KR20150095278A - 해상구조물용 열교환 시스템 - Google Patents

해상구조물용 열교환 시스템 Download PDF

Info

Publication number
KR20150095278A
KR20150095278A KR1020140016402A KR20140016402A KR20150095278A KR 20150095278 A KR20150095278 A KR 20150095278A KR 1020140016402 A KR1020140016402 A KR 1020140016402A KR 20140016402 A KR20140016402 A KR 20140016402A KR 20150095278 A KR20150095278 A KR 20150095278A
Authority
KR
South Korea
Prior art keywords
refrigerant
heat exchanger
tube portion
turbine
compressor
Prior art date
Application number
KR1020140016402A
Other languages
English (en)
Other versions
KR101556104B1 (ko
Inventor
양한길
Original Assignee
삼성중공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성중공업 주식회사 filed Critical 삼성중공업 주식회사
Priority to KR1020140016402A priority Critical patent/KR101556104B1/ko
Publication of KR20150095278A publication Critical patent/KR20150095278A/ko
Application granted granted Critical
Publication of KR101556104B1 publication Critical patent/KR101556104B1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/14Cooling of plants of fluids in the plant, e.g. lubricant or fuel
    • F02C7/141Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/30Adding water, steam or other fluids for influencing combustion, e.g. to obtain cleaner exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/18Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use using the waste heat of gas-turbine plants outside the plants themselves, e.g. gas-turbine power heat plants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

해상구조물용 가스터빈 시스템이 개시된다. 본 발명의 일 측면에 따르면, 하나 이상의 압축기를 포함하는 압축기 그룹; 압축기 그룹에서 제공되는 압축공기를 냉매와 열교환시켜 냉각시키는 열교환기; 해수 중에 설치되며, 열교환기에서 사용된 냉매를 해수와 열교환시켜 냉각시키고, 냉각된 냉매를 다시 열교환기로 제공하는 열교환라이저; 및 열교환기에서 냉각된 냉각공기를 제공받으며, 냉각공기를 사용해 구동되는 하나 이상의 부분터빈을 포함하는 터빈 그룹;을 포함하는, 해상구조물용 가스터빈 시스템이 제공될 수 있다.

