KR20150130864A - Modular multi-level converter and controlling method thereof - Google Patents

Modular multi-level converter and controlling method thereof Download PDF

Info

Publication number
KR20150130864A
KR20150130864A KR1020140058031A KR20140058031A KR20150130864A KR 20150130864 A KR20150130864 A KR 20150130864A KR 1020140058031 A KR1020140058031 A KR 1020140058031A KR 20140058031 A KR20140058031 A KR 20140058031A KR 20150130864 A KR20150130864 A KR 20150130864A
Authority
KR
South Korea
Prior art keywords
sub
arm
controller
power
module
Prior art date
Application number
KR1020140058031A
Other languages
Korean (ko)
Inventor
손금태
박호환
Original Assignee
엘에스산전 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘에스산전 주식회사 filed Critical 엘에스산전 주식회사
Priority to KR1020140058031A priority Critical patent/KR20150130864A/en
Publication of KR20150130864A publication Critical patent/KR20150130864A/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters

Abstract

A modular multi-level converter according to an embodiment of the present invention relates to a modular multi-level converter having a plurality of sub modules, which comprises: a controller for calculating the entire control value corresponding to output AC power of the modular multi-level converter; an arm controller for calculating control values corresponding to an anode and a cathode about the sub modules based on the entire control value that the controller calculates and controlling each sub module according to polarity of each sub module based on the calculated control values; and the sub modules for generating an output voltage based on control of the arm controller. The modular multi-level converter efficiently controls the sub modules.

Description

모듈형 멀티레벨 컨버터 및 그의 제어 방법{MODULAR MULTI-LEVEL CONVERTER AND CONTROLLING METHOD THEREOF}[0001] MODULAR MULTI-LEVEL CONVERTER AND CONTROLLING METHOD THEREOF [0002]

본 발명은 모듈형 멀티레벨 컨버터 및 그의 제어 방법에 관한 것으로, 보다 상세하게는 복수의 서브 모듈을 효율적으로 제어할 수 있는 모듈형 멀티레벨 컨버터 및 그의 제어 방법에 관한 것이다.The present invention relates to a modular multilevel converter and a control method thereof, and more particularly, to a modular multilevel converter capable of efficiently controlling a plurality of submodules and a control method thereof.

초고압 직류 송전(HIGH VOLTAGE DIRECT CURRENT, HVDC)은 송전소가 발전소에서 생산되는 교류 전력을 직류 전력으로 변환시켜서 송전한 후, 수전소에서 교류로 재변환시켜 전력을 공급하는 송전 방식을 말한다.HIGH VOLTAGE DIRECT CURRENT (HVDC) refers to a transmission system in which a transmission station transforms AC power generated by a power plant into DC power and supplies power by re-converting it from AC to AC.

HVDC 시스템은 해저 케이블 송전, 대용량 장거리 송전, 교류 계통 간 연계 등에 적용된다. 또한, HVDC 시스템은 서로 다른 주파수 계통 연계 및 비동기(asynchronism) 연계를 가능하게 한다. The HVDC system is applied to submarine cable transmission, large-capacity long-distance transmission, and linkage between AC systems. In addition, the HVDC system enables different frequency grid linkage and asynchronism linkage.

송전소는 교류 전력을 직류 전력으로 변환한다. 즉, 교류 전력을 해저 케이블 등을 이용하여 전송하는 상황은 매우 위험하기 때문에, 송전소는 교류 전력을 직류 전력으로 변환하여 수전소로 전송한다.Transformers convert AC power to DC power. In other words, it is very dangerous to transmit AC power using a submarine cable. Therefore, the power station converts the AC power into DC power and transmits it to the power plant.

한편, HVDC 시스템에 이용되는 전압형 컨버터는 다양한 종류가 있으며, 최근 모듈형 멀티레벨 형태의 전압형 컨버터가 가장 주목받고 있다.On the other hand, there are various types of voltage-type converters used in the HVDC system, and recently, modular multi-level voltage-type converters are receiving the most attention.

모듈형 멀티레벨 컨버터(Modular Multi-Level Converter, MMC)는 다수의 서브 모듈(Sub-Module)을 이용하여 직류 전력을 교류 전력으로 변환하는 장치이며, 각각의 서브 모듈을 충전, 방전, 바이패스 상태로 제어하여 동작한다.Modular Multi-Level Converter (MMC) is a device that converts DC power into AC power by using a number of sub-modules. Each submodule is charged, discharged, bypassed .

따라서 모듈형 멀티레벨 컨버터에서 다수의 서브 모듈을 제어하는 것이 전력 변환 동작에서 가장 중요하며, 다수의 서브 모듈의 제어 동작이 출력 교류 전력의 형태 및 품질을 결정한다.Thus, controlling a plurality of submodules in a modular multilevel converter is most important in power conversion operations, and the control operation of the plurality of submodules determines the type and quality of the output AC power.

이에 따라, 모듈형 멀티레벨 컨버터의 다수의 서브 모듈을 효율적으로 제어할 수 있는 모듈형 멀티레벨 컨버터가 요구된다.Accordingly, a modular multilevel converter capable of efficiently controlling a plurality of submodules of a modular multilevel converter is required.

본 발명은 모듈형 멀티레벨 컨버터에 포함되는 다수의 서브 모듈을 효율적으로 제어할 수 있는 모듈형 멀티레벨 컨버터 및 그 동작 방법의 제공을 목적으로 한다.It is an object of the present invention to provide a modular multilevel converter capable of efficiently controlling a plurality of submodules included in a modular multilevel converter and an operation method thereof.

본 발명의 실시 예에 따른 모듈형 멀티레벨 컨버터는 복수의 서브 모듈을 포함하는 모듈형 멀티레벨 컨버터에 있어서, 상기 모듈형 멀티레벨 컨버터의 출력 교류 전력에 대응하는 전체 제어값을 산출하는 제어기와 상기 제어기가 산출한 전체 제어값을 기초로 상기 복수의 서브 모듈에 대해 양극과 음극에 대응하는 제어값을 각각 산출하고, 산출된 제어값을 기초로 상기 복수의 서브 모듈 각각을 상기 복수의 서브 모듈의 극성에 따라 제어하는 암 제어기 및 상기 암 제어기의 제어를 기초로 출력 전압을 생성하는 서브 모듈을 포함할 수 있다.A modular multilevel converter according to an embodiment of the present invention includes a plurality of submodules, the modular multilevel converter comprising: a controller for calculating an overall control value corresponding to an output AC power of the modular multilevel converter; Calculating a control value corresponding to the positive electrode and the negative electrode for the plurality of submodules on the basis of the total control value calculated by the controller, and calculating each of the plurality of submodules based on the calculated control value, And a submodule for generating an output voltage based on the control of the arm controller.

본 발명의 실시 예에 따른 모듈형 멀티레벨 컨버터의 암 제어기는 양극과 음극에 각각 대응하는 복수의 암 제어기로 구성되고, 상기 양극에 대응하는 암 제어기는 상기 양극에 대응하는 서브 모듈의 제어값을 산출하여 상기 양극에 대응하는 복수의 서브 모듈을 제어하고, 상기 음극에 대응하는 암 제어기는 상기 음극에 대응하는 제어값을 산출하여, 상기 음극에 대응하는 복수의 서브 모듈을 제어할 수 있다.The arm controller of the modular multi-level converter according to the embodiment of the present invention is composed of a plurality of arm controllers respectively corresponding to the positive electrode and the negative electrode, and the arm controller corresponding to the positive electrode controls the control value of the sub- And the arm controller corresponding to the cathode calculates a control value corresponding to the cathode to control the plurality of submodules corresponding to the cathode.

본 발명의 실시 예에 따른 모듈형 멀티레벨 컨버터의 상기 제어기는 상기 모듈형 멀티레벨 컨버터와 연계된 계통의 전압, 전류 중 하나 이상을 측정하는 센서부와 상기 측정된 전압, 전류 중 하나 이상을 기초로 상기 전체 제어값을 산출하는 제어부 및 상기 산출된 전체 제어값을 상기 암 제어기에 전송하는 통신부를 포함할 수 있다.The controller of a modular multilevel converter according to an embodiment of the present invention comprises a sensor section for measuring at least one of the voltage and current of the system associated with the modular multilevel converter, And a communication unit for transmitting the calculated total control value to the arm controller.

본 발명의 실시 예에 따른 모듈형 멀티레벨 컨버터의 상기 암 제어기는 상기 암 제어기에 연결된 상기 서브 모듈의 전류, 전압 중 하나 이상을 측정하는 암 센서와 상기 전체 제어값과 상기 측정된 서브 모듈의 전류, 전압 중 하나 이상을 기초로 상기 각 상에 대응하는 제어값을 산출하는 암 제어부 및 상기 산출된 제어값에 대응하는 상기 서브 모듈의 제어 신호를 상기 서브 모듈에 전송하는 암 통신부를 포함할 수 있다.The arm controller of the modular multilevel converter according to an embodiment of the present invention includes an arm sensor for measuring at least one of a current and a voltage of the submodule connected to the arm controller and a current sensor for measuring the current of the measured submodule , And a voltage, and a dark communication unit for transmitting a control signal of the sub-module corresponding to the calculated control value to the sub-module .

본 발명의 실시 예에 따른 모듈형 멀티레벨 컨버터의 상기 서브 모듈은 상기 서브 모듈의 전류, 전압 중 하나 이상을 측정하는 서브 모듈 센서와 상기 서브 모듈에 입출력되는 전류를 스위칭하는 스위칭부와 상기 스위칭부의 스위칭 동작에 따라 에너지를 저장하는 저장부 및 상기 스위칭부의 스위칭 동작을 제어하는 서브 모듈 제어부를 포함할 수 있다.The submodule of the modular multi-level converter according to an embodiment of the present invention includes a submodule sensor for measuring at least one of a current and a voltage of the submodule, a switching unit for switching a current input to and output from the submodule, A storage unit for storing energy according to a switching operation, and a submodule control unit for controlling a switching operation of the switching unit.

본 발명의 실시 예에 따른 모듈형 멀티레벨 컨버터의 상기 스위칭부는 스위치 및 다이오드를 포함하는 하프 브릿지 회로일 수 있다.The switching unit of the modular multilevel converter according to an embodiment of the present invention may be a half bridge circuit including a switch and a diode.

본 발명의 실시 예에 따른 모듈형 멀티레벨 컨버터의 상기 서브 모듈은 상기 스위칭부의 스위칭 동작에 따라 에너지를 충전하는 충전 동작, 저장된 에너지를 방출하는 방출 동작, 흐르는 전류가 상기 서브 모듈에 유입되지 않고 통과하는 바이패스 동작 중 하나로 동작할 수 있다.The submodule of the modular multi-level converter according to the embodiment of the present invention includes a charging operation for charging energy according to the switching operation of the switching unit, a discharging operation for discharging the stored energy, Lt; RTI ID = 0.0 > a < / RTI > bypass operation.

본 발명의 다양한 실시 예에 따르면, 모듈형 멀티레벨 컨버터에 포함되는 다수의 서브 모듈을 효율적으로 제어하여 전력 변환의 효율을 높일 수 있다.According to various embodiments of the present invention, the efficiency of power conversion can be increased by efficiently controlling a plurality of submodules included in the modular multilevel converter.

또한, 본 발명의 모듈형 멀티레벨 컨버터는 하위 제어기인 암 제어기를 통해 각각의 서브 모듈의 동작을 제어할 수 있어서, 전력 변환 동작의 신뢰성을 확보할 수 있다.In addition, the modular multilevel converter of the present invention can control the operation of each submodule through the arm controller, which is a lower controller, so that the reliability of the power conversion operation can be ensured.

또한, 본 발명의 모듈형 멀티레벨 컨버터는 양극과 음극에 대한 제어값을 각각 산출하여, 복수의 서브 모듈 각각의 극성에 따라 각각 제어할 수 있어서, 출력 전압의 극성 간의 균형을 조절할 수 있다.Also, the modular multilevel converter of the present invention can calculate the control values for the positive and negative electrodes, respectively, and can control each of them according to the polarity of each of the plurality of submodules, so that the balance between the polarities of the output voltages can be controlled.

