KR20150133407A - Exhaust gas processing device and method - Google Patents

Exhaust gas processing device and method Download PDF

Info

Publication number
KR20150133407A
KR20150133407A KR1020140060050A KR20140060050A KR20150133407A KR 20150133407 A KR20150133407 A KR 20150133407A KR 1020140060050 A KR1020140060050 A KR 1020140060050A KR 20140060050 A KR20140060050 A KR 20140060050A KR 20150133407 A KR20150133407 A KR 20150133407A
Authority
KR
South Korea
Prior art keywords
catalyst
exhaust gas
oxygen storage
lnt
scr
Prior art date
Application number
KR1020140060050A
Other languages
Korean (ko)
Inventor
최성무
Original Assignee
현대자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR1020140060050A priority Critical patent/KR20150133407A/en
Priority to US14/569,742 priority patent/US20150337709A1/en
Priority to DE102014119503.5A priority patent/DE102014119503A1/en
Priority to CN201410836708.0A priority patent/CN105089746A/en
Publication of KR20150133407A publication Critical patent/KR20150133407A/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/007Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring oxygen or air concentration downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0864Oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/2073Selective catalytic reduction [SCR] with means for generating a reducing substance from the exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2370/00Selection of materials for exhaust purification
    • F01N2370/02Selection of materials for exhaust purification used in catalytic reactors
    • F01N2370/04Zeolitic material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • F01N2430/06Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by varying fuel-air ratio, e.g. by enriching fuel-air mixture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/025Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting O2, e.g. lambda sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/06Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a temperature sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/14Exhaust systems with means for detecting or measuring exhaust gas components or characteristics having more than one sensor of one kind
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/14Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/16Oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/24Hydrogen sulfide (H2S)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/08Parameters used for exhaust control or diagnosing said parameters being related to the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • F01N2900/1402Exhaust gas composition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • F01N2900/1404Exhaust gas temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Emergency Medicine (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

The present invention relates to a device and a method for processing the exhaust gas of a vehicle, and aims to provide a device and a method for processing the exhaust gas, which can maximize the reduction of NOx by using a lambda sensor and a temperature sensor without using a NOx sensor. To achieve this purpose: a lean NOx trap (LNT), a selective catalytic reduction (SCR) catalyst, and an oxygen storage catalyst including an oxygen storage material and a jewel are placed in order in the flow direction of the exhaust gas; a front end lambda sensor is placed on the side of the top flow of the LNT; a rear end lambda sensor is placed on the side of the bottom flow of the oxygen storage catalyst; and a temperature sensor is placed to measure the exhaust gas temperature.

Description

배기가스 처리 장치 및 방법{EXHAUST GAS PROCESSING DEVICE AND METHOD}[0001] EXHAUST GAS PROCESSING DEVICE AND METHOD [0002]

본 발명은 차량의 배기가스 처리 장치 및 방법에 관한 것으로, 더욱 상세하게는 NOx 센서의 이용 없이 람다센서와 온도센서를 이용하여 NOx 저감 성능을 극대화할 수 있는 배기가스 처리 장치 및 방법에 관한 것이다.
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas processing apparatus and method for a vehicle, and more particularly, to an exhaust gas processing apparatus and method capable of maximizing NOx reduction performance by using a lambda sensor and a temperature sensor without using a NOx sensor.

차량의 배기가스 규제가 강화되어감에 따라 배기가스 중 NOx(질소산화물)을 저감하기 위한 후처리 장치로서 LNT(Lean NOx Trap), SCR(Selective Catalytic Reduction) 등의 DeNOx 촉매(Catalyst) 기술이 적용되고 있다.DeNOx catalyst technologies such as LNT (Lean NOx Trap) and SCR (Selective Catalytic Reduction) are applied as a post-treatment device for reducing NOx (nitrogen oxides) in the exhaust gas as the exhaust gas regulation of the vehicle is strengthened .

DeNOx 촉매는 배기가스에 포함된 NOx를 제거하는 촉매 컨버터의 한 형식으로, 우레아(Urea), 암모니아(NH3), 일산화탄소(CO), 탄화수소(HC) 등과 같은 환원제를 배기가스에 전달하면 DeNOx 촉매에서 NOx가 환원제와의 산화-환원 반응을 통해 환원된다.The DeNOx catalyst is a type of catalytic converter that removes NOx contained in exhaust gas. When a reducing agent such as urea, ammonia (NH 3 ), carbon monoxide (CO), hydrocarbon (HC) NOx is reduced through an oxidation-reduction reaction with a reducing agent.

최근에는 희박 연소 엔진의 작동시 발생하는 배기가스 성분 중 NOx를 제거하기 위하여 LNT를 후처리 장치로서 사용하고 있으며, LNT는 희박(lean)한 분위기에서 배기가스에 포함된 NOx를 흡착 또는 흡장하고, 농후(rich)한 분위기에서 작동되면 흡착 또는 흡장된 NOx를 탈착한다. In recent years, LNT is used as a post-treatment device for removing NOx from exhaust gas components generated during operation of the lean-burn engine. The LNT adsorbs or occludes NOx contained in the exhaust gas in a lean atmosphere, When operated in a rich atmosphere, it desorbs adsorbed or occluded NOx.

SCR 시스템은 SCR 촉매에 환원제를 공급하여 NOx를 효과적으로 저감할 수 있는 것으로, 배기가스를 재순환하여 연소실의 연소온도를 낮추어서 NOx를 저감하는 EGR(배기가스 재순환 장치)와는 다르게 배기가스에 환원제를 공급하여 NOx를 저감하는 방법을 채택하고 있다.The SCR system is capable of effectively reducing NOx by supplying a reducing agent to the SCR catalyst. It supplies a reducing agent to the exhaust gas unlike the EGR (exhaust gas recirculation system) which reduces NOx by recirculating the exhaust gas to lower the combustion temperature of the combustion chamber A method of reducing NOx is adopted.

SCR 시스템은 우레아(UREA), 암모니아, 일산화탄소, 탄화수소 등과 같은 환원제가 산소와 NOx 중에서 NOx와 더 잘 반응하도록 한다는 의미에서 선택적 촉매 환원이라고 명명된다.SCR systems are termed selective catalytic reduction in the sense that reducing agents such as urea (UREA), ammonia, carbon monoxide, hydrocarbons, etc. react better with NOx in oxygen and NOx.

그 밖에 배기가스 중 입자상 물질(Particulate Matter, PM)을 저감하기 위한 후처리 기술로 DOC(Disel Oxidation Catalyst), DPF(Diesel Particulate Filter), CPF(Catalyzed Particulate Filter) 등의 기술이 개발되어 차량에 적용되고 있다.In addition, technologies such as DOC (Disel Oxidation Catalyst), DPF (Diesel Particulate Filter) and CPF (Catalyzed Particulate Filter) technologies have been developed as post-treatment technologies for reducing particulate matter (PM) .

또한, 최근에는 입자상 물질의 포집 기능과 NOx 저감 기능을 갖는 SDPF(SCR on Diesel Particulate Filter)가 개발되어 사용되고 있다.In recent years, an SCP on Diesel Particulate Filter (SDPF) having a particulate matter collecting function and a NOx abatement function has been developed and used.

SDPF는 다기공 DPF에 SCR 촉매를 코팅하여 NH3와 배기가스 중 NOx를 SCR 촉매 상에서 반응시켜 물과 N2로 정화하고, 더불어 필터 기능, 즉 DPF 기능을 통해 배기가스 중 입자상 물질을 포집한다.SDPF is coated with an SCR catalyst in the pore DPF by reacting NOx from NH 3 and the exhaust gas on the SCR catalyst traps particulate matter in the exhaust gas purification of water and N 2, and in addition through a filter, that is, DPF function.

