KR20150066392A - Alloy for battery electrode plate - Google Patents

Alloy for battery electrode plate Download PDF

Info

Publication number
KR20150066392A
KR20150066392A KR1020130151875A KR20130151875A KR20150066392A KR 20150066392 A KR20150066392 A KR 20150066392A KR 1020130151875 A KR1020130151875 A KR 1020130151875A KR 20130151875 A KR20130151875 A KR 20130151875A KR 20150066392 A KR20150066392 A KR 20150066392A
Authority
KR
South Korea
Prior art keywords
alloy
battery
lead
corrosion
electrode plate
Prior art date
Application number
KR1020130151875A
Other languages
Korean (ko)
Other versions
KR101583880B1 (en
Inventor
손창범
정성철
이태승
Original Assignee
현대자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR1020130151875A priority Critical patent/KR101583880B1/en
Publication of KR20150066392A publication Critical patent/KR20150066392A/en
Application granted granted Critical
Publication of KR101583880B1 publication Critical patent/KR101583880B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C11/00Alloys based on lead
    • C22C11/06Alloys based on lead with tin as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

Introduced is an alloy for a battery electrode plate comprising: 1.8-2.0 wt% of Sn, 0.07-0.1 wt% of Ca, 0.02-0.04 wt% of Ag, and the remainder of Pb. The present invention has a purpose of preventing a termination of an early lifecycle for a lead battery due to plate corrosion. In accordance with the present invention, in order to achieve this purpose, an alloy for a battery electrode plate consists of 1.8-2.0 wt% of Sn, 0.07-0.1 wt% of Ca, 0.02-0.04 wt% of Ag, and the remainder of Pb. Preferably, the alloy for the battery electrode plate consists of 2.0 wt% of Sn, 0.07 wt% of Ca, 0.02 wt% of Ag, and the remainder of Pb. In addition, the alloy for the battery electrode plate has a tension strength of 65 MPa or more, and has a corrosion rate of 18% or less.

Description

배터리기판용 합금 {ALLOY FOR BATTERY ELECTRODE PLATE}{ALLOY FOR BATTERY ELECTRODE PLATE}

본 발명은 기판부식으로 인한 납 배터리의 조기 수명종료를 막고, 고온 내구성을 강화할 수 있는 배터리기판용 합금에 관한 것이다.
The present invention relates to an alloy for a battery substrate, which can prevent premature life termination of a lead battery due to substrate corrosion and enhance high temperature durability.

지금까지 납축전지용 그리드 합금으로 납(Pb)-칼슘(Ca)-주석(Sn)계 합금을 사용해 왔으나 이러한 합금구성만으로는 가혹한 사용환경(고온 및 과충전 현상)에 충분히 대응하지 못해 그리드의 부식이나 부식의 성장(growth)으로 인한 변형이 발생하여 납축전지의 수명이 짧아지고 있는 것이 문제로 지적되고 있다. 이에 따라 그리드의 내부식성, 기계적 강도 개선 및 성장 변형의 억제가 요구되고 있다.Until now, lead (Pb) - calcium (Ca) - tin (Sn) based alloys have been used as lead-acid battery grid alloys. However, these alloy compositions alone can not cope with harsh environments (high temperatures and overcharging) It is pointed out that the life of the lead-acid battery is shortened due to the deformation due to the growth of the lead-acid battery. Accordingly, it is required to improve the corrosion resistance, the mechanical strength, and the growth deformation of the grid.

먼저, 내부식성 향상을 위하여 USP 4137378, USP 4343872은 고함량 납(Pb)-칼슘(Ca)-주석(Sn) 합금에 스트론튬(Sr)을 첨가하여 합금 조직을 미세화시켜 기계적 강도 및 내식성을 향상시킨 납축전지 그리드 합금이 제공된 바 있다. First, USP 4137378 and USP 4343872 improve the corrosion resistance by adding strontium (Sr) to a high-content lead (Pb) -calcium (Ca) -statin (Sn) alloy to improve the mechanical strength and corrosion resistance A lead-acid battery grid alloy has been provided.