Description

해상구조물용 가스터빈 시스템 {GAS TURBINE SYSTEM FOR OFFSHORE STRUCTURE}
본 발명은 가스터빈 시스템에 관한 것으로, 보다 상세하게는 해상구조물에 설치되는 해상구조물용 가스터빈 시스템에 관한 것이다.
일반적으로 해상구조물에는 발전기의 구동 등을 위한 가스터빈(gas turbine)이 설치되고 있다. 이와 같은 가스터빈은 선내 배치되는 주요 대형설비 중 하나로, 통상 압축기(compressor), 연소기(combuster), 터빈블레이드(turbineblade) 등으로 구성되어 있다. 예컨대, 공개특허공보 제10-1990-0011968호에서는 이와 같은 가스터빈의 일 예를 개시하고 있다.
다만, 해상구조물의 경우 육상설비와 달리 그 특성상 많은 공간상의 제약이 뒤따르게 되며, 따라서 대형설비 중 하나인 가스터빈은 이러한 해상구조물의 공간활용이나 레이아웃(lay-out)을 제한하는 요소로 작용되고 있다. 즉, 대형설비인 가스터빈의 설치나 배치는 해상구조물 내 다른 설비의 배치나 레이아웃에 많은 영향을 미치게 되며, 이는 선내 공간활용이나 배치의 자유도를 저해하는 문제점이 되어 왔다. 나아가, 최근에는 선박, 해상구조물 등에도 친환경, 고효율화가 이슈가 되면서 해상구조물 등에 설치되는 가스터빈 또한 효율 향상이 요구되고 있는 실정이다.
공개특허공보 제10-1990-0011968호 (1990년 08월 02일 공개)
본 발명의 실시예들은, 해상구조물의 공간상 제약을 극복 가능하면서도, 터빈의 효율을 향상시킬 수 있는 해상구조물용 가스터빈 시스템을 제공하고자 한다.
본 발명의 일 측면에 따르면, 하나 이상의 압축기를 포함하는 압축기 그룹; 상기 압축기 그룹에서 제공되는 압축공기를 냉매와 열교환시켜 냉각시키는 열교환기; 해수 중에 설치되며, 상기 열교환기에서 사용된 냉매를 해수와 열교환시켜 냉각시키고, 냉각된 냉매를 다시 상기 열교환기로 제공하는 열교환라이저; 및 상기 열교환기에서 냉각된 냉각공기를 제공받으며, 상기 냉각공기를 사용해 구동되는 하나 이상의 부분터빈을 포함하는 터빈 그룹;을 포함하는, 해상구조물용 가스터빈 시스템이 제공될 수 있다.
본 발명의 실시예들에 따른 해상구조물용 가스터빈 시스템은, 통상의 가스터빈에서 일체로 구비된 압축기와 그 외 부분을 압축기 그룹과 터빈 그룹으로 분리하여 해상구조물의 선내 공간활용도를 증대시킬 수 있다. 다시 말하면, 본 발명의 실시예들에 따른 해상구조물용 가스터빈 시스템은, 설치공간이나 레이아웃(lay-out)에 제약을 주는 대형설비를 복수개로 분할 설치하도록 함으로써 선내 공간활용도를 증대시킬 수 있다.
본 발명의 실시예들에 따른 해상구조물용 가스터빈 시스템은, 압축기 그룹과 터빈 그룹 사이에 열교환기를 배치하여 압축공기가 냉각된 후 터빈 그룹으로 제공되게 된다. 따라서 터빈 그룹 또는 각 부분터빈으로 보다 낮은 온도의 공기를 공급할 수 있게 되며, 이로 인해, 터빈의 효율을 향상시킬 수 있다.
도 1은 본 발명의 일 실시예에 따른 해상구조물용 가스터빈 시스템을 보여주는 개념도이다.
도 2는 도 1에 도시된 열교환라이저의 일 예를 도시한 개략도이다.
이하, 본 발명의 실시예들을 첨부된 도면을 참조하여 설명하도록 한다. 다만, 이하의 실시예들은 본 발명의 이해를 돕기 위해 제공되는 것이며, 본 발명의 범위가 이하의 실시예들에 한정되는 것은 아님을 알려둔다. 또한, 이하의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것으로, 불필요하게 본 발명의 기술적 요지를 흐릴 수 있다고 판단되는 공지의 구성에 대해서는 상세한 기술을 생략하기로 한다.
도 1은 본 발명의 일 실시예에 따른 해상구조물용 가스터빈 시스템을 보여주는 개념도이다.
도 1을 참고하면, 본 실시예에 따른 해상구조물용 가스터빈 시스템(이하, '가스터빈 시스템(S)'으로 지칭함)은, 하나 이상의 압축기(11)를 구비하는 압축기 그룹(10)을 포함할 수 있다.
