KR20150088606A - Functional whey protein concentrate nanomultiple emulsion delivery system using whey protein concentrate and preparation method thereof - Google Patents

Functional whey protein concentrate nanomultiple emulsion delivery system using whey protein concentrate and preparation method thereof Download PDF

Info

Publication number
KR20150088606A
KR20150088606A KR1020140009118A KR20140009118A KR20150088606A KR 20150088606 A KR20150088606 A KR 20150088606A KR 1020140009118 A KR1020140009118 A KR 1020140009118A KR 20140009118 A KR20140009118 A KR 20140009118A KR 20150088606 A KR20150088606 A KR 20150088606A
Authority
KR
South Korea
Prior art keywords
whey protein
emulsion
concentrated whey
vitamin
dha
Prior art date
Application number
KR1020140009118A
Other languages
Korean (ko)
Other versions
KR101577576B1 (en
Inventor
이원재
이미령
하호경
황재영
Original Assignee
경상대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경상대학교산학협력단 filed Critical 경상대학교산학협력단
Priority to KR1020140009118A priority Critical patent/KR101577576B1/en
Publication of KR20150088606A publication Critical patent/KR20150088606A/en
Application granted granted Critical
Publication of KR101577576B1 publication Critical patent/KR101577576B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6905Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a colloid or an emulsion
    • A61K47/6907Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a colloid or an emulsion the form being a microemulsion, nanoemulsion or micelle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Nanotechnology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Biotechnology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Medical Informatics (AREA)
  • Dispersion Chemistry (AREA)
  • Medicinal Preparation (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • General Preparation And Processing Of Foods (AREA)

Abstract

The present invention relates to a nanomultiple emulsion carrier and a manufacturing method thereof and, specifically, to a manufacturing method of a health functional nanomultiple emulsion carrier having various physiological activities using whey protein concentrate (WPC). A nanomultiple emulsion carrier of the present invention is capable of collecting hydrophilic and hydrophobic substances together, and maximizing efficiency of the existing health functional food by strengthening stability and increasing deodorizing effects with respect to DHA, thus can be a help in development for a functional food comprising various physiological activities for seniors, a medical food, and a medicine.

Description

농축유청단백질 기능성 나노다중에멀젼 전달체 및 그 제조방법{Functional whey protein concentrate nanomultiple emulsion delivery system using whey protein concentrate and preparation method thereof}Technical Field [0001] The present invention relates to a concentrated whey protein-functional nano multi-emulsion carrier and a method for manufacturing the same.

본 발명은 나노다중에멀젼 전달체 및 그 제조방법에 관한 것으로, 상세하게는 농축유청단백질(WPC)을 이용하여 다양한 생리활성 기능을 지닌 건강기능성 나노다중에멀젼 전달체를 제조하는 방법에 관한 것이다.TECHNICAL FIELD The present invention relates to a nano multi-emulsion carrier and a method for producing the same, and more particularly, to a method for producing a health-functional nano multi-emulsion carrier having various physiologically active functions using concentrated whey protein (WPC).

초고령화 사회 진입으로 인해 알츠하이머 (치매), 인지장애, 심혈관계, 골관절염, 골다공증, 면역장애와 같은 시니어 질환이 증가하여 국가 차원에서 사회경제적인 부담이 막대하다. 따라서 시니어 질환을 예방, 치료하는 연구가 필요하며 관련된 건강기능식품 산업분야도 급속히 성장하고 있는 현실이다. 여러 생리활성물질 중 항산화제(비타민 C, 비타민 E, 레시틴 등)는 시니어들의 노화 진행속도를 감소시킬 수 있으며 특히 MCT(medium-chain triglyceride), DHA(docosahexaenoic acid)와 같은 생리활성물질은 알츠하이머(치매) 증상을 완화시키는데 효과가 탁월하다. MCT의 경우 장쇄지방산보다 탄소길이가 짧아 소화ㅇ흡수가 용이하며 간에서 케톤체를 생성하여 대뇌의 대체에너지로 사용함으로써 알츠하이머, 인지 장애 등을 개선할 수 있다 (Leilani Doty., 2012). 어류의 유지 내에 다량 함유되어 있는 필수 지방산인 DHA는 혈소판 응집 억제 작용, 혈중 중성지방 저하 작용, 혈중 콜레스테롤 저하 작용 등 동맥 경화성 질환의 예방 및 치료 효과가 있을 뿐만 아니라 기억 학습 기능 향상, 치매증 개선, 시력 저하 방지, 암 억제(Eduardo Lopez-Huertas., 2010) 등 다양한 생리 활성 기능을 지니고 있어 특히 시니어용 건강증진 식품에 이용가치가 높다. 따라서 시니어 그룹에 필요한 생리활성물질(비타민 C, 비타민 E, MCT, DHA 등)을 포함한 식품개발은 시니어 건강증진에 도움이 될 것으로 기대된다. 그러나 비타민 E 등의 항산화제 뿐만 아니라 MCT와 DHA는 낮은 수용해도 (water solubility)로 인해 식품, 특히 무지방 및 저지방 유식품에 적용하기 힘든 단점을 지니고 있다. 뿐만 아니라 저장기간 동안 산소나 빛에 의해 파괴되거나 다가불포화지방산인 DHA의 경우 쉽게 산패가 진행되어 독특한 이취 (off-flavor)를 생성하는 문제점(S. Martini et al., 2009, Chamila Jayasinghe et al., 2013)을 지니고 있어 식품 소재로 이용 시 어려움이 있고 식품 제조 및 저장 공정 중 안정성이 낮다는 단점을 지니고 있다.Due to the introduction of aging society, sicknesses such as Alzheimer's (dementia), cognitive disorders, cardiovascular diseases, osteoarthritis, osteoporosis and immune disorders have increased and the socioeconomic burden is large at the national level. Therefore, researches to prevent and treat diseases of the elderly are needed and the health functional food industry is rapidly growing. Among the various physiologically active substances, antioxidants (vitamin C, vitamin E, lecithin, etc.) can reduce the aging speed of seniors. In particular, physiologically active substances such as medium-chain triglyceride (MCT) and docosahexaenoic acid (DHA) Dementia) is effective in relieving symptoms. MCT has shorter carbon length than long-chain fatty acid, and digestion can be easily absorbed. It is possible to improve Alzheimer's, cognitive disorder, etc. by using ketone as a substitute energy of cerebrum in liver (Leilani Doty., 2012). DHA, which is a large amount of essential fatty acid contained in fish oil, is effective for prevention and treatment of arteriosclerotic diseases such as platelet aggregation inhibitory action, blood triglyceride lowering action, blood cholesterol lowering action, (Eduardo Lopez-Huertas., 2010). It is especially valuable for health-promoting foods for seniors. Therefore, the development of foods containing the physiologically active substances (vitamin C, vitamin E, MCT, DHA, etc.) necessary for the senior group is expected to help improve senior health. However, MCT and DHA, as well as antioxidants such as vitamin E, have drawbacks that are difficult to apply to foods, especially fat-free and low-fat foods, due to their low water solubility. In addition, DHA, which is destroyed by oxygen or light during storage, or polyunsaturated fatty acid, is easily rancid and produces a distinct off-flavor (S. Martini et al., 2009, Chamila Jayasinghe et al. , 2013), which is difficult to use as a food material, and has a disadvantage of low stability during food manufacturing and storage processes.

나노 에멀젼전달체는 200 nm 이하 크기의 에멀젼으로 마이크로미터의 기존 에멀젼 전달체와 비교하여 에멀젼의 크기가 매우작아(< 200 nm) 결과적으로 표면적 증가로 인한 전달체의 장 내 체류시간 증가 및 투과성 향상으로 인해 생리활성 물질의 생물학적 이용율 및 전달체 안정성을 극대화 시킬 수 있다. 에멀젼 전달체 중 다중에멀젼은 기존 단일에멀젼에 비하여 소수성(비타민 E, DHA, 레시틴, MCT 등), 수용성(비타민 C 등) 생리활성물질의 동시전달이 가능할 뿐만 아니라 상호간의 상승효과를 극대화 할 수 있다. 그러나 다중에멀젼은 제조과정, 저장기간 동안에 입자간의 응집이나 상 분리 또는 내부수용액상(inner aqueous phase)의 누출현상 등으로 인해 단일에멀젼 대비 안정성이 낮은 단점을 지닌다는 문제가 있어, 에멀젼 크기(droplet size)를 나노미터(nm) 수준으로 대폭 줄임으로써 안정성을 개선할 필요성이 대두되어 왔다.Nano emulsion carriers are emulsions with sizes of less than 200 nm. The size of the emulsion is very small (<200 nm) compared to micrometer conventional emulsion carriers. As a result, Thereby maximizing the bioavailability and carrier stability of the active substance. The multiple emulsions in the emulsion carrier are capable of simultaneously transferring hydrophobic (vitamin E, DHA, lecithin, MCT, etc.) and water-soluble (vitamin C, etc.) physiologically active substances as compared with conventional single emulsions and maximizing mutual synergistic effect. However, there is a problem in that the stability of the multiple emulsion is lower than that of a single emulsion due to aggregation or phase separation of particles during the manufacturing process, storage period, or leakage of the inner aqueous phase, ) To the nanometer (nm) level, thereby increasing the stability.