도 1은 본 발명의 일 실시 예에 따른 고전압 직류 송전(high voltage direct current transmission, HVDC transmission) 시스템의 구성을 설명하기 위한 도면이다.
도 2는 본 발명의 일 실시 예에 따른 모노폴라 방식의 고전압 직류 송전 시스템의 구성을 설명하기 위한 도면이다.
도 3은 본 발명의 일 실시 예에 따른 바이폴라 방식의 고전압 직류 송전 시스템의 구성을 설명하기 위한 도면이다.
도 4는 본 발명의 일 실시 예에 따른 트랜스포머와 3상 밸브 브릿지의 결선을 설명하기 위한 도면이다.
도 5는 본 발명의 일 실시 예에 따른 모듈형 멀티레벨 컨버터의 구성 블록도이다.
도 6은 본 발명의 일 실시 예에 따른 모듈형 멀티레벨 컨버터의 구체적인 구성을 나타내는 구성 블록도이다.
도 7은 본 발명의 일 실시 예에 따른 복수의 서브 모듈의 연결을 나타낸다.
도 8은 본 발명의 일 실시 예에 따른 서브 모듈 구성의 예시도이다.
도 9는 본 발명의 일 실시 예에 따른 서브 모듈의 등가 모델을 나타낸다.
도 10 내지 도 13은 본 발명의 일 실시 예에 따른 서브 모듈의 동작을 나타낸다.
도 14는 본 발명의 일 실시 예에 따른 모듈형 멀티레벨 컨버터의 동작 방법을 나타내는 흐름도이다.
도 15는 본 발명의 일 실시 예에 따른 모듈형 멀티레벨 컨버터의 출력 교류 전력의 그래프이다.
1 is a diagram for explaining a configuration of a high voltage direct current transmission (HVDC transmission) system according to an embodiment of the present invention.
2 is a diagram for explaining a configuration of a mono polar high voltage DC transmission system according to an embodiment of the present invention.
3 is a diagram for explaining a configuration of a high-voltage DC transmission system of a bipolar system according to an embodiment of the present invention.
4 is a view for explaining connection of a transformer and a three-phase valve bridge according to an embodiment of the present invention.
5 is a configuration block diagram of a modular multi-level converter according to an embodiment of the present invention.
6 is a configuration block diagram showing a specific configuration of a modular multi-level converter according to an embodiment of the present invention.
FIG. 7 shows a connection of a plurality of submodules according to an embodiment of the present invention.
FIG. 8 is an exemplary view of a sub-module configuration according to an embodiment of the present invention.
9 shows an equivalent model of a submodule according to an embodiment of the present invention.
10 to 13 illustrate operations of a sub-module according to an embodiment of the present invention.
14 is a flow chart illustrating a method of operating a modular multilevel converter in accordance with an embodiment of the present invention.
15 is a graph of output ac power of a modular multilevel converter in accordance with an embodiment of the present invention.

이하, 본 발명과 관련된 실시 예에 대하여 도면을 참조하여 보다 상세하게 설명한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다. Hereinafter, embodiments related to the present invention will be described in detail with reference to the drawings. The suffix "module" and " part "for the components used in the following description are given or mixed in consideration of ease of specification, and do not have their own meaning or role.

본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시 예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시 예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시 예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.BRIEF DESCRIPTION OF THE DRAWINGS The advantages and features of the present invention and the manner of achieving them will become apparent with reference to the embodiments described in detail below with reference to the accompanying drawings. The present invention may, however, be embodied in many different forms and should not be construed as being limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the concept of the invention to those skilled in the art. Is provided to fully convey the scope of the invention to those skilled in the art, and the invention is only defined by the scope of the claims. Like reference numerals refer to like elements throughout the specification.

본 발명의 실시 예들을 설명함에 있어서 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 그리고 후술되는 용어들은 본 발명의 실시 예에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.In the following description of the present invention, a detailed description of known functions and configurations incorporated herein will be omitted when it may make the subject matter of the present invention rather unclear. The following terms are defined in consideration of the functions in the embodiments of the present invention, which may vary depending on the intention of the user, the intention or the custom of the operator. Therefore, the definition should be based on the contents throughout this specification.

첨부된 도면의 각 블록과 흐름도의 각 단계의 조합들은 컴퓨터 프로그램 인스트럭션들에 의해 수행될 수도 있다. 이들 컴퓨터 프로그램 인스트럭션들은 범용 컴퓨터, 특수용 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서에 탑재될 수 있으므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서를 통해 수행되는 그 인스트럭션들이 도면의 각 블록 또는 흐름도의 각 단계에서 설명된 기능들을 수행하는 수단을 생성하게 된다. 이들 컴퓨터 프로그램 인스트럭션들은 특정 방식으로 기능을 구현하기 위해 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 지향할 수 있는 컴퓨터 이용 가능 또는 컴퓨터 판독 가능 메모리에 저장되는 것도 가능하므로, 그 컴퓨터 이용가능 또는 컴퓨터 판독 가능 메모리에 저장된 인스트럭션들은 도면의 각 블록 또는 흐름도 각 단계에서 설명된 기능을 수행하는 인스트럭션 수단을 내포하는 제조 품목을 생산하는 것도 가능하다. 컴퓨터 프로그램 인스트럭션들은 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에 탑재되는 것도 가능하므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에서 일련의 동작 단계들이 수행되어 컴퓨터로 실행되는 프로세스를 생성해서 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 수행하는 인스트럭션들은 도면의 각 블록 및 흐름도의 각 단계에서 설명된 기능들을 실행하기 위한 단계들을 제공하는 것도 가능하다.Combinations of the steps of each block and flowchart in the accompanying drawings may be performed by computer program instructions. These computer program instructions may be embedded in a processor of a general purpose computer, special purpose computer, or other programmable data processing apparatus so that the instructions, which may be executed by a processor of a computer or other programmable data processing apparatus, Thereby creating means for performing the functions described in the step. These computer program instructions may also be stored in a computer usable or computer readable memory capable of directing a computer or other programmable data processing apparatus to implement the functionality in a particular manner so that the computer usable or computer readable memory It is also possible to produce manufacturing items that contain instruction means that perform the functions described in each block or flowchart illustration in each step of the drawings. Computer program instructions may also be stored on a computer or other programmable data processing equipment so that a series of operating steps may be performed on a computer or other programmable data processing equipment to create a computer- It is also possible for the instructions to perform the processing equipment to provide steps for executing the functions described in each block and flowchart of the drawings.

또한, 각 블록 또는 각 단계는 특정된 논리적 기능(들)을 실행하기 위한 하나 이상의 실행 가능한 인스트럭션들을 포함하는 모듈, 세그먼트 또는 코드의 일부를 나타낼 수 있다. 또, 몇 가지 대체 실시 예들에서는 블록들 또는 단계들에서 언급된 기능들이 순서를 벗어나서 발생하는 것도 가능함을 주목해야 한다. 예컨대, 잇달아 도시되어 있는 두 개의 블록들 또는 단계들은 사실 실질적으로 동시에 수행되는 것도 가능하고 또는 그 블록들 또는 단계들이 때때로 해당하는 기능에 따라 역순으로 수행되는 것도 가능하다.
Also, each block or each step may represent a module, segment, or portion of code that includes one or more executable instructions for executing the specified logical function (s). It should also be noted that in some alternative embodiments, the functions mentioned in the blocks or steps may occur out of order. For example, two blocks or steps shown in succession may in fact be performed substantially concurrently, or the blocks or steps may sometimes be performed in reverse order according to the corresponding function.

도 1은 본 발명의 실시예에 따른 고전압 직류 송전(high voltage direct current transmission, HVDC transmission) 시스템을 보여준다.FIG. 1 shows a high voltage direct current transmission (HVDC transmission) system according to an embodiment of the present invention.

도 1에 도시된 바와 같이, 본 발명의 실시예에 따른 HVDC 시스템(100)은 발전 파트(101), 송전 측 교류 파트(110), 송전 측 변전 파트(103), 직류 송전 파트(140), 수요 측 변전 파트(105), 수요 측 교류 파트(170), 수요 파트(180), 및 제어 파트(190)를 포함한다. 송전 측 변전 파트(103)는 송전 측 트랜스포머 파트(120), 송전 측 교류-직류 컨버터 파트(130)를 포함한다. 수요 측 변전 파트(105)는 수요 측 직류-교류 컨버터 파트(150), 수요 측 트랜스포머 파트(160)를 포함한다.
1, the HVDC system 100 according to the embodiment of the present invention includes a power generation part 101, a power transmission side AC part 110, a power transmission side part 103, a DC transmission part 140, A demand side transformation part 105, a demand side AC part 170, a demand part 180, and a control part 190. The transmission-side transformer part 103 includes a transmission-side transformer part 120 and a transmission-side AC-DC converter part 130. The demand side transformation part 105 includes the demand side DC-AC converter part 150 and the demand side transformer part 160.

발전 파트(101)는 3상의 교류 전력을 생성한다. 발전 파트(101)는 복수의 발전소를 포함할 수 있다.The power generation part 101 generates three-phase AC power. The power generation part 101 may include a plurality of power plants.

송전 측 교류 파트(110)는 발전 파트(101)가 생성한 3상 교류 전력을 송전 측 트랜스포머 파트(120)와 송전 측 교류-직류 컨버터 파트(130)를 포함하는 DC 변전소에 전달한다.The transmission side AC part 110 transfers the three-phase AC power generated by the power generation part 101 to the DC substation including the transmission side transformer part 120 and the transmission side AC-DC converter part 130.

송전 측 트랜스포머 파트(120)는 송전 측 교류 파트(110)를 송전 측 교류-직류 컨버터 파트(130) 및 직류 송전 파트(140)로부터 격리한다(isolate).The transmission side transformer part 120 isolates the transmission side AC part 110 from the transmission side AC-DC converter part 130 and the DC transmission part 140.

송전 측 교류-직류 컨버터 파트(130)는 송전 측 트랜스포머 파트(120)의 출력에 해당하는 3상 교류 전력를 직류 전력으로 변환한다.The transmission AC-DC converter part 130 converts the three-phase AC power corresponding to the output of the transmission side transformer part 120 into DC power.

직류 송전 파트(140)는 송전 측의 직류 전력을 수요 측으로 전달한다.The DC transmission part 140 transmits the DC power of the transmission side to the demand side.

수요 측 직류-교류 컨버터 파트(150)는 직류 송전 파트(140)에 의해 전달된 직류 전력을 3상 교류 전력으로 변환한다.The demand side DC-AC converter part 150 converts the DC power delivered by the DC transmission part 140 into three-phase AC power.

수요 측 트랜스포머 파트(160)는 수요 측 교류 파트(170)를 수요 측 직류-교류 컨버터 파트(150)와 직류 송전 파트(140)로부터 격리한다.The demand side transformer part (160) isolates the demand side AC part (170) from the demand side DC - AC converter part (150) and the DC transmission part (140).

수요 측 교류 파트(170)는 수요 측 트랜스포머 파트(160)의 출력에 해당하는 3상 교류 전력을 수요 파트(180)에 제공한다.The demand side AC part 170 provides the demand part 180 with the three-phase AC power corresponding to the output of the demand side transformer part 160.

제어 파트(190)는 발전 파트(101), 송전 측 교류 파트(110), 송전 측 변전 파트(103), 직류 송전 파트(140), 수요 측 변전 파트(105), 수요 측 교류 파트(170), 수요 파트(180), 제어 파트(190), 송전 측 교류-직류 컨버터 파트(130), 수요 측 직류-교류 컨버터 파트(150) 중 적어도 하나를 제어한다. 특히, 제어 파트(190)는 송전 측 교류-직류 컨버터 파트(130)와 수요 측 직류-교류 컨버터 파트(150) 내의 복수의 밸브의 턴온 및 턴오프의 타이밍을 제어할 수 있다. 이때, 밸브는 싸이리스터 또는 절연 게이트 양극성 트랜지스터(insulated gate bipolar transistor, IGBT)에 해당할 수 있다.
The control part 190 includes a power generation part 101, a power transmission side AC part 110, a power transmission side power part 103, a DC transmission part 140, a demand side transformation part 105, a demand side AC part 170, The demand part 180, the control part 190, the transmission side AC-DC converter part 130, and the demand side DC-AC converter part 150. [ Particularly, the control part 190 can control the timing of the turn-on and turn-off of the plurality of valves in the transmission side AC-DC converter part 130 and the demand side DC-AC converter part 150. At this time, the valve may correspond to a thyristor or an insulated gate bipolar transistor (IGBT).

도 2는 본 발명의 실시예에 따른 모노폴라 방식의 고전압 직류 송전 시스템을 보여준다.2 shows a mono polar high voltage DC transmission system according to an embodiment of the present invention.

특히, 도 2는 단일의 극의 직류 전력을 송전하는 시스템을 보여준다. 이하의 설명에서는 단일의 극은 양극(positive pole)임을 가정하여 설명하나 이에 한정될 필요는 없다.In particular, Figure 2 shows a system for transmitting a single pole DC power. In the following description, it is assumed that a single pole is a positive pole, but the present invention is not limited thereto.

송전 측 교류 파트(110)는 교류 송전 라인(111)과 교류 필터(113)를 포함한다.The power transmission side AC part 110 includes an AC transmission line 111 and an AC filter 113.

교류 송전 라인(111)은 발전 파트(101)가 생성한 3상의 교류 전력을 송전 측 변전 파트(103)로 전달한다.The AC transmission line 111 transfers the three-phase AC power generated by the power generation part 101 to the power transmission side transformation part 103.

교류 필터(113)는 변전 파트(103)이 이용하는 주파수 성분 이외의 나머지 주파수 성분을 전달된 3상 교류 전력에서 제거한다.The AC filter 113 removes the remaining frequency components other than the frequency component used by the transforming part 103 from the transmitted three-phase AC power.