압축기 그룹(10)은 하나 이상의 압축기(11)로 구성될 수 있다. 예컨대, 본 실시예의 경우 2개의 압축기(11)가 하나의 압축기 그룹(10)을 이루는 경우를 예시하고 있다. 다만, 필요에 따라 압축기(11)의 개수는 증감 변동될 수 있음은 물론이다.
압축기 그룹(10)은 후술할 터빈 그룹(30)과 분리 형성될 수 있다. 다시 말하면, 압축기 그룹(10)은 터빈 그룹(30)과는 독립된 하나의 파트로 형성될 수 있다. 따라서 압축기 그룹(10)은 터빈 그룹(30)과 분리되어 해상구조물 내 별도의 위치나 구역에 설치될 수 있다. 이는 압축기가 일체로 장비된 통상의 가스터빈에 비해 선내 공간활용도를 증대시킬 수 있는 이점이 있다.
각 압축기(11)는 외기를 흡입하여 소정압력으로 압축시킬 수 있다. 다시 말하면, 각 압축기(11)는 소정압력의 압축공기(A1)를 생성할 수 있다. 각 압축기(11)는 공지된 압축기(air compressor) 등과 동일 유사하게 형성될 수 있으며, 압축기(11)의 내부 구성 등은 본 발명의 기술적 요지와 거리가 있으므로 상세한 설명을 생략한다.
또한, 압축기 그룹(10)을 이루는 각 압축기(11)는 상호 독립적으로 구동될 수 있다. 즉, 압축기 그룹(10) 내 일부 압축기(11)만이 선택적으로 구동될 수 있다. 이는 필요한 만큼의 압축기(11)만을 구동하여 설비 운용의 효율성을 도모하기 위함이다. 특히, 일반적인 가스터빈의 경우 터빈 출력의 20~30%를 압축기에서 사용하게 되는바, 상기와 같은 압축기(11)의 선택적 구동은 전체 설비 효율 향상에 크게 기여할 수 있다.
한편, 본 실시예에 따른 가스터빈 시스템(S)은, 압축기 그룹(10)에서 제공된 압축공기(A1)를 냉각시키기 위한 열교환기(20)를 포함할 수 있다.
열교환기(20)는 압축공기라인(L1)을 통해 압축기 그룹(10)에서 소정압력으로 압축된 압축공기(A1)를 제공받을 수 있다. 또한, 열교환기(20)는 압축공기(A1)를 냉매(H1)와 열교환시키고, 압축공기(A1)를 냉각시킬 수 있다.
냉매(H1)는 후술할 열교환라이저(40)와 연결된 냉매공급라인(L3)을 통해 열교환기(20)로 공급될 수 있다. 열교환에 사용된 냉매(H2)는 냉매회수라인(L4)을 통해 다시 열교환라이저(40)로 회수될 수 있다. 냉매(H1, H2)는 냉매공급라인(L3), 열교환기(20), 냉매회수라인(L4) 및 열교환라이저(40)를 거치며 순환될 수 있다.
열교환기(20)에서 냉각된 압축공기(A2)는 냉각공기라인(L2)을 통해 후술할 터빈 그룹(30)에 제공될 수 있다. 이하 설명의 편의를 위해 압축공기(A1)가 열교환기(20)를 거쳐 냉각된 것을 '냉각공기(A2)'로 구분하여 지칭하기로 한다.
상기와 같은 열교환기(20)는 압축기 그룹(10)에서 제공되는 압축공기(A1)를 소정정도 냉각시켜 터빈 그룹(30)으로 제공함으로써 터빈 그룹(30)의 효율을 증대시키게 된다. 부연하면, 일반적으로 가스터빈의 효율은 공급되는 공기의 온도가 낮을수록 높아지게 된다. 따라서 본 실시예와 같이 터빈 그룹(30) 전단에서 열교환기(20)를 통해 압축공기(A1)를 냉각시키고, 냉각된 냉각공기(A2)를 터빈 그룹(30)으로 제공하게 되면, 터빈 그룹(30)의 효율을 증대시킬 수 있게 된다.
또한, 본 실시예에 따른 열교환기(20)는 외기가 압축기 그룹(10)을 거쳐 압축된 이후에 압축공기(A1)를 냉각시킨다는 점에서 기술적 이점을 가져올 수 있다.
부연하면, 압축기(11)로 유입된 외기는 압축기(11) 내에서의 압축 과정을 거치면서 압력뿐만 아니라, 온도도 소정정도 상승되게 된다. 즉, 압축기(11)를 거친 압축공기(A1)는 외기 등에 비해 상대적으로 높은 온도를 가지게 된다. 따라서 본 실시예와 같이 압축기 그룹(10) 후단에서 압축공기(A1)를 냉각시키게 되면, 상대적으로 높은 온도의 압축공기(A1)를 냉매(H1)와 열교환시킴으로써 냉각 효율이 향상될 수 있다. 이는 열교환기(20)를 압축기 그룹(10) 전단에 배치하는 경우와 비교하면 더욱 그러하다 할 것이다.
결국, 본 실시예에 따른 열교환기(20)는 압축기 그룹(10) 후단에서 압축공기(A1)를 냉각하는 방식을 취함으로써, 냉각 효율을 증대시키고, 충분히 냉각된 냉각공기(A2)를 터빈 그룹(30)으로 제공할 수 있게 된다.