상술한 차량의 배기가스 처리 장치와 관련한 선행특허문헌으로는 한국 공개특허공보 제2012-0008521호(2012.1.30), 일본 공표특허공보 제2009-540189호(2009.11.19), 일본 공표특허공보 제2007-527314호(2007.9.27), 일본 공개특허공보 제2003-286827호(2003.10.10.), 일본 공개특허공보 제2009-291764호(2009.12.17.) 등이 있다.Prior art documents relating to the above-described exhaust gas treating apparatus for a vehicle include Korean Patent Publication No. 2012-0008521 (2012. 30.), Japanese Patent Publication No. 2009-540189 (2009.11.19), Japanese Patent Publication 2007-527314 (2007.9.27), Japanese Unexamined Patent Application Publication No. 2003-286827 (Oct. 10, 2003), and Japanese Unexamined Patent Publication No. 2009-291764 (Dec. 17, 2009).

한편, SCR 촉매 및 SDPF 촉매의 열화도를 판단하는 방법으로 SCR 또는 SDPF의 상류측 및 하류측에 NOx 센서를 장착하고 이 NOx 센서를 통해 NOx를 측정하여 SCR 또는 SDPF의 정화성능이 낮을 경우 열화된 것으로 판단하고 있다.On the other hand, as a method of determining the degree of deterioration of the SCR catalyst and the SDPF catalyst, a NOx sensor is mounted on the upstream side and the downstream side of the SCR or SDPF, and NOx is measured through the NOx sensor. When the purification performance of the SCR or SDPF is low, .

이러한 방법은 직접적인 열화 측정법이면서 정밀도가 높은 방법이기는 하나 NOx 센서의 가격이 온도센서의 10배에 상당하는 고가이므로 NOx 센서를 촉매의 상류측/하류측에 장착할 경우 고가의 시스템이 된다.Although this method is a direct deterioration measurement method and a high precision method, since the price of the NOx sensor is 10 times as high as that of the temperature sensor, it is an expensive system when the NOx sensor is mounted on the upstream side and the downstream side of the catalyst.

따라서, 본 발명은 상기와 같은 문제점을 해결하기 위하여 창출한 것으로서, NOx 센서의 이용 없이 람다센서와 온도센서를 이용하여 NOx 저감 성능을 극대화할 수 있는 배기가스 처리 장치 및 방법을 제공하는데 그 목적이 있다.
SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide an exhaust gas processing apparatus and method capable of maximizing NOx reduction performance by using a lambda sensor and a temperature sensor without using a NOx sensor. have.

상기한 목적을 달성하기 위하여, 본 발명의 일 양태에 따르면, 배기가스 흐름 방향을 따라 LNT(Lean NOx Trap), SCR(Selective Catalytic Reduction) 촉매, 그리고 산소 저장 물질 및 귀금속을 포함하는 산소 저장 촉매를 차례로 배치하고; 상기 LNT의 상류측에 배치되는 전단 람다센서, 상기 산소 저장 촉매의 하류측에 배치되는 후단 람다센서, 및 배기가스 온도를 측정하기 위한 온도센서를 구비하여서 구성되는 것을 특징으로 하는 배기가스 처리 장치를 제공한다.According to an aspect of the present invention, there is provided an exhaust gas purifying catalyst comprising: an oxygen storage catalyst including an LNT (Lean NOx Trap) catalyst, an SCR (Selective Catalytic Reduction) catalyst, Placed in turn; An upstream lambda sensor disposed upstream of the LNT, a downstream lambda sensor disposed downstream of the oxygen storage catalyst, and a temperature sensor for measuring an exhaust gas temperature. to provide.

또한, 본 발명의 다른 양태에 따르면, 배기가스 흐름 방향을 따라 LNT(Lean NOx Trap), SCR(Selective Catalytic Reduction) 촉매, 그리고 산소 저장 물질 및 귀금속을 포함하는 산소 저장 촉매를 차례로 배치하고; 상기 LNT의 상류측에 배치되는 전단 람다센서, 상기 산소 저장 촉매의 하류측에 배치되는 후단 람다센서, 및 배기가스 온도를 측정하기 위한 온도센서를 구비하며; 리치 운전시 상기 LNT에서 발생한 NH3와 배기가스 중의 NOx가 상기 SCR 촉매에서 반응하여 NOx의 제거가 이루어지도록 하는 것을 특징으로 하는 배기가스 처리 방법을 제공한다.
According to another aspect of the present invention, there is also provided an exhaust gas purifying catalyst comprising: an oxygen storage catalyst, which comprises an LNT (Lean NOx Trap) catalyst, an SCR (Selective Catalytic Reduction) catalyst, and an oxygen storage material; An upstream lambda sensor disposed upstream of the LNT, a downstream lambda sensor disposed downstream of the oxygen storage catalyst, and a temperature sensor for measuring an exhaust gas temperature; And NH 3 generated in the LNT and NO x in the exhaust gas react in the SCR catalyst during rich operation to remove NO x.

이에 따라, 본 발명의 배기가스 처리 장치 및 이의 제어방법에 의하면, NOx 센서의 이용 없이 람다센서와 온도센서를 이용하여 NOx 저감 성능을 극대화할 수 있는 효과가 있다.
Therefore, according to the exhaust gas processing apparatus and the control method thereof of the present invention, the NOx reduction performance can be maximized by using the lambda sensor and the temperature sensor without using the NOx sensor.

도 1은 본 발명의 일 실시예에 따른 배기가스 처리 장치의 구성을 개략적으로 도시한 이다.
도 2는 도 1에 도시된 실시예의 구성에서 일체의 'SDPF + 세리아 촉매'의 구성을 나타내는 단면도이다.
도 3은 본 발명의 다른 실시예에 따른 배기가스 처리 장치의 구성을 개략적으로 도시한 도면이다.
도 4는 도 3에 도시된 실시예에서 존 코팅 타입의 'SCR 촉매 + 세리아 촉매'를 도시한 도면이다.
도 5는 본 발명에서 LNT에서의 NH3 발생 메커니즘을 설명하기 위한 도면이다.
도 6은 본 발명에서 NH3 발생 온도 영역을 나타내는 도면이다.
FIG. 1 schematically shows a configuration of an exhaust gas treating apparatus according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view showing the structure of an integral 'SDPF + ceria catalyst' in the constitution of the embodiment shown in FIG.
3 is a view schematically showing a configuration of an exhaust gas treating apparatus according to another embodiment of the present invention.
FIG. 4 is a view showing a 'SCR catalyst + ceria catalyst' of the zone coating type in the embodiment shown in FIG.
5 is a view for explaining the NH 3 generation mechanism in the LNT in the present invention.
6 is a diagram showing the NH 3 generation temperature region in the present invention.

이하, 첨부한 도면을 참조하여 본 발명의 실시예에 대해 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명하기로 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings, which will be readily apparent to those skilled in the art to which the present invention pertains.

본 발명은 강화된 EU6 배기가스 규제에 대응할 수 있는 배기가스 처리 장치 및 방법에 관한 것으로서, 이는 LNT와 SCR 촉매, 산소 저장 촉매를 기본 구성으로 한다.The present invention relates to an exhaust gas treating apparatus and method capable of coping with the EU6 exhaust gas regulation, which is basically composed of an LNT, an SCR catalyst and an oxygen storage catalyst.

도 1은 본 발명의 일 실시예에 따른 배기가스 처리 장치의 구성을 개략적으로 도시한 도면으로, 엔진에서 배출되는 배기가스가 순차적으로 통과할 수 있도록 배기가스 흐름 방향을 기준으로 LNT(Lean NOx Trap, 질소산화물 흡장 촉매), SCR(Selective Catalytic Reduction, 선택적 촉매 환원) 촉매, 산소 저장 촉매가 차례로 배치된다.FIG. 1 is a view schematically showing a configuration of an exhaust gas treating apparatus according to an embodiment of the present invention. Referring to FIG. 1, an exhaust gas purifying apparatus according to an embodiment of the present invention includes a lean NOx trap , A nitrogen oxide storage catalyst), an SCR (Selective Catalytic Reduction) catalyst, and an oxygen storage catalyst.

