KR20150055676A - Method for preparing the plant producing bispecific antibody - Google Patents

Method for preparing the plant producing bispecific antibody Download PDF

Info

Publication number
KR20150055676A
KR20150055676A KR1020130137838A KR20130137838A KR20150055676A KR 20150055676 A KR20150055676 A KR 20150055676A KR 1020130137838 A KR1020130137838 A KR 1020130137838A KR 20130137838 A KR20130137838 A KR 20130137838A KR 20150055676 A KR20150055676 A KR 20150055676A
Authority
KR
South Korea
Prior art keywords
ser
val
thr
gly
leu
Prior art date
Application number
KR1020130137838A
Other languages
Korean (ko)
Inventor
고기성
이정환
황경아
Original Assignee
중앙대학교 산학협력단
대한민국(농촌진흥청장)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 중앙대학교 산학협력단, 대한민국(농촌진흥청장) filed Critical 중앙대학교 산학협력단
Priority to KR1020130137838A priority Critical patent/KR20150055676A/en
Publication of KR20150055676A publication Critical patent/KR20150055676A/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8257Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits for the production of primary gene products, e.g. pharmaceutical products, interferon
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Mycology (AREA)
  • Epidemiology (AREA)
  • Immunology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Botany (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)

Abstract

The present invention relates to a method for preparing plants capable of producing bispecific antibodies. More specifically, the method includes the steps of: (a) forming a single chain antibody by connecting the heavy chain variable region (VH) and the light chain variable region (VL) of an monoclonal antibody by a linker; (b) preparing a transgenic plant by introducing the genes of the single chain antibody formed in step (a); (c) forming another single chain antibody by connecting the heavy chain variable region (VH) and the light chain variable region (VL) of another monoclonal antibody by the linker; (d) preparing another transgenic plant by introducing the genes of the single chain antibody formed in step (c); and (e) breeding the transgenic plants prepared in the step (b) and step (d). The present invention also relates to an antibody preparation method including a step of obtaining proteins from the transgenic plants prepared by the previous preparation method. The present invention can mass-produce the bispecific antibodies by using the preparation method and mass-produce the low-cost monoclonal antibodies.

Description

이중특이항체를 생산하는 식물의 제조 방법{Method for preparing the plant producing bispecific antibody}FIELD OF THE INVENTION [0001] The present invention relates to a method for producing a bispecific antibody,

본 발명은 이중특이항체를 생산하는 식물의 제조 방법에 관한 것으로, 더욱 상세하게는 (a) 단일클론항체(monoclonal antibody)의 중쇄 가변영역(VH)과 경쇄 가변영역(VL)을 링커로 연결하여 단쇄 항체(single chain antibody)로 만드는 단계;(b) 상기 (a) 단계에서 제조된 단쇄 항체의 유전자를 식물 세포에 도입하여 형질전환된 식물 개체를 얻는 단계; (c) 상기 (a) 단계의 단일클론항체와는 다른 단일클론항체의 중쇄 가변영역(VH)과 경쇄 가변영역(VL)을 링커로 연결하여 단쇄 항체(single chain antibody)로 만드는 단계;(d) 상기 (c) 단계에서 제조된 단쇄 항체의 유전자를 식물 세포에 도입하여 형질전환된 식물 개체를 얻는 단계; 및(e) 상기 (b) 및 (d) 단계에서 제조된 형질전환 식물 개체들을 교배하는 단계를 포함하는 이중특이항체(bispecific antibody)를 생산하는 형질전환 식물의 제조방법 및 상기 제조방법에 의해 제조된 형질전환 식물로부터 단백질을 수득하는 단계를 포함하는 항체 생산 방법에 관한 것이다.
The present invention relates to a method for producing a plant producing a bispecific antibody, and more particularly, to a method for producing a bispecific antibody, which comprises (a) linking a heavy chain variable region (VH) of a monoclonal antibody and a light chain variable region (B) introducing the gene of the single chain antibody prepared in the step (a) into a plant cell to obtain a transformed plant; (c) linking a heavy chain variable region (VH) and a light chain variable region (VL) of a monoclonal antibody different from the monoclonal antibody of the step (a) by a linker to form a single chain antibody; ) Introducing the gene of the single chain antibody prepared in the step (c) into a plant cell to obtain a transformed plant; And (e) crossing the transformed plant individuals produced in steps (b) and (d) above, and a method for producing a transgenic plant producing the bispecific antibody, To obtain a protein from the transformed plant.