또한, JP-0077076은 납(Pb)-칼슘(Ca)-주석(Sn) 합금에 0.01~3.0중량%의 스트론튬(Sr), 0.01~0.3중량%의 바륨(Ba), 0.01~0.3중량% 리튬(Li) 중 한 가지이상을 첨가한 그리드 합금을 개시하였고, JP-2004-103679는 0.01~0.05중량%의 칼슘(Ca), 1.3~3.0중량%의 주석(Sn), 0.05~0.4중량%의 스트론튬(Sr), 0.05~0.2중량% 바륨(Ba)이 첨가된 그리드 합금으로 기계적 강도 및 내부식성이 향상된 납축전지용 그리드 합금을 개시한 바 있다.In addition, JP-0077076 discloses a method for manufacturing a lithium secondary battery, which comprises adding 0.01 to 3.0% by weight of strontium (Sr), 0.01 to 0.3% by weight of barium (Ba), 0.01 to 0.3% by weight of lithium to a lead (Pb) -calcium (Ca) (Li). JP-2004-103679 discloses a grid alloy containing 0.01 to 0.05% by weight of calcium (Ca), 1.3 to 3.0% by weight of tin (Sn), 0.05 to 0.4% by weight of Strontium (Sr) and 0.05 to 0.2% by weight of barium (Ba) added to a grid alloy for a lead-acid battery having improved mechanical strength and corrosion resistance.

그러나 각각의 경우 고 함량의 주석(Sn)성분 또는 저 함량의 칼슘(Ca)성분으로 이루어진 합금에 스트론튬, 바륨, 리튬을 선택적으로 합금시킴으로써 합금조직을 미세화 시켜 그리드의 부식을 방지하는 문제에만 중점을 두고 있으며, 강도와 성장변형에 대한 문제를 해소하지 못하였다. However, in each case, only alloying of strontium, barium, and lithium with a high content of tin (Sn) component or a low content of calcium (Ca) component is focused on the problem of refining the alloy structure to prevent corrosion of the grid And did not solve the problem of strength and growth deformation.

부식성 개선 뿐 아니라 강도와 부식의 성장변형을 개선할 수 있는 합금재료로서 은(Ag)이 알려져 있다. 그리드에 첨가된 소량의 은(Ag)은 부식률을 감소시킬 뿐 만 아니라 그레인 경계면으로 부식과정이 침투하는 속도를 감소시킨다. 이러한 성질은 그리드의 성장을 억제하게 하고 사용기간 동안 그리드의 완전성을 유지하게 하는 것으로 알려져 있다. 이에 따라, 납축전지의 음극 또는 포지티브 그리드로 사용될 때 납 합금의 부식을 감소시키기 위해 은을 납축전지용 그리드에 합금시키는 기술들이 소개된 바 있다. Silver (Ag) is known as an alloying material capable of improving corrosion resistance as well as strength and corrosion growth. A small amount of silver (Ag) added to the grid not only reduces the rate of corrosion, but also reduces the rate at which the corrosion process penetrates into the grain interface. This property is known to inhibit the growth of the grid and to maintain the integrity of the grid during use. Accordingly, techniques have been introduced for alloying silver to lead-acid battery grids to reduce corrosion of lead alloys when used as a cathode or positive grid of lead-acid batteries.

미국특허 제 5,298,350에서 0.025-0.06%의 칼슘, 0.3-0.7%의 주석, 0.015-0.045%의 은 및 0.008-0.012%의 알루미늄을 함유하는 자동차 납축전지 그리드용 납-칼슘-주석-은 합금을 개시하였고, 미국 특허 제5,834,141호는 0.035-0.085%의 주석, 0.002-0.035%의 은을 포함하는 그리드 합금을 개시하였다. 미국특허 제5,948,566호 에서는 0.01-0.06%의 칼슘, 0.03-1.0%의 주석, 0.01-0.06% 및 선택적으로 0.003-0.01%의 알루미늄을 합금한 그리드를 개시하였다.
Discloses a lead-calcium-tin-silver alloy for automotive lead-acid battery grids containing 0.025-0.06% calcium, 0.3-0.7% tin, 0.015-0.045% silver and 0.008-0.012% aluminum in U.S. Patent No. 5,298,350. And U.S. Patent No. 5,834,141 discloses a grid alloy comprising 0.035-0.085% tin and 0.002-0.035% silver. U.S. Patent No. 5,948,566 discloses a grid of 0.01-0.06% calcium, 0.03-1.0% tin, 0.01-0.06% and optionally 0.003-0.01% aluminum.

상기의 배경기술로서 설명된 사항들은 본 발명의 배경에 대한 이해 증진을 위한 것일 뿐, 이 기술분야에서 통상의 지식을 가진자에게 이미 알려진 종래기술에 해당함을 인정하는 것으로 받아들여져서는 안 될 것이다.
It should be understood that the foregoing description of the background art is merely for the purpose of promoting an understanding of the background of the present invention and is not to be construed as an admission that the prior art is known to those skilled in the art.