상기 LNT는 Ba 등과 같은 고온 흡장 물질을 코팅한 촉매로서, 린(lean)한 분위기(희박(lean) 운전) 조건에서 배기가스에 포함된 NOx를 흡착 또는 흡장하고, NOx를 리치(rich)한 분위기(농후(rich) 운전) 조건에서 DeNOx시킬 때 반응부산물로 NH3를 생성한다.The LNT is a catalyst coated with a hot storage material such as Ba or the like and adsorbs or occludes NOx contained in the exhaust gas under a lean atmosphere (lean operation) (Rich operation), NH 3 is produced as a reaction by-product.

또한, 본 발명에서 SCR 촉매는 입자상 물질(Particulate Matter, PM)의 포집 기능과 NOx 저감 기능을 동시에 갖는 SDPF(SCR on Diesel Particulate Filter)가 될 수 있다.Also, in the present invention, the SCR catalyst may be an SCP on Diesel Particulate Filter (SDPF) having both a trapping function of particulate matter (PM) and a NOx abatement function.

SDPF는 디젤 배기가스의 입자상 물질을 포집하는 다기공 필터(DPF)에 SCR 촉매 물질을 코팅하여 구성한 것으로서, NH3와 배기가스 중 NOx를 SCR 촉매 상에서 반응시켜 물과 N2로 정화하고, 더불어 필터 기능, 즉 DPF 기능으로 배기가스 중 입자상 물질을 포집한다.The SDPF is formed by coating an SCR catalyst material on a multi-pore filter (DPF) for capturing particulate matter of a diesel exhaust gas. The NOx in the exhaust gas is reacted with NH 3 on the SCR catalyst to purify it with water and N 2 , Function, that is, the DPF function, collects the particulate matter in the exhaust gas.

이러한 LNT와 SDPF의 조합은 패시브(passive) SCR 촉매 시스템을 구성하게 되는 것으로, LNT에서 흡장되어 있는 NOx를 리치한 분위기에서 DeNOx시킬 때 반응부산물로 NH3를 생성하고, LNT에서 발생한 NH3와 배기가스 중 NOx를 SDPF에서 반응시켜 정화하게 된다. This combination of the LNT and SDPF is passive (passive) to be configured to the SCR catalyst system, when the DeNOx in rich the NOx that is occluded in the LNT atmosphere produce a NH 3 as reaction by-products, and NH 3 and the exhaust generated in the LNT NOx in the gas is purified by reacting with SDPF.

또한, 산소 저장 촉매는 세리아(Ceria)라고도 불리는 세륨의 산화물인 산화세륨(CeO2)을 산소 저장 물질로 하는 세리아 촉매가 될 수 있다.The oxygen storage catalyst may be a ceria catalyst containing cerium oxide (CeO 2 ), which is an oxide of cerium, also called ceria, as an oxygen storage material.

바람직한 실시예에서, SDPF와 세리아 촉매를 하나의 다기공 필터를 사용하여 일체로 구성한 것이 될 수 있다.In a preferred embodiment, the SDPF and the ceria catalyst may be constructed integrally using a single multi-pore filter.

도 2는 도 1에 도시된 실시예의 구성에서 일체의 'SDPF + 세리아 촉매'의 구성을 나타내는 단면도로서, 디젤 배기가스 중 입자상 물질을 포집하는 다기공 필터와, 상기 필터의 배기가스 입구측에 코팅된 SCR(Selective Catalytic Reduction) 촉매층(12)과, 상기 필터의 배기가스 출구측에 코팅되고 세리아와 귀금속을 포함하는 세리아 촉매층(13)을 포함하여 구성된다.FIG. 2 is a cross-sectional view showing the structure of an integral 'SDPF + ceria catalyst' in the constitution of the embodiment shown in FIG. 1, which comprises a multi-pore filter for collecting particulate matter in the diesel exhaust gas, A selective catalytic reduction (SCR) catalyst layer 12, and a ceria catalyst layer 13 coated on the exhaust gas outlet side of the filter and containing ceria and a noble metal.

여기서, 상기 SCR 촉매층(12)은 제올라이트(zeolite) 촉매를 포함하는 코팅층이 될 수 있고, 상기 세리아 촉매층(13)은 귀금속이 세리아에 함침되어 형성된 것이 될 수 있다.Here, the SCR catalyst layer 12 may be a coating layer containing a zeolite catalyst, and the ceria catalyst layer 13 may be formed of a noble metal impregnated with ceria.

또한, 필터는 층층이 배치된 복수의 필터벽(11)으로 구성되고, 복수의 필터벽(11)은 마주보는 면끼리 배기가스 입구측과 출구측을 형성하여 입구측과 출구측이 번갈아가며 형성된 구조를 가진다.The filter is constituted by a plurality of filter walls 11 in which a layer is disposed, and the plurality of filter walls 11 have a structure in which an inlet side and an outlet side are formed by mutually opposing faces, .

좀더 설명하면, 다기공 필터의 일면에 SCR 촉매층(제올라이트 타입)(12)을 코팅하여 형성한 후 타면에 세리아(산소 저장 물질)와 귀금속을 포함하는 세리아 촉매층(13)를 코팅하여 형성한다.More specifically, an SCR catalyst layer (zeolite type) 12 is coated on one surface of a multi-pore filter, and then a ceria catalyst layer 13 containing ceria (oxygen storage material) and a noble metal is coated on the other surface.

이때, SCR 촉매층(12)을 DPF 필터의 입구측 면에 코팅하여 형성한 후 세리아에 귀금속이 담지된 세리아 촉매층(13)을 DPF 필터의 출구측 면에 코팅하여 형성하며, 세리아에 귀금속이 담지된 상기 세리아 촉매층(13)을 코팅하여 형성하기 전에 세리아를 먼저 DPF 필터의 출구측 면에 코팅한 후 귀금속이 담지된 세리아 촉매층을 추가적으로 코팅하여 형성하는 것도 가능하다.At this time, the ceria catalyst layer 13 is formed by coating the inlet side surface of the DPF filter with the SCR catalyst layer 12, and then coating the ceria catalyst layer 13 carrying the noble metal on the ceria with the outlet side surface of the DPF filter. It is also possible to form the ceria catalyst layer on the outlet side of the DPF filter before coating the ceria catalyst layer 13 and further coating the ceria catalyst layer carrying the precious metal.

이와 같이 디젤 배기가스의 입자상 물질을 포집하는 다기공 필터를 기본으로 하고, 그 필터의 배기가스 입구측에 SCR 촉매층(12)을, 그 반대측인 필터의 배기가스 출구측에 세리아 촉매층(13)을 코팅하여 형성함으로써, 일체의 'SDPF + 세리아 촉매'를 구성할 수 있게 된다. A multi-pore filter for trapping particulate matter of the diesel exhaust gas is used as a base. A SCR catalyst layer 12 is provided on the exhaust gas inlet side of the filter and a ceria catalyst layer 13 is provided on the exhaust gas outlet side of the filter Coating to form an integral 'SDPF + ceria catalyst'.

또한, 상기 필터는 층층이 일정 간격으로 이격 배치된 복수의 필터벽(11)으로 구성되어, 복수의 필터벽(11)이 마주보는 면끼리 배기가스 입구측과 출구측을 형성하여 입구측과 출구측이 교대로 형성되도록 한다.The filter is constituted by a plurality of filter walls 11 in which the layer layers are spaced apart at regular intervals so that the faces of the plurality of filter walls 11 facing each other form an exhaust gas inlet side and an outlet side, Are formed alternately.