한편, 본 실시예에 따른 가스터빈 시스템(S)은, 하나 이상의 부분터빈(31)을 구비하는 터빈 그룹(30)을 포함할 수 있다.
터빈 그룹(30)은 하나 이상의 부분터빈(31)으로 구성될 수 있다. 부분터빈(31)의 개수는 전술한 압축기 그룹(10)의 압축기(11) 개수와 상이할 수 있다. 또는, 부분터빈(31)의 개수는 압축기 그룹(10)의 압축기(11) 개수보다 많을 수 있다. 이는 복수의 부분터빈(31)이 압축기 그룹(10) 또는 각 압축기(11)를 공유하도록 함으로써 설비의 효율화를 도모하기 위함이다. 즉, 본 실시예에 따른 가스터빈 시스템(S)은 복수개의 부분터빈(31)이 하나의 압축기 그룹(10) 또는 압축기(11)를 공유하도록 형성될 수 있다.
터빈 그룹(30)은 전술한 압축기 그룹(10)과는 분리 형성될 수 있으며, 하나의 독립된 파트로 형성되어 압축기 그룹(10)과는 별개의 위치나 구역에 설치될 수 있다. 다시 말하면, 터빈 그룹(30) 및 압축기 그룹(10)은 각각 해상구조물 내 별도의 독립된 위치, 구역 등에 설치될 수 있다. 이는 전술한 바와 같이 선내 공간활용도를 증대시키는 한편, 터빈 그룹(30) 내 일부 부분터빈(31)만을 가동하는 등으로 보다 효율적인 설비 운용을 가능케 한다.
한편, 본 실시예에서 부분터빈(31)은 자체에 압축기가 구비되지 않을 수 있다. 즉, 본 명세서에서 부분터빈(31)은 통상의 가스터빈에서 압축기가 생략된 형태의 가스터빈으로 정의될 수 있다. 따라서 부분터빈(31)은 연소기(combuster) 및 터빈블레이드(turbine blade)를 구비할 수 있으나, 압축기(compressor)는 생략될 수 있다.
부분터빈(31)의 연소기에 필요한 공기는 냉각공기라인(L2)을 통해 제공될 수 있다. 이때, 부분터빈(31)에는 열교환기(20)에서 냉각된 냉각공기(A2)가 제공되게 되며, 이로 인해, 터빈 효율이 증대될 수 있다. 한편, 부분터빈(31)은 연소기를 통해 터빈블레이드로 고온, 고압의 가스를 분사하여 터빈블레이드를 회전시키게 되며, 이는 통상적인 가스터빈과 유사하게 형성될 수 있다.
또한, 터빈 그룹(30)을 이루는 각 부분터빈(31)은 상호 독립적으로 구동될 수 있다. 즉, 터빈 그룹(30) 내 일부 부분터빈(31)만이 선택적으로 구동될 수 있다. 이는 필요한 만큼의 부분터빈(31)만을 구동하여 설비 운용의 효율성을 도모하기 위함이다.
한편, 본 실시예에 따른 가스터빈 시스템(S)은, 열교환기(20)로 냉매(H1, H2)를 공급 및 회수하는 열교환라이저(40)를 포함할 수 있다.
열교환라이저(40)는 해상구조물의 하부 측으로 노출되어 해수 중에 배치될 수 있다. 예컨대, 해상구조물에는 개구된 문풀(moonpool)이 구비될 수 있으며, 열교환라이저(40)는 이와 같은 문풀을 통해 해수 중에 설치될 수 있다.
열교환라이저(40)는 냉매공급라인(L3)과 연결되어 열교환기(20)로 냉매(H1)를 공급할 수 있다. 또한, 열교환라이저(40)는 냉매회수라인(L4)과 연결되어 열교환기(20)에서 사용된 냉매(H2)를 다시 회수할 수 있다. 회수된 냉매(H2)는 열교환라이저(40)를 거쳐 냉각된 후 냉매공급라인(L3)을 통해 다시 열교환기(20)로 공급될 수 있다. 즉, 냉매(H1, H2)를 열교환기(20) 및 열교환라이저(40) 사이에서 순환될 수 있다.
또한, 열교환라이저(40)는 냉매(H2)를 깊은 수심까지 안내할 수 있도록 상하방향으로 연장 형성될 수 있다. 이는 깊은 수심에 존재하는 차가운 해수를 냉매(H2)의 냉각에 사용하기 위함이다. 예컨대, 열교환라이저(40)는 심해층에 근접하도록 연장 형성될 수 있다.
도 2는 도 1에 도시된 열교환라이저의 일 예를 도시한 개략도이다.
도 2를 참고하면, 본 실시예에 따른 열교환라이저(40)는 외관부(41)를 구비할 수 있다.
외관부(41)는 소정반경을 가지는 중공 원통형의 관(管), 덕트, 파이프 등으로 형성될 수 있다. 외관부(41)는 복수개의 블록(block) 또는 섹션(section)으로 분할 형성될 수 있으며, 각 블록 또는 섹션이 길이방향으로 연결되어 하나의 외관부(41)를 이룰 수 있다.