KR 10-2009-0027790 AKR 10-2009-0027790 A

본 발명은 기판부식으로 인한 납 배터리의 조기 수명종료를 막고, 고온 내구성을 강화할 수 있는 배터리기판용 합금을 제공하는데 그 목적이 있다.
It is an object of the present invention to provide an alloy for a battery substrate that can prevent premature life termination of lead batteries due to substrate corrosion and enhance high temperature durability.

상기의 목적을 달성하기 위한 본 발명에 따른 배터리기판용 합금은, Sn 1.8~2.0wt%, Ca 0.07~0.1wt%, Ag 0.02~0.04wt%, 잔부 Pb로 구성된다.In order to achieve the above object, the alloy for a battery board according to the present invention is composed of Sn 1.8 to 2.0 wt%, Ca 0.07 to 0.1 wt%, Ag 0.02 to 0.04 wt%, and the remainder Pb.

바람직하게는, 배터리기판용 합금은 Sn 2.0wt%, Ca 0.07wt%, Ag 0.02wt%, 잔부 Pb로 구성될 수 있다.Preferably, the alloy for a battery substrate may be composed of 2.0 wt% of Sn, 0.07 wt% of Ca, 0.02 wt% of Ag, and the balance Pb.

또한, 배터리기판용 합금은 인장강도가 65MPa 이상이고, 부식률이 18% 이하일 수 있다.
The alloy for a battery substrate may have a tensile strength of 65 MPa or more and a corrosion rate of 18% or less.

상술한 바와 같은 구조로 이루어진 배터리기판용 합금에 따르면, 기판부식으로 인한 납 배터리의 조기 수명종료를 막고, 고온 내구성을 강화할 수 있다.
According to the alloy for a battery substrate having the above-described structure, it is possible to prevent an early life end of the lead battery due to substrate corrosion and to enhance the high temperature durability.

도 1은 본 발명의 실시예에 따른 배터리기판용 합금
도 2는 본 발명의 실시예에 따른 배터리기판용 합금
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-
FIG. 2 is a cross-sectional view of a battery substrate according to an embodiment of the present invention.

이하에서는 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 대하여 살펴본다.Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.

본 발명은 기존 납 배터리 기판 합금 소재에 첨가물 투입 및 최적화를 통해 기판의 고온 내부식성을 향상시켰다. 기존 납배터리 기판은 주성분 납(Pb)에 기계적 강성과 부식율 개선을 위해 칼슘(Ca)과 주석(Sn)을 첨가제로 넣고 있다. 본 발명은 칼슘(Ca)과 주석(Sn)의 비율을 조정하고, 은(Ag)을 첨가하여 기판 부식율 개선 효과를 확인하였다.
The present invention improves the high temperature corrosion resistance of a substrate by adding and optimizing additives to existing lead battery substrate alloy materials. Existing lead-acid battery boards contain calcium (Ca) and tin (Sn) as additive to improve mechanical stiffness and corrosion rate in lead (Pb). In the present invention, the effect of improving the corrosion rate of the substrate was confirmed by adjusting the ratio of calcium (Ca) to tin (Sn) and adding silver (Ag).

상기의 목적을 달성하기 위한 본 발명에 따른 배터리기판용 합금은, Sn 1.8~2.0wt%, Ca 0.07~0.1wt%, Ag 0.02~0.04wt%, 잔부 Pb로 구성된다.In order to achieve the above object, the alloy for a battery board according to the present invention is composed of Sn 1.8 to 2.0 wt%, Ca 0.07 to 0.1 wt%, Ag 0.02 to 0.04 wt%, and the remainder Pb.

바람직하게는, 배터리기판용 합금은 Sn 2.0wt%, Ca 0.07wt%, Ag 0.02wt%, 잔부 Pb로 구성될 수 있다.Preferably, the alloy for a battery substrate may be composed of 2.0 wt% of Sn, 0.07 wt% of Ca, 0.02 wt% of Ag, and the balance Pb.

또한, 배터리기판용 합금은 인장강도가 65MPa 이상이고, 부식률이 18% 이하일 수 있다.
The alloy for a battery substrate may have a tensile strength of 65 MPa or more and a corrosion rate of 18% or less.

이러한 조성의 효과를 확인하기 위해 아래의 실험을 수행하였다.The following experiments were conducted to confirm the effect of this composition.

Figure pat00001
Figure pat00001

상기 시험의 방법은, 직교 배열 설계로서 요인 5개는 Sn, Ca, Bi, Ba, Ag이고, 고정인자는 냉각속도, 주조온도이며, 제어인자의 선정은 상기 표와 같다.The test method is orthogonal array design. Five factors are Sn, Ca, Bi, Ba and Ag. The fixed factor is the cooling rate and the casting temperature.