대한민국 공개특허공보 2013-0022709 A(2013.03.07).Korean Patent Publication No. 2013-0022709 A (Feb.

본 발명에서는 전달체 제조 공정을 조절하여 나노 크기의 농축유청단백질 다중에멀젼 전달체를 제조하여 시니어용을 포함한 기능성 식품 등에 적용 가능한 양친매성 (친수성, 소수성) 생리 활성 물질의 이용 효율성을 극대화하는 방법을 제공하고자 하였다. 상기 생리 활성 물질 중 DHA는 식품에 직접 이용할 시 산화적 산패로 인해 발생하는 이취가 문제가 되는데, 상기 전달체를 이용하여 DHA 이취를 감소시킴으로써 소비자의 기호도를 감소시키는 문제점을 극복하고자 하였다.The present invention provides a method for maximizing utilization efficiency of an amphipathic (hydrophilic, hydrophobic) physiologically active substance applicable to functional foods including noodle preparations by preparing a nano-sized concentrated whey protein multiple emulsion carrier by controlling a carrier manufacturing process Respectively. Among the above physiologically active substances, DHA is a problem in that it is caused by oxidative rancidity when used directly in foods. To overcome the problem of decreasing the preference of consumers by reducing DHA using the carrier.

본 발명은 a) 농축유청단백질 용액에 선택적으로 친수성 기능성 물질을 첨가하여 제조한 수용액을 열처리하는 단계;The present invention provides a method for producing a whey protein concentrate comprising the steps of: a) heat treating an aqueous solution prepared by adding a hydrophilic functional substance to a concentrated whey protein solution;

b) 상기 수용액에 계면활성제를 첨가하여 교반하는 단계;b) adding and stirring the surfactant to the aqueous solution;

c) MCT (medium-chain triglyceride) 오일을 포함하는, 식품에 첨가 가능한 오일 중에서 선택된 어느 하나의 오일에 레시틴을 첨가하고 냉각한 후 선택적으로 소수성 기능성 물질을 첨가한 오일을 교반하는 단계;c) adding lecithin to any one of the oils selected from food-addable oils comprising medium-chain triglyceride (MCT) oil, cooling and optionally stirring the oil with hydrophobic functional material added thereto;

d) 상기 b)단계의 수용액과 c)단계의 오일을 섞은 후 균질기로 혼합물을 제조하는 단계;d) mixing the aqueous solution of step b) with the oil of step c) and then preparing a mixture with a homogenizer;

e) 상기 d)단계의 혼합물에 염화칼슘 (CaCl2)을 첨가한 후 교반하여 단일에멀젼을 제조하는 단계;e) adding calcium chloride (CaCl 2 ) to the mixture of step d) and stirring to prepare a single emulsion;

f) 상기 단일에멀젼과 열처리 된 농축유청단백질 용액에 계면활성제를 첨가한 수용액과 혼합하는 단계;  f) mixing the single emulsion and the heat-treated concentrated whey protein solution with an aqueous solution to which a surfactant has been added;

g) 상기 e와 f) 단계에서 얻은 물질을 균질기로 혼합한 후 초음파 처리하여 다중에멀젼을 제조하는 단계;g) Mixing the materials obtained in steps e) and f) with a homogenizer and ultrasonication to prepare multiple emulsions;

를 포함하는 농축유청단백질 다중에멀젼 전달체의 제조방법에 관한 것이다.To a method for producing a concentrated whey protein multi-emulsion carrier.

본 발명에서 상기 a) 단계의 열처리는 제한되지는 않지만 5 ∼ 85℃에서 1 내지 30분간 실시할 수 있으며, 바람직하게는 10분간 실시할 수 있다. 또한, 상기 a) 단계의 농축유청단백질은 제한되지는 않지만 0.01 내지 19 % (w/v)의 범위에서 나노다중에멀젼 전달체를 효율적으로 형성할 수 있다.In the present invention, the heat treatment in step a) is not limited, but may be carried out at 5 to 85 ° C for 1 to 30 minutes, preferably 10 minutes. In addition, the concentrated whey protein in step a) can form the nano multi emulsion transporter efficiently in a range of 0.01 to 19% (w / v) although not limited thereto.

본 발명에서 첨가 가능한 친수성 기능성 물질은 제한되지는 않지만 비타민 C 및 그 친수성 유도체들, 비타민 B3, 비타민 B5, 비타민 H 등의 각종 친수성 비타민 및 그 유도체, 엽산(folic acid), 카테킨(catechine), 아데노신, 알부틴 아세틸글루코사민, 마데카소사이드를 포함한 센텔라아시아티카 추출물, 셀레늄아스파테이트 등을 사용할 수 있다.The hydrophilic functional materials that can be added in the present invention include, but are not limited to, various hydrophilic vitamins and derivatives thereof such as vitamin C and its hydrophilic derivatives, vitamin B3, vitamin B5 and vitamin H, folic acid, catechine, , Arbutin acetyl glucosamine, Centella asiatica extract including madecassoside, selenium aspartate, and the like.

상기 b) 단계에 첨가하는 계면활성제는 크게 제한되지는 않지만 폴리솔베이트(polysorbate) 80 (Tween 80), 폴리솔베이트 20 (Tween 20), 폴리솔베이트 40 (Tween 40) 또는 폴리솔베이트 60 (Tween 60)등을 사용할 수 있다.The surfactant to be added to step b) is not particularly limited, but polysorbate 80 (Tween 80), polysorbate 20 (Tween 20), polysorbate 40 (Tween 40) or polysorbate 60 Tween 60) or the like can be used.

상기 계면활성제는 솔비탄 모노라우레이트(sorbitan monolaurate)의 폴리옥시에틸렌 유도체이다. 통상적인 상표명으로 각각 Tween 80, Tween 20, Tween 40 또는 Tween 60으로 널리 알려져 있으며, 안전성과 무독성 특성을 지니고 있어 가정용, 과학용 및 의학용 세제, 유화제로 널리 사용되고 있다.The surfactant is a polyoxyethylene derivative of sorbitan monolaurate. It is widely known as Tween 80, Tween 20, Tween 40, or Tween 60, respectively, and is widely used for household, scientific and medical detergents and emulsions because of its safety and non-toxic characteristics.