외관부(41) 내측에는 냉매(H1, H1)의 유동을 위한 유로가 형성될 수 있다. 외관부(41) 내측의 유로는 후술할 내관부(42)에 의해 외측유로(P2) 및 내측유로(P1)로 구획될 수 있다.
또한, 외관부(41)의 내측에는 복수개의 방열핀(41a)이 마련될 수 있다. 방열핀(41a)은 외관부(41) 내측을 유동하는 냉매(H2)와 외측의 해수와의 열교환 효율을 증대시킬 수 있다. 방열핀(41a)은 외관부(41)의 내주면에서 반경방향 중심부를 향해 소정정도 돌출 형성될 수 있으며, 복수개가 외관부(41) 내주면 둘레를 따라 배치되어 방사형을 이룰 수 있다. 다만, 방열핀(41a)의 반경방향 내측 단부는 후술할 내관부(42)와 소정간격 이격 형성됨이 바람직하다. 이는 내관부(42)로의 열전달을 최소화하기 위함이다 (도 2의 Ⅰ-Ⅰ' 단면 참조).
한편, 외관부(41)는 열전도성이 높은 재질로 형성될 수 있다. 예컨대, 외관부(41)는 금속성 재질로 형성될 수 있다. 이는 열교환기(20)에서 사용된 냉매(H2)가 외관부(41) 내측을 따라 유동되면서 차가운 해수와 열교환될 수 있도록 하기 위함이다.
또한, 외관부(41)는 하단에 저류부(43)를 구비할 수 있다. 저류부(43)는 외관부(41) 하단을 폐쇄시키는 한편, 상대적으로 큰 반경으로 형성될 수 있다. 이는 외관부(41)를 따라 유동된 냉매(H2)가 저류부(43)에 일시 체류될 수 있도록 하기 위함이다. 다시 말하면, 외관부(41)를 따라 유동된 냉매(H2)는 하단의 저류부(43)에 포집되어 소정시간 체류될 수 있다. 저류부(43)에 포집 또는 체류된 냉매(H2)는 외측의 차가운 해수와 열교환되어 소정정도 냉각될 수 있다.
한편, 본 실시예에 따른 열교환라이저(40)는 내관부(42)를 구비할 수 있다.
내관부(42)는 중공 원통형의 외관부(41) 내측에 삽입 설치될 수 있다. 또는, 내관부(42)는 외관부(41)와 동심원상에 배치되어 이중관 구조를 이룰 수 있다.
내관부(42)는 외관부(41) 내측을 외측유로(P2)와 내측유로(P1)로 구획할 수 있다. 내측유로(P1)는 내관부(42) 내측의 유로를 지칭하며, 열교환기(20)로 공급되기 위한 냉매(H1)가 유동될 수 있다. 이러한 내측유로(P1) 상단은 냉매공급라인(L3)과 연결될 수 있다 (도 1 참고). 외측유로(P2)는 내관부(42)와 외관부(41) 사이에 형성되는 유로를 지칭하며, 열교환기(20)에서 사용된 냉매(H2)가 유동될 수 있다. 외측유로(P2) 상단은 냉매회수라인(L4)과 연결될 수 있다 (도 1 참고).
내관부(42)는 하단(42a)이 개구된 관, 덕트, 파이프 등으로 이뤄질 수 있다. 전술한 바와 같이 내관부(42) 상단은 냉매공급라인(L3)에 연결된다. 내관부(42)의 하단(42a)은 개구되어 저류부(43)로부터 냉매(H1)를 흡입하기 위한 냉매흡입구(42a)를 형성할 수 있다. 따라서 저류부(43)에 일시 체류되면서 냉각된 냉매(H1)는 냉매흡입구(42a)를 통해 내관부(42)로 흡입될 수 있다. 이때, 내관부(42)의 하단(42a) 또는 냉매흡입구(42a)는 저류부(43)의 바닥면(43a)에 인접하게 배치될 수 있다. 이는 상대적으로 차가운 저류부(43) 하부측의 냉매(H2)를 내관부(42)로 흡입하기 위함이다.
또한, 내관부(42)는 열전도성이 낮은 재질로 형성될 수 있다. 또는, 내관부(42)는 단열재질로 형성될 수 있다. 이는 외측유로(P2)를 유동하는 냉매(H2)와 내측유로(P1)를 유동하는 냉매(H1) 간 열교환을 최소화하고, 저류부(43)를 거쳐 차가워진 냉매(H1)가 내측유로(P1)로 유동되는 과정에서 다시 온도 상승되는 것을 방지하기 위함이다.
한편, 본 실시예에 따른 열교환라이저(40)는 부유체(44)를 구비할 수 있다.