이때, 필터벽(11) 사이에 각 입구측의 후단부와 각 출구측의 전단부를 막아주는 플러그(14)를 설치함으로써, 각 입구측의 후단부가 플러그(14)에 의해 막혀 있는 상태로 각 입구측의 전단부만이 개방되도록 하고, 각 출구측의 전단부가 플러그(14)에 의해 막혀 있는 상태로 각 출구측의 후단부만이 개방되도록 한다.At this time, by providing the plug 14 between the filter walls 11 for blocking the rear end of each inlet side and the front end of each outlet side, the rear end of each inlet side is blocked by the plug 14, So that only the rear end of each outlet is opened in a state in which the front end of each outlet is clogged by the plug 14.

그리고, 도 1의 실시예에서 LNT의 상류측과 산소 저장 촉매의 하류측에 각각 배기가스 중 산소 농도를 검출하기 위한 람다센서(L1,L2)를 설치하는데, 상류측의 람다센서(이하, '전단 람다센서'라 함)(L1)는 LNT의 상류측에 설치되고, 하류측의 람다센서(이하, '후단 람다센서'라 함)(L2)는 LNT의 하류측에서도 산소 저장 촉매인 세리아 촉매의 하류측, 즉 하나의 다기공 필터를 사용하여 SDPF와 세리아 촉매를 일체로 구성한 'SDPF + 세리아 촉매'의 하류측에 설치된다.In the embodiment of FIG. 1, lambda sensors L1 and L2 for detecting the oxygen concentration in the exhaust gas are provided on the upstream side of the LNT and the downstream side of the oxygen storage catalyst, respectively. The upstream lambda sensor (Hereinafter referred to as " downstream lambda sensor ") L2 is provided on the downstream side of the LNT as well as on the upstream side of the LNT, Downstream side, that is, downstream of the 'SDPF + ceria catalyst' in which the SDPF and the ceria catalyst are integrally formed using one multi-pore filter.

또한, SDPF 상류측(LNT 하류측)과 세리아 촉매 하류측에 각각 온도센서(T1,T2)를 설치하는데, 도 1의 실시예에서 일체의 'SDPF + 세리아 촉매' 상류측 및 하류측에 각각 온도센서(T1,T2)를 설치한다. Temperature sensors T1 and T2 are provided on the upstream side of the SDPF (on the downstream side of the LNT) and on the downstream side of the ceria catalyst. In the embodiment of FIG. 1, the upstream and downstream sides of the 'SDPF + ceria catalyst' The sensors T1 and T2 are installed.

한편, 도 3은 본 발명의 다른 실시예에 따른 배기가스 처리 장치의 구성을 개략적으로 도시한 도면으로, 엔진에서 배출되는 배기가스가 순차적으로 통과할 수 있도록 배기가스 흐름 방향을 기준으로 LNT, DPF(H2S 저감), SCR 촉매, 산소 저장 촉매가 차례로 배치된다.FIG. 3 is a schematic view of a configuration of an exhaust gas processing apparatus according to another embodiment of the present invention. In FIG. 3, the exhaust gas flow direction of the LNT, DPF (H 2 S reduction), an SCR catalyst, and an oxygen storage catalyst.

도 3의 실시예에서는 LNT과 SCR 촉매 사이, 즉 LNT 하류측과 SCR 촉매 상류측으로 H2S 저감 기능을 수행하는 별도의 DPF를 배치하고, 상기 DPF 하류측으로 SCR 촉매와 산소 저장 촉매를 차례로 배치한다.In the embodiment of FIG. 3, a separate DPF for performing H 2 S reduction function is disposed between the LNT and the SCR catalyst, that is, the downstream side of the LNT and the upstream side of the SCR catalyst, and the SCR catalyst and the oxygen storage catalyst are sequentially disposed downstream of the DPF .

여기서, 산소 저장 촉매는 세리아 촉매가 될 수 있다.Here, the oxygen storage catalyst may be a ceria catalyst.

상기 SCR 촉매와 세리아 촉매는 배기가스가 통과하도록 된 담체의 표면에 각각 SCR 촉매 물질과 귀금속 및 세리아를 포함하는 세리아 촉매 물질을 코팅한 것이 될 수 있다.The SCR catalyst and the ceria catalyst may be coated with a ceria catalyst material comprising a SCR catalyst material, a noble metal and a ceria on the surface of a carrier through which exhaust gas is allowed to pass.

이때, SCR 촉매와 세리아 촉매는 하나의 담체를 사용하는 일체의 촉매가 될 수 있는바, 담체를 두 구간으로 나누어, 일 구간 영역에 SCR 촉매 물질을, 타 구간 영역에는 귀금속 및 세리아(산소 저장 물질)를 포함하는 세리아 촉매 물질을 코팅한 존 코팅 타입의 촉매(일체의 'SCR 촉매 + 세리아 촉매')가 될 수 있다.At this time, the SCR catalyst and the ceria catalyst can be used as one catalyst using one carrier. The carrier is divided into two sections, and one portion of the SCR catalyst material, the other portion of the noble metal and ceria (All " SCR catalyst + ceria catalyst ") coated with a ceria catalyst material,

즉, 존(zone) 코팅 방식으로 담체의 전측 영역과 후측 영역에 각각 상기의 SCR 촉매 물질과 세리아 촉매 물질을 코팅하여, 도 4에 나타낸 바와 같이, 전측은 SCR 촉매(제올라이트 타입)로 사용하고, 후측은 세리아에 귀금속이 담지된 촉매층을 가지는 세리아 촉매로 사용하는 것이다.That is, the SCR catalyst material and the ceria catalyst material are coated on the front side region and the rear side region of the carrier by a zone coating method, respectively. As shown in FIG. 4, the front side is used as an SCR catalyst (zeolite type) And the back side is used as a ceria catalyst having a catalyst layer carrying noble metal on ceria.

또는 각각의 담체에 SCR 촉매 물질과 세리아 촉매 물질을 코팅하여 제작한 2브릭(brick) 형태의 촉매 구성, 즉 별도 SCR 촉매와 세리아 촉매가 조합된 2브릭의 구성이 적용될 수도 있다.Alternatively, a two-brick configuration may be applied in which the catalyst is in the form of a two-brick catalyst prepared by coating each carrier with an SCR catalyst material and a ceria catalyst material, that is, a combination of a separate SCR catalyst and a ceria catalyst.

또한, 도 3의 실시예에서도 LNT의 상류측과 산소 저장 촉매의 하류측에 각각 람다센서(L1,L2)를 설치하는데, 상류측의 람다센서(이하, '전단 람다센서'라 함)(L1)는 LNT의 상류측에 설치되고, 하류측의 람다센서(이하, '후단 람다센서'라 함)(L2)는 LNT의 하류측에서도 산소 저장 촉매인 세리아 촉매의 하류측에 설치된다.3, the lambda sensors L1 and L2 are provided on the upstream side of the LNT and on the downstream side of the oxygen storage catalyst, respectively. The upstream lambda sensor (hereinafter referred to as the " shear lambda sensor & ) Is provided on the upstream side of the LNT, and a downstream lambda sensor (hereinafter referred to as " downstream lambda sensor ") L2 is also provided on the downstream side of the LNT on the downstream side of the ceria catalyst serving as the oxygen storage catalyst.

또한, DPF 상류측(LNT 하류측)과 하류측, 세리아 촉매 하류측에 각각 온도센서(T1,T2,T3)를 설치한다. Further, temperature sensors T1, T2, and T3 are provided on the upstream side of the DPF (on the downstream side of the LNT), on the downstream side, and on the downstream side of the ceria catalyst, respectively.

이상으로 도 1 내지 도 3을 참조하여 실시예에 따른 배기가스 처리 장치의 구성에 대해 설명하였는바, 실시예의 배기가스 처리 장치에서는 LNT에 저장된 NOx를 저감하기 위해서 엔진 공연비 제어(람다 제어)를 통해 주기적인 리치 분위기를 만들어주면(농후 운전), LNT에서 발생한 NH3를 이용하여 SCR 촉매에서 NOx를 효율적으로 제거할 수 있다.As described above, the configuration of the exhaust gas processing apparatus according to the embodiment has been described with reference to Figs. 1 to 3. In the exhaust gas processing apparatus according to the embodiment, the engine air-fuel ratio control (lambda control) is performed in order to reduce NOx stored in the LNT By creating a periodic rich atmosphere (rich operation), NOx can be efficiently removed from the SCR catalyst using NH 3 generated in the LNT.