이에 다른 L18직교표는 아래와 같다.The other L18 orthogonal table is as follows.

Figure pat00002
Figure pat00002

시편의 시험평가방법은 아래와 같다.Test methods of test specimens are as follows.

Figure pat00003
Figure pat00003

도 1은 인장강도에 대한 시험결과로서, 그에 대한 정리 결과는 아래와 같다.Fig. 1 is a test result on the tensile strength, and the result of summarization is as follows.

Figure pat00004
Figure pat00004

상기 표와 도 1에서 볼 수 있듯이, 인장강도에 가장 큰 영향을 미치는 첨가물은 Sn, Ba로서, Sn의 함유량이 증가하면 (~1.5%) 기계적 특성 (경도, 인장강도)는 증가하는 경향을 보이고, Ca의 함유량이 0.07% 일때, 기계적 강도가 최대값을 보이며, Ba의 함유량이 증가할수록 기계적 강도가 증가하는 것을 알 수 있다. 따라서, 인장강도를 고려할때 Ca의 함유량은 최소 0.07wt%가 확보되어야 하는 것이다.
As can be seen from the above table and FIG. 1, the mechanical properties (hardness, tensile strength) tend to increase when Sn content is increased (~ 1.5%) as Sn and Ba as the additives having the greatest effect on tensile strength , And when the content of Ca is 0.07%, the mechanical strength shows a maximum value, and as the content of Ba increases, the mechanical strength increases. Therefore, considering the tensile strength, the content of Ca should be at least 0.07 wt%.

도 2는 부식률에 대한 시험결과로서, 그에 대한 정리 결과는 아래와 같다.Fig. 2 is a test result on the corrosion rate, and the result of the correction is as follows.

Figure pat00005
Figure pat00005

상기 표와 도 2에서 볼 수 있듯이, 부식율에 가장 큰 영향을 미치는 첨가물은 Sn, Ag이고, Sn 의 함유량이 1.5% 이상이 넘어가면 부식율은 급격히 저하되며, Ag 의 함유량이 0.02 ~0.04 %인 경우 부식율이 낮은 경향을 보인다. 따라서, 부식률을 낮추기 위해서는 Ag 의 함유량이 0.02 ~0.04wt%가 되어야 한다.
As shown in the above table and FIG. 2, Sn and Ag have the greatest effect on the corrosion rate. When the content of Sn exceeds 1.5%, the corrosion rate decreases sharply and the Ag content is 0.02 to 0.04% The corrosion rate tends to be low. Therefore, in order to lower the corrosion rate, the content of Ag should be 0.02-0.04 wt%.

즉, 기판의 기계적 강도(인장강도)를 높이기 위해서는 최소 0.07wt%의 칼슘(Ca) 이 필요하고, 부식율을 올리기 위해서는 주석의 함량이 최소 1.8wt% 이상 이어야 하며, Ag 의 함유량이 0.02 ~0.04wt%가 되어야 한다.
That is, to increase the mechanical strength (tensile strength) of the substrate, a minimum amount of 0.07 wt% of calcium is required. To increase the corrosion rate, the content of tin should be at least 1.8 wt% or more and the content of Ag should be 0.02 to 0.04 wt%.

최적 조성물에 대한 결과는 아래와 같다.The results for the optimum composition are as follows.

Figure pat00006
Figure pat00006

상술한 바와 같은 구조로 이루어진 배터리기판용 합금에 따르면, 기판부식으로 인한 납 배터리의 조기 수명종료를 막고, 고온 내구성을 강화할 수 있다.
According to the alloy for a battery substrate having the above-described structure, it is possible to prevent an early life end of the lead battery due to substrate corrosion and to enhance the high temperature durability.

본 발명은 특정한 실시예에 관련하여 도시하고 설명하였지만, 이하의 특허청구범위에 의해 제공되는 본 발명의 기술적 사상을 벗어나지 않는 한도 내에서, 본 발명이 다양하게 개량 및 변화될 수 있다는 것은 당 업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.While the present invention has been particularly shown and described with reference to specific embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the following claims It will be apparent to those of ordinary skill in the art.