부유체(44)는 외관부(41) 일측에 장착되어 부력을 통해 외관부(41) 또는 열교환라이저(40)의 하중을 일부 지지하게 된다. 예컨대, 부유체(44)는 원형 고리 또는 튜브 형태로 형성되어 외관부(41)의 외주면 둘레를 감싸도록 설치될 수 있다. 다만, 본 실시예의 경우, 외측유로(P2)를 유동하는 냉매(H2)가 외관부(41)를 매개로 외측의 해수와 열교환되므로, 부유체(44)는 외관부(41)와 해수와의 접촉 표면적에 미치는 영향을 최소화하도록 형성될 수 있다.
이상에서 설명한 가스터빈 시스템(S)의 작동은 다음과 같다.
먼저, 전술한 도 1을 참고하면, 압축기 그룹(10)의 각 압축기(11)를 통해 외기가 소정압력으로 압축되며, 압축공기라인(L1)을 통해 압축공기(A1)가 열교환기(20)로 제공된다. 압축공기(A1)는 열교환기(20)를 거치면서 냉매(H1)와 열교환되어 소정온도로 냉각되며, 냉각된 냉각공기(A2)는 냉각공기라인(L2)을 통해 터빈 그룹(30) 또는 각 부분터빈(31)으로 제공된다.
한편, 열교환기(20)에서 사용되는 냉매(H1)는 열교환라이저(40)를 통해 공급 및 회수될 수 있다. 구체적으로, 도 2를 참고하면, 사용된 냉매(H2)는 냉매회수라인(L4)을 거쳐 열교환라이저(40)의 외측유로(P2)를 따라 유동된다. 냉매(H2)는 외측유로(P2)를 유동하는 과정에서 차가운 해수와 열교환되며 소정정도 냉각될 수 있다. 이와 같은 해수를 통한 냉매(H2)의 냉각은 열교환라이저(40)의 길이를 연장하거나 설치 수심을 깊이 형성함으로써 보다 증대될 수 있다. 또한, 열교환라이저(40)에 구비된 방열핀(41a)은 이와 같은 열교환을 촉진시키게 된다.
열교환라이저(40) 하단까지 유동된 냉매(H2)는 저류부(43)에서 소정정도 체류되었다가 내관부(42)를 통해 흡입될 수 있다. 필요에 따라, 내관부(42) 또는 냉매공급라인(L3)에는 이와 같은 냉매(H2)의 흡입을 위한 흡입펌프 등이 마련될 수 있다. 내관부(42)로 흡입된 냉매(H1)는 내측유로(P1)를 따라 상부로 유동되며, 냉매공급라인(L3)으로 제공되어 다시 열교환기(20)에서 사용되게 된다. 내관부(42)는 단열 재질 등으로 이루어져 상기와 같은 냉매(H1)의 유동과정에서 냉매(H1) 온도가 다시 높아지는 것을 방지하게 된다.
이상에서 설명한바, 본 실시예에 따른 가스터빈 시스템(S)은 통상의 가스터빈에서 일체로 구비된 압축기와 그 외 부분을 압축기 그룹(10)과 터빈 그룹(30)으로 분리하여 해상구조물의 선내 공간활용도를 증대시킬 수 있다. 즉, 본 실시예에 따른 가스터빈 시스템(S)은 설치공간이나 레이아웃(lay-out)에 제약을 주는 대형설비를 복수개로 분할 설치하도록 함으로써 공간활용도를 증대시킬 수 있다. 이러한 이점은 육상설비와 달리 공간적으로 많은 제약을 받는 해상구조물의 경우 더욱 부각될 수 있다.
또한, 본 실시예에 따른 가스터빈 시스템(S)은 압축기 그룹(10)과 터빈 그룹(30) 사이에 열교환기(20)를 배치하여 압축공기(A1)가 냉각된 후 터빈 그룹(30)으로 제공되게 된다. 따라서 터빈 그룹(30) 또는 각 부분터빈(31)으로 보다 낮은 온도의 공기를 공급할 수 있게 되며, 이는 터빈의 효율을 향상시킬 수 있게 한다. 나아가, 외기가 압축된 이후의 압축공기(A1)를 냉각시킴으로써, 열교환 효율이나 압축공기(A1)의 냉각 효과 또한 향상될 수 있다.
한편, 본 실시예에 따른 가스터빈 시스템(S)은, 해수 중에 설치된 열교환라이저(40)를 통해 냉매(H1, H2)를 냉각시킴으로써 냉매(H1, H2) 냉각에 필요한 에너지를 최소화시킬 수 있다. 또한, 본 실시예의 경우, 냉매(H1, H2)가 폐쇄된 루프(roop) 내에서 순환됨으로써, 냉매(H1, H2)의 취급이 용이해지고, 열교환라이저(40)를 보다 깊은 수심까지 설치할 수 있게 된다.
이상, 본 발명의 실시예들에 대하여 설명하였으나, 해당 기술 분야에서 통상의 지식을 가진 자라면 특허청구범위에 기재된 본 발명의 사상으로부터 벗어나지 않는 범위 내에서, 구성 요소의 부가, 변경, 삭제 또는 추가 등에 의해 본 발명을 다양하게 수정 및 변경시킬 수 있을 것이며, 이 또한 본 발명의 권리범위 내에 포함된다고 할 것이다.
S: 해상구조물용 가스터빈 시스템 10: 압축기 그룹
20: 열교환기 30: 터빈 그룹
40: 열교환라이저