송전 측 트랜스포머 파트(120)는 양극을 위하여 하나 이상의 트랜스포머(121)를 포함한다. 양극을 위하여 송전 측 교류-직류 컨버터 파트(130)는 양극 직류 전력을 생성하는 교류-양극 직류 컨버터(131)를 포함하고, 이 교류-양극 직류 컨버터(131)는 하나 이상의 트랜스포머(121)에 각각 대응하는 하나 이상의 3상 밸브 브릿지(131a)를 포함한다.The transmission side transformer part 120 includes one or more transformers 121 for the positive polarity. The transmission AC-DC converter part 130 for the positive pole includes an AC-to-bipolar DC converter 131 for generating bipolar DC power, which is connected to one or more transformers 121 And corresponding one or more three-phase valve bridges 131a.

하나의 3상 밸브 브릿지(131a)가 이용되는 경우, 교류-양극 직류 컨버터(131)는 교류 전력을 이용하여 6개의 펄스를 가지는 양극 직류 전력을 생성할 수 있다. 이때, 그 하나의 트랜스포머(121)의 1차측 코일과 2차측 코일은 Y-Y 형상의 결선을 가질 수도 있고, Y-델타(Δ) 형상의 결선을 가질 수도 있다.When one three-phase valve bridge 131a is used, the ac-to-bipolar DC converter 131 can generate bipolar DC power having six pulses using alternating current power. At this time, the primary coil and the secondary coil of the one transformer 121 may have a Y-Y-shaped connection and may have a Y-delta (?) -Shaped connection.

2개의 3상 밸브 브릿지(131a)가 이용되는 경우, 교류-양극 직류 컨버터(131)는 교류 전력을 이용하여 12개의 펄스를 가지는 양극 직류 전력을 생성할 수 있다. 이때, 2개 중 하나의 트랜스포머(121)의 1차측 코일과 2차측 코일은 Y-Y 형상의 결선을 가질 수도 있고, 나머지 하나의 트랜스포머(121)의 1차측 코일과 2차측 코일은 Y-Δ 형상의 결선을 가질 수도 있다. When two three-phase valve bridges 131a are used, the ac-to-bipolar DC converter 131 can generate bipolar DC power having twelve pulses using alternating current power. At this time, the primary coil and the secondary coil of one of the two transformers 121 may have a YY-shaped connection, and the primary coil and the secondary coil of the other transformer 121 may have a Y- It may have a connection.

3개의 3상 밸브 브릿지(131a)가 이용되는 경우, 교류-양극 직류 컨버터(131)는 교류 전력을 이용하여 18개의 펄스를 가지는 양극 직류 전력을 생성할 수 있다. 양극 직류 전력의 펄스의 수가 많을수록, 필터의 가격이 낮아질 수 있다.When three three-phase valve bridges 131a are used, the ac-to-bipolar DC converter 131 can generate bipolar DC power having 18 pulses using alternating current power. The greater the number of positive pole DC power pulses, the lower the price of the filter.

직류 송전 파트(140)는 송전 측 양극 직류 필터(141), 양극 직류 송전 라인(143), 수요 측 양극 직류 필터(145)를 포함한다.The DC transmission part 140 includes a transmission side anode direct current filter 141, a cathode direct current transmission line 143, and a demand side anode direct current filter 145.

송전 측 양극 직류 필터(141)는 인덕터(L1)와 커패시터(C1)를 포함하며, 교류-양극 직류 컨버터(131)가 출력하는 양극 직류 전력을 직류 필터링한다.The transmission-side anode direct current filter 141 includes an inductor L 1 and a capacitor C 1 and DC-filters the anode direct current power output from the AC-anode DC converter 131.

양극 직류 송전 라인(143)는 양극 직류 전력의 전송을 위한 하나의 DC 라인을 가지고, 전류의 귀환 통로로는 대지가 이용할 수 있다. 이 DC 라인 상에는 하나 이상의 스위치가 배치될 수 있다.The bipolar DC transmission line 143 has one DC line for transmission of the bipolar DC power, and the bipolar DC transmission line 143 can be used as a return path of current. One or more switches may be placed on this DC line.

수요 측 양극 직류 필터(145)는 인덕터(L2)와 커패시터(C2)를 포함하며, 양극 직류 송전 라인(143)을 통해 전달된 양극 직류 전력을 직류 필터링한다.The demand side anode direct current filter 145 includes an inductor L2 and a capacitor C2 and DC filters the anode direct current power transmitted through the anode direct current transmission line 143. [

수요 측 직류-교류 컨버터 파트(150)는 양극 직류-교류 컨버터(151)를 포함하고, 양극 직류-교류 컨버터(151)는 하나 이상의 3상 밸브 브릿지(151a)를 포함한다.The demand side dc-ac converter part 150 includes a bipolar dc-ac converter 151 and the bipolar dc-ac converter 151 includes one or more three-phase valve bridges 151a.

수요 측 트랜스포머 파트(160)는 양극을 위하여 하나 이상의 3상 밸브 브릿지(151a)에 각각 대응하는 하나 이상의 트랜스포머(161)를 포함한다.The demand side transformer part 160 includes one or more transformers 161 each corresponding to one or more three-phase valve bridges 151a for the anode.

하나의 3상 밸브 브릿지(151a)가 이용되는 경우, 양극 직류-교류 컨버터(151)는 양극 직류 전력을 이용하여 6개의 펄스를 가지는 교류 전력을 생성할 수 있다. 이때, 그 하나의 트랜스포머(161)의 1차측 코일과 2차측 코일은 Y-Y 형상의 결선을 가질 수도 있고, Y-델타(Δ) 형상의 결선을 가질 수도 있다.When one three-phase valve bridge 151a is used, the bipolar DC-to-AC converter 151 can generate AC power having six pulses using bipolar DC power. At this time, the primary coil and the secondary coil of the transformer 161 may have a Y-Y connection or a Y-delta connection.

2개의 3상 밸브 브릿지(151a)가 이용되는 경우, 양극 직류-교류 컨버터(151)는 양극 직류 전력을 이용하여 12개의 펄스를 가지는 교류 전력을 생성할 수 있다. 이때, 2개 중 하나의 트랜스포머(161)의 1차측 코일과 2차측 코일은 Y-Y 형상의 결선을 가질 수도 있고, 나머지 하나의 트랜스포머(161)의 1차측 코일과 2차측 코일은 Y-Δ 형상의 결선을 가질 수도 있다. When two three-phase valve bridges 151a are used, the bipolar DC-to-AC converter 151 can generate AC power having 12 pulses using bipolar DC power. At this time, the primary coil and the secondary coil of one of the two transformers 161 may have a YY-shaped connection, and the primary coil and the secondary coil of the other transformer 161 may have a Y- It may have a connection.

3개의 3상 밸브 브릿지(151a)가 이용되는 경우, 양극 직류-교류 컨버터(151)는 양극 직류 전력을 이용하여 18개의 펄스를 가지는 교류 전력을 생성할 수 있다. 교류 전력의 펄스의 수가 많을수록, 필터의 가격이 낮아질 수 있다.When three three-phase valve bridges 151a are used, the bipolar DC-to-AC converter 151 can generate AC power having 18 pulses using bipolar DC power. The greater the number of pulses of AC power, the lower the price of the filter.

수요 측 교류 파트(170)는 교류 필터(171)와 교류 송전 라인(173)을 포함한다.The demand side AC part 170 includes an AC filter 171 and an AC transmission line 173.

교류 필터(171)는 수요 파트(180)가 이용하는 주파수 성분(예컨데, 60Hz) 이외의 나머지 주파수 성분을, 수요 측 변전 파트(105)가 생성하는 교류 전력에서 제거한다.The AC filter 171 removes the remaining frequency components other than the frequency component (for example, 60 Hz) used by the demand part 180 from the AC power generated by the demand side transmission part 105.

교류 송전 라인(173)은 필터링된 교류 전력을 수요 파트(180)에 전달한다.
The AC transmission line 173 delivers the filtered AC power to the demand part 180.

도 3은 본 발명의 실시예에 따른 바이폴라 방식의 고전압 직류 송전 시스템을 보여준다.3 shows a bipolar high voltage DC transmission system according to an embodiment of the present invention.

특히, 도 3은 2개의 극의 직류 전력을 송전하는 시스템을 보여준다. 이하의 설명에서는 2개의 극은 양극(positive pole)과 음극(negative pole)임을 가정하여 설명하나 이에 한정될 필요는 없다.In particular, Figure 3 shows a system for transmitting two pole DC power. In the following description, it is assumed that the two poles are a positive pole and a negative pole, but the present invention is not limited thereto.

송전 측 교류 파트(110)는 교류 송전 라인(111)과 교류 필터(113)를 포함한다.The power transmission side AC part 110 includes an AC transmission line 111 and an AC filter 113.

교류 송전 라인(111)은 발전 파트(101)가 생성한 3상의 교류 전력을 송전 측 변전 파트(103)로 전달한다.The AC transmission line 111 transfers the three-phase AC power generated by the power generation part 101 to the power transmission side transformation part 103.

교류 필터(113)는 변전 파트(103)이 이용하는 주파수 성분 이외의 나머지 주파수 성분을 전달된 3상 교류 전력에서 제거한다.The AC filter 113 removes the remaining frequency components other than the frequency component used by the transforming part 103 from the transmitted three-phase AC power.

송전 측 트랜스포머 파트(120)는 양극을 위한 하나 이상의 트랜스포머(121)를 포함하고, 음극을 위한 하나 이상의 트랜스포머(122)를 포함한다. 송전 측 교류-직류 컨버터 파트(130)는 양극 직류 전력을 생성하는 교류-양극 직류 컨버터(131)와 음극 직류 전력을 생성하는 교류-음극 직류 컨버터(132)를 포함하고, 교류-양극 직류 컨버터(131)는 양극을 위한 하나 이상의 트랜스포머(121)에 각각 대응하는 하나 이상의 3상 밸브 브릿지(131a)를 포함하고, 교류-음극 직류 컨버터(132)는 음극을 위한 하나 이상의 트랜스포머(122)에 각각 대응하는 하나 이상의 3상 밸브 브릿지(132a)를 포함한다.The transmission side transformer part 120 includes at least one transformer 121 for the anode and at least one transformer 122 for the cathode. The transmission AC-DC converter part 130 includes an AC-positive DC converter 131 for generating positive DC power and an AC-negative DC converter 132 for generating negative DC power. An AC-to-DC converter 131 includes one or more three-phase valve bridges 131a each corresponding to one or more transformers 121 for an anode and the ac-to-cathode DC converter 132 corresponds to one or more transformers 122 for a cathode, respectively One or more three-phase valve bridges 132a.

양극을 위하여 하나의 3상 밸브 브릿지(131a)가 이용되는 경우, 교류-양극 직류 컨버터(131)는 교류 전력을 이용하여 6개의 펄스를 가지는 양극 직류 전력을 생성할 수 있다. 이때, 그 하나의 트랜스포머(121)의 1차측 코일과 2차측 코일은 Y-Y 형상의 결선을 가질 수도 있고, Y-델타(Δ) 형상의 결선을 가질 수도 있다.When one three-phase valve bridge 131a is used for the anode, the ac-to-bipolar DC converter 131 can generate bipolar DC power having six pulses using alternating current power. At this time, the primary coil and the secondary coil of the one transformer 121 may have a Y-Y-shaped connection and may have a Y-delta (?) -Shaped connection.

양극을 위하여 2개의 3상 밸브 브릿지(131a)가 이용되는 경우, 교류-양극 직류 컨버터(131)는 교류 전력을 이용하여 12개의 펄스를 가지는 양극 직류 전력을 생성할 수 있다. 이때, 2개 중 하나의 트랜스포머(121)의 1차측 코일과 2차측 코일은 Y-Y 형상의 결선을 가질 수도 있고, 나머지 하나의 트랜스포머(121)의 1차측 코일과 2차측 코일은 Y-Δ 형상의 결선을 가질 수도 있다. When two three-phase valve bridges 131a are used for the positive pole, the ac-to-bipolar DC converter 131 can generate bipolar DC power with twelve pulses using alternating current power. At this time, the primary coil and the secondary coil of one of the two transformers 121 may have a YY-shaped connection, and the primary coil and the secondary coil of the other transformer 121 may have a Y- It may have a connection.

양극을 위하여 3개의 3상 밸브 브릿지(131a)가 이용되는 경우, 교류-양극 직류 컨버터(131)는 교류 전력을 이용하여 18개의 펄스를 가지는 양극 직류 전력을 생성할 수 있다. 양극 직류 전력의 펄스의 수가 많을수록, 필터의 가격이 낮아질 수 있다.When three three-phase valve bridges 131a are used for the anode, the ac-to-bipolar DC converter 131 can generate bipolar DC power having 18 pulses using alternating current power. The greater the number of positive pole DC power pulses, the lower the price of the filter.