즉, 린 분위기(희박 운전)에서 LNT에 NOx가 저장되고, 주기적으로 리치 분위기를 만들어줄 경우 LNT에서는 반응에 의해 NH2가 발생하는데, SCR 촉매에서 NH3와 NOx가 반응하여 NOx가 제거되고, 소량의 귀금속을 담지하고 있는 세리아 촉매에서는 리치시 과다 발생한 CO, HC를 정화하게 된다.That is, when NOx is stored in the LNT in a lean atmosphere (period of lean operation), and NH 3 is generated in the LNT by the reaction in the periodically rich atmosphere, NH 3 and NOx react with each other in the SCR catalyst, The ceria catalyst carrying a small amount of noble metal will purify CO and HC which are excessively rich.

이때, 충분한 양의 NH3를 효과적으로 생성시키기 위해서는 리치 분위기에 의해 LNT에 있는 산소를 다 소진한 후 추가적으로 수초 동안의 리치 분위기를 유지해주어야 한다. At this time, in order to effectively generate a sufficient amount of NH 3 , it is necessary to exhaust the oxygen in the LNT by a rich atmosphere and further maintain a rich atmosphere for several seconds.

이러한 추가적인 리치 분위기를 유지하기 위해, 후단 람다 센서(L2)의 신호에 의해 추가적인 리치 분위기의 유지 제어가 이루어질 수 있도록, LNT 하류측에 SCR 촉매를 위치시키고, SCR 촉매 하류측에 산소 저장 촉매(세리아 촉매)를 추가하며, 산소 저장 촉매 하류측에 후단 람다 센서(L2)를 장착하여, 리치시 LNT의 산소가 소진되어도 후단의 산소 저장 촉매의 산소가 소진되지 않았기 때문에 후단 람다센서(L2)의 신호로부터 그 상류측에서의 산소가 소진되지 않은 것으로 판단하여 추가적으로 리치 시간을 연장시킬 수 있도록 한다. In order to maintain the additional rich atmosphere, an SCR catalyst is placed on the downstream side of the LNT and an oxygen storage catalyst (ceria) is disposed on the downstream side of the SCR catalyst so that additional rich atmosphere can be maintained by the signal of the downstream lambda sensor And a downstream lambda sensor L2 is mounted on the downstream side of the oxygen storage catalyst so that the oxygen of the downstream oxygen storage catalyst is not exhausted even if the oxygen in the rich LNT is exhausted, It is determined that the oxygen on the upstream side is not exhausted from the oxygen sensor, so that the rich time can be further extended.

이것에 의해 추가적인 리치 분위기가 유지될 수 있고, 그로 인해 LNT에서 발생하는 NH3의 양이 증가하게 되어 전체적인 NOx 정화 성능이 증가하게 된다.As a result, the additional rich atmosphere can be maintained, thereby increasing the amount of NH 3 generated in the LNT, thereby increasing the overall NOx purification performance.

물론, LNT에서 발생하는 NH3는 SCR 촉매에서 NOx와 반응하게 되며, NH3가 SCR 촉매에서 NOx를 정화하는데 사용된다. Of course, NH 3 generated in the LNT reacts with NO x in the SCR catalyst, and NH 3 is used to purify NO x in the SCR catalyst.

이와 같이 본 발명에서는 SCR 촉매 하류측에 산소 저장 물질과 소량의 귀금속을 가지는 세리아 촉매를 배치하여 리치 시간을 인위적으로 늘리는데, 추가적인 리치 분위기의 유지 제어가 이루어질 수 있도록 세리아 촉매의 하류측에 람다센서(L2)를 설치하여 이용함으로써, 리치 시간 증대, 충분한 NH3의 효과적인 발생 유도, SCR 촉매에서 NH3 + NOx의 정화가 이루어지도록 하고, 귀금속을 담지하고 있는 세리아 촉매에서 CO, HC가 제거될 수 있도록 한다.In the present invention, a ceria catalyst having an oxygen storage material and a small amount of noble metal is disposed on the downstream side of the SCR catalyst to artificially increase the rich time. In order to maintain the rich atmosphere, a lambda sensor L2), it is possible to increase the rich time, to induce efficient generation of NH 3 effectively, to purify NH 3 + NO x from the SCR catalyst, and to remove CO and HC from the ceria catalyst carrying the noble metal do.

도 5는 LNT에서의 NH3 발생 메커니즘을 설명하기 위한 도면으로, 가로축은 시간을, 세로축은 (a) 람다값, (b) 온도, (c) 배기가스 중 NH3 및 CO의 농도를 각각 나타낸다.FIG. 5 is a view for explaining the mechanism of NH 3 generation in the LNT, in which the horizontal axis represents time and the vertical axis represents (a) the lambda value, (b) temperature, and (c) the concentration of NH 3 and CO in the exhaust gas .

도 5의 (a)를 참조하면, 리치한 분위기 조건에서 LNT 상류측 람다센서(전단 람다센서)(L1)와 LNT 하류측 람다센서의 람다값이 같아지는 람다 브레이크스루(breakthrough) 발생 시점을 'Breakthrough Point'라 나타내었다.5 (a), when the lambda breakthrough time point at which the lambda value of the Lambda upstream sensor Lambda sensor (lane lambda sensor) L1 and the Lambda sensor downstream of the LNT sensor become the same, Breakthrough Point '.

여기서, LNT 하류측 람다센서는 본 발명에서 제시하는 후단 람다센서(L2), 즉 산소 저장 촉매인 세리아 촉매의 하류측에 설치되는 람다센서(L2)와는 구분해서 이해하여야 하며, LNT 바로 후단의 하류측 람다센서(도 1의 SCR 촉매(SDPF) 상류측, 도 3의 DPF 상류측에 위치)를 의미한다. Here, the lambda sensor downstream of the LNT should be distinguished from the downstream lambda sensor L2, that is, the lambda sensor L2 installed on the downstream side of the ceria catalyst, which is an oxygen storage catalyst, Means a side lambda sensor (upstream of the SCR catalyst (SDPF) in Fig. 1, upstream of the DPF in Fig. 3).

이하, 본 명세서에서 LNT 하류측 람다센서와 후단 람다센서를 구분하여 설명하며, 상기 LNT 하류측 람다센서는 종래와 같이 LNT 바로 후단의 하류측에 설치되는 람다센서를 의미하고, 후단 람다센서는 상술한 바와 같이 산소 저장 촉매인 세리아 촉매 후단에 설치되는 본 발명의 람다센서를 의미한다.Hereinafter, the Lambda downstream sensor and the downstream Lambda sensor will be described separately. Here, the Lambda sensor downstream of the LNT means a lambda sensor installed on the downstream side of the LNT immediately downstream of the LNT, Means a lambda sensor of the present invention installed at the downstream end of a ceria catalyst as an oxygen storage catalyst.

종래의 경우 LNT 상류측 람다센서와 LNT 하류측 람다센서의 람다값이 같아지는 람다 브레이크 스루 발생 시점, 즉 도 5에 나타낸 'Breakthrough Point'에서 리치 제어를 종료하였다.In the conventional case, the rich control is terminated at the time of occurrence of the lambda breakthrough in which the lambda value of the Lambda upstream side lambda sensor and the Lambda downstream side lambda sensor become equal to each other, that is, the 'Breakthrough Point' shown in FIG.

또한, (b)에서는 LNT 하류측 온도센서(T1)의 온도값인 배기가스 온도(배기온)를 나타내었다. In (b), the exhaust gas temperature (exhaust temperature), which is the temperature of the LNT downstream temperature sensor T1, is shown.