Claims (5)

  1. 하나 이상의 압축기를 포함하는 압축기 그룹;
    상기 압축기 그룹에서 제공되는 압축공기를 냉매와 열교환시켜 냉각시키는 열교환기;
    해수 중에 설치되며, 상기 열교환기에서 사용된 냉매를 해수와 열교환시켜 냉각시키고, 냉각된 냉매를 다시 상기 열교환기로 제공하는 열교환라이저; 및
    상기 열교환기에서 냉각된 냉각공기를 제공받으며, 상기 냉각공기를 사용해 구동되는 하나 이상의 부분터빈을 포함하는 터빈 그룹;을 포함하는, 해상구조물용 가스터빈 시스템.
  2. 청구항 1에 있어서,
    상기 압축기 그룹과 상기 터빈 그룹은, 상호 분리되어 해상구조물 내 각 구역에 설치되며,
    상기 부분터빈은, 연소기(combuster) 및 터빈블레이드(turbine blade)를 포함하되, 압축기(compressor)가 생략된 것인, 해상구조물용 가스터빈 시스템.
  3. 청구항 1에 있어서,
    상기 열교환라이저는,
    중공형의 외관부;
    상기 외관부 하단에 마련되어 냉매가 일시 체류되는 저류부; 및
    상기 외관부 내측에 배치되는 내관부;를 포함하되,
    상기 열교환기에서 사용된 냉매는, 상기 외관부와 상기 내관부 사이의 외측유로를 통해 상기 저류부로 유동되며, 상기 외관부를 사이에 두고 외측의 해수와 열교환되어 냉각되며,
    상기 저류부에서 일시 체류된 냉매는, 상기 내관부가 형성하는 내측유로를 통해 상기 열교환기로 공급되는, 해상구조물용 가스터빈 시스템.
  4. 청구항 3에 있어서,
    상기 외관부는, 금속 재질 또는 열전도성이 높은 재질을 포함하고,
    상기 내관부는, 단열 재질 또는 상기 외관부에 비해 열전도성이 낮은 재질을 포함하는, 해상구조물용 가스터빈 시스템.
  5. 청구항 3에 있어서,
    상기 열교환라이저는, 상기 외관부 일측에 장착되는 하나 이상의 부유체를 더 포함하며,
    상기 외관부는, 내주면 둘레를 따라 복수개의 방열핀이 방사형으로 형성되는, 해상구조물용 가스터빈 시스템.
KR1020140016402A 2014-02-13 2014-02-13 해상구조물용 열교환 시스템 KR101556104B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140016402A KR101556104B1 (ko) 2014-02-13 2014-02-13 해상구조물용 열교환 시스템

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140016402A KR101556104B1 (ko) 2014-02-13 2014-02-13 해상구조물용 열교환 시스템

Publications (2)

Publication Number Publication Date
KR20150095278A true KR20150095278A (ko) 2015-08-21
KR101556104B1 KR101556104B1 (ko) 2015-09-30

Family

ID=54058329

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140016402A KR101556104B1 (ko) 2014-02-13 2014-02-13 해상구조물용 열교환 시스템

Country Status (1)

Country Link
KR (1) KR101556104B1 (ko)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000145476A (ja) 1998-11-05 2000-05-26 Chiyoda Corp ガスタービン燃焼用空気の冷却システム

Also Published As

Publication number Publication date
KR101556104B1 (ko) 2015-09-30

Similar Documents

Publication Publication Date Title
US20190014687A1 (en) Cooling system in hybrid electric propulsion gas turbine engine
JP5072994B2 (ja) 風力発電装置
US20160381840A1 (en) Underwater container cooling via integrated heat exchanger
US11698004B2 (en) Aircraft propulsion assembly comprising air-liquid heat exchangers
MA20150322A1 (fr) Système de refroidissement intégré pour une nacelle d'une turbine éolienne
JP2015031097A (ja) メタンハイドレート回収システム及びメタンハイドレート回収方法
JP2009174494A (ja) ランキンサイクルシステム
JP2022542910A (ja) 地熱採掘システム
KR101403622B1 (ko) 증기의 소모없이 용존산소를 제거할 수 있는 선박의 폐열회수시스템
KR101556104B1 (ko) 해상구조물용 열교환 시스템
JP2008286022A (ja) エンジン冷却装置
JP2016512298A (ja) Otec作動流体ポンプモータを冷却するシステム及び方法
US20120111532A1 (en) Cooling-arrangement
JP2007120781A (ja) 地熱利用水冷ヒートポンプ空調システム
CN102459816A (zh) 将气相流体的比能量的一部分转化为机械功的装置和方法
CN116365791A (zh) 一种海洋监测浮标平台柴油发电机冷却水循环装置
CN205714607U (zh) 一种环绕式风力发电机冷却系统
CN214036375U (zh) 一种架柱式液压回转钻机的液压油散热装置
EP3762663B1 (en) Geothermal heat exchanger for recovering geothermal energy from dry rocks by means of a heat transfer medium with a closed circuit of the heat transfer medium
CN114562360A (zh) 一种带有散热降温机构的发动机
US20170067689A1 (en) Pumping equipment cooling system
KR101291354B1 (ko) 해상구조물의 라이저 및 이를 구비한 해상구조물
CN201434625Y (zh) 一种车用热管式机油冷却器
KR101138764B1 (ko) 해양 시추선에서 머드펌프의 폐열을 이용한 시추갑판 히팅장치
CN106661958A (zh) 具有细分成环带扇区的环形通道的燃气轮机

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180903

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20190829

Year of fee payment: 5