단일클론항체 (monoclonal antibody, mAb)는 암세포를 인식하는 기작과 인체 내의 특정세포를 recruiting하여 암세포만을 죽이는 두 가지의 역할을 갖고 있어 'guided missile' 이라고 한다. 이러한 단일항체는 화학요법(chemotherapy)나 방사선요법(radiotherapy)등과 함께 암환자에게 복합적으로 사용되는 항암치료제 중의 하나로 최근 많은 연구가 이루어지고 있는 면역단백질이다. 단일항체의 생산은 주로 동물세포를 이용한 hybridoma cell line이나 Chinese-hamster ovary (CHO) cell을 이용하여 생산하는데, 지금의 생산기술이나 능력으로는 단일항체의 늘어나는 수요를 충족시키지 못하여 몇 년 후엔 심각한 품귀현상이 일어날 예상이다. 앞으로 2015년에는 전세계적으로 300 억 달러에 달하는 치료 및 진단용 단일항체시장이 형성될 것으로 보고 있다.A monoclonal antibody (mAb) is called a 'guided missile' because it has two roles of recruiting specific cells in the body and killing cancer cells. These monoclonal antibodies are immunotherapeutic proteins that have been recently studied as one of chemotherapy and radiotherapy as well as chemotherapeutic agents that are used in combination with cancer patients. The production of monoclonal antibodies is mainly produced by using hybridoma cell lines or Chinese-hamster ovary (CHO) cells using animal cells. However, since the present production technology or ability does not satisfy the increasing demand of single antibody, The phenomenon is expected to happen. In 2015, there will be around $ 30 billion worldwide of therapeutic and diagnostic monoclonal antibody markets.

항체는 당단백질로서 글리코실레이션(glycosylation)의 요소, 구조나 위치가 항체의 biological activity (생물학적 활성), blood clearance rate, anti-tumor activity (항암활성) 에 영향을 줄 수 있어, 위에서 말한 방법들은 glycosylation machinery가 없거나 인간이나 동물의 glycosylation pattern과 다르기 때문에 그 생산 시스템으로 응용한다는데 큰 단점이 있다. 반면, 식물은 동물과 비슷한 glycosylation machinery를 갖추고 있고 antibody domains 들을 folding/assembly (조합)을 할 수 있는 endoplasmic reticulum (ER, 소포체) 이라는 subcellular compartment를 가지고 있어 항체단백질생산공장으로 이용 할 수 있는 가능성이 있다. 그러므로, 최근 전 세계적으로 주목 받고 있는 연구 분야 중 하나가 생명공학기술을 이용하여 저렴한 치료용 항체생산개발에 대한 분야이다. Antibodies are glycoproteins that can affect the biological activity, blood clearance rate, and anti-tumor activity of the antibody, because the elements, structure or location of glycosylation can affect the anticancer activity glycosylation machinery is different from human or animal glycosylation pattern. On the other hand, plants have a glycosylation machinery similar to animals and have a subcellular compartment called endoplasmic reticulum (ER) capable of folding / assembling antibody domains, making it possible to use the plant as an antibody protein production plant . Therefore, one of the research fields that have recently attracted worldwide attention is the development of inexpensive therapeutic antibody production using biotechnology.

본 발명의 발명자들은 고효율 식물복합항체 생산법에 관해 연구하던 중, 각각 특수한 모노클로날 항체를 생산하도록 형질 전환된 식물들을 교배하여 생산된 식물체에서 이중특이적(bispecific) 항체가 생산되는 것을 확인하여 본 발명을 완성하였다.
The inventors of the present invention have been studying a method for producing a high-efficiency plant conjugate antibody, confirming that a bispecific antibody is produced in a plant produced by crossing transformed plants to produce a specific monoclonal antibody, respectively Thus completing the present invention.