또한, (c)를 참조하면, 리치 운전 시작 시점부터 LNT 상류측 람다센서(L1)와 LNT 하류측 람다센서의 람다값이 같아질 때('Breakthrough Point')까지의 시간을 'tbt'로 정의하였다. Referring to (c), when the lambda value of the Lambda sensor upstream from the LNT upstream side and the Lambda sensor downstream of the LNT become equal to the 'Breakthrough Point', the time from the start of the rich operation is set to 't bt ' Respectively.

엔진 제어를 통해 리치한 분위기(람다(Lambda, λ) < 1)를 조성한다고 할 때, 람다 브레이크스루 발생 이전의 환원 화학 반응식(NOx 저장 및 리치에 의한 NOx 환원 화학 반응식)은 아래의 반응식과 같다.When the rich atmosphere (Lambda, λ) <1) is created through engine control, the reductive chemical equation (NOx reduction and rich NOx reduction chemical reaction formula) before the lambda breakthrough is as shown in the following reaction formula .

Ba(NO3)2 + 3CO → 2NO + 2CO2 + BaCO3 Ba (NO 3) 2 + 3CO → 2NO + 2CO 2 + BaCO 3

2NO + 2CO → N2 + 2CO2 2NO + 2CO → N 2 + 2CO 2

리치 분위기에서 배기가스 중 산소 농도를 낮추고 CO, HC 등의 환원제 성분을 증가시키면, Ba 등의 고온 흡장물질에 흡장되어 있던 질산염이 탈리되어 CO, HC 등의 환원제 성분에 의해 환원되면서 질소(N2)로 전환된다.When lowering the oxygen concentration in the exhaust gas in a rich atmosphere to increase the reducing agent components, such as CO, HC, nitrate which has been inserted in the high-temperature storage material such as Ba is desorbed as reduced by the reducing agent component, such as CO, HC nitrogen (N 2 ).

또한, 람다 브레이크스루 발생 이후 반응식은 아래와 같다.In addition, the reaction formula after the occurrence of lambda breakthrough is as follows.

CO + H2O → CO2 + H2 (Water/Gas-Shift)CO + H 2 O → CO 2 + H 2 (Water / Gas-Shift)

HC3 + 3H2O →3CO + 6H2 (Steam Reforming)HC 3 + 3H 2 O → 3CO + 6H 2 (Steam Reforming)

5H2 + 2NO → 2NH3 + 2H2O 5H 2 + 2NO? 2NH 3 + 2H 2 O

LNT의 산소 저장 물질에 저장되어 있는 산소와 NOx 흡장 물질에 저장되어 있는 NOx가 소모되어 없어질 때부터 LNT에서 NH3가 발생하기 시작하며, 리치 지속 조건에서 NOx와 O2의 소진 후에 H2와 NO(이는 LNT에서 탈착되거나 배기가스에서 공급되는 것임)가 반응하여 NH3가 발생한다.From the time stored in the oxygen storage material is stored in the oxygen and NOx occlusion material quality NOx is consumed is not located in the LNT began to an NH 3 occurs in the LNT, and with H 2 in the rich sustained condition after exhaustion of NOx and O 2 NO (which is desorbed from the LNT or fed from the exhaust gas) reacts to generate NH 3 .

도 5의 (c)에서 NH3가 가장 많이 발생하는 영역은 tbt(리치 제어 시작 후 LNT 상류측 및 하류측 람다센서의 람다값이 같아지는 시간) 후 α 시간 동안이며, tbt 후 추가적으로 α 시간 동안 리치 분위기를 지속시켜주면 NH3 발생량을 증대시킬 수 있다.Also the region in which NH 3 occurs most frequently in the 5 (c) is t bt and for α hours (after the rich control LNT upstream-side and downstream-side time that the lambda value is equal to the lambda sensor), after t bt further α If the rich atmosphere is maintained for a period of time, the amount of generated NH 3 can be increased.

종래의 경우 LNT 상류측 람다센서와 LNT 하류측 람다센서의 람다값이 같아지는 'Breakthrough Point'에서 리치 제어를 종료하였지만, 본 발명에서는 전단 람다센서(LNT 상류측 람다센서)(L1)와 후단 람다센서(L2)의 람다값이 같아지는 시점에서 리치 제어를 종료하여, 기존의 tbt 후에 α 시간 동안의 추가적인 리치 제어가 더 유지되도록 하는 효과를 얻는다. In the conventional case, the rich control is terminated at the 'breakthrough point' at which the lambda value of the LNT upstream lambda sensor and the LNT downstream lambda sensor are equal to each other. However, in the present invention, the shear lambda sensor (LNT upstream lambda sensor) The effect that the rich control is terminated at the time when the lambda value of the sensor L2 becomes equal and the additional rich control for the alpha time is further maintained after the existing t bt is obtained.

여기서, α를 너무 짧게 설정하면 NH3의 발생량이 줄어들고, α를 너무 길게 설정하면 NH3의 발생량은 증가하지만 CO의 양이 지나치게 증가하여 연비에 악영향을 미치므로 엔진 조건 등에 따라 α의 최적화가 필요하다.If α is set too short, the amount of NH 3 generated decreases. If α is set too long, the amount of NH 3 generated increases, but the amount of CO increases excessively, adversely affecting the fuel efficiency. Do.

상기 추가적인 리치 시간 α(예를 들면, 5초 이내)는 하류측의 산소 저장 촉매, 즉 세리아 촉매의 세리아의 양 또는 그 산소 저장량에 따라 증대시킬 수 있으며, 추가적인 리치 지속을 통해 과량의 NH3 발생을 유도한다. The additional rich time α (for example, within five seconds) is the oxygen storage of the downstream catalyst, that is the amount of ceria catalyst ceria or may be increased according to the oxygen storage amount, the additional rich continued excess NH 3 generated by .

또한, 추가적인 리치 시간에 의해 발생량이 증대된 NH3를 LNT 하류측의 SCR 촉매를 통해 NOx와 반응시켜 배기가스 중 NOx를 저감시키고, 추가적인 리치 시간동안 증대된 CO와 HC는 세리아 촉매에 포함된 귀금속을 이용하여 추가로 저감시킨다.Further, NH 3 , which is increased in amount of generated by the additional rich time, is reacted with NO x through the SCR catalyst on the downstream side of the LNT to reduce NO x in the exhaust gas, and CO and HC, which are increased during the additional rich time, To further reduce it.

또한, 엔진/촉매 조건인 배기가스 온도, 배기가스 유량, 촉매 에이징 정도, tbt 등이 NH3 발생에 영향을 미치는 주요 인자이며, tbt가 짧을수록 α를 짧게 하는 것이 바람직하다.Also, it is preferable that the exhaust gas temperature, exhaust gas flow rate, catalyst aging degree, t bt, etc., which are engine / catalyst conditions, are the main factors affecting NH 3 generation, and the shorter the t bt , the shorter the α.

이와 같이 하여, 종래의 경우 tbt 시간 후 DeNox를 위한 리치 분위기를 바로 종료하였지만, 본 발명에서는 DeNox를 위해 tbt 시간 후 추가적으로 α시간 동안 리치 분위기를 지속시켜 다량의 NH3를 효과적으로 발생시키고, 이를 통해 배기가스 중 NOx를 SCR 촉매에서 추가적으로 저감한다. In this way, the rich atmosphere for DeNox is immediately terminated after the time t bt in the conventional case. However, in the present invention, the rich atmosphere is maintained for a further α time period after t bt for DeNox to effectively generate a large amount of NH 3 , Thereby further reducing NOx in the exhaust gas in the SCR catalyst.

도 6은 NH3 발생 온도 영역을 나타내는 도면으로, NH3는 대략 200℃ 정도의 낮은 온도에서부터 생성되기 시작되며, 300℃ 부근에서 최대량이 생성되고, 350℃ 이상에서도 생성된다. FIG. 6 is a view showing an NH 3 generation temperature region. NH 3 starts to be produced at a low temperature of about 200 ° C., and a maximum amount is generated at about 300 ° C., and is generated even at 350 ° C. or higher.