Claims (4)

Sn 1.8~2.0wt%, Ca 0.07~0.1wt%, Ag 0.02~0.04wt%, 잔부 Pb로 구성된 배터리기판용 합금.An alloy for a battery substrate comprising 1.8 to 2.0 wt% of Sn, 0.07 to 0.1 wt% of Ca, 0.02 to 0.04 wt% of Ag, and the balance Pb. Sn 2.0wt%, Ca 0.07wt%, Ag 0.02wt%, 잔부 Pb로 구성된 배터리기판용 합금.2.0 wt% of Sn, 0.07 wt% of Ca, 0.02 wt% of Ag, and the balance of Pb. 청구항 1에 있어서,
인장강도가 65MPa 이상인 것을 특징으로 하는 배터리기판용 합금.
The method according to claim 1,
And a tensile strength of 65 MPa or more.
청구항 1에 있어서,
부식률이 18% 이하인 것을 특징으로 하는 배터리기판용 합금.
The method according to claim 1,
And the corrosion rate is 18% or less.
KR1020130151875A 2013-12-06 2013-12-06 Alloy for battery electrode plate KR101583880B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020130151875A KR101583880B1 (en) 2013-12-06 2013-12-06 Alloy for battery electrode plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130151875A KR101583880B1 (en) 2013-12-06 2013-12-06 Alloy for battery electrode plate

Publications (2)

Publication Number Publication Date
KR20150066392A true KR20150066392A (en) 2015-06-16
KR101583880B1 KR101583880B1 (en) 2016-01-08

Family

ID=53514802

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130151875A KR101583880B1 (en) 2013-12-06 2013-12-06 Alloy for battery electrode plate

Country Status (1)

Country Link
KR (1) KR101583880B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0817438A (en) * 1994-06-29 1996-01-19 Matsushita Electric Ind Co Ltd Lead acid battery
KR20010110488A (en) * 1999-04-03 2001-12-13 스미스 토마스 제이. A method for making positive grids and lead-acid cells and batteries using such grids
KR20030020981A (en) * 2000-08-11 2003-03-10 엑사이드 테크놀로지즈 Lead-acid batteries and positive plate and alloys therefor
KR20090027790A (en) 2007-09-13 2009-03-18 주식회사 아트라스비엑스 Grid for lead-acid battery and manufacturing method thereof
CN100588729C (en) * 2007-08-08 2010-02-10 株洲冶炼集团股份有限公司 Lead alloy, uses and manufacturing technique thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0817438A (en) * 1994-06-29 1996-01-19 Matsushita Electric Ind Co Ltd Lead acid battery
KR20010110488A (en) * 1999-04-03 2001-12-13 스미스 토마스 제이. A method for making positive grids and lead-acid cells and batteries using such grids
KR20030020981A (en) * 2000-08-11 2003-03-10 엑사이드 테크놀로지즈 Lead-acid batteries and positive plate and alloys therefor
CN100588729C (en) * 2007-08-08 2010-02-10 株洲冶炼集团股份有限公司 Lead alloy, uses and manufacturing technique thereof
KR20090027790A (en) 2007-09-13 2009-03-18 주식회사 아트라스비엑스 Grid for lead-acid battery and manufacturing method thereof

Also Published As

Publication number Publication date
KR101583880B1 (en) 2016-01-08

Similar Documents

Publication Publication Date Title
CN101656312B (en) Alloy material for high-energy accumulator grid and preparation method thereof
JP4148175B2 (en) Lead alloy and lead storage battery using the same
JP2004165149A (en) Alloy for battery grids
JP2015187990A (en) Lead storage battery
CN1065666C (en) Manganese dry battery
KR101583880B1 (en) Alloy for battery electrode plate
JP6123943B2 (en) Method for producing lead-acid battery and method for producing electrode current collector for lead-acid battery
US2860969A (en) Lead-acid accumulator alloy
ES2753241T3 (en) Positive lead-acid and alloy battery plate for it
US3881953A (en) Battery electrode grids and method of making same from a lead-calcium-lithium-tin alloy
JP2003306733A (en) Lead based alloy for lead storage battery, and lead storage battery using the same
JP2008130231A (en) Positive electrode grid for lead acid storage battery and lead acid storage battery
JPH0817438A (en) Lead acid battery
US4170470A (en) High strength lead alloy
KR20090104872A (en) Method for producing lead-base alloy grid for lead-acid battery
JP3113895B2 (en) Lead alloy for storage battery
CN104377365A (en) Positive-electrode plate alloy for lead-acid storage battery
KR101399221B1 (en) Zink-Magnesium alloy with improved hardness and tensile strength
CA1044923A (en) Ternary calcium-tin-lead alloy
JP6601654B2 (en) Control valve type lead acid battery
CN1547274A (en) Environment-friendly zinc-manganese battery cathode can
JP6455105B2 (en) Lead acid battery
KR100906062B1 (en) Manufacturing method of Grid for Lead-acid battery and manufacturing method
KR20220123082A (en) Ni-coated steel sheet and its manufacturing method
JP4502346B2 (en) Lead-based alloys for lead-acid batteries

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20181213

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20191210

Year of fee payment: 5