음극을 위하여 하나의 3상 밸브 브릿지(132a)가 이용되는 경우, 교류-음극 직류 컨버터(132)는 6개의 펄스를 가지는 음극 직류 전력을 생성할 수 있다. 이때, 그 하나의 트랜스포머(122)의 1차측 코일과 2차측 코일은 Y-Y 형상의 결선을 가질 수도 있고, Y-델타(Δ) 형상의 결선을 가질 수도 있다.If one three-phase valve bridge 132a is used for the cathode, the ac-to-cathode DC converter 132 can produce negative DC power with six pulses. At this time, the primary coil and the secondary coil of the one transformer 122 may have a Y-Y-shaped connection and may have a Y-delta (?) -Shaped connection.

음극을 위하여 2개의 3상 밸브 브릿지(132a)가 이용되는 경우, 교류-음극 직류 컨버터(132)는 12개의 펄스를 가지는 음극 직류 전력을 생성할 수 있다. 이때, 2개 중 하나의 트랜스포머(122)의 1차측 코일과 2차측 코일은 Y-Y 형상의 결선을 가질 수도 있고, 나머지 하나의 트랜스포머(122)의 1차측 코일과 2차측 코일은 Y-Δ 형상의 결선을 가질 수도 있다. When two three-phase valve bridges 132a are used for the cathode, the AC-to-negative DC converter 132 is capable of generating negative DC power having twelve pulses. At this time, the primary coil and the secondary coil of one of the two transformers 122 may have a YY-shaped connection, and the primary coil and the secondary coil of the other transformer 122 may have a Y- It may have a connection.

음극을 위하여 3개의 3상 밸브 브릿지(132a)가 이용되는 경우, 교류-음극 직류 컨버터(132)는 18개의 펄스를 가지는 음극 직류 전력을 생성할 수 있다. 음극 직류 전력의 펄스의 수가 많을수록, 필터의 가격이 낮아질 수 있다.When three three-phase valve bridges 132a are used for the cathode, the AC-to-negative DC converter 132 can generate negative DC power with eighteen pulses. The greater the number of negative DC power pulses, the lower the price of the filter.

직류 송전 파트(140)는 송전 측 양극 직류 필터(141), 송전 측 음극 직류 필터(142), 양극 직류 송전 라인(143), 음극 직류 송전 라인(144), 수요 측 양극 직류 필터(145), 수요 측 음극 직류 필터(146)를 포함한다.The DC transmission part 140 includes a transmission side anode direct current filter 141, a transmission side cathode direct current filter 142, a cathode direct current transmission line 143, a cathode direct current transmission line 144, a demand side anode direct current filter 145, And a demand side cathode direct current filter 146.

송전 측 양극 직류 필터(141)는 인덕터(L1)와 커패시터(C1)를 포함하며, 교류-양극 직류 컨버터(131)가 출력하는 양극 직류 전력을 직류 필터링한다.The transmission-side anode direct current filter 141 includes an inductor L 1 and a capacitor C 1 and DC-filters the anode direct current power output from the AC-anode DC converter 131.

송전 측 음극 직류 필터(142)는 인덕터(L3)와 커패시터(C3)를 포함하며, 교류-음극 직류 컨버터(132)가 출력하는 음극 직류 전력을 직류 필터링한다.The power supply side cathode direct current filter 142 includes an inductor L3 and a capacitor C3 and DC-filters the cathode direct current power output from the AC-negative DC converter 132. [

양극 직류 송전 라인(143)는 양극 직류 전력의 전송을 위한 하나의 DC 라인을 가지고, 전류의 귀환 통로로는 대지가 이용할 수 있다. 이 DC 라인 상에는 하나 이상의 스위치가 배치될 수 있다.The bipolar DC transmission line 143 has one DC line for transmission of the bipolar DC power, and the bipolar DC transmission line 143 can be used as a return path of current. One or more switches may be placed on this DC line.

음극 직류 송전 라인(144)는 음극 직류 전력의 전송을 위한 하나의 DC 라인을 가지고, 전류의 귀환 통로로는 대지가 이용할 수 있다. 이 DC 라인 상에는 하나 이상의 스위치가 배치될 수 있다.The cathode DC transmission line 144 has one DC line for transmission of the cathode DC power, and the earth can be used as the return path of the electric current. One or more switches may be placed on this DC line.

수요 측 양극 직류 필터(145)는 인덕터(L2)와 커패시터(C2)를 포함하며, 양극 직류 송전 라인(143)을 통해 전달된 양극 직류 전력을 직류 필터링한다.The demand side anode direct current filter 145 includes an inductor L2 and a capacitor C2 and DC filters the anode direct current power transmitted through the anode direct current transmission line 143. [

수요 측 음극 직류 필터(146)는 인덕터(L4)와 커패시터(C4)를 포함하며, 음극 직류 송전 라인(144)을 통해 전달된 음극 직류 전력을 직류 필터링한다.The demand side cathode direct current filter 146 includes an inductor L 4 and a capacitor C 4 and DC-filters the cathode direct current power transmitted through the cathode direct current transmission line 144.

수요 측 직류-교류 컨버터 파트(150)는 양극 직류-교류 컨버터(151)와 음극 직류-교류 컨버터(152)를 포함하고, 양극 직류-교류 컨버터(151)는 하나 이상의 3상 밸브 브릿지(151a)를 포함하고, 음극 직류-교류 컨버터(152)는 하나 이상의 3상 밸브 브릿지(152a)를 포함한다.AC converter 151 includes a positive DC-to-AC converter 151 and a negative DC-to-AC converter 152 and the bipolar DC-to-AC converter 151 includes one or more three-phase valve bridge 151a, , And cathode DC-to-AC converter 152 includes one or more three-phase valve bridges 152a.

수요 측 트랜스포머 파트(160)는 양극을 위하여 하나 이상의 3상 밸브 브릿지(151a)에 각각 대응하는 하나 이상의 트랜스포머(161)를 포함하고, 음극을 위하여 하나 이상의 3상 밸브 브릿지(152a)에 각각 대응하는 하나 이상의 트랜스포머(162)를 포함한다.The demand side transformer part 160 includes one or more transformers 161 each corresponding to one or more three-phase valve bridges 151a for the anode and one or more transformers 161 corresponding to one or more three-phase valve bridges 152a And one or more transformers 162.

양극을 위하여 하나의 3상 밸브 브릿지(151a)가 이용되는 경우, 양극 직류-교류 컨버터(151)는 양극 직류 전력을 이용하여 6개의 펄스를 가지는 교류 전력을 생성할 수 있다. 이때, 그 하나의 트랜스포머(161)의 1차측 코일과 2차측 코일은 Y-Y 형상의 결선을 가질 수도 있고, Y-델타(Δ) 형상의 결선을 가질 수도 있다.When one three-phase valve bridge 151a is used for the anode, the anode DC-to-AC converter 151 can generate AC power having six pulses using the anode DC power. At this time, the primary coil and the secondary coil of the transformer 161 may have a Y-Y connection or a Y-delta connection.

양극을 위하여 2개의 3상 밸브 브릿지(151a)가 이용되는 경우, 양극 직류-교류 컨버터(151)는 양극 직류 전력을 이용하여 12개의 펄스를 가지는 교류 전력을 생성할 수 있다. 이때, 2개 중 하나의 트랜스포머(161)의 1차측 코일과 2차측 코일은 Y-Y 형상의 결선을 가질 수도 있고, 나머지 하나의 트랜스포머(161)의 1차측 코일과 2차측 코일은 Y-Δ 형상의 결선을 가질 수도 있다. When two three-phase valve bridges 151a are used for the anode, the anode DC-to-AC converter 151 can generate AC power having 12 pulses using the anode DC power. At this time, the primary coil and the secondary coil of one of the two transformers 161 may have a YY-shaped connection, and the primary coil and the secondary coil of the other transformer 161 may have a Y- It may have a connection.

양극을 위하여 3개의 3상 밸브 브릿지(151a)가 이용되는 경우, 양극 직류-교류 컨버터(151)는 양극 직류 전력을 이용하여 18개의 펄스를 가지는 교류 전력을 생성할 수 있다. 교류 전력의 펄스의 수가 많을수록, 필터의 가격이 낮아질 수 있다.When three three-phase valve bridges 151a are used for the positive pole, the positive pole dc-to-AC converter 151 can generate ac power having eighteen pulses using positive pole dc power. The greater the number of pulses of AC power, the lower the price of the filter.

음극을 위하여 하나의 3상 밸브 브릿지(152a)가 이용되는 경우, 음극 직류-교류 컨버터(152)는 음극 직류 전력을 이용하여 6개의 펄스를 가지는 교류 전력을 생성할 수 있다. 이때, 그 하나의 트랜스포머(162)의 1차측 코일과 2차측 코일은 Y-Y 형상의 결선을 가질 수도 있고, Y-델타(Δ) 형상의 결선을 가질 수도 있다.When one three-phase valve bridge 152a is used for the cathode, the cathode DC-to-AC converter 152 can generate AC power having six pulses using cathode DC power. At this time, the primary coil and the secondary coil of the one transformer 162 may have a Y-Y connection or a Y-delta connection.

음극을 위하여 2개의 3상 밸브 브릿지(152a)가 이용되는 경우, 음극 직류-교류 컨버터(152)는 음극 직류 전력을 이용하여 12개의 펄스를 가지는 교류 전력을 생성할 수 있다. 이때, 2개 중 하나의 트랜스포머(162)의 1차측 코일과 2차측 코일은 Y-Y 형상의 결선을 가질 수도 있고, 나머지 하나의 트랜스포머(162)의 1차측 코일과 2차측 코일은 Y-Δ 형상의 결선을 가질 수도 있다. When two three-phase valve bridges 152a are used for the cathode, the cathode DC-to-AC converter 152 can generate AC power having 12 pulses using cathode DC power. At this time, the primary coil and the secondary coil of one of the two transformers 162 may have a YY-shaped connection, and the primary coil and the secondary coil of the other transformer 162 may have Y- It may have a connection.

음극을 위하여 3개의 3상 밸브 브릿지(152a)가 이용되는 경우, 음극 직류-교류 컨버터(152)는 음극 직류 전력을 이용하여 18개의 펄스를 가지는 교류 전력을 생성할 수 있다. 교류 전력의 펄스의 수가 많을수록, 필터의 가격이 낮아질 수 있다.When three three-phase valve bridges 152a are used for the cathode, the cathode DC-to-AC converter 152 can generate AC power with eighteen pulses using cathode DC power. The greater the number of pulses of AC power, the lower the price of the filter.

수요 측 교류 파트(170)는 교류 필터(171)와 교류 송전 라인(173)을 포함한다.The demand side AC part 170 includes an AC filter 171 and an AC transmission line 173.

교류 필터(171)는 수요 파트(180)가 이용하는 주파수 성분(예컨데, 60Hz) 이외의 나머지 주파수 성분을, 수요 측 변전 파트(105)가 생성하는 교류 전력에서 제거한다.The AC filter 171 removes the remaining frequency components other than the frequency component (for example, 60 Hz) used by the demand part 180 from the AC power generated by the demand side transmission part 105.

교류 송전 라인(173)은 필터링된 교류 전력을 수요 파트(180)에 전달한다.
The AC transmission line 173 delivers the filtered AC power to the demand part 180.

도 4는 본 발명의 실시예에 따른 트랜스포머와 3상 밸브 브릿지의 결선을 보여준다.4 shows a connection of a transformer and a three-phase valve bridge according to an embodiment of the present invention.

특히, 도 4는 양극을 위한 2개의 트랜스포머(121)와 양극을 위한 2개의 3상 밸브 브릿지(131a)의 결선을 보여준다. 음극을 위한 2개의 트랜스포머(122)와 음극을 위한 2개의 3상 밸브 브릿지(132a)의 결선, 양극을 위한 2개의 트랜스포머(161)와 양극을 위한 2개의 3상 밸브 브릿지(151a)의 결선, 음극을 위한 2개의 트랜스포머(162)와 음극을 위한 2개의 3상 밸브 브릿지(152a)의 결선, 양극을 위한 1개의 트랜스포머(121)와 양극을 위한 1개의 3상 밸브 브릿지(131a), 양극을 위한 1개의 트랜스포머(161)와 양극을 위한 1개의 3상 밸브 브릿지(151a)의 결선 등은 도 4의 실시예로부터 용이하게 도출할 수 있으므로, 그 도면과 설명은 생략한다.Particularly, Fig. 4 shows the connection of two transformers 121 for the anode and two three-phase valve bridges 131a for the anode. The connection of two transformers 122 for a negative electrode and two three-phase valve bridges 132a for a negative electrode, connection of two transformers 161 for an anode and two three-phase valve bridges 151a for an anode, Two transformers 162 for the negative pole and two three-phase valve bridges 152a for the negative pole, one transformer 121 for the positive pole and one three-phase valve bridge 131a for the positive pole, And the connection of one transformer 161 for one pole and one three-phase valve bridge 151a for the positive pole can be easily derived from the embodiment of Fig. 4, and therefore the illustration and description thereof are omitted.