따라서 본 발명의 목적은 (a) 단일클론항체(monoclonal antibody)의 중쇄 가변영역(VH)과 경쇄 가변영역(VL)을 링커로 연결하여 단쇄 항체(single chain antibody)로 만드는 단계;Accordingly, an object of the present invention is to provide a method for preparing a monoclonal antibody, which comprises: (a) linking a heavy chain variable region (VH) and a light chain variable region (VL) of a monoclonal antibody to a single chain antibody by linking;

(b) 상기 (a) 단계에서 제조된 단쇄 항체의 유전자를 식물 세포에 도입하여 형질전환된 식물 개체를 얻는 단계;(b) introducing the gene of the single chain antibody prepared in the step (a) into a plant cell to obtain a transformed plant;

(c) 상기 (a) 단계의 단일클론항체와는 다른 단일클론항체의 중쇄 가변영역(VH)과 경쇄 가변영역(VL)을 링커로 연결하여 단쇄 항체(single chain antibody)로 만드는 단계;(c) linking the heavy chain variable region (VH) and the light chain variable region (VL) of the monoclonal antibody different from the monoclonal antibody of the step (a) with a linker to form a single chain antibody;

(d) 상기 (c) 단계에서 제조된 단쇄 항체의 유전자를 식물 세포에 도입하여 형질전환된 식물 개체를 얻는 단계; 및(d) introducing the gene of the single chain antibody produced in the step (c) into a plant cell to obtain a transformed plant; And

(e) 상기 (b) 및 (d) 단계에서 제조된 형질전환 식물 개체들을 교배하는 단계를 포함하는 이중특이항체(bispecific antibody)를 생산하는 형질전환 식물의 제조방법을 제공하는 것이다.
and (e) crossing the transformed plant individuals produced in steps (b) and (d) above, to produce a bispecific antibody.

본 발명의 다른 목적은 (a) 단일클론항체(monoclonal antibody)의 중쇄 가변영역(VH)과 경쇄 가변영역(VL)을 링커로 연결하여 단쇄 항체(single chain antibody)로 만드는 단계;Another object of the present invention is to provide a method for preparing a monoclonal antibody, comprising: (a) linking a heavy chain variable region (VH) and a light chain variable region (VL) of a monoclonal antibody to a single chain antibody by linking;

(b) 상기 (a) 단계에서 제조된 단쇄 항체의 유전자를 식물 세포에 도입하여 형질전환된 식물 개체를 얻는 단계;(b) introducing the gene of the single chain antibody prepared in the step (a) into a plant cell to obtain a transformed plant;

(c) 상기 (a) 단계의 단일클론항체와는 다른 단일클론항체의 중쇄 가변영역(VH)과 경쇄 가변영역(VL)을 링커로 연결하여 단쇄 항체(single chain antibody)로 만드는 단계;(c) linking the heavy chain variable region (VH) and the light chain variable region (VL) of the monoclonal antibody different from the monoclonal antibody of the step (a) with a linker to form a single chain antibody;

(d) 상기 (c) 단계에서 제조된 단쇄 항체의 유전자를 식물 세포에 도입하여 형질전환된 식물 개체를 얻는 단계; (d) introducing the gene of the single chain antibody produced in the step (c) into a plant cell to obtain a transformed plant;

(e) 상기 (b) 및 (d) 단계에서 제조된 형질전환 식물 개체들을 교배하는 단계; 및(e) crossing the transgenic plants produced in steps (b) and (d) above; And

(f) 상기 (e) 단계에서 제조된 교배 식물로부터 단백질을 수득하는 단계를 포함하는 항체 생산 방법을 제공하는 것이다.
(f) obtaining a protein from the crossed plant produced in the step (e).

상기의 목적을 달성하기 위하여, 본 발명은 (a) 단일클론항체(monoclonal antibody)의 중쇄 가변영역(VH)과 경쇄 가변영역(VL)을 링커로 연결하여 단쇄 항체(single chain antibody)로 만드는 단계;In order to accomplish the above object, the present invention provides a method for producing a monoclonal antibody, comprising the steps of (a) linking a heavy chain variable region (VH) and a light chain variable region (VL) of a monoclonal antibody with a linker to form a single chain antibody ;

(b) 상기 (a) 단계에서 제조된 단쇄 항체의 유전자를 식물 세포에 도입하여 형질전환된 식물 개체를 얻는 단계;(b) introducing the gene of the single chain antibody prepared in the step (a) into a plant cell to obtain a transformed plant;