본 발명에서 상기 c) 단계의 오일은 크게 제한되지는 않으나 MCT 오일, 캐롯 오일, 땅콩 오일, 아몬드 오일, 호호바 오일, 살구씨오일, 아보카도 오일, 캐놀라오일, 달마지꽃종자 오일, 포도씨 오일, 올리브 오일, 미강 오일, 로즈힙 오일, 참깨 오일, 대두유, 해바라기씨유, 코코넛 오일 등, 식품에 첨가 가능한 오일을 사용할 수 있다. 상기 오일에 첨가하는 계면활성제는 크게 제한되지는 않으나 레시틴뿐만 아니라 Span 60, Span 80, Span 83, Span 120 등 일 수 있다. 또한 오일에 첨가하는 소수성 기능성 물질은 크게 제한되지는 않으나 안테라크산틴(antheraxanthin), 아스타산틴(astaxanthin), 알파카로틴(alpha-carotene), 베타카로틴(beta-carotene), 베타-아포-4′-카로티날(beta-apo-4'-carotenal), 베타-아포-8′-카로티날(beta-apo-8'-carotenal), 칸타크산틴(canthaxanthin), 시트라나산틴(citranaxanthin), 크립토크산틴(cryptoxanthin), 디하이드로플렉타니아산틴(dehydroplectaniaxanthin), 다이아토산틴(diatoxanthin), 푸코산틴(fucoxanthin), 푸코산티놀(fucoxanthinol), 락투카산틴(lactucaxanthin), 루테인(lutein), 라이코펜(lycopene), 네오산틴(neoxanthin), 뉴로스포라산틴(neurosporaxanthin), 뉴로스포렌(neurosporene), 페리디닌(peridinin), 파이토엔(phytoene), 로드핀(rhodopin), 시포노크산틴(siphonaxanthin), 스페로이딘(spheroidene), 스피릴로산틴(spirilloxanthin), 토룰라로딘(torularhodin), 유리올라이드(uriolide), 유리올라이드 아세테이드(uriolide acetate), 비올라크산틴(violaxanthin), 제아산틴(zeaxanthin), 빅신 (bixin), 캡산틴(capsanthin), 감마-카로틴(gamma-carotene), 델타 카로틴(delta-carotene), 엡실론 카로틴 (epsilon-carotene), 제타 카로틴(zeta-carotene), 노르빅신(norbixin), 토룰린 (torulene), 네로리돌(nerolidol), 시트랄 (citral), 시남알데하이드(cinnamaldehyde), 시트로네롤(citronellol), cis-3-헥산알(cis-3hexenal), 아이소아밀아세테이트(isoamyl acetate), 1-옥텐-3-원(1-octen-3-one), 옥틸아세테이트(octyl acetate), 마소이아락톤(massoia lactone), 멘톨(menthol), 메틸부트레이트(methyl butyrate), 멘톤(menthone), 펜틸부트레이트(pentyl butyrate), 펜틸펜타노에이트(pentyl pentanoate, 제라니올(geraniol), 데카날(decanal), 1-나프톨(1-naphthol), 기타 영양물질 중에 어유(fish oil), 밀랍(beewax), D-리모넨(D-limonene), 비타민 A, 비타민 E, 코엔자임큐텐(Co-Q10), 레시틴(lecithin), DHA(Docosahexaenoic acid), EPA (Eicosapentaenoic acid), 캡사이신(capsaicin), 및 쿼세틴 등이 있다. 특히 a) 단계에서 첨가 가능한 친수성 기능성 물질을 비타민 C로 이용하고, c) 단계에 첨가하는 소수성 기능성 물질을 비타민 E로 함께 사용 할 경우 이들의 항산화능을 증가 시킬 수 있는 추가적인 상승효과를 얻을 수 있다.In the present invention, the oil of step c) is not limited to MCT oil, carrot oil, peanut oil, almond oil, jojoba oil, apricot seed oil, avocado oil, canola oil, dalmatian seed oil, , Rice bran oil, rose hip oil, sesame oil, soybean oil, sunflower seed oil and coconut oil. The surfactant to be added to the oil is not particularly limited, but may be Span 60, Span 80, Span 83, Span 120 and the like as well as lecithin. The hydrophobic functional materials to be added to the oil are not limited, but include antheraxanthin, astaxanthin, alpha-carotene, beta-carotene, beta-apo- Carotenal, beta-apo-4'-carotenal, beta-apo-8'-carotenal, canthaxanthin, citranaxanthin, cryptoxanthin, dehydroplectaniaxanthin, diatoxanthin, fucoxanthin, fucoxanthinol, lactucaxanthin, lutein, lycopene, Neoxanthin, neurosporaxanthin, neurosporene, peridinin, phytoene, rhodopin, siphonaxanthin, speronidine, spheroidene, spirilloxanthin, torularhodin, uriolid, e), uriolide acetate, violaxanthin, zeaxanthin, bixin, capsanthin, gamma-carotene, delta carotene, carotene, epsilon-carotene, zeta-carotene, norbixin, torulene, nerolidol, citral, cinnamaldehyde, Citronellol, cis-3hexenal, isoamyl acetate, 1-octen-3-one, octyl acetate, Menthol lactone, menthol, methyl butyrate, menthone, pentyl butyrate, pentyl pentanoate, geraniol, &lt; RTI ID = 0.0 & Decanal, 1-naphthol, and other nutrients include fish oil, beewax, D-limonene, vitamin A, vitamin E, coenzyme Q And the like (Co-Q10), lecithin (lecithin), DHA (Docosahexaenoic acid), EPA (Eicosapentaenoic acid), capsaicin (capsaicin), and kwosetin. Particularly when a hydrophilic functional substance which can be added in step a) is used as vitamin C and a hydrophobic functional substance added in step c) is used together with vitamin E, an additional synergistic effect which can increase their antioxidative ability can be obtained .

또한 본 발명의 상기 d) 단계에서 혼합물을 추가로 초음파 처리하는 과정을 수행할 수 있다. 단일에멀젼 제조 과정에서의 초음파 처리는 다중에멀젼 제조 과정에서 초음파 처리와 함께 수행함으로써 최종 에멀젼의 크기를 추가적으로 감소시키는 효과를 얻을 수 있었다.Further, in the step d) of the present invention, the mixture may be further subjected to ultrasonic treatment. Ultrasonic treatment in the single emulsion manufacturing process was effected with the ultrasonic treatment in the multiple emulsion manufacturing process, thereby further reducing the size of the final emulsion.

본 발명에서 상기 f) 단계의 단일 에멀젼에 첨가하는 농축유청단백질은 계면활성제를 추가로 포함할 수 있다. 상기 f) 단계에 첨가하는 계면활성제는 크게 제한되지는 않지만 폴리솔베이트(polysorbate) 80 (Tween 80), 폴리솔베이트 20 (Tween 20), 폴리솔베이트 40 (Tween 40) 또는 폴리솔베이트 60 (Tween 60)등을 사용할 수 있다.In the present invention, the concentrated whey protein added to the single emulsion of step f) may further comprise a surfactant. The surfactant to be added to step f) is not particularly limited, but polysorbate 80 (Tween 80), polysulfate 20 (Tween 20), polysorbate 40 (Tween 40) or polysorbate 60 Tween 60) or the like can be used.

본 발명에서 상기 초음파 처리는 제한되지는 않지만 순차적으로 65 내지 75, 45 내지 55, 및 25 내지 35 와트(W)에서 각각 1 내지 5분간 처리할 수 있다. 상기 초음파 출력의 범위에서 순차적으로 처리하였을 때, 실시예에서와 같이 형성된 다중에멀젼의 크기가 효과적으로 감소하였다.In the present invention, the ultrasonic treatment is not limited, but may be sequentially treated at 65 to 75, 45 to 55, and 25 to 35 W (W) for 1 to 5 minutes, respectively. When sequentially processed in the range of the ultrasonic output, the sizes of the multiple emulsions formed as in the examples were effectively reduced.

본 발명의 다른 양태는 상기 제조방법에 의해 제조되는 농축유청단백질 다중에멀젼 전달체에 관한 것이다.Another aspect of the present invention relates to a concentrated whey protein multi-emulsion carrier prepared by the above production method.

본 발명의 또다른 양태는 상기 다중에멀젼 전달체를 이용하여 제조된 시니어용을 포함한 기능성 식품, 메디컬 푸드, 의약품에 관한 것이다. 본 발명에서 상기 식품은 DHA의 산패에 의해 생성되는 이취를 저감시킬 수 있었다.Another aspect of the present invention relates to a functional food, a medical food, and a medicament, which are prepared using the above-mentioned multiple emulsion carrier and including a senior. In the present invention, the food could reduce odor produced by rancidity of DHA.

본 발명의 기능성 농축유청단백질 나노다중에멀젼 전달체는 친수성과 소수성 물질을 함께 포집할 수 있으며, 안정성이 강화되었고 DHA에 대한 이취 저감 효과가 증가됨으로써, 기존 건강 기능성 식품의 효용성을 극대화할 수 있으며, 다양한 생리활성을 지니는 시니어용을 포함한 기능성 식품, 메디컬 푸드, 의약품 개발에 도움이 될 것으로 기대된다.The functional concentrated whey protein nanoemultiple emulsion carrier of the present invention can collect hydrophilic and hydrophobic substances together, enhance stability and increase the effect of reducing odor on DHA, thereby maximizing the utility of existing health functional foods, It is expected to help develop functional foods, medical foods and pharmaceuticals, including seniors with physiological activity.

도 1은 농축유청단백질 나노다중에멀젼 전달체의 제조방법을 나타낸 모식도이다.
도 2는 농축유청단백질 나노다중에멀젼 전달체의 형태학적 특성을 나타낸 투과전자현미경 사진이다.
도 3은 W1 phase에 계면활성제 첨가 유무 및 1차와 2차 초음파 처리 유무에 따른 농축유청단백질 나노다중에멀젼 전달체의 크기이다.
도 4는 W1 phase에 계면활성제 첨가 유무 및 1차와 2차 초음파 처리 유무에 따른 농축유청단백질 나노다중에멀젼 전달체의 다분산 지수이다.
도 5는 DHA 및 천연 항산화제의 농축유청단백질 나노다중에멀젼 포집 유무에 따른 에멀젼의 크기이다.
1 is a schematic view showing a method for producing a concentrated whey protein nano multi-emulsion carrier.
2 is a transmission electron micrograph showing the morphological characteristics of the concentrated whey protein nano multi-emulsion carrier.
FIG. 3 shows the size of the concentrated whey protein nano multi-emulsion carrier according to whether the surfactant is added to the W 1 phase and whether or not the first and second ultrasound treatment is performed.
FIG. 4 shows the polydispersity index of the concentrated whey protein nanomultiple emulsion carrier according to presence or absence of surfactant in W 1 phase and presence or absence of primary and secondary ultrasonic treatment.
Figure 5 shows the size of the emulsion according to the presence or absence of concentrated whey protein nanoemulti-emulsions of DHA and natural antioxidants.