도 4에서, Y-Y 형상의 결선을 가지는 트랜스포머(121)를 상측 트랜스포머, Y-Δ 형상의 결선을 가지는 트랜스포머(121)를 하측 트랜스포머, 상측 트랜스포머에 연결되는 3상 밸브 브릿지(131a)를 상측 3상 밸브 브릿지, 하측 트랜스포머에 연결되는 3상 밸브 브릿지(131a)를 하측 3상 밸브 브릿지라고 부르도록 한다.4, a transformer 121 having a YY-shaped wiring is referred to as an upper transformer, a transformer 121 having a Y-shaped wiring is referred to as a lower transformer, a three-phase valve bridge 131a connected to an upper transformer is referred to as an upper three- The three-phase valve bridge 131a connected to the valve bridge and the lower transformer is referred to as a lower three-phase valve bridge.

상측 3상 밸브 브릿지와 하측 3상 밸브 브릿지는 직류 전력을 출력하는 2개의 출력단인 제1 출력단(OUT1)과 제2 출력단(OUT2)을 가진다. The upper three-phase valve bridge and the lower three-phase valve bridge have a first output OUT1 and a second output OUT2, which are two output terminals for outputting DC power.

상측 3상 밸브 브릿지는 6개의 밸브(D1-D6)를 포함하고, 하측 3상 밸브 브릿지는 6개의 밸브(D7-D12)를 포함한다.The upper three-phase valve bridge includes six valves D1-D6, and the lower three-phase valve bridge includes six valves D7-D12.

밸브(D1)는 제1 출력단(OUT1)에 연결되는 캐소드와 상측 트랜스포머의 2차측 코일의 제1 단자에 연결되는 애노드를 가진다.The valve D1 has a cathode connected to the first output OUT1 and an anode connected to the first terminal of the secondary coil of the upper transformer.

밸브(D2)는 밸브(D5)의 애노드에 연결되는 캐소드와 밸브(D6)의 애노드에 연결되는 애노드를 가진다.The valve D2 has a cathode connected to the anode of the valve D5 and an anode connected to the anode of the valve D6.

밸브(D3)는 제1 출력단(OUT1)에 연결되는 캐소드와 상측 트랜스포머의 2차측 코일의 제2 단자에 연결되는 애노드를 가진다.The valve D3 has a cathode connected to the first output OUT1 and an anode connected to the second terminal of the secondary coil of the upper transformer.

밸브(D4)는 밸브(D1)의 애노드에 연결되는 캐소드와 밸브(D6)의 애노드에 연결되는 애노드를 가진다.The valve D4 has a cathode connected to the anode of the valve D1 and an anode connected to the anode of the valve D6.

밸브(D5)는 제1 출력단(OUT1)에 연결되는 캐소드와 상측 트랜스포머의 2차측 코일의 제3 단자에 연결되는 애노드를 가진다.The valve D5 has a cathode connected to the first output OUT1 and an anode connected to the third terminal of the secondary coil of the upper transformer.

밸브(D6)는 밸브(D3)의 애노드에 연결되는 캐소드를 가진다.The valve D6 has a cathode connected to the anode of the valve D3.

밸브(D7)는 밸브(D6)의 애노드에 연결되는 캐소드와 하측 트랜스포머의 2차측 코일의 제1 단자에 연결되는 애노드를 가진다.The valve D7 has a cathode connected to the anode of the valve D6 and an anode connected to the first terminal of the secondary coil of the lower transformer.

밸브(D8)는 밸브(D11)의 애노드에 연결되는 캐소드와 제2 출력단(OUT2)에 연결되는 애노드를 가진다.The valve D8 has a cathode connected to the anode of the valve D11 and an anode connected to the second output OUT2.

밸브(D9)는 밸브(D6)의 애노드에 연결되는 캐소드와 하측 트랜스포머의 2차측 코일의 제2 단자에 연결되는 애노드를 가진다.The valve D9 has a cathode connected to the anode of the valve D6 and an anode connected to the second terminal of the secondary coil of the lower transformer.

밸브(D10)는 밸브(D7)의 애노드에 연결되는 캐소드와 제2 출력단(OUT2)에 연결되는 애노드를 가진다.The valve D10 has a cathode connected to the anode of the valve D7 and an anode connected to the second output OUT2.

밸브(D11)는 밸브(D6)의 애노드에 연결되는 캐소드와 하측 트랜스포머의 2차측 코일의 제3 단자에 연결되는 애노드를 가진다.The valve D11 has a cathode connected to the anode of the valve D6 and an anode connected to the third terminal of the secondary coil of the lower transformer.

밸브(D12)는 밸브(D9)의 애노드에 연결되는 캐소드와 제2 출력단(OUT2)에 연결되는 애노드를 가진다.
The valve D12 has a cathode connected to the anode of the valve D9 and an anode connected to the second output OUT2.

한편, 수요 측 직류-교류 컨버터 파트(150)는 모듈형 멀티레벨 컨버터(Modular Mulit-Level Converter, 200)로 구성될 수 있다. On the other hand, the demand side DC-AC converter part 150 may be configured as a modular MULTI-LEVEL CONVERTER 200.

모듈형 멀티레벨 컨버터(200)는 복수의 서브 모듈(210)을 이용하여 직류 전력을 교류 전력으로 변환할 수 있다.The modular multi-level converter 200 can convert DC power to AC power using a plurality of sub-modules 210.

도 5를 참고하여 모듈형 멀티레벨 컨버터(200)의 구성을 설명한다.The configuration of the modular multi-level converter 200 will be described with reference to FIG.

도 5는 모듈형 멀티레벨 컨버터(200)의 구성 블록도이다.5 is a configuration block diagram of the modular multi-level converter 200. As shown in FIG.

모듈형 멀티레벨 컨버터(200)는 제어기(250), 복수의 암 제어기(230), 복수의 서브 모듈(210)을 포함한다.The modular multilevel converter 200 includes a controller 250, a plurality of arm controllers 230, and a plurality of submodules 210.

제어기(250)는 복수의 암 제어기(230)를 제어하고, 각각의 암 제어기(230)는 복수의 서브 모듈(210)을 제어할 수 있다.The controller 250 controls the plurality of arm controllers 230, and each arm controller 230 can control the plurality of sub modules 210. [

도 6을 참고하여, 모듈형 멀티레벨 컨버터(200)의 구성을 상세히 설명한다.The configuration of the modular multi-level converter 200 will be described in detail with reference to FIG.

도 6은 모듈형 멀티레벨 컨버터(200)의 구성을 나타내는 구성 블록도이다.6 is a block diagram showing the configuration of the modular multi-level converter 200. As shown in Fig.

모듈형 멀티레벨 컨버터(200)는 서브 모듈(210), 암 제어기(230), 제어기(250)를 포함한다.The modular multilevel converter 200 includes a submodule 210, a female controller 230, and a controller 250.

서브 모듈(210)은 직류 전력을 입력받아 충??방전, 바이패스 동작을 할 수 있으며, 서브 모듈 센서(211), 서브 모듈 제어부(213), 스위칭부(217), 저장부(219)를 포함한다.The submodule 210 receives the DC power and can perform the charging and discharging and the bypass operation. The submodule sensor 211, the submodule control unit 213, the switching unit 217, and the storage unit 219 .

서브 모듈 센서(211)는 서브 모듈(210)의 전류, 전압 중 하나 이상을 측정할 수 있다.The sub-module sensor 211 can measure at least one of the current and the voltage of the sub-module 210.

서브 모듈 제어부(213)는 서브 모듈(210)의 전반적인 동작을 제어할 수 있다. The sub-module control unit 213 can control the overall operation of the sub-module 210. [

구체적으로 서브 모듈 제어부(213)는 서브 모듈 센서(211)의 전류, 전압 측정 동작, 스위칭부(217)의 스위칭 동작 등을 제어할 수 있다.Specifically, the sub-module control unit 213 can control the current and voltage measurement operation of the sub-module sensor 211, the switching operation of the switching unit 217, and the like.

스위칭부(217)는 서브 모듈(210)에 입출력되는 전류를 스위칭할 수 있다.The switching unit 217 can switch the current input to and output from the submodule 210.

스위칭부(217)는 적어도 하나 이상의 스위치를 포함하여, 서브 모듈 제어부(213)의 제어 신호에 따라 스위칭 동작을 할 수 있다.The switching unit 217 may include at least one switch, and may perform a switching operation according to a control signal of the sub-module control unit 213. [

또한, 스위칭부(217)는 다이오드를 포함할 수 있고, 스위칭 동작과 다이오드의 정류 동작으로 서브 모듈(210)의 충??방전, 바이패스 동작을 수행할 수 있다.In addition, the switching unit 217 may include a diode, and may perform charging, discharging, and bypassing operations of the sub-module 210 by the switching operation and the rectifying operation of the diode.

저장부(219)는 서브 모듈(210)에 입력되는 전류를 기초로 에너지를 충전하는 충전 동작을 할 수 있다. The storage unit 219 can perform a charging operation for charging energy based on the current input to the submodule 210.

또한 저장부(219)는 충전된 에너지를 기초로 전류를 출력하는 방전 동작을 할 수 있다.The storage unit 219 may also perform a discharging operation of outputting a current based on the charged energy.

도 7을 참고하여, 모듈형 멀티레벨 컨버터(200)에 포함되는 복수의 서브 모듈(210)의 연결을 설명한다.Referring to FIG. 7, the connection of the plurality of sub-modules 210 included in the modular multi-level converter 200 will be described.

도 7은 3상 모듈형 멀티레벨 컨버터(200)에 포함되는 복수의 서브 모듈(210)의 연결을 나타낸다.FIG. 7 shows a connection of a plurality of sub-modules 210 included in the three-phase modular multilevel converter 200.

도 7을 참고하면, 복수의 서브 모듈(210)은 직렬로 연결될 수 있으며, 하나의 상(Phase)의 양극 또는 음극에 연결된 복수의 서브 모듈(210)을 하나의 암(Arm)을 구성할 수 있다.Referring to FIG. 7, a plurality of submodules 210 may be connected in series, and a plurality of submodules 210 connected to one positive electrode or negative electrode of a phase may constitute one arm have.

3상 모듈형 멀티레벨 컨버터(200)는 일반적으로 6개의 암(Arm)으로 구성될 수 있으며, A, B, C인 3상 각각에 대해 양극과 음극으로 구성되어 6개의 암(Arm)으로 구성될 수 있다.The three-phase modular multilevel converter 200 can generally be composed of six arms and is composed of six arms consisting of an anode and a cathode for each of the three phases A, B, .

이에 따라, 3상 모듈형 멀티레벨 컨버터(200)는 A상 양극에 대한 복수의 서브 모듈(210)로 구성되는 제1 암(221), A상 음극에 대한 복수의 서브 모듈(210)로 구성되는 제2 암(222), B상 양극에 대한 복수의 서브 모듈(210)로 구성되는 제3 암(223), B상 음극에 대한 복수의 서브 모듈(210)로 구성되는 제4 암(224), C상 양극에 대한 복수의 서브 모듈(210)로 구성되는 제5 암(225), C상 음극에 대한 복수의 서브 모듈(210)로 구성되는 제6 암(226)으로 구성될 수 있다.Accordingly, the three-phase modular multilevel converter 200 includes a first arm 221 composed of a plurality of submodules 210 for the A-phase anode, and a plurality of sub-modules 210 for the A-phase anode A third arm 223 composed of a plurality of submodules 210 for the B-phase anode, and a fourth arm 224 composed of a plurality of submodules 210 for the B- A fifth arm 225 composed of a plurality of submodules 210 for the C-phase anode, and a sixth arm 226 composed of a plurality of submodules 210 for the C-phase cathode .

그리고 하나의 상(Phase)에 대한 복수의 서브 모듈(210)은 레그(Leg)를 구성할 수 있다.And a plurality of submodules 210 for one phase can constitute a leg.

이에 따라, 3상 모듈형 멀티레벨 컨버터(200)는 A상에 대한 복수의 서브 모듈(210)을 포함하는 A상 레그(227)과, B상에 대한 복수의 서브 모듈(210)을 포함하는 B상 레그(228), C상에 대한 복수의 서브 모듈(210)을 포함하는 C상 레그(229)로 구성될 수 있다.Accordingly, the three-phase modular multilevel converter 200 includes an A-phase leg 227 including a plurality of sub-modules 210 for phase A and a plurality of sub-modules 210 for phase B A B-phase leg 228, and a C-phase leg 229 including a plurality of submodules 210 for C-phase.

그래서 제1 암(221) 내지 제 6암(226)은 각각 A, B, C상 레그(227, 228, 229)에 포함된다.Thus, the first arm 221 to the sixth arm 226 are included in the A, B, and C-phase legs 227, 228, and 229, respectively.