이러한 NH3의 발생량은 람다값, 배기가스 유량, 농도 등에 의존적이다.The amount of NH 3 generated depends on the lambda value, the exhaust gas flow rate, and the concentration.

이상으로 본 발명의 실시예에 대하여 상세하게 설명하였는바, 본 발명의 권리범위가 이에 한정되는 것이 아니며, 다음의 특허청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당 업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 포함된다.
While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the scope of the present invention is not limited to the disclosed exemplary embodiments. Forms are also included within the scope of the present invention.

11 : 필터벽
12 : SCR 촉매층
13 : 세리아 촉매층
14 : 플러그
L1 : 전단 람다센서
L2 : 후단 람다센서
T1, T2, T3 : 온도센서
11: Filter wall
12: SCR catalyst layer
13: ceria catalyst layer
14: Plug
L1: Shear lambda sensor
L2: downstream lambda sensor
T1, T2, T3: Temperature sensor

Claims (19)

배기가스 흐름 방향을 따라 LNT(Lean NOx Trap), SCR(Selective Catalytic Reduction) 촉매, 그리고 산소 저장 물질 및 귀금속을 포함하는 산소 저장 촉매를 차례로 배치하고;
상기 LNT의 상류측에 배치되는 전단 람다센서, 상기 산소 저장 촉매의 하류측에 배치되는 후단 람다센서, 및 배기가스 온도를 측정하기 위한 온도센서를 구비하여서 구성되는 것을 특징으로 하는 배기가스 처리 장치.
Disposing an LNT (Lean NOx Trap) catalyst, an SCR (Selective Catalytic Reduction) catalyst, and an oxygen storage catalyst, including an oxygen storage material and a noble metal, along the exhaust gas flow direction;
An upstream lambda sensor disposed upstream of the LNT, a downstream lambda sensor disposed downstream of the oxygen storage catalyst, and a temperature sensor for measuring an exhaust gas temperature.
청구항 1에 있어서,
상기 산소 저장 촉매는 산소 저장 물질로 세리아(Ceria)를 포함하는 세리아 촉매인 것을 특징으로 하는 배기가스 처리 장치.
The method according to claim 1,
Wherein the oxygen storage catalyst is a ceria catalyst containing ceria as an oxygen storage material.
청구항 1에 있어서,
상기 SCR 촉매는 디젤 배기가스 중 입자상 물질을 포집할 수 있는 다기공 필터에 SCR 촉매층이 코팅되어 구성되는 것을 특징으로 하는 배기가스 처리 장치.
The method according to claim 1,
Wherein the SCR catalyst is formed by coating an SCR catalyst layer on a multi-pore filter capable of collecting particulate matter in diesel exhaust gas.
청구항 1에 있어서,
상기 SCR 촉매와 산소 저장 촉매는 하나의 다기공 필터를 사용한 일체형 촉매로 구성되는 것으로서,
상기 일체형 촉매는,
다기공 필터;
상기 필터의 배기가스 입구측에 코팅된 SCR 촉매층; 및
상기 필터의 배기가스 출구측에 코팅되고 산소 저장 물질과 귀금속을 포함하는 산소 저장 물질 촉매층을 포함하여 구성되는 것을 특징으로 하는 배기가스 처리 장치.
The method according to claim 1,
The SCR catalyst and the oxygen storage catalyst are composed of an integrated catalyst using one multi-pore filter,
The above-
Multi - pore filter;
An SCR catalyst layer coated on the exhaust gas inlet side of the filter; And
And an oxygen storage material catalyst layer coated on the exhaust gas outlet side of the filter and containing an oxygen storage material and a noble metal.
청구항 4에 있어서,
상기 필터는 디젤 배기가스 중 입자상 물질을 포집할 수 있는 다기공 필터인 것을 특징으로 하는 배기가스 처리 장치.
The method of claim 4,
Wherein the filter is a multi-pore filter capable of collecting particulate matter in diesel exhaust gas.
청구항 4에 있어서,
상기 필터는 층층이 배치된 복수의 필터벽으로 구성되고, 복수의 필터벽은 마주보는 면끼리 배기가스 입구측과 출구측을 형성하여 입구측과 출구측이 번갈아가며 형성된 구조를 가지는 것을 특징으로 하는 배기가스 처리 장치.
The method of claim 4,
Characterized in that the filter is constituted by a plurality of filter walls in which a layer is arranged and the plurality of filter walls have a structure in which the inlet side and the outlet side are formed so that the inlet side and the outlet side alternate with each other, Gas processing device.
청구항 1에 있어서,
상기 LNT와 SCR 촉매 사이에 DPF(Diesel Particulate Filter)가 배치되는 것을 특징으로 하는 배기가스 처리 장치.
The method according to claim 1,
And a DPF (Diesel Particulate Filter) is disposed between the LNT and the SCR catalyst.
청구항 7에 있어서,
SCR 촉매와 산소 저장 촉매가 하나의 담체를 사용한 일체형 촉매로 구성되고, 상기 일체형 촉매는 담체의 전측 영역과 후측 영역에 존 코팅 방식으로 SCR 촉매층과 산소 저장 물질 및 귀금속을 포함하는 산소 저장 물질 촉매층을 코팅하여 구성되는 것을 특징으로 하는 배기가스 처리 장치.
The method of claim 7,
Wherein the SCR catalyst and the oxygen storage catalyst are composed of an integral catalyst using a single carrier, and the integrated catalyst comprises an SCR catalyst layer, an oxygen storage material catalyst layer containing an oxygen storage material and a noble metal in a zone coating manner on the front region and the rear region of the carrier Wherein the catalyst layer is formed by coating.
청구항 4 또는 청구항 8에 있어서,
상기 산소 저장 물질이 세리아(Ceria)인 것을 특징으로 하는 배기가스 처리 장치.
The method according to claim 4 or 8,
Wherein the oxygen storage material is a ceria.
청구항 1, 청구항 3, 청구항 4, 또는 청구항 8에 있어서,
상기 SCR 촉매의 SCR 촉매층은 제올라이트(zeolite) 촉매를 포함하는 코팅층인 것을 특징으로 하는 배기가스 처리 장치.
The method of claim 1, claim 3, claim 4 or claim 8,
Wherein the SCR catalyst layer of the SCR catalyst is a coating layer comprising a zeolite catalyst.
청구항 1에 있어서,
상기 LNT에 흡장된 NOx 제거를 위한 리치 운전 시작 후 상기 전단 람다센서와 상기 후단 람다센서의 람다값이 같아지는 시점까지 리치 운전을 유지하는 것을 특징으로 하는 배기가스 처리 장치.
The method according to claim 1,
Wherein the rich operation is maintained until a lambda value of the front end lambda sensor and the rear end lambda sensor becomes equal after starting rich operation for removing NOx occluded in the LNT.
배기가스 흐름 방향을 따라 LNT(Lean NOx Trap), SCR(Selective Catalytic Reduction) 촉매, 그리고 산소 저장 물질 및 귀금속을 포함하는 산소 저장 촉매를 차례로 배치하고;
상기 LNT의 상류측에 배치되는 전단 람다센서, 상기 산소 저장 촉매의 하류측에 배치되는 후단 람다센서, 및 배기가스 온도를 측정하기 위한 온도센서를 구비하며;
리치 운전시 상기 LNT에서 발생한 NH3와 배기가스 중의 NOx가 상기 SCR 촉매에서 반응하여 NOx의 제거가 이루어지도록 하는 것을 특징으로 하는 배기가스 처리 방법.
Disposing an LNT (Lean NOx Trap) catalyst, an SCR (Selective Catalytic Reduction) catalyst, and an oxygen storage catalyst, including an oxygen storage material and a noble metal, along the exhaust gas flow direction;
An upstream lambda sensor disposed upstream of the LNT, a downstream lambda sensor disposed downstream of the oxygen storage catalyst, and a temperature sensor for measuring an exhaust gas temperature;
NH 3 generated in the LNT and NO x in the exhaust gas react in the SCR catalyst during rich operation to remove NO x.
청구항 12에 있어서,
배기가스 중의 CO와 HC가 상기 산소 저장 촉매에 포함된 귀금속에 의해 제거되도록 하는 것을 특징으로 하는 배기가스 처리 방법.
The method of claim 12,
So that CO and HC in the exhaust gas are removed by the noble metal contained in the oxygen storage catalyst.
청구항 12에 있어서,
상기 LNT에 흡장된 NOx 제거를 위한 리치 운전 시작 후 상기 전단 람다센서와 상기 후단 람다센서의 람다값이 같아지는 시점까지 리치 운전을 유지하는 것을 특징으로 하는 배기가스 처리 방법.
The method of claim 12,
Wherein rich operation is maintained until a lambda value of the front end lambda sensor and the rear end lambda sensor become equal after starting rich operation for removing NOx occluded in the LNT.
청구항 14에 있어서,
상기 α는 리치 운전 시작 시점부터 전담 람다센서와 후단 람다센서의 람다값이 같아지는 시점까지의 시간(tbt)과 온도센서에 의해 측정되는 배기가스 온도에 따른 값으로 정해지는 것을 특징으로 하는 배기가스 처리 방법.
15. The method of claim 14,
( Tbt ) from the start of the rich operation to the point at which the lambda values of the dedicated lambda sensor and the downstream lambda sensor become equal to each other and the exhaust gas temperature measured by the temperature sensor. Gas treatment method.
청구항 12에 있어서,
상기 산소 저장 촉매는 산소 저장 물질로 세리아(Ceria)를 포함하는 세리아 촉매인 것을 특징으로 하는 배기가스 처리 방법.
The method of claim 12,
Wherein the oxygen storage catalyst is a ceria catalyst containing ceria as an oxygen storage material.
청구항 12에 있어서,
상기 SCR 촉매는 디젤 배기가스 중 입자상 물질을 포집할 수 있는 다기공 필터에 SCR 촉매층이 코팅된 것임을 특징으로 하는 배기가스 처리 방법.
The method of claim 12,
Wherein the SCR catalyst is formed by coating an SCR catalyst layer on a multi-pore filter capable of collecting particulate matter in a diesel exhaust gas.
청구항 12에 있어서,
상기 LNT와 SCR 촉매 사이에 DPF(Diesel Particulate Filter)를 배치하는 것을 특징으로 하는 배기가스 처리 방법.
The method of claim 12,
And a DPF (Diesel Particulate Filter) is disposed between the LNT and the SCR catalyst.
청구항 12와 청구항 17에 있어서,
상기 SCR 촉매의 SCR 촉매층은 제올라이트(zeolite) 촉매를 포함하는 코팅층인 것을 특징으로 하는 배기가스 처리 방법.
The method according to claim 12 and claim 17,
Wherein the SCR catalyst layer of the SCR catalyst is a coating layer comprising a zeolite catalyst.
KR1020140060050A 2014-05-20 2014-05-20 Exhaust gas processing device and method KR20150133407A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020140060050A KR20150133407A (en) 2014-05-20 2014-05-20 Exhaust gas processing device and method
US14/569,742 US20150337709A1 (en) 2014-05-20 2014-12-14 Exhaust gas processing apparatus and method
DE102014119503.5A DE102014119503A1 (en) 2014-05-20 2014-12-23 Apparatus and method for exhaust gas treatment
CN201410836708.0A CN105089746A (en) 2014-05-20 2014-12-29 Exhaust gas processing apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140060050A KR20150133407A (en) 2014-05-20 2014-05-20 Exhaust gas processing device and method