이하 본 발명을 실시예 및 첨부된 도면을 통하여 더욱 상세히 설명한다. 그러나 이들은 본 발명을 보다 상세하게 설명하기 위한 것으로, 본 발명의 권리범위가 하기의 이들 예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to examples and attached drawings. However, these are for the purpose of illustrating the present invention in more detail, and the scope of the present invention is not limited by these examples.

이때, 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가지며, 하기의 설명 및 첨부도면에서 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 설명은 생략한다.
Hereinafter, the technical and scientific terms used herein will be understood by those skilled in the art without departing from the scope of the present invention. Descriptions of known functions and configurations that may be unnecessarily blurred are omitted.

[제조예 1] 농축유청단백질 나노다중에멀젼 전달체의 제조[Preparation Example 1] Preparation of Concentrated Whey Protein Nano Multi Emulsion Conjugate

1) Water phase 제조(inner & outer aqueous phase)1) Preparation of water phase (inner & outer aqueous phase)

1% (w/v) 농축유청단백질 용액 34 mL을 제조한 후, 1 M NaOH를 이용하여 pH 7이 되도록 조절하였다. 항온수조(DAIHAN scientific Co., Ltd., Korea)에서 65 ℃, 10 분간 열처리한 농축유청단백질 용액을 23 ℃로 냉각한 뒤 계면활성제 Tween 80을 1.7 g 첨가한 후 교반기(DAIHAN scientific Co., Ltd., Korea)로 10 분간 교반하였다.34 mL of 1% (w / v) concentrated whey protein solution was prepared and adjusted to pH 7 with 1 M NaOH. The concentrated whey protein solution heat-treated at 65 ° C for 10 minutes in a constant temperature water bath (DAIHAN scientific Co., Ltd., Korea) was cooled to 23 ° C and 1.7 g of surfactant Tween 80 was added thereto. ., Korea) for 10 minutes.

2) Oil phase 제조2) Manufacture of oil phase

MCT 오일 6 g에 0.3 g의 레시틴을 첨가한 후 55 ℃에서 90분간 열처리하면서 교반하였다. 이후 23 ℃로 냉각하였다.0.3 g of lecithin was added to 6 g of MCT oil, followed by stirring at 55 캜 for 90 minutes with heat treatment. And then cooled to 23 deg.

3) 단일에멀젼(W/O, water in oil) 제조3) Manufacture of single emulsion (W / O, water in oil)

상기 2)에서 최종 제조된 혼합물 6 g에 1)에서 최종 제조된 농축유청단백질 용액 4 g을 첨가하고 8,000 rpm의 균질기(homogenizer, DAIHAN scientific Co., Ltd., Korea)로 5 분간 혼합한 후, 초음파발생장치(ultrasonic sonicator, BANDELIN electronic Co., Ltd., Germany)를 순차적으로 70, 50, 30 W로 각 3분씩 실행하였다. 초음파 처리를 한 상기 단일에멀젼 용액 10 g에 1 M 염화칼슘 40 μL 첨가한 후 교반기에서 5 분간 교반하였다.4 g of the concentrated whey protein solution prepared in 1) was added to 6 g of the mixture prepared in the above 2), and the resulting mixture was mixed with a homogenizer (DAIHAN scientific Co., Ltd., Korea) at 8,000 rpm for 5 minutes , And an ultrasonic sonicator (BANDELIN electronic Co., Ltd., Germany) were sequentially run at 70, 50, and 30 W for 3 minutes each. To 10 g of the above-mentioned single emulsion solution subjected to the ultrasonic treatment, 40 μL of 1 M calcium chloride was added, followed by stirring in an agitator for 5 minutes.

4) 다중에멀젼(W/O/W, water in oil in water) 제조4) Manufacture of multiple emulsion (W / O / W, water in oil in water)

상기 3)에서 제조된 단일에멀젼 10 g에 5 wt% Tween 80 계면활성제를 포함한 1 wt% 농축유청단백질 용액 30 g을 첨가하고 4,000 rpm 균질기로 5 분간 혼합한 후, 초음파발생장치를 순차적으로 70, 50, 30 W로 각 3분씩 실행하여 다중에멀젼을 제조하였다. 도 1에 제조과정을 나타내었다.
30 g of a 1 wt% concentrated whey protein solution containing 5 wt% Tween 80 surfactant was added to 10 g of the single emulsion prepared in the above 3), and the resulting mixture was mixed with a homogenizer at 4,000 rpm for 5 minutes. Then, 50, and 30 W for 3 minutes each to prepare multiple emulsions. The manufacturing process is shown in Fig.

[비교예 1~6][Comparative Examples 1 to 6]

상기 실시예 1~29와 동일한 절차를 통하여 제조하되 표 1의 함량 및 조건대로 하여 농축유청단백질 다중에멀젼 전달체를 제조하였다.
The concentrated whey protein multi-emulsion carrier was prepared in the same manner as in Examples 1 to 29 and according to the contents and conditions of Table 1.

[표 1] 실시예 및 비교예의 제조조건[Table 1] Manufacturing conditions of Examples and Comparative Examples

Figure pat00001

Figure pat00001

[제조예 2] 친수성 및 소수성 기능성 물질을 첨가한 농축유청단백질 나노다중에멀젼 전달체 제조[Production Example 2] Production of concentrated whey protein nano multi-emulsion carrier containing hydrophilic and hydrophobic functional materials

제조예 1과 동일한 방법으로 제조하되, 표 2에 따라 친수성 및 소수성 기능성 물질 (DHA, 비타민 C, 비타민 E)을 각각 추가로 첨가된 농축유청단백질 나노다중에멀젼 전달체를 제조하였다.
According to Table 2, concentrated whey protein nano multi-emulsion carriers having hydrophilic and hydrophobic functional materials (DHA, vitamin C, and vitamin E) were further added, respectively, in the same manner as in Preparation Example 1,

[표 2] 친수성 및 소수성 기능성 물질 조성에 따른 농축유청단백질 나노다중에멀젼 전달체의 제조 조건[Table 2] Manufacturing conditions of concentrated whey protein nano multi-emulsion carrier according to composition of hydrophilic and hydrophobic functional materials

Figure pat00002

Figure pat00002

[시험예 1] 농축유청단백질 나노다중에멀젼 전달체의 제조 유무 확인 및 형태학적 특성 관찰[Test Example 1] Confirmation of production and observation of morphological characteristics of concentrated whey protein nano multi-emulsion carrier

제조예 1에서 농축유청단백질 나노다중에멀젼 전달체의 제조 유무는 침전 또는 상분리 발생 유무를 확인한 뒤, 침전이나 상분리가 발생하지 않은 시료를 선택하여 120kV 투과전자현미경 (TEM, transmission electron microscopy; Tecnai 21, FEI, Korea)를 이용하여 형태학적 특성을 측정하였다. 측정을 위해 증류수를 이용해 100 배 희석한 나노다중에멀젼 전달체를 볼텍싱(vortexing)한 후 10 분간 가스를 제거하였다. 희석된 나노다중에멀젼 전달체 20 μL을 그리드(grid)에 위치시켜 실온에서 15 초간 염색하였다. 염색된 그리드는 데시케이터(desiccator) 안에서 건조하였다. 이후 TEM을 이용하여 형태를 관찰하였고 Digital Micrograph를 이용하여 이미지를 촬영하였다. 그 결과 0.1 ~ 10% (w/v) 농축유청단백질 농도, 5 ~ 85℃의 열처리 온도, 0 ~ 10 mM의 염화칼슘 농도 조건에서 구형의 나노크기를 지니는 다중에멀젼이 형성된 것을 확인하였다(도 2).
The presence or absence of the precipitation or phase separation of the concentrated whey protein nanomultiple emulsion transporter in Production Example 1 was checked, and a sample which did not undergo precipitation or phase separation was selected and subjected to TEM (transmission electron microscopy: Tecnai 21, FEI , Korea) were used to measure morphological characteristics. For the measurement, the nano multi-emulsion carrier diluted 100 times with distilled water was vortexed and degassed for 10 minutes. 20 μL of the diluted nanomultiple emulsion carrier was placed on a grid and stained for 15 seconds at room temperature. The dyed grid was dried in a desiccator. Afterwards, the morphology was observed using TEM and images were taken using Digital Micrograph. As a result, it was confirmed that a multiple emulsion having a spherical nano-size was formed at a concentration of 0.1 to 10% (w / v) of concentrated whey protein, a heat treatment temperature of 5 to 85 ° C, and a calcium chloride concentration of 0 to 10 mM (FIG. 2) .

[시험예 2] 농축유청단백질 나노다중에멀젼 전달체의 물리화학적 특성[Test Example 2] Physicochemical properties of concentrated whey protein nano multi-emulsion carrier

제조예 1 및 제조예 2에서 제조한 농축유청단백질 나노다중에멀젼 전달체의 물리화학적 특성은 입도 분석기 (particle size analyzer, Nano-ZS, Malvern, UK)를 이용해 크기 (droplet size), 다분산 지수 (polydispersity index) 및 제타 전위 (zeta-potential) 측정을 통해 평가하였다. 측정은 제조된 나노다중에멀젼 전달체를 증류수를 이용하여 10배 희석한 다음 1 mL을 취해 글래스셀 (glass cell)에 첨가한 후 실온(25 ℃)에서 측정하였으며, 크기 측정시 173 도 산란각에서 시험예 1의 각 조건과 마찬가지로 측정하였다. 측정 결과는 표 3에 정리하였다.The physicochemical properties of the concentrated whey protein nanomultiple emulsion carrier prepared in Preparation Example 1 and Preparation Example 2 were measured using a particle size analyzer (Nano-ZS, Malvern, UK) using a droplet size, polydispersity index and zeta-potential measurements. The nano multi-emulsion was diluted 10 times with distilled water, and then 1 mL was added to the glass cell and then measured at room temperature (25 ° C.). The size was measured at 173 ° scattering angle Was measured in the same manner as in Example 1. The measurement results are summarized in Table 3.

1) 농축유청단백질 (WPC) 농도에 따른 나노다중에멀젼 전달체의 크기 및 다분산 지수1) The size and polydispersity index of nano multi emulsion carrier according to concentration of whey protein (WPC)

실시예 1 내지 9 및 비교예 1, 2의 농축유청단백질(WPC) 농도에 따른 에멀젼의 크기 변화는 표 3에 나타내었다. 농축유청단백질 농도가 0.1%에서 10% (w/v) 범위에서는 비슷한 크기(175 ~ 182 nm)의 에멀젼이 형성되었고, 20% 이상에서는 침전 또는 상 분리가 발생하여 나노다중에멀젼 전달체가 제조되지 않았다. 다분산 지수 또한 유청단백질 농도 0.1 ~ 10% (w/v) 구간에서 0.164 ~ 0.204로 유사하였으며 모든 처리구에서 0.3 이하로 균일한 입도 분포를 이루고 있었다. 이를 통해 다중에멀젼 전달체 0.1 ~ 19% (w/v) 구간에서는 농축유청단백질 농도가 나노다중에멀젼 전달체의 크기와 다분산 지수에 큰 영향을 미치지 않으며, 20% 이상의 농도에서는 나노다중에멀젼 전달체가 형성되지 않음을 확인하였다.The changes in the size of the emulsion according to the concentration of concentrated whey protein (WPC) in Examples 1 to 9 and Comparative Examples 1 and 2 are shown in Table 3. [ Emulsions of similar size (175 ~ 182 nm) were formed in the concentrated whey protein concentration range from 0.1% to 10% (w / v), and precipitation or phase separation occurred in more than 20% . The polydispersity index was 0.164 ~ 0.204 in the whey protein concentration range of 0.1 ~ 10% (w / v), and the particle size distribution was uniformly less than 0.3 in all treatments. The concentration of concentrated whey protein did not affect the size and polydispersity index of the nanomultiple emulsion carrier in the range of 0.1 ~ 19% (w / v) of the multiple emulsion carrier, and the nanomultiple emulsion carrier was formed at the concentration of 20% Respectively.

2) 열처리 온도에 따른 농축유청단백질 나노다중에멀젼 전달체의 크기 및 다분산 지수2) Size and polydispersity index of concentrated whey protein nano multi emulsion carrier according to heat treatment temperature

실시예 1과 10 내지 16의 열처리 온도에 따른 크기 또한 큰 차이 없이 176 ~ 181 nm의 크기를 지니는 나노다중에멀젼 전달체가 형성되었다. 열처리 온도에 따른 다분산 지수도 처리구간에 따른 큰 차이 없이 0.171 ~ 0.200 범위로 균일한 크기의 다중에멀젼이 형성되었다. 이로부터 열처리 온도는 나노다중에멀젼 전달체의 크기와 다분산 지수에 큰 영향을 미치지 않음을 확인하였다.A nano multi-emulsion carrier having a size of 176 to 181 nm was formed without a large difference in magnitude according to the heat treatment temperatures of Examples 1 and 10 to 16. The polydispersity index according to the heat treatment temperature was in the range of 0.171 ~ 0.200 without significant difference according to the treatment period. From this, it was confirmed that the heat treatment temperature did not affect the size and polydispersity index of the nano multi emulsion transporter.

3) CaCl2 농도에 따른 농축유청단백질 나노다중에멀젼 전달체의 크기 및 다분산 지수3) The size and polydispersity index of concentrated whey protein nano multi emulsion carrier according to CaCl 2 concentration

실시예 1과 17 내지 20의 염화칼슘(CaCl2) 농도에 따른 에멀젼의 크기는 염화칼슘을 첨가하지 않은 처리구에 비해 에멀젼의 크기가 줄어드는 것을 확인하였고, 다분산 지수는 염화칼슘의 농도에 상관없이 0.168 ~ 0.204로 균일한 크기의 에멀젼이 형성되었음을 확인하였다. 이로부터 가교제인 염화칼슘을 첨가할 경우 나노다중에멀젼 전달체의 크기가 줄어드는 것을 확인하였다.The size of the emulsion according to the concentration of calcium chloride (CaCl 2 ) in Examples 1 and 17 to 20 was found to be smaller than that of the calcium chloride-free treatment. The polydispersity index was 0.168 to 0.204 , It was confirmed that an emulsion having a uniform size was formed. From this, it was confirmed that when the crosslinking agent calcium chloride is added, the size of the nano multi-emulsion carrier decreases.

4) 1차 및 2차 균질 유무와 균질 속도에 따른 농축유청단백질 나노다중에멀젼 전달체의 크기 및 다분산 지수4) The size and polydispersity index of concentrated whey protein nano multi-emulsion carrier according to the homogeneity and primary and secondary homogenization rates

실시예 1과 21 내지 28의 1차 및 2차 균질 유무와 균질 속도에 따른 에멀젼의 크기 변화 측정 결과, 처리구간 큰 차이 없이 177 ~ 191 nm 크기의 나노에멀젼이 형성되었으며, 다분산 지수 0.169~0.199 로 균일한 크기의 에멀젼이 형성되었다. 이로부터, 1차 및 2차 균질 유무와 속도는 나노다중에멀젼 전달체의 크기와 다분산 지수에 영향을 미치지 않음을 확인하였다.As a result of measurement of the size change of the emulsion according to the homogenization rate and the primary and secondary homogeneity of Examples 1 and 21 to 28, a nanoemulsion having a size of 177 to 191 nm was formed without a large difference in the treatment interval, and a polydispersity index of 0.169 to 0.199 To form an emulsion of uniform size. From these results, it was confirmed that the presence and speed of primary and secondary homogeneity did not affect the size and polydispersity index of the nano multi emulsion transporter.

5) W1 phase의 계면활성제 첨가 유무와 1차 및 2차 초음파 처리 유무에 따른 농축유청단백질 나노다중에멀젼 전달체의 크기 및 다분산 지수5) Whether the addition of surfactant in the W 1 phase and the size and polydispersity index of the concentrated whey protein nano multi emulsion carrier with and without primary and secondary sonication

실시예 1, 29, 비교예 3내지 6의 W1 phase의 계면활성제 첨가 유무와 1차 및 2차 초음파 처리 유무에 따른 에멀젼의 크기 및 다분산 지수 측정결과를 도 3 및 도 4에 도시하였다. 3 and 4 show the results of measurement of the size and polydispersity index of the emulsion according to whether or not the surfactant is added to the W 1 phase of Examples 1 and 29 and Comparative Examples 3 to 6 and whether or not the first and second ultrasonic treatments have been performed.

W1 phase에 계면활성제를 첨가한 뒤 초음파 처리를 조절한 결과, 1차와 2차 초음파 처리를 모두 실시한 경우와 2차 초음파 처리만 실시 한 경우, 큰 차이 없이 178 ~ 180 nm의 크기와 0.180 ~ 0.200의 다분산 지수로 균일한 분포를 나타내었다. 그러나 1차 초음파 처리만 실시 한 경우, 다분산 지수는 0.146으로 균일한 에멀젼이 형성되었으나, 크기가 271 nm로 증가 하였다. 1차 및 2차 초음파 처리를 실시하지 않은 경우 에멀젼 크기는 860 nm, 다분산 지수는 0.607로 크기가 크고 균일하지 않은 에멀젼이 형성되었다.As a result of controlling the ultrasonic treatment after addition of the surfactant to the W 1 phase, the size of 178 ~ 180 nm and the size of 0.180 ~ 180 nm, both of the first and second ultrasonic treatment and the second ultrasonic treatment, And a uniform distribution with a polydispersity index of 0.200. However, when only the first ultrasonic treatment was performed, the polydispersity index was 0.146, and a uniform emulsion was formed, but the size increased to 271 nm. The emulsion size was 860 nm and the polydispersity index was 0.607 when the first and second ultrasonic treatment were not performed, resulting in a large and nonuniform emulsion.

W1 phase에 계면활성제를 첨가 하지 않고 초음파 처리를 조절 한 결과, 1차 초음파 처리만 실시한 경우 에멀젼 크기는 4,813 nm, 다분산 지수 0.651으로 크고 균일하지 않은 에멀젼이 형성되었으며, 초음파 처리를 하지 않은 경우 크기 4,203 nm, 다분산 지수 0.589로 크기가 크고 균일하지 않은 에멀젼이 형성되었다.
As a result of controlling the ultrasonic treatment without addition of a surfactant in the W 1 phase, the emulsion size was 4,813 nm and the polydispersity index was 0.651 when the first ultrasonic treatment was performed. As a result, a large and uneven emulsion was formed. The size was 4,203 nm and the polydispersity index was 0.589. Large and uneven emulsion was formed.

상기 결과로부터 W1 phase의 계면활성제 첨가 여부와 2차 초음파 처리 여부가 나노 크기의 다중에멀젼을 형성하는데 핵심적인 공정요인으로 작용함을 확인하였다.
From the above results, it was confirmed that the addition of the surfactant in the W 1 phase and the presence of the second ultrasonic treatment act as a key process factor for forming the nano-sized multiple emulsion.

[표 3] 농축유청단백질 나노다중에멀젼 전달체의 크기[Table 3] Size of Concentrated Whey Protein Nano Multi Emulsion Conjugate

Figure pat00003

Figure pat00003

6) 친수성 및 소수성 기능성 물질 첨가 유무에 따른 농축유청단백질 나노다중에멀젼 전달체의 크기 및 다분산 지수6) Size and polydispersity index of concentrated whey protein nanomultiple emulsion carriers with or without addition of hydrophilic and hydrophobic functional substances

실시예 30, 31 및 34의 비타민 C, DHA 및 비타민 E첨가 유무에 따른 농축유청단백질 나노다중에멀젼 전달체의 크기를 측정하여 도시하였다(도 5). 다중에멀젼을 사용하지 않고 물에 DHA를 첨가할 경우 크기 67,160 nm, 다분산 지수 0.668로 크기가 매우 크고 균일하지 않은 에멀젼이 관찰되었다. 이로부터, 소수성 기능성 물질인 DHA를 나노다중에멀젼에 포집하지 않고 물에 첨가할 경우 물에 잘 용해되지 않고 DHA가 물에 균일하게 분산되지 않아 식품에 적용하기 힘든 단점을 지니는 것을 확인하였다. 반면에 DHA를 나노다중에멀젼 전달체에 포집할 경우 크기 177 nm, 다분산 지수 0.176 으로 직접 DHA를 물에 첨가할 경우와 비교하여 DHA의 식품 적용성이 향상됨을 알 수 있었다.The sizes of the concentrated whey protein nano multi-emulsion carriers according to the presence or absence of vitamin C, DHA and vitamin E addition in Examples 30, 31 and 34 were measured (FIG. 5). When DHA was added to water without using multiple emulsions, a very large and nonuniform emulsion was observed with a size of 67,160 nm and a polydispersity index of 0.668. From these results, it was confirmed that DHA, which is a hydrophobic functional substance, is not dissolved in water when DHA is added to water without collecting it in nano multiple emulsion, and DHA is not uniformly dispersed in water and thus it is difficult to apply to food. On the other hand, when the DHA was collected in the nanoemultiple emulsion carrier, the size of the DHA was improved to 177 nm and the polydispersity index was 0.176.

나노다중에멀젼 전달체 이용시 DHA를 효과적으로 수용액에 분산시킬 수 있어 식품에 적용하기 용이한 장점을 지니는 것을 확인하였다. 또한 DHA 뿐만 아니라 비타민 C 및 비타민 E를 첨가한 농축유청단백질 나노다중에멀젼 전달체의 경우에도 에멀젼 크기(181 nm)와 다분산 지수(0.172)에 큰 차이가 없음을 확인하였다.It was confirmed that DHA can be effectively dispersed in an aqueous solution when the nano multi-emulsion carrier is used, and thus it is easy to apply to foods. It was also confirmed that there was no significant difference between the emulsion size (181 nm) and the polydispersity index (0.172) of the concentrated whey protein nanomultiple emulsion carrier containing not only DHA but also vitamin C and vitamin E.

이로부터 농축유청단백질 나노다중에멀젼 전달체는 친수성 및 소수성 기능성 물질을 성공적으로 전달 가능하며 이들의 식품 적용성을 증진시킬 수 있음을 확인하였다.From these results, it was confirmed that the concentrated whey protein nano multi - emulsion carrier can successfully deliver hydrophilic and hydrophobic functional materials and improve their application to food.

7) 농축유청단백질 나노다중에멀젼 전달체의 제타전위7) Zeta potential of concentrated whey protein nano multi-emulsion carrier

농축유청단백질 나노다중에멀젼 전달체의 제타전위는 처리구간 별로 큰 차이 없이 -18.5 ~ 30.3 mV의 값을 지니는 것을 확인하였다.
The zeta potential of the concentrated whey protein nano multi emulsion transporter was found to be in the range of -18.5 ~ 30.3 mV with no significant difference between treatments.

[시험예 3] 농축유청단백질 나노다중에멀젼 전달체의 유식품 적용 안정성 평가[Test Example 3] Evaluation of stability of application of concentrated whey protein nano multi-emulsion carrier to milk food

유식품 저장 조건에 따른 농축유청단백질 나노다중에멀젼 전달체의 안정성 평가는 에멀젼 크기와 다분산 지수 변화를 통해 평가하였다.The stability of concentrated whey protein nanomultiple emulsion carriers according to food storage conditions was evaluated by changing emulsion size and polydispersity index.

유식품은 우유, 요구르트, 치즈 저장 조건에서 측정하였다 (표 4). 우유 저장 조건은 실시예 1로 제조한 나노다중에멀젼 1 mL와 증류수 9 mL를 혼합한 후 0.1 M NaOH를 이용하여 pH를 6.7로 조절하였고, 요구르트 저장 조건은 나노다중에멀젼 1 mL와 증류수 9 mL를 혼합한 후 0.2 M HCl을 이용하여 pH 4.6으로 조절하였으며, 치즈 저장 조건은 4% NaCl이 함유된 증류수 9 mL에 나노다중에멀젼 1 mL를 혼합한 후 0.2 M HCl을 이용하여 pH를 5.8로 조절하였다. 각각의 유식품 조건에 적용된 농축유청단백질 나노다중에멀젼 전달체는 4℃에서 14일간 보관하였으며, 0, 3, 6, 9, 12, 14일 후 에멀젼 크기와 다분산 지수를 측정하였다.Milk, yogurt and cheese storage conditions were measured (Table 4). Milk storage conditions were 1 mL of the nano multi emulsion prepared in Example 1 and 9 mL of distilled water and the pH was adjusted to 6.7 using 0.1 M NaOH. The yogurt storage conditions were 1 mL of nano multi emulsion and 9 mL of distilled water After mixing, the pH was adjusted to 4.6 using 0.2 M HCl. The cheese storage conditions were as follows: 1 mL of nanoemulti-emulsion was mixed with 9 mL of distilled water containing 4% NaCl, pH was adjusted to 5.8 with 0.2 M HCl . The enriched whey protein nanomultiple emulsion carrier applied to each food condition was stored at 4 ℃ for 14 days and emulsion size and polydispersity index were measured at 0, 3, 6, 9, 12 and 14 days.

그 결과 유식품 종류에 상관없이 4℃에서 14일의 저장기간 동안 나노 다중에멀젼 전달체는 180 ~ 193 nm의 크기와 0.128 ~ 0.217의 다분산 지수를 유지하였다. 본 발명에서 제조한 농축유청단백질 나노다중에멀젼 전달체는 우유, 요구르트, 치즈 등과 같은 식품에 첨가 가능하며 첨가 후 저장 기간 동안 안정성을 유지하기 때문에 식품 적용성이 뛰어남을 확인하였다.
As a result, during storage period of 14 days at 4 ℃ regardless of the type of food, the nanomultiple emulsion carrier maintained a size of 180 ~ 193 nm and a polydispersity index of 0.128 ~ 0.217. The concentrated whey protein nano multi-emulsion carrier prepared in the present invention can be added to foods such as milk, yogurt, cheese and the like,

[표 4] 농축유청단백질 다중에멀젼 전달체의 유식품별 적용 안정성 평가[Table 4] Evaluation of application stability of concentrated whey protein multi-emulsion carrier by milk food

Figure pat00004

Figure pat00004

[시험예 4] 농축유청단백질 나노다중에멀젼 전달체의 과산화 물가 측정[Test Example 4] Measurement of peroxide value of concentrated whey protein nano multi-emulsion carrier

실시예 30 내지 34의 방법으로 제조한 농축유청단백질 나노다중에멀젼 전달체의 DHA 포집효과 및 항산화제인 비타민 C와 E의 상승효과가 DHA의 산패에 미치는 효과 측정을 위해 시료를 4℃에서 12 일간 저장하면서 0, 3, 6, 9 및 12일 째에 각각 시료를 취하여 ISO 3976 (2006/IDF 74, 2006) Milk fat- determination of peroxide value법에 따라 505 nm에서 흡광도를 측정하여 평가하였다.To measure the effects of DHA harvesting and the synergistic effects of antioxidants, vitamin C and E, on the rancidity of DHA in the concentrated whey protein nano multi-emulsion vehicle prepared by the methods of Examples 30 to 34, samples were stored at 4 ° C for 12 days The samples were taken at 0, 3, 6, 9 and 12 days and absorbance was measured at 505 nm according to ISO 3976 (2006 / IDF 74, 2006) Milk determination-of peroxide value method.

과산화 물가(peroxide value)는 DHA의 산패를 측정하는 방법으로, DHA를 농축유청단백질 나노다중에멀젼에 포집하지 않고 직접 물에 첨가한 처리구의 과산화물가(PV = 0.863) 와 비교하여 나노다중에멀젼에 DHA를 포집한 처리구 및 항산화제를 첨가한 처리구의 과산화 물가(PV=0.673~0.757)가 현저히 감소되는 것을 확인하였다. 즉, DHA를 나노다중에멀젼에 항산화제와 함께 포집할 경우 DHA의 산패가 유의적으로 감소되었다.
Peroxide value is a method to measure the rancidity of DHA. DHA was added to the nano-multiple emulsion in comparison with the peroxide value (PV = 0.863) of the treatment water directly added to water without collecting DHA in the concentrated whey protein nano multi emulsion. It was confirmed that the peroxide value (PV = 0.673-0.757) of the treatments added with the collected treatments and the antioxidants was remarkably reduced. In other words, when the DHA was collected in the nano multi emulsion together with the antioxidant, the rancidity of DHA was significantly decreased.

[표 5] 농축유청단백질 나노다중에멀젼 전달체의 과산화 물가[Table 5] Peroxide value of concentrated whey protein nano multi-emulsion carrier

Figure pat00005

Figure pat00005

[시험예 5] 농축유청단백질 나노다중에멀젼 전달체의 DHA 이취 측정[Test Example 5] Measurement of DHA concentration of concentrated whey protein nano multi-emulsion carrier

나노다중에멀젼의 DHA 이취 저감률 측정은 가스 크로마토그래피-질량분석기(gas chromatography-mass spectrometry, GC/MS; Agilent, Korea)를 이용하여 분석하였다. 컬럼은 DB 1701(Agilent, Korea), 운반 가스(carrier gas)는 1.5 mL/분 유속의 헬륨, 분사 온도는 250 ℃을 사용하였다. 물에 DHA를 첨가한 처리구와 실시예 1과 2, 시험예 5방법으로 나노다중에멀젼을 40 ℃에서 10일간 보관하면서 0, 5, 10일 째에 시료를 추출하였다. 시료 추출은 고체상미량추출법 (solid-phase microextraction, SPME; 57310-U, Supelco, Korea)을 이용하였다.The DHA reduction rate of the nano-multiple emulsion was analyzed by gas chromatography-mass spectrometry (GC / MS, Agilent, Korea). The column was DB 1701 (Agilent, Korea), the carrier gas was helium at a flow rate of 1.5 mL / min, and the injection temperature was 250 ° C. The samples were extracted at 0, 5, and 10 days while the nano-multiple emulsion was stored at 40 DEG C for 10 days by the treatment with DHA added to water and the methods of Examples 1 and 2 and Test Example 5. Sample extraction was performed using solid-phase microextraction (SPME; 57310-U, Supelco, Korea).

표 6 ~ 9는 농축유청단백질 나노다중에멀젼 전달체를 이용한 DHA 산패관련 이취 성분 ((E,E)-2,4-heptadienal, 3,6-nonadienal, 3,5-octadien-2-one, 1, 3,5-octatriene) 실험결과를 나타 낸 것으로 DHA를 물에 직접 첨가한 경우 저장기간에 따라 DHA 산패 관련 이취 성분 ((E,E)-2,4-heptadienal, 3,6-nonadienal, 3,5-octadien-2-one, 1, 3,5-octatriene)들이 검출되었으며 저장기간이 길어질수록 증가하였음을 확인하였다. 그러나 DHA를 농축유청단백질 나노다중에멀젼에 포집하거나, 항산화제인 비타민 C와 E를 함께 포집한 경우, 40℃에서 5일, 10일 동안 보관한 경우에도 DHA 산패 관련 이취 성분 생성이 매우 적음을 확인하였다. 결과적으로 나노다중에멀젼을 이용하여 DHA만을 포집하거나 비타민 C, 비타민 E를 포집한 경우 기존 DHA의 산패로 인한 이취 생성 문제를 효과적으로 저감시킬 수 있음을 확인하였다.
Table 6 and Table 9 show the DHA rancidity related odor components ((E, E) -2,4-heptadienal, 3,6-nonadienal, 3,5-octadien- (E, E) -2,4-heptadienal, 3,6-nonadienal, 3, 6-octadriene, DHA, 5-octadien-2-one, 1, 3,5-octatriene) were detected and increased with increasing storage period. However, when DHA was collected in a concentrated whey protein nano-multiple emulsion or when antioxidants such as vitamin C and E were collected together, it was confirmed that even when stored at 40 ° C for 5 days and 10 days, . As a result, it was confirmed that when the nano-multiple emulsion was used to collect only DHA or to collect vitamin C and vitamin E, it is possible to effectively reduce the generation of odor due to rancidity of existing DHA.

[표 6] 저장기간에 따른 DHA 이취관련 물질인 (E,E)-2,4-heptadienal의 피크 면적 (단위 = 1,000) 변화[Table 6] Peak area (unit: 1,000) of (E, E) -2,4-heptadienal, which is a DHA odorant related substance,

Figure pat00006

Figure pat00006

[표 7] 저장기간에 따른 DHA 이취관련 물질인 3,6-nonadienal의 피크 면적 (단위 = 1,000) 변화[Table 7] Changes in peak area (unit = 1,000) of 3,6-nonadienal, a DHA odorant-related substance,

Figure pat00007

Figure pat00007

[표 8] 저장기간에 따른 DHA 이취관련 물질인 3,5-octadiene-2-one의 피크 면적 (단위 = 1,000) 변화[Table 8] Peak area (unit = 1,000) of 3,5-octadiene-2-one, a DHA odorant-related substance,

Figure pat00008

Figure pat00008

[표 9] 저장기간에 따른 DHA 이취관련 물질인 1, 3,5-octatriene 피크 면적 (단위 = 1,000) 변화[Table 9] Change in peak area (unit = 1,000) of 1,3,5-octatriene, a DHA-related substance, depending on storage period

Figure pat00009
Figure pat00009

Claims (9)

a) 농축유청단백질에 선택적으로 친수성 기능성 물질을 첨가하여 제조한 수용액을 열처리하는 단계;
b) 상기 수용액에 계면활성제를 첨가하여 교반하는 단계;
c) MCT (medium-chain triglyceride) 오일을 포함하는, 식품에 첨가 가능한 오일 중에서 선택된 어느 하나의 오일에 레시틴을 첨가하고 냉각한 후 소수성 기능성 물질을 첨가한 오일을 교반하는 단계;
d) 상기 b)단계의 수용액과 c)단계의 오일을 섞은 후 균질기로 혼합물을 제조하는 단계;
e) 상기 d)단계의 혼합물에 염화칼슘을 첨가한 후 교반하여 단일에멀젼을 제조하는 단계;
f) 상기 단일에멀젼과 열처리 된 농축유청단백질 용액에 계면활성제를 첨가한 수용액과 혼합하는 단계; 및
g) 상기 f) 단계에서 얻은 물질을 균질기로 혼합한 후 초음파 처리하여 나노다중에멀젼을 제조하는 단계;
를 포함하는 농축유청단백질 다중에멀젼 전달체의 제조방법.
a) heat treating an aqueous solution prepared by adding a hydrophilic functional substance to a concentrated whey protein;
b) adding and stirring the surfactant to the aqueous solution;
c) adding lecithin to any one of the oils selected from food-addable oils containing medium-chain triglyceride (MCT) oil, cooling and stirring the oil added with the hydrophobic functional material;
d) mixing the aqueous solution of step b) with the oil of step c) and then preparing a mixture with a homogenizer;
e) adding calcium chloride to the mixture of step d) and stirring to prepare a single emulsion;
f) mixing the single emulsion and the heat-treated concentrated whey protein solution with an aqueous solution to which a surfactant has been added; And
g) mixing the material obtained in step f) with a homogenizer and subjecting the material to ultrasonic treatment to prepare a nano-multiple emulsion;
&Lt; / RTI &gt; wherein the method comprises the steps of:
제 1항에 있어서,
상기 a) 단계의 농축유청단백질은 0.01 내지 19 % (w/v)의 범위인 것을 특징으로 하는 제조방법.
The method according to claim 1,
Wherein the concentrated whey protein in step a) is in the range of 0.01 to 19% (w / v).
제 1항에 있어서,
상기 a) 단계에서 친수성 기능성 물질은 비타민 C 및 그 친수성 유도체들, 비타민 B3, 비타민 B5, 비타민 H 등의 각종 친수성 비타민 및 그 유도체, 엽산(folic acid), 카테킨(catechine), 아데노신, 알부틴 아세틸글루코사민, 마데카소사이드를 포함한 센텔라아시아티카 추출물 및 셀레늄아스파테이트로 이루어진 군으로부터 선택된 하나 이상인 것을 특징으로 하는 제조방법.
The method according to claim 1,
In the step a), the hydrophilic functional material may include various hydrophilic vitamins and derivatives thereof such as vitamin C and its hydrophilic derivatives, vitamin B3, vitamin B5 and vitamin H, folic acid, catechine, adenosine, arbutin acetyl glucosamine , Centella asiatica extract including madecassoside, and selenium aspartate.
제 1항에 있어서,
상기 c) 단계에서 소수성 기능성 물질은 DHA(Docosahexaenoic acid), EPA (Eicosapentaenoic acid), 캡사이신(capsaicin) 및 쿼세틴으로 이루어진 군으로부터 선택된 하나 이상인 것을 특징으로 하는 제조방법.
The method according to claim 1,
Wherein the hydrophobic functional material is at least one selected from the group consisting of DHA (Docosahexaenoic acid), EPA (Eicosapentaenoic acid), capsaicin, and quercetin in step c).
제 1항에 있어서,
상기 d) 단계에서 혼합물을 추가로 초음파 처리하는 제조방법.
The method according to claim 1,
Wherein the mixture is further ultrasonicated in step d).
제 1항에 있어서,
상기 f) 단계의 단일에멀젼에 첨가하는 농축유청단백질은 계면활성제가 추가로 첨가된 것을 특징으로 하는 제조방법.
The method according to claim 1,
Wherein the concentrated whey protein added to the single emulsion of step f) is further added with a surfactant.
제 1항 또는 제 6항에 있어서,
상기 계면활성제는 폴리솔베이트(polysorbate) 20, 폴리솔베이트 40, 폴리솔베이트 60 또는 폴리솔베이트 80인 것을 특징으로 하는 제조방법.
7. The method according to claim 1 or 6,
Wherein the surfactant is a polysorbate 20, polysorbate 40, polysorbate 60, or polysorbate 80.
제 1항 또는 제 5항에 있어서,
상기 초음파 처리는 순차적으로 65 내지 75, 45 내지 55, 및 25 내지 35 와트(W)에서 각각 1 내지 5분간 처리하는 것을 특징으로 하는 제조방법.
6. The method according to claim 1 or 5,
Wherein the ultrasonic treatment is sequentially performed at 65 to 75, 45 to 55, and 25 to 35 W (W) for 1 to 5 minutes, respectively.
제 1항 내지 제 6항 중 어느 한 항의 제조방법에 의해 제조되는 농축유청단백질 나노다중에멀젼 전달체.A concentrated whey protein nano multi-emulsion carrier prepared by the method of any one of claims 1 to 6.
KR1020140009118A 2014-01-24 2014-01-24 Functional whey protein concentrate nanomultiple emulsion delivery system using whey protein concentrate and preparation method thereof KR101577576B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140009118A KR101577576B1 (en) 2014-01-24 2014-01-24 Functional whey protein concentrate nanomultiple emulsion delivery system using whey protein concentrate and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140009118A KR101577576B1 (en) 2014-01-24 2014-01-24 Functional whey protein concentrate nanomultiple emulsion delivery system using whey protein concentrate and preparation method thereof

Publications (2)

Publication Number Publication Date
KR20150088606A true KR20150088606A (en) 2015-08-03
KR101577576B1 KR101577576B1 (en) 2015-12-15

Family

ID=53872983

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140009118A KR101577576B1 (en) 2014-01-24 2014-01-24 Functional whey protein concentrate nanomultiple emulsion delivery system using whey protein concentrate and preparation method thereof

Country Status (1)

Country Link
KR (1) KR101577576B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190016216A (en) * 2017-08-08 2019-02-18 한국식품연구원 manufacturing method of nanoemulsion composition containing quercein and nanoemulsion composition containing quercein prepared using the method
KR20200048097A (en) * 2018-10-29 2020-05-08 건국대학교 산학협력단 Vegetable meat prepared with vegetable fat and method for preparing the same
CN114099372A (en) * 2021-08-20 2022-03-01 武汉轻工大学 Preparation method and application of bitter gourd seed oil multilayer emulsion

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190016216A (en) * 2017-08-08 2019-02-18 한국식품연구원 manufacturing method of nanoemulsion composition containing quercein and nanoemulsion composition containing quercein prepared using the method
KR20200048097A (en) * 2018-10-29 2020-05-08 건국대학교 산학협력단 Vegetable meat prepared with vegetable fat and method for preparing the same
CN114099372A (en) * 2021-08-20 2022-03-01 武汉轻工大学 Preparation method and application of bitter gourd seed oil multilayer emulsion
CN114099372B (en) * 2021-08-20 2023-11-10 武汉轻工大学 Preparation method and application of balsam pear seed oil multilayer emulsion

Also Published As

Publication number Publication date
KR101577576B1 (en) 2015-12-15

Similar Documents

Publication Publication Date Title
Liang et al. Advances in research on bioactivity, metabolism, stability and delivery systems of lycopene
Ma et al. Preparation of curcumin-loaded emulsion using high pressure homogenization: Impact of oil phase and concentration on physicochemical stability
Borba et al. Physical and chemical stability of β-carotene nanoemulsions during storage and thermal process
Zhu et al. Preparation and characterization of novel nanocarriers containing krill oil for food application
Pando et al. Resveratrol entrapped niosomes as yoghurt additive
Chen et al. Gypenosides as natural emulsifiers for oil-in-water nanoemulsions loaded with astaxanthin: Insights of formulation, stability and release properties
Li et al. Nanoemulsion-based delivery approaches for nutraceuticals: Fabrication, application, characterization, biological fate, potential toxicity and future trends
Wang et al. Microencapsulation of tuna oil fortified with the multiple lipophilic ingredients vitamins A, D3, E, K2, curcumin and coenzyme Q10
Shu et al. Formulation and stability assessment of ergocalciferol loaded oil-in-water nanoemulsions: Insights of emulsifiers effect on stabilization mechanism
US10898442B2 (en) Microencapsulates containing stabilised lipid, and methods for the production thereof
Wang et al. Enhanced stability of an emulsion enriched in unsaturated fatty acids by dual natural antioxidants fortified in both the aqueous and oil phases
Liang et al. Enhancing lycopene stability and bioaccessibility in homogenized tomato pulp using emulsion design principles
EP2676553B1 (en) Carotenoid-containing composition
AU2015309797A1 (en) Emulsion composition
Osanlou et al. Preparation of solid lipid nanoparticles and nanostructured lipid carriers containing zeaxanthin and evaluation of physicochemical properties
Shi et al. Effect of enzymatic degraded polysaccharides from Enteromorpha prolifera on the physical and oxidative stability of fish oil-in-water emulsions
Taktak et al. Improved antioxidant activity and oxidative stability of spray dried European eel (Anguilla anguilla) oil microcapsules: Effect of emulsification process and eel protein isolate concentration
Saxena et al. Technological aspects of nanoemulsions and their applications in the food sector
Zimmer et al. Methods of protection and application of carotenoids in foods-A bibliographic review
KR101577576B1 (en) Functional whey protein concentrate nanomultiple emulsion delivery system using whey protein concentrate and preparation method thereof
Chaves et al. Unpurified soybean lecithins impact on the chemistry of proliposomes and liposome dispersions encapsulating vitamin D3
JP2009185023A (en) Powder composition, its production method and food composition, cosmetic composition and medical composition containing the powder composition
JP2009114184A (en) Powder preparation, food composition, cosmetic composition, and pharmaceutical composition
JP2013075850A (en) Composition
Hamed et al. Encapsulation of microalgal-based carotenoids: recent advances in stability and food applications

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20181016

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20191125

Year of fee payment: 5