구체적으로, A상 레그(227)에는 A상의 양극 암인 제1 암(221)과 음극 암인 제2 암(222)이 포함되며, B상 레그(228)에는 B상의 양극 암인 제3 암(223)과 음극 암인 제4 암(224)가 포함된다. 그리고 C상 레그(229)에는 C상의 양극 암인 제5 암(225)과 음극 암인 제6 암(226)이 포함된다.Specifically, the A-phase leg 227 includes a first arm 221, which is a cathode arm of A phase, and a second arm 222, which is a cathode arm. A third arm 223, which is a B phase anode arm, And a fourth arm 224 which is a cathode arm. The C-phase leg 229 includes a fifth arm 225, which is a C-phase anode arm, and a sixth arm 226, which is a cathode arm.

또한, 복수의 서브 모듈(210)은 극성에 따라 양극 암(Arm, 227)과 음극 암(Arm, 228)을 구성할 수 있다.In addition, the plurality of sub modules 210 can constitute a cathode arm (arm) 227 and a cathode arm (arm) 228 according to the polarity.

구체적으로 도 7을 참고하면, 모듈형 멀티레벨 컨버터(200)에 포함되는 복수의 서브 모듈(210)은 중성선(n)을 기준으로 양극에 대응하는 복수의 서브 모듈(210)과 음극에 대응하는 복수의 서브 모듈(210)로 분류할 수 있다. 7, a plurality of submodules 210 included in the modular multilevel converter 200 are divided into a plurality of submodules 210 corresponding to the positive electrodes and a plurality of submodules 210 corresponding to the negative electrodes And can be classified into a plurality of sub-modules 210.

그래서 모듈형 멀티레벨 컨버터(200)는 양극에 대응하는 복수의 서브 모듈(210)로 구성되는 양극 암(227), 음극에 대응하는 복수의 서브 모듈(210)로 구성되는 음극 암(228)로 구성될 수 있다.Thus, the modular multi-level converter 200 includes a cathode arm 227 composed of a plurality of submodules 210 corresponding to an anode, and a cathode arm 228 composed of a plurality of submodules 210 corresponding to a cathode Lt; / RTI >

이에 따라, 양극 암(227)은 제1 암(221), 제3 암(223), 제5 암(225)로 구성될 수 있고, 음극 암(228)은 제2 암(222), 제4 암(224), 제6 암(226)으로 구성될 수 있다.The anode arm 227 may be composed of a first arm 221, a third arm 223 and a fifth arm 225 and the cathode arm 228 may be composed of a second arm 222, The arm 224, and the sixth arm 226. [

이어서 도 8을 참고하여, 서브 모듈(210)의 구성을 설명한다.Next, the configuration of the sub module 210 will be described with reference to FIG.

도 8은 서브 모듈(210)의 구성에 대한 예시도이다.8 is an exemplary view of the configuration of the submodule 210. FIG.

도 8을 참고하면, 서브 모듈(210)은 2개의 스위치, 2개의 다이오드, 커패시터를 포함한다. 이러한 서브 모듈(210)의 형태를 하프 브릿지(half-bridge) 형태 또는 반파 인버터(half bridge inverter)라고도 한다.8, the submodule 210 includes two switches, two diodes, and a capacitor. The form of the sub-module 210 is also referred to as a half-bridge type or a half-bridge inverter.

그리고 스위칭부(217)에 포함되는 스위치는 전력 반도체를 포함할 수 있다.The switch included in the switching unit 217 may include a power semiconductor.

여기서 전력 반도체는 전력 장치용 반도체 소자를 말하며, 전력의 변환이나 제어용에 최적화될 수 있다. 그리고 전력 반도체는 밸브 장치라고 하기도 한다.Here, a power semiconductor refers to a semiconductor device for a power device, and can be optimized for power conversion and control. Power semiconductors are also called valve devices.

이에 따라 스위칭부(217)에 포함되는 스위치는 전력 반도체로 구성될 수 있어서, 예를 들면 IGBT(Insulated Gate Bipolar Transistor), GTO(Gate Turn-off Thyristor), IGCT(Integrated Gate Commutated Thyristor) 등으로 구성될 수 있다.Accordingly, the switch included in the switching unit 217 can be formed of a power semiconductor, and is constructed of, for example, an insulated gate bipolar transistor (IGBT), a gate turn-off thyristor (GTO), or an integrated gate commutated thyristor .

저장부(219)는 커패시터를 포함하고 있어서, 에너지를 충??방전 할 수 있다.The storage unit 219 includes a capacitor, so that energy can be discharged and discharged.

한편, 서브 모듈(210)의 구성 및 동작을 기초로 서브 모듈(210)을 등가 모델로 나타낼 수 있다.On the other hand, the sub-module 210 can be represented as an equivalent model based on the configuration and operation of the sub-module 210.

도 9는 서브 모듈(210)의 등가 모델을 나타내며, 도 9를 참고하면 서브 모듈(210)은 스위치와 커패시터로 구성된 에너지 충??방전 장치로 나타낼 수 있다. 9 shows an equivalent model of the submodule 210. Referring to FIG. 9, the submodule 210 may be represented by an energy recovery and discharge device composed of a switch and a capacitor.

이에 따라 서브 모듈(210)은 출력 전압이 Vsm인 에너지 충??방전 장치와 동일함을 확인할 수 있다.Accordingly, it can be confirmed that the submodule 210 is the same as the energy charging and discharging device having the output voltage Vsm.

이어서 도 10 내지 도 13을 참고하여, 서브 모듈(210)의 동작을 설명한다.Next, the operation of the sub module 210 will be described with reference to FIGS. 10 to 13. FIG.

도 10 내지 도 13의 서브 모듈(210)의 스위치부(217)는 복수의 스위치 T1, T2를 포함하고, 각각의 스위치는 각각의 다이오드 D1, D2에 연결된다. 그리고 서브 모듈(210)의 저장부(219)는 커패시터를 포함한다.The switch portion 217 of the submodule 210 of FIGS. 10 to 13 includes a plurality of switches T1 and T2, and each switch is connected to each of the diodes D1 and D2. The storage unit 219 of the sub-module 210 includes a capacitor.

도 10 및 도 11을 참고하여 서브 모듈(210)의 충??방전 동작을 설명한다.The charging and discharging operation of the sub-module 210 will be described with reference to Figs. 10 and 11. Fig.

도 10 및 도 11은 서브 모듈(210)의 커패시터 전압(Vsm) 형성을 나타낸다. Figures 10 and 11 show the capacitor voltage (Vsm) formation of the submodule 210.

도 10 및 도 11을 참고하면, 스위치부(217)의 스위치 T1은 턴온, 스위치 T2는 턴오프 된 상태를 나타낸다. 이에 따라 서브 모듈(210)은 각각의 스위치 동작에 따라 커패시터 전압을 형성할 수 있다. 10 and 11, the switch T1 of the switch unit 217 is turned on and the switch T2 is turned off. Accordingly, the sub-module 210 can form a capacitor voltage according to each switch operation.

구체적으로, 도 10을 참고하면 서브 모듈(210)에 유입되는 전류는 다이오드 D1을 거쳐 커패시터에 전달되어 커패시터 전압을 형성한다. 그리고 형성된 커패시터 전압은 커패시터에 에너지를 충전할 수 있다.10, the current flowing into the sub-module 210 is transmitted to the capacitor through the diode D1 to form a capacitor voltage. And the formed capacitor voltage can charge the capacitor with energy.

그리고 서브 모듈(210)은 충전된 에너지를 방출하는 방출 동작을 할 수 있다.And the submodule 210 may perform a discharge operation to discharge the charged energy.

구체적으로, 도 11을 참고하면 서브 모듈(210)에 충전된 에너지인 커패시터의 저장 에너지는 스위치 T1을 거쳐 출력된다. 따라서 서브 모듈(210)은 저장된 에너지를 방출할 수 있다. 11, the storage energy of the capacitor, which is the energy charged in the sub-module 210, is output through the switch T1. Thus, sub-module 210 may emit stored energy.

도 12 및 도 13을 참고하여 서브 모듈(210)의 바이패스(Bypass) 동작을 설명한다.The bypass operation of the sub-module 210 will be described with reference to FIGS. 12 and 13. FIG.

도 12 및 도 13은 서브 모듈(210)의 영 전압 형성을 나타낸다.12 and 13 show the zero voltage formation of the submodule 210. FIG.

도 12 및 도 13을 참고하면, 스위치부(217)의 스위치 T1은 턴오프, 스위치 T2는 턴온 된 상태를 나타낸다. 이에 따라 서브 모듈(210)의 커패시터에 전류가 흐르지 않게 되어, 서브 모듈(210)은 영 전압을 형성할 수 있다. 12 and 13, the switch T1 of the switch unit 217 is turned off and the switch T2 is turned on. Accordingly, no current flows through the capacitor of the sub-module 210, and the sub-module 210 can form a zero voltage.

구체적으로, 도 12를 참고하면 서브 모듈(210)로 유입되는 전류는 스위치 T2를 통해 출력되어 서브 모듈(210)은 영 전압을 형성할 수 있다.12, the current flowing into the sub-module 210 is outputted through the switch T2 so that the sub-module 210 can form a zero voltage.

그리고 도 13을 참고하면, 서브 모듈(210)에 유입되는 전류는 다이오드 D2를 통해 출력되어 서브 모듈(210)은 영 전압을 형성할 수 있다.13, the current flowing into the sub-module 210 is outputted through the diode D2, and the sub-module 210 can form the zero voltage.

이처럼 서브 모듈(210)은 영 전압을 형성할 수 있어서, 흐르는 전류가 서브 모듈(210)에 유입되지 않고 통과하는 바이패스 동작을 수행할 수 있다.In this way, the sub-module 210 can form a zero voltage, thereby performing a bypass operation in which the flowing current does not flow into the sub-module 210.

다시 도 5 및 도 6을 참고한다.5 and 6 again.

암 제어기(230)는 복수의 서브 모듈(210)로 구성된 암(Arm)에 포함된 서브 모듈(210)의 동작을 제어할 수 있다.The arm controller 230 can control the operation of the sub-module 210 included in the arm composed of the plurality of sub-modules 210.

여기서 암(Arm)은 복수의 서브 모듈(210)과 인덕터(미도시)를 포함할 수 있다. The arm may include a plurality of submodules 210 and an inductor (not shown).

도 6을 참고하면, 암 제어기(230)는 암 센서(231), 암 제어부(233), 암 통신부(235)를 포함할 수 있다.Referring to FIG. 6, the arm controller 230 may include an arm sensor 231, a arm controller 233, and a darker communication unit 235.

암 센서(231)는 암 제어기(230)에 연결된 서브 모듈(210)의 전류, 전압 중 하나 이상을 측정할 수 있다.The arm sensor 231 may measure at least one of a current and a voltage of the submodule 210 connected to the arm controller 230.

암 제어부(233)는 암 제어기(230)에 연결된 서브 모듈(210)의 전류, 전압 측정 동작, 서브 모듈(210)의 스위칭 동작, 암 센서(231)의 전류, 전압 측정 동작 등을 제어할 수 있다.The arm controller 233 controls the current and voltage measurement operation of the sub module 210 connected to the arm controller 230, the switching operation of the sub module 210, the current measurement of the arm sensor 231, have.

또한, 암 제어부(233)는 암 제어부(233)에 포함된 각각의 서브 모듈(210)의 제어값을 산출할 수 있다.Also, the arm controller 233 can calculate the control values of each sub-module 210 included in the arm controller 233. [

여기서 서브 모듈(210)의 제어값이란, 암 제어부(233)가 암 제어부(233)에 포함된 각각의 서브 모듈(210)의 스위칭 동작 제어를 통해 각각의 서브 모듈(210)에서 출력하고자 하는 출력 전압을 의미할 수 있다.Here, the control value of the sub module 210 is a control value of the sub module 210. The control value of the sub module 210 is the output value of each sub module 210 through the switching operation control of each sub module 210 included in the arm controller 233. [ It can mean voltage.

암 통신부(235)는 서브 모듈(210), 암 제어부(230), 제어기(250)와 데이터를 주고 받을 수 있다.The dark communication unit 235 can exchange data with the sub module 210, the dark control unit 230, and the controller 250.

예를 들면, 암 통신부(235)는 제어기(250)에 포함된 통신부(255)와 데이터를 송수신할 수 있다. 또한 암 통신부(235)는 암 통신부(235)가 포함된 암 제어기(230)와 다른 암 제어기(230)간에 데이터를 송수신할 수 있다. 그리고 암 통신부(235)는 서브 모듈(210)에 포함된 서브 모듈 제어부(213)과 데이터를 송수신할 수 있다.For example, the dark communication unit 235 can transmit and receive data to and from the communication unit 255 included in the controller 250. The arm communication unit 235 can transmit and receive data between the arm controller 230 including the arm communication unit 235 and another arm controller 230. [ The dark communication unit 235 can transmit and receive data to and from the sub-module control unit 213 included in the sub-module 210.

제어기(250)는 모듈형 멀티레벨 컨버터(200)의 전반적인 동작을 제어할 수 있다.The controller 250 may control the overall operation of the modular multilevel converter 200.

제어기(250)는 센서부(251), 제어부(253), 통신부(255)를 포함할 수 있다.The controller 250 may include a sensor unit 251, a controller 253, and a communication unit 255.

센서부(251)는 제어기(250)와 연계된 교류 파트(110, 170) 및 직류 송전 파트(140)의 전류, 전압을 측정할 수 있다.The sensor unit 251 can measure the current and voltage of the AC parts 110 and 170 and the DC transmission part 140 associated with the controller 250. [

제어부(253)는 모듈형 멀티레벨 컨버터(200)의 전반적인 동작을 제어할 수 있다.The control unit 253 can control the overall operation of the modular multi-level converter 200. [

제어부(253)는 전체 제어값을 산출할 수 있다.The control unit 253 can calculate the total control value.

여기서 전체 제어값이란, 모듈형 멀티레벨 컨버터(200)의 출력 교류 전력의 전압, 전류, 주파수 크기에 대한 목표값일 수 있다.Here, the total control value may be a target value for the voltage, current, and frequency magnitude of the output AC power of the modular multilevel converter 200.

제어부(253)는 모듈형 멀티레벨 컨버터(200)와 연계된 교류 파트(110, 170)의 전류, 전압 및 직류 송전 파트(140)의 전류, 전압 중 하나 이상을 기초로 전체 제어값을 산출할 수 있다.The control unit 253 calculates the total control value based on at least one of the current and voltage of the AC parts 110 and 170 associated with the modular multilevel converter 200 and the current and voltage of the DC transmission part 140 .

한편, 제어부(253)는 통신부(255)를 통해 상위 제어기(미도시)로부터 수신한 기준 유효 전력, 기준 무효 전력, 기준 전류, 기준 전압 중 하나 이상을 기초로 모듈형 멀티레벨 컨버터(200)의 동작을 제어할 수도 있다.On the other hand, the control unit 253 controls the modular multi-level converter 200 based on at least one of the reference active power, the reference reactive power, the reference current, and the reference voltage received from the host controller (not shown) through the communication unit 255 It is also possible to control the operation.

통신부(255)는 암 제어기(230)에 포함된 암 통신부(235), 서브 모듈(210)의 서브 모듈 제어부(213), 상위 제어기(미도시) 중 하나 이상과 데이터를 주고 받을 수 있다. The communication unit 255 can exchange data with at least one of the dark communication unit 235 included in the arm controller 230, the sub module control unit 213 of the sub module 210, and an upper controller (not shown).

구체적으로 통신부(255)는 제어부(253)로부터 전달받은 신호를 기초로 데이터를 암 통신부(235), 서브 모듈 제어부(213), 상위 제어기(미도시) 중 하나 이상에 전달할 수 있고, 암 통신부(235), 서브 모듈 제어부(213), 상위 제어기(미도시) 중 하나 이상으로부터 전달받은 데이터를 제어부(253)에 전달할 수 있다.
Specifically, the communication unit 255 can transmit data to at least one of the dark communication unit 235, the sub-module control unit 213, and the host controller (not shown) based on the signal received from the control unit 253, 235), the sub-module control unit 213, and the host controller (not shown), to the control unit 253.

도 14를 참고하여, 모듈형 멀티레벨 컨버터(200)의 동작 방법을 설명한다.Referring to FIG. 14, a method of operating the modular multilevel converter 200 will be described.

도 14는 모듈형 멀티레벨 컨버터(200)의 동작 방법을 나타내는 흐름도이다.14 is a flowchart showing a method of operation of the modular multi-level converter 200. FIG.

도 14를 참고하면, 제어기(250)는 모듈형 멀티레벨 컨버터(200)에 대한 전체 제어값을 산출한다(S110).Referring to FIG. 14, the controller 250 calculates the overall control value for the modular multilevel converter 200 (S110).

제어기(250)는 모듈형 멀티레벨 컨버터(200)로 입력되는 직류 전력의 전압, 전류, 암 제어기(230)이 측정한 전류, 전압, 서브 모듈(210)이 측정한 전류, 전압 중 하나 이상을 기초로 전체 제어값을 산출할 수 있다.The controller 250 controls at least one of the voltage and current of the DC power input to the modular multilevel converter 200, the current measured by the arm controller 230, the voltage, the current measured by the submodule 210, The overall control value can be calculated on the basis.

또한 제어기(250)는 상위 제어기(미도시)로부터 수신한 기준 유효 전력, 기준 무효 전력, 기준 전류, 기준 전압 중 하나 이상에 대한 제어 신호를 기초로 전체 제어값을 산출할 수도 있다.The controller 250 may also calculate the overall control value based on the control signal for at least one of the reference active power, the reference reactive power, the reference current, and the reference voltage received from the host controller (not shown).

제어기(250)는 산출한 전체 제어값을 암 제어기(230)에 전달한다.The controller 250 transmits the calculated total control value to the arm controller 230. [

따라서, 제어기(250)는 복수의 암 제어기(230) 각각에 산출한 전체 제어값을 전달할 수 있다.Accordingly, the controller 250 can transmit the calculated total control value to each of the plurality of arm controllers 230. [

암 제어기(230)는 각 암(Arm)의 제어값을 산출한다(S120).The arm controller 230 calculates the control value of each arm (S120).

암 제어기(230)는 복수의 암 제어기(230)로 구성되어, 각각의 암 제어기(230)는 양극 암(227), 음극 암(228)의 제어값을 각각 산출할 수 있다.The arm controller 230 is composed of a plurality of arm controllers 230 and each arm controller 230 can calculate control values of the positive arm 227 and the negative arm 228, respectively.

구체적으로, 암 제어기(230)는 양극 암(227)에 대한 암 제어기(230)와 음극 암(228)에 대한 암 제어기(230)로 구성될 수 있고, 각각의 암 제어기(230)는 대응되는 암(Arm)에 대한 제어값을 각각 산출할 수 있다. Specifically, the arm controller 230 may comprise a female controller 230 for the positive arm 227 and a female controller 230 for the negative pole arm 228, It is possible to calculate the control value for each arm.

그래서 양극 암(227)에 대한 암 제어기(230)는 제어기(250)로부터 전체 제어값, 양극 암(227)에 포함된 서브 모듈(210)의 수, 서브 모듈(210)의 에너지 저장 용량, 서브 모듈(210)의 스위칭 속도 중 하나 이상을 기초로 양극 암(227)에 대한 제어값을 산출할 수 있다. 그리고 음극 암(228)에 대한 암 제어기(230)는 제어기(250)로부터 전체 제어값, 음극 암(228)에 포함된 서브 모듈(210)의 수, 서브 모듈(210)의 에너지 저장 용량, 서브 모듈(210)의 스위칭 속도 중 하나 이상을 기초로 음극 암(228)에 대한 제어값을 산출할 수 있다.The arm controller 230 for the anode arm 227 receives the total control value from the controller 250, the number of submodules 210 included in the anode arm 227, the energy storage capacity of the submodule 210, The control value for the anode arm 227 can be calculated based on at least one of the switching speeds of the module 210. [ The arm controller 230 for the cathode arm 228 receives the total control value from the controller 250, the number of submodules 210 included in the cathode arm 228, the energy storage capacity of the submodule 210, The control value for the cathode arm 228 may be calculated based on one or more of the switching speeds of the module 210. [

이어서, 모듈형 멀티레벨 컨버터(200)에 포함되는 복수의 서브 모듈(210) 각각은 각각의 서브 모듈(210)의 전압, 전류 중 하나 이상을 측정한다(S130).Subsequently, each of the plurality of sub-modules 210 included in the modular multi-level converter 200 measures at least one of voltage and current of each sub-module 210 (S130).

서브 모듈 센서(211)가 해당 서브 모듈(210)의 전압, 전류 중 하나 이상을 측정할 수 있고, 측정된 전압, 전류는 서브 모듈 제어부(213)을 통해 암 통신부(235)에 전달된다.The submodule sensor 211 can measure at least one of voltage and current of the corresponding submodule 210 and the measured voltage and current are transmitted to the dark communication unit 235 through the submodule control unit 213.

암 제어기(230)은 각 암(Arm)에 대한 제어값과 각각의 서브 모듈(210)에서 측정된 전압, 전류 중 하나 이상을 기초로 각 서브 모듈(210)의 제어값을 산출한다(S140).The arm controller 230 calculates the control value of each sub-module 210 based on at least one of the control value for each arm and the voltage and current measured at each sub-module 210 (S140) .

암 제어기(230)는 단계 S120에서 산출한 양극 암(227), 음극 암(228)에 대한 제어값과 단계 S130에서 측정한 복수의 서브 모듈(210)의 전압, 전류 중 하나 이상을 기초로 각 서브 모듈(210)의 제어값을 산출할 수 있다.Based on at least one of the control values for the anode arm 227 and the cathode arm 228 calculated in step S120 and the voltages and currents of the plurality of submodules 210 measured in step S130, The control value of the sub module 210 can be calculated.

예를 들면, 양극 암(227)을 제어하는 암 제어기(230)는 양극 암(227)에 대한 제어값과 양극 암(227)에 포함되는 서브 모듈(210)에서 측정한 전압을 기초로 양극 암(227)에 포함되는 각 서브 모듈(210)의 제어값을 산출할 수 있다. For example, the arm controller 230, which controls the anode arm 227, controls the anode arm 227 based on the control value for the anode arm 227 and the voltage measured at the sub-module 210 included in the anode arm 227, The control value of each sub-module 210 included in the sub-module 227 can be calculated.

그리고 음극 암(228)을 제어하는 암 제어기(230)는 음극 암(228)에 대한 제어값과 음극 암(228)에 포함되는 각 서브 모듈(210)에서 측정한 전압을 기초로 음극 암(228)에 포함되는 각 서브 모듈(210)의 제어값을 산출할 수 있다. And the arm controller 228 controlling the cathode arm 228 controls the cathode arm 228 based on the control value for the cathode arm 228 and the voltage measured at each submodule 210 included in the cathode arm 228. [ The control value of each sub-module 210 included in the sub-module 210 can be calculated.

이처럼, 각 상의 복수의 서브 모듈(210)에 대응하는 각각의 암 제어기(230)는 각각의 극성에 포함되는 각각의 서브 모듈(210)의 제어값을 각각 산출할 수 있다.As described above, each of the arm controllers 230 corresponding to the plurality of sub modules 210 of each phase can calculate the control value of each sub module 210 included in each polarity.

암 제어부(230)는 산출된 각 서브 모듈(210)의 제어값을 기초로 각각의 서브 모듈(210)을 제어한다(S150).The arm controller 230 controls each of the sub modules 210 based on the calculated control values of the respective sub modules 210 (S150).

암 제어부(230)는 산출된 각 서브 모듈(210)의 제어값을 기초로 각 서브 모듈(210)의 스위칭 동작 신호를 생성하고, 생성된 스위칭 동작 신호를 각 서브 모듈 제어부(213)에 전달할 수 있다. The arm control unit 230 generates a switching operation signal of each submodule 210 based on the calculated control value of each submodule 210 and transmits the generated switching operation signal to each submodule control unit 213 have.

서브 모듈(210)의 서브 모듈 제어부(213)는 전달받은 스위칭 동작 신호를 기초로 스위칭부(217)의 스위칭 동작을 제어할 수 있다.Module control unit 213 of the sub-module 210 can control the switching operation of the switching unit 217 based on the received switching operation signal.

서브 모듈 제어부(213)의 스위칭 제어에 따라 스위칭부(217)에 포함된 스위치가 동작하여 각 서브 모듈(210)이 각각의 제어값에 대응하는 출력 전압을 형성할 수 있다.According to the switching control of the sub-module control unit 213, the switches included in the switching unit 217 operate, and each sub-module 210 can form an output voltage corresponding to each control value.

복수의 서브 모듈(210)이 각각의 제어값에 대응하는 각각의 출력 전압을 형성함에 따라 모듈형 멀티레벨 컨버터(200)에서 교류 전력을 출력할 수 있다.Modular multilevel converter 200 may output AC power as a plurality of submodules 210 form respective output voltages corresponding to respective control values.

모듈형 멀티레벨 컨버터(200)에서 출력되는 교류 전력을 도 15를 참고로 설명한다.The AC power output from the modular multi-level converter 200 will be described with reference to FIG.

도 15는 모듈형 멀티레벌 컨버터(200)에서 출력되는 교류 전력을 나타내는 그래프이다.15 is a graph showing AC power output from the modular multi-level converter 200. As shown in FIG.

도 15를 참고하면, 하나의 레그(Leg)에 연결된 복수의 서브 모듈(210)이 각각 형성하는 전압이 모두 합쳐져서 사인(Sine)에 가까운 계단형의 파형이 형성되고, 이에 따라 모듈형 멀티레벨 컨버터(200)의 출력 전력이 교류 전력임을 확인할 수 있다.Referring to FIG. 15, voltages formed by a plurality of sub modules 210 connected to one leg are combined to form a step-like waveform close to a sine, so that a modular multi- It can be confirmed that the output power of the inverter 200 is AC power.