Publications (1)

Publication Number Publication Date
KR20150133407A true KR20150133407A (en) 2015-11-30

Family

ID=54431665

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140060050A KR20150133407A (en) 2014-05-20 2014-05-20 Exhaust gas processing device and method

Country Status (4)

Country Link
US (1) US20150337709A1 (en)
KR (1) KR20150133407A (en)
CN (1) CN105089746A (en)
DE (1) DE102014119503A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101567209B1 (en) * 2014-04-24 2015-11-06 현대자동차주식회사 Exhaust processing device control method for vehicle
CN107023355B (en) * 2015-12-11 2020-05-19 现代自动车株式会社 Exhaust gas purification system and control method thereof
CN107542558B (en) * 2016-06-28 2020-06-23 上汽通用汽车有限公司 Catalyst diagnostic system and method
DE102017205706B4 (en) * 2017-04-04 2019-12-24 Ford Global Technologies, Llc Determine the ammonia concentration in the exhaust tract
DE102018201869B4 (en) 2018-02-07 2020-06-25 Ford Global Technologies, Llc Arrangement and method for treating an exhaust gas flow generated by an internal combustion engine and motor vehicle
CN114320539B (en) * 2020-10-10 2022-12-27 长城汽车股份有限公司 Automobile exhaust aftertreatment device and automobile

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7121080B2 (en) * 2003-09-08 2006-10-17 Ford Global Technologies, Llc Computer readable storage medium with instructions for monitoring catalytic device
US7062904B1 (en) * 2005-02-16 2006-06-20 Eaton Corporation Integrated NOx and PM reduction devices for the treatment of emissions from internal combustion engines
EP2072773A1 (en) * 2007-12-21 2009-06-24 Umicore AG & Co. KG Method for treating NOx in exhaust gas and system therefore
CN103476495B (en) * 2011-03-31 2016-01-20 恩亿凯嘉股份有限公司 Ammoxidation catalyst and employ its waste gas purification apparatus and exhaust gas purifying method

Also Published As

Publication number Publication date
US20150337709A1 (en) 2015-11-26
DE102014119503A1 (en) 2015-11-26
CN105089746A (en) 2015-11-25

Similar Documents

Publication Publication Date Title
KR100910038B1 (en) Device for cleaning exhaust gas of internal combustion engine
KR20150133407A (en) Exhaust gas processing device and method
JP4715581B2 (en) Exhaust gas purification system control method and exhaust gas purification system
JP4270224B2 (en) Exhaust gas purification device for internal combustion engine
KR101567209B1 (en) Exhaust processing device control method for vehicle
JP6264261B2 (en) Exhaust gas purification system
EP2503121B1 (en) Exhaust-gas purifying system for internal-combustion engine
WO2006027904A1 (en) Guide structure and exhaust emission control device
JP2010112345A (en) Exhaust emission control device
US8677740B2 (en) Method for predicting regeneration of DeNOx catalyst and exhaust system using the same
US10071344B2 (en) Reductant dosing control using prediction of exhaust species in selective catalytic reduction
JP2009041430A (en) Nox emission control method and nox emission control system
KR20140062899A (en) Exhaust gas purification system of vehicle
KR101289262B1 (en) Unification catalytic converter apparatus
JP6248891B2 (en) Exhaust gas purification system and exhaust gas purification method
JP5811300B2 (en) Exhaust gas purification device for internal combustion engine
JP5152417B2 (en) Exhaust gas purification device for internal combustion engine
KR102575435B1 (en) Exhaust gas treatment apparatus for vehicle
JP2011226402A (en) Exhaust emission control device
KR20110065985A (en) Unification catalytic converter apparatus to remove particulate matter and nitrogen oxide
KR100999611B1 (en) Method for calculating ammonia storage amount
JP6565997B2 (en) Exhaust gas purification method
JP6969423B2 (en) Exhaust gas purification system for internal combustion engine and exhaust gas purification method for internal combustion engine
JP5476770B2 (en) Exhaust gas purification system and control method of exhaust gas purification system
JP5476771B2 (en) Exhaust gas purification system and control method of exhaust gas purification system

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment