 금속성분이 수집된다.The electrolytic sampling apparatus may include an electrolytic bath, a solution supply means, a power source, and a blowout unit, though not shown as a usual apparatus. The inside of the electrolytic cell is partitioned into an anode chamber and a cathode chamber by an ion permeable diaphragm, and the raw water supply means may include a pump for regulating a supply flow rate. The demixing liquid introduced into the electrolytic cell is electrolyzed into an anion and a cation component by the electrolytic currents of the anode and the cathode respectively provided in the anode chamber and the cathode chamber, and is separated and moved to the anode chamber and the cathode chamber according to the ion tendency. As a result, sulfuric acid is collected in the anode chamber, and metal components are collected in the cathode chamber.

본 발명의 구체예에 따르면, 금속성분을 제거한 폐수로부터 수산화칼슘과 같은 금속수산화물을 사용하여 불소를 불용성 불화금속염으로 전환시키면 불소성분을 고순도로 회수할 수 있다. 회수된 불화금속염은 황산과 고온에서 반응시킨 후 불화수소로 재사용 가능하다. According to an embodiment of the present invention, when fluorine is converted into an insoluble metal fluoride salt by using a metal hydroxide such as calcium hydroxide from wastewater from which a metal component is removed, the fluorine component can be recovered with high purity. The recovered fluoride metal salt can be reused as hydrogen fluoride after reacting with sulfuric acid at a high temperature.

본 발명의 구체예에 따르면, 금속 및 불소 성분을 제거한 폐수를 가열 및 스트리핑하면 순수한 암모니아수를 얻을 수 있다. 가열 온도는 30~120, 압력은 상압 범위에서 처리되며 질소, 공기 등의 가스를 이용할 수 있다. According to an embodiment of the present invention, pure ammonia water can be obtained by heating and stripping wastewater from which metal and fluorine components have been removed. The heating temperature is in the range of 30 to 120, and the pressure is in the atmospheric pressure range. Nitrogen and air can be used.

본 발명의 구체적인 실시예를 아래와 같이 수행하였다.A specific embodiment of the present invention was carried out as follows.

a) 삼불화질소 가스의 제조 공정에서 발생된 폐수 150L는 연속추출기(30단, Karr Type) 상부로 투입하고, 버서틱산(versatic acid 10, Hexion사) 및 Lix63(BASF사)을 7:3으로 혼합한 유기 용매 150L는 연속추출기 하부로 투입하고, 상온, 상압 조건에서 80rpm의 속도로 플레이트를 왕복시켜 금속 성분을 연속으로 추출하였다.a) 150 L of wastewater generated in the production process of nitrogen trifluoride gas was put into the upper part of a continuous extractor (Karr Type 30), and versatic acid (versatic acid 10, Hexion) and Lix63 (BASF) in a ratio of 7: 3 was introduced into the bottom of the continuous extractor, and the plate was reciprocated at a rate of 80 rpm at room temperature and normal pressure to continuously extract the metal components.

b) 금속 성분이 제거된 폐수에 수산화칼슘(Ca(OH)2)를 64 kg을 가하여 50 rpm으로 천천히 교반하면서 균일하게 혼합하였다. 프레스필터를 통해 고액분리하여 침전된 불화칼슘(CaF2)을 33.8kg을 회수하고, 잔류 혼합침전물로부터 수산화칼슘 32kg을 분리하여 회수하였다.b) 64 kg of calcium hydroxide (Ca (OH) 2 ) was added to the wastewater from which the metal component had been removed, and the mixture was uniformly mixed while stirring slowly at 50 rpm. 33.8 kg of precipitated calcium fluoride (CaF2) precipitated by solid-liquid separation through a press filter was recovered, and 32 kg of calcium hydroxide was recovered from the remaining mixed precipitate and recovered.

c) 고액분리된 여액을 가열(가열속도 10℃/min)하면서 스트리퍼로 주입시키고, 1 bar 및 111℃의 조건에서 스트리핑하여 암모니아수(물 9.3kg, 암모니아 3.1kg)를 회수하고 잔류 방류수 36.4kg을 방류시켰다.c) The filtrate was poured into a stripper under heating (heating rate: 10 ° C / min) and stripped under the conditions of 1 bar and 111 ° C to recover ammonia water (9.3 kg of water and 3.1 kg of ammonia) And discharged.

a) 단계에서 추출된 금속 성분을 포함한 유기 용매 100L를 희석 황산(36 wt%) 7L으로 추출하기 위해 각각 역추출기(50단, Karr Type) 하부와 상부로 도입시켰다. 30℃ 및 상압 조건에서 80rpm의 속도로 플레이트를 왕복시켜 금속 성분을 연속으로 역추출하였다. 100 L of the organic solvent containing the metal component extracted in step a) was introduced into the lower part and the upper part of the reverse extractor (50, Karr type) to extract 7 L of dilute sulfuric acid (36 wt%). The plate was reciprocated at a rate of 80 rpm at 30 DEG C and normal pressure to continuously back-extract the metal components.

금속이 용해된 수용액을 전해조에 도입시켜 전해채취법으로 순수 금속을 회수하였다. 회수된 금속은 0.74kg으로 니켈 93.3 중량%, 철 5.52 중량% 및 크롬 0.85 중량%였다.An aqueous solution in which the metal was dissolved was introduced into the electrolytic cell and the pure metal was recovered by electrolytic collection. The recovered metal was 0.74 kg, containing 93.3% by weight of nickel, 5.52% by weight of iron and 0.85% by weight of chromium.

이상에서 본 발명의 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고, 청구범위에 기재된 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 수정 및 변형이 가능하다는 것은 당 기술분야의 통상의 지식을 가진 자에게는 자명할 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments, but, on the contrary, It will be obvious to those of ordinary skill in the art.

Claims (8)

삼불화질소(NF3) 가스의 제조 공정에서 발생된 폐수로부터 금속, 불산, 및 암모니아를 회수하는 방법에 관한 것으로,
a) 유기용매 추출법으로 상기 폐수로부터 금속을 회수하는 단계;
b) 상기 금속이 회수된 폐수에 금속수산화물을 공급하여 불소를 불용성 불화금속염으로 전환시켜 회수하는 단계; 및
c) 상기 불소가 회수된 폐수를 가열 및 스트리핑하여 암모늄을 암모니아로 전환시켜 회수하는 단계를 포함하는 삼불화질소 가스 제조 공정의 폐수처리 방법.
A method for recovering metal, hydrofluoric acid, and ammonia from wastewater generated in a process for producing nitrogen trifluoride (NF 3 ) gas,
a) recovering the metal from the wastewater by an organic solvent extraction method;
b) supplying a metal hydroxide to the wastewater from which the metal is recovered to convert fluorine to an insoluble metal fluoride salt and recovering the metal hydroxide; And
c) heating and stripping the wastewater from which the fluorine has been recovered to convert ammonium into ammonia and recovering the wastewater.
제1항에 있어서, a) 단계에서 회수된 금속이 함유된 유기 용매를 산으로 역추출하여 금속이 용해된 수용액을 회수하는 단계; 및 상기 금속이 용해된 수용액으로부터 금속을 회수하는 단계를 더 포함하는 삼불화질소 가스 제조 공정의 폐수처리 방법.
The method of claim 1, further comprising the step of back-extracting the metal-containing organic solvent recovered in step a) with an acid to recover an aqueous solution of the metal dissolved therein; And recovering the metal from the aqueous solution in which the metal is dissolved.
제2항에 있어서, 상기 a) 단계에서 금속들을 포함한 유기 용매를 황산용액에 의해 역추출하고, 역추출액 중 금속을 농출하여 회수하는, 삼불화질소 가스 제조 공정의 폐수처리 방법.
The method according to claim 2, wherein the organic solvent containing the metals is back-extracted with the sulfuric acid solution and the metal in the back extract is withdrawn and recovered in the step (a).
제2항에 있어서, 금속이 용해된 수용액으로부터 전해채취(ellectro-winning)에 의해 금속을 회수하는, 삼불화질소 가스 제조 공정의 폐수처리 방법
3. The method according to claim 2, wherein the metal is recovered from the aqueous solution in which the metal is dissolved by eletro-winning.
제2항에 있어서, 금속을 회수한 고순도 유기용매를 a)단계에서 재활용하는, 삼불화질소 가스 제조 공정의 폐수처리 방법
The method according to claim 2, wherein the high purity organic solvent from which the metal is recovered is recycled in the step a)
제1항에 있어서, 금속수산화물이 수산화칼슘(Ca(OH)2)인, 삼불화질소 가스 제조 공정의 폐수처리 방법
The method for treating wastewater according to claim 1, wherein the metal hydroxide is calcium hydroxide (Ca (OH) 2 )
제1항에 있어서, b) 단계에서 회수된 불화금속염을 황산과 고온에서 반응시켜 불화수소를 수득하여 삼불화질소 제조 공정에 재사용하는, 삼불화질소 가스 제조 공정의 폐수처리 방법
The method according to claim 1, wherein the fluoride metal salt recovered in step b) is reacted with sulfuric acid at a high temperature to obtain hydrogen fluoride and reused in the nitrogen trifluoride production process.
제1항에 있어서, a) 단계에서 유기용매는 수성상/유기상 비율이 0.1-1의 범위로 혼합하는, 삼불화질소 가스 제조 공정의 폐수처리 방법
The method according to claim 1, wherein in step a), the organic solvent is mixed in the range of the aqueous / organic phase ratio of 0.1-1.
KR1020160165011A 2016-12-06 2016-12-06 Methods for waste water treatment of Nitrogen trifluoride(NF3) process KR20180064753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160165011A KR20180064753A (en) 2016-12-06 2016-12-06 Methods for waste water treatment of Nitrogen trifluoride(NF3) process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160165011A KR20180064753A (en) 2016-12-06 2016-12-06 Methods for waste water treatment of Nitrogen trifluoride(NF3) process

Publications (1)

Publication Number Publication Date
KR20180064753A true KR20180064753A (en) 2018-06-15

Family

ID=62628805

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160165011A KR20180064753A (en) 2016-12-06 2016-12-06 Methods for waste water treatment of Nitrogen trifluoride(NF3) process

Country Status (1)

Country Link
KR (1) KR20180064753A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102274386B1 (en) * 2020-09-21 2021-07-12 주식회사 엠투알 Method for producing CaF₂from waste water including HF
CN113845197A (en) * 2021-11-05 2021-12-28 中船重工(邯郸)派瑞特种气体有限公司 Process for efficiently treating fluorine-containing wastewater with waste solids
KR20230005020A (en) * 2021-06-30 2023-01-09 김성진 Sludge recycling system for producing CaF₂from sludge included in waste water

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2858478B2 (en) 1989-12-07 1999-02-17 アモコ・コーポレーシヨン Removal of BF-3 from olefin oligomer by BF-3 catalyst
KR100559919B1 (en) 2002-03-20 2006-03-13 에어 프로덕츠 앤드 케미칼스, 인코오포레이티드 Process for the reduction or elimination of nh3/hf byproduct in the manufacture of nitrogen trifluoride
KR101200156B1 (en) 2011-12-02 2012-11-12 오씨아이머티리얼즈 주식회사 Apparatus and method for recovering ammonia from waste water in the production of nitrogen trifluoride gas

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2858478B2 (en) 1989-12-07 1999-02-17 アモコ・コーポレーシヨン Removal of BF-3 from olefin oligomer by BF-3 catalyst
KR100559919B1 (en) 2002-03-20 2006-03-13 에어 프로덕츠 앤드 케미칼스, 인코오포레이티드 Process for the reduction or elimination of nh3/hf byproduct in the manufacture of nitrogen trifluoride
KR101200156B1 (en) 2011-12-02 2012-11-12 오씨아이머티리얼즈 주식회사 Apparatus and method for recovering ammonia from waste water in the production of nitrogen trifluoride gas

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102274386B1 (en) * 2020-09-21 2021-07-12 주식회사 엠투알 Method for producing CaF₂from waste water including HF
KR20230005020A (en) * 2021-06-30 2023-01-09 김성진 Sludge recycling system for producing CaF₂from sludge included in waste water
CN113845197A (en) * 2021-11-05 2021-12-28 中船重工(邯郸)派瑞特种气体有限公司 Process for efficiently treating fluorine-containing wastewater with waste solids

Similar Documents

Publication Publication Date Title
US20220372592A1 (en) Method for extracting lithium by means of extraction-back extraction separation and purification
JP6864739B2 (en) Method for producing lithium compound
CN112981104B (en) Method for treating cadmium-containing waste residues and recycling metal cadmium
JP2015529740A (en) Method and apparatus for producing or recovering hydrochloric acid from a metal salt solution
CN105039718B (en) A kind of synthetical recovery processing method of electrolytic manganese anolyte
RU2726618C1 (en) Method of producing solutions containing nickel or cobalt
CN105200248B (en) A kind of step of utilization carbide slag one neutralizes the method that titanium white waste acid prepares high-purity scandium
CN102330111A (en) Method for preparing electric deposited cobalt
KR20180064753A (en) Methods for waste water treatment of Nitrogen trifluoride(NF3) process
CN104928469A (en) Method for removing magnesium in sulfuric acid leaching process of rhodochrosite
CN106927550B (en) Method for recovering fluorine-containing industrial wastewater
JP5867727B2 (en) Separation method of rare earth elements
CN114349079A (en) Recycling treatment method for nickel slag solid waste in nitrogen trifluoride gas electrolysis production
JP2001233606A (en) Method for producing sodium persulfate
CN106637215B (en) Method for recycling electrolytic oxidant of circuit board acidic etching waste liquid resource
CN111573641A (en) Method for co-producing nitric acid and silver from electrode foil waste liquid
US6531108B1 (en) Process for producing free hydroxylamine aqueous solution
CN104230080A (en) Technique for producing caustic soda from spent brine generated in hydrazine hydrate production process
CN106892479B (en) Method for recovering oxalic acid and hydrochloric acid from rare earth oxalic acid precipitation wastewater
CN111099652B (en) Method for separating silver and copper in silver electrolysis waste liquid
KR101799500B1 (en) Manufacturing method of cupric sulphate from waste cupric chloride
CN108862382A (en) A method of extracting high purity vanadic anhydride from lead navajoite
CN110735154A (en) Method for producing electrolytic manganese metal and active manganese dioxide by anode mud produced by electrolytic manganese metal
CN116283552B (en) Refining method of oxalic acid
CN113136604B (en) Copper recovery process

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
X601 Decision of rejection after re-examination