구체적으로, 하나의 상(Phase)에 대응하는 복수의 서브 모듈(210)에서 양극에 해당하는 복수의 서브 모듈(210)과 음극에 해당하는 복수의 서브 모듈(210)의 각각의 출력 전압을 합하게 되면 도 15에 도시된 그래프와 같이 사인(Sine)파에 가까운 계단형의 파형이 형성될 수 있다.Specifically, the output voltages of a plurality of submodules 210 corresponding to an anode and a plurality of submodules 210 corresponding to a cathode are summed in a plurality of submodules 210 corresponding to one phase A step-like waveform close to a sinusoidal wave can be formed as shown in the graph of FIG.

여기서, 출력 전력의 파형은 하나의 레그(Leg)를 구성하는 서브 모듈(210)의 수가 많아질수록 많은 수의 계단을 갖는 파형이 형성되고, 각각의 서브 모듈(210)의 출력 전압의 폭을 조절하여 출력 전력의 파형을 사인(Sine)에 가깝게 만들 수 있다.
Here, the waveform of the output power is such that a waveform having a larger number of steps is formed as the number of the submodules 210 constituting one leg becomes larger, and the width of the output voltage of each submodule 210 So that the waveform of the output power can be made close to the sine.

이처럼, 본 발명에 따른 모듈형 멀티레벨 컨버터(200)는 모듈형 멀티레벨 컨버터(200)에 포함되는 다수의 서브 모듈(210)을 제어기(250), 복수의 암 제어기(230)로 효율적으로 제어할 수 있으므로 전력 변환의 효율을 높일 수 있다.As described above, the modular multi-level converter 200 according to the present invention efficiently controls the plurality of sub-modules 210 included in the modular multi-level converter 200 to the controller 250, the plurality of arm controllers 230, The efficiency of power conversion can be increased.

또한, 본 발명의 3상 모듈형 멀티레벨 컨버터(200)는 하위 제어기인 암 제어기(230)를 극성에 대응하여 구성하고, 극성에 대응하는 암 제어기(230)는 극성에 대한 제어값을 각각 산출하여 극성에 대응하는 각각의 서브 모듈(210)의 동작을 제어할 수 있어서, 극성 간의 균형을 조절하고 전력 변환 동작의 신뢰성을 확보할 수 있다.
In the three-phase modular multilevel converter 200 of the present invention, the arm controller 230, which is a lower controller, is configured to correspond to the polarity, and the arm controller 230 corresponding to the polarity calculates the control value for the polarity The operation of each sub-module 210 corresponding to the polarity can be controlled, so that the balance between the polarities can be controlled and the reliability of the power conversion operation can be ensured.

본 발명의 일실시예에 의하면, 전술한 방법은, 프로그램이 기록된 매체에 프로세서가 읽을 수 있는 코드로서 구현하는 것이 가능하다. 프로세서가 읽을 수 있는 매체의 예로는, ROM, RAM, CD-ROM, 자기 테이프, 플로피 디스크, 광 데이터 저장장치 등이 있으며, 캐리어 웨이브(예를 들어, 인터넷을 통한 전송)의 형태로 구현되는 것도 포함한다.According to an embodiment of the present invention, the above-described method can be implemented as a code readable by a processor on a medium on which a program is recorded. Examples of the medium that can be read by the processor include ROM, RAM, CD-ROM, magnetic tape, floppy disk, optical data storage, etc., and may be implemented in the form of a carrier wave (e.g., transmission over the Internet) .

상기와 같이 기재된 실시예들은 설명된 구성과 방법이 한정되게 적용될 수 있는 것이 아니라, 실시예들은 다양한 변형이 이루어질 수 있도록 각 실시예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수도 있다.The embodiments described above are not limited to the configurations and methods described above, but the embodiments may be configured by selectively combining all or a part of the embodiments so that various modifications can be made.

또한, 이상에서는 본 발명의 바람직한 실시 예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시 예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어서는 안 될 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments, but, on the contrary, It will be understood by those skilled in the art that various changes and modifications may be made without departing from the spirit and scope of the present invention.

Claims (7)

복수의 서브 모듈을 포함하는 모듈형 멀티레벨 컨버터에 있어서,
상기 모듈형 멀티레벨 컨버터의 출력 교류 전력에 대응하는 전체 제어값을 산출하는 제어기;
상기 제어기가 산출한 전체 제어값을 기초로 상기 복수의 서브 모듈에 대해 양극과 음극에 대응하는 제어값을 각각 산출하고, 산출된 제어값을 기초로 상기 복수의 서브 모듈 각각을 상기 복수의 서브 모듈의 극성에 따라 제어하는 암 제어기; 및
상기 암 제어기의 제어를 기초로 출력 전압을 생성하는 서브 모듈을 포함하는
모듈형 멀티레벨 컨버터.
A modular multilevel converter including a plurality of submodules,
A controller for calculating an overall control value corresponding to an output AC power of the modular multilevel converter;
Wherein the controller calculates a control value corresponding to the positive electrode and the negative electrode for each of the plurality of submodules based on the total control value calculated by the controller and outputs each of the plurality of submodules to the plurality of submodules based on the calculated control value, A controller for controlling the polarity of the battery; And
And a sub-module for generating an output voltage based on the control of the arm controller
Modular multilevel converters.
제1항에 있어서,
상기 암 제어기는 양극과 음극에 각각 대응하는 복수의 암 제어기로 구성되고,
상기 양극에 대응하는 암 제어기는 상기 양극에 대응하는 서브 모듈의 제어값을 산출하여 상기 양극에 대응하는 복수의 서브 모듈을 제어하고, 상기 음극에 대응하는 암 제어기는 상기 음극에 대응하는 제어값을 산출하여, 상기 음극에 대응하는 복수의 서브 모듈을 제어하는
모듈형 멀티레벨 컨버터.
The method according to claim 1,
Wherein the arm controller comprises a plurality of arm controllers each corresponding to an anode and a cathode,
The arm controller corresponding to the anode calculates a control value of the submodule corresponding to the anode to control a plurality of submodules corresponding to the anode, and the arm controller corresponding to the cathode calculates a control value corresponding to the cathode And controls a plurality of submodules corresponding to the negative electrode
Modular multilevel converters.
제1항에 있어서,
상기 제어기는
상기 모듈형 멀티레벨 컨버터와 연계된 계통의 전압, 전류 중 하나 이상을 측정하는 센서부;
상기 측정된 전압, 전류 중 하나 이상을 기초로 상기 전체 제어값을 산출하는 제어부; 및
상기 산출된 전체 제어값을 상기 암 제어기에 전송하는 통신부를 포함하는
모듈형 멀티레벨 컨버터.
The method according to claim 1,
The controller
A sensor unit for measuring at least one of a voltage and a current of the system associated with the modular multi-level converter;
A control unit for calculating the total control value based on at least one of the measured voltage and current; And
And a communication unit for transmitting the calculated total control value to the arm controller
Modular multilevel converters.
제1항에 있어서,
상기 암 제어기는
상기 암 제어기에 연결된 상기 서브 모듈의 전류, 전압 중 하나 이상을 측정하는 암 센서;
상기 전체 제어값과 상기 측정된 서브 모듈의 전류, 전압 중 하나 이상을 기초로 상기 각 상에 대응하는 제어값을 산출하는 암 제어부; 및
상기 산출된 제어값에 대응하는 상기 서브 모듈의 제어 신호를 상기 서브 모듈에 전송하는 암 통신부를 포함하는
모듈형 멀티레벨 컨버터.
The method according to claim 1,
The arm controller
An arm sensor for measuring at least one of a current and a voltage of the submodule connected to the arm controller;
A controller for calculating a control value corresponding to each phase based on at least one of the total control value and the measured current and voltage of the submodule; And
And transmits a control signal of the sub-module corresponding to the calculated control value to the sub-module
Modular multilevel converters.
제1항에 있어서,
상기 서브 모듈은
상기 서브 모듈의 전류, 전압 중 하나 이상을 측정하는 서브 모듈 센서;
상기 서브 모듈에 입출력되는 전류를 스위칭하는 스위칭부;
상기 스위칭부의 스위칭 동작에 따라 에너지를 저장하는 저장부; 및
상기 스위칭부의 스위칭 동작을 제어하는 서브 모듈 제어부를 포함하는
모듈형 멀티레벨 컨버터.
The method according to claim 1,
The sub-
A sub module sensor for measuring at least one of a current and a voltage of the sub module;
A switching unit for switching a current input to and output from the sub-module;
A storage unit for storing energy according to a switching operation of the switching unit; And
And a sub-module control unit for controlling a switching operation of the switching unit
Modular multilevel converters.
제5항에 있어서,
상기 스위칭부는
스위치 및 다이오드를 포함하는 하프 브릿지 회로인
모듈형 멀티레벨 컨버터.
6. The method of claim 5,
The switching unit
A half-bridge circuit that includes switches and diodes.
Modular multilevel converters.
제6항에 있어서,
상기 서브 모듈은
상기 스위칭부의 스위칭 동작에 따라 에너지를 충전하는 충전 동작, 저장된 에너지를 방출하는 방출 동작, 흐르는 전류가 상기 서브 모듈에 유입되지 않고 통과하는 바이패스 동작 중 하나로 동작하는
모듈형 멀티레벨 컨버터.
The method according to claim 6,
The sub-
A charging operation for charging energy according to the switching operation of the switching unit, a discharging operation for discharging the stored energy, and a bypass operation for flowing a current without flowing into the submodule
Modular multilevel converters.
KR1020140058031A 2014-05-14 2014-05-14 Modular multi-level converter and controlling method thereof KR20150130864A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140058031A KR20150130864A (en) 2014-05-14 2014-05-14 Modular multi-level converter and controlling method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140058031A KR20150130864A (en) 2014-05-14 2014-05-14 Modular multi-level converter and controlling method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020160051131A Division KR101678802B1 (en) 2016-04-26 2016-04-26 Modular multi-level converter and controlling method thereof

Publications (1)

Publication Number Publication Date
KR20150130864A true KR20150130864A (en) 2015-11-24

Family

ID=54845076

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140058031A KR20150130864A (en) 2014-05-14 2014-05-14 Modular multi-level converter and controlling method thereof

Country Status (1)

Country Link
KR (1) KR20150130864A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101668431B1 (en) * 2016-05-02 2016-10-24 주식회사 효원파워텍 Method and apparatus for estimating voltage of sub-module of modular multi-level converter
CN109946600A (en) * 2019-04-03 2019-06-28 国网冀北电力有限公司电力科学研究院 Detect the device and control method of converter valve submodule internal electric performance

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101668431B1 (en) * 2016-05-02 2016-10-24 주식회사 효원파워텍 Method and apparatus for estimating voltage of sub-module of modular multi-level converter
CN109946600A (en) * 2019-04-03 2019-06-28 国网冀北电力有限公司电力科学研究院 Detect the device and control method of converter valve submodule internal electric performance
CN109946600B (en) * 2019-04-03 2024-02-13 国网冀北电力有限公司电力科学研究院 Device for detecting internal electrical performance of converter valve submodule and control method

Similar Documents

Publication Publication Date Title
KR101666712B1 (en) Modular Multi-Level Converter
KR101630510B1 (en) Modular Multi-Level Converter
KR101604906B1 (en) High voltage direct current transmission system
KR101622461B1 (en) Method for compensating of potential transformer
US10270250B2 (en) Insulation design apparatus of high voltage direct current transmission system
KR101578292B1 (en) Method for compensating of potential transformer
KR101578291B1 (en) High voltage direct current system
KR101659252B1 (en) Modular multi-level converter and controlling method thereof
KR101678802B1 (en) Modular multi-level converter and controlling method thereof
KR20150130863A (en) Modular multi-level converter and controlling method thereof
KR20160109366A (en) Modular Multilevel Converter
KR20150130864A (en) Modular multi-level converter and controlling method thereof
KR102082140B1 (en) Method for detecting power value in a hvdc system
KR102502391B1 (en) High Voltage Direct Current System having Transformer
KR20150124329A (en) Hvdc converter and controlling method thereof
KR20160072499A (en) Method for operating of the modular multilevel converter
KR101622458B1 (en) Hvdc converter and controlling method thereof
KR101707768B1 (en) Hvdc converter and controlling method thereof
KR20160122015A (en) Modular Multilevel Converter
KR101707735B1 (en) Hvdc converter and controlling method thereof
KR20150124328A (en) Hvdc converter and controlling method thereof
KR20150130161A (en) High voltage direct current transmission system and controlling method thereof
KR20150118846A (en) Hvdc converter and controlling method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
J201 Request for trial against refusal decision
J301 Trial decision

Free format text: TRIAL NUMBER: 2016101002461; TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20160426

Effective date: 20171031