(c) 상기 (a) 단계의 단일클론항체와는 다른 단일클론항체의 중쇄 가변영역(VH)과 경쇄 가변영역(VL)을 링커로 연결하여 단쇄 항체(single chain antibody)로 만드는 단계;(c) linking the heavy chain variable region (VH) and the light chain variable region (VL) of the monoclonal antibody different from the monoclonal antibody of the step (a) with a linker to form a single chain antibody;

(d) 상기 (c) 단계에서 제조된 단쇄 항체의 유전자를 식물 세포에 도입하여 형질전환된 식물 개체를 얻는 단계; 및(d) introducing the gene of the single chain antibody produced in the step (c) into a plant cell to obtain a transformed plant; And

(e) 상기 (b) 및 (d) 단계에서 제조된 형질전환 식물 개체들을 교배하는 단계를 포함하는 이중특이항체(bispecific antibody)를 생산하는 형질전환 식물의 제조방법을 제공한다.
and (e) crossing the transgenic plants produced in the steps (b) and (d). The present invention also provides a method for producing a bispecific antibody.

본 발명의 다른 목적을 달성하기 위하여, 본 발명은 (a) 단일클론항체(monoclonal antibody)의 중쇄 가변영역(VH)과 경쇄 가변영역(VL)을 링커로 연결하여 단쇄 항체(single chain antibody)로 만드는 단계;(A) a single chain antibody is prepared by linking a heavy chain variable region (VH) and a light chain variable region (VL) of a monoclonal antibody with a linker; Creating;

(b) 상기 (a) 단계에서 제조된 단쇄 항체의 유전자를 식물 세포에 도입하여 형질전환된 식물 개체를 얻는 단계;(b) introducing the gene of the single chain antibody prepared in the step (a) into a plant cell to obtain a transformed plant;

(c) 상기 (a) 단계의 단일클론항체와는 다른 단일클론항체의 중쇄 가변영역(VH)과 경쇄 가변영역(VL)을 링커로 연결하여 단쇄 항체(single chain antibody)로 만드는 단계;(c) linking the heavy chain variable region (VH) and the light chain variable region (VL) of the monoclonal antibody different from the monoclonal antibody of the step (a) with a linker to form a single chain antibody;

(d) 상기 (c) 단계에서 제조된 단쇄 항체의 유전자를 식물 세포에 도입하여 형질전환된 식물 개체를 얻는 단계; (d) introducing the gene of the single chain antibody produced in the step (c) into a plant cell to obtain a transformed plant;

(e) 상기 (b) 및 (d) 단계에서 제조된 형질전환 식물 개체들을 교배하는 단계; 및(e) crossing the transgenic plants produced in steps (b) and (d) above; And

(f) 상기 (e) 단계에서 제조된 교배 식물로부터 단백질을 수득하는 단계를 포함하는 항체 생산 방법을 제공한다.
(f) obtaining a protein from the crossed plant produced in the step (e).

이하 본 발명을 상세히 설명한다.
Hereinafter, the present invention will be described in detail.

본 발명은 (a) 단일클론항체(monoclonal antibody)의 중쇄 가변영역(VH)과 경쇄 가변영역(VL)을 링커로 연결하여 단쇄 항체(single chain antibody)로 만드는 단계;(A) linking a heavy chain variable region (VH) and a light chain variable region (VL) of a monoclonal antibody with a linker to form a single chain antibody;

(b) 상기 (a) 단계에서 제조된 단쇄 항체의 유전자를 식물 세포에 도입하여 형질전환된 식물 개체를 얻는 단계;(b) introducing the gene of the single chain antibody prepared in the step (a) into a plant cell to obtain a transformed plant;

(c) 상기 (a) 단계의 단일클론항체와는 다른 단일클론항체의 중쇄 가변영역(VH)과 경쇄 가변영역(VL)을 링커로 연결하여 단쇄 항체(single chain antibody)로 만드는 단계;(c) linking the heavy chain variable region (VH) and the light chain variable region (VL) of the monoclonal antibody different from the monoclonal antibody of the step (a) with a linker to form a single chain antibody;

(d) 상기 (c) 단계에서 제조된 단쇄 항체의 유전자를 식물 세포에 도입하여 형질전환된 식물 개체를 얻는 단계; 및(d) introducing the gene of the single chain antibody produced in the step (c) into a plant cell to obtain a transformed plant; And

(e) 상기 (b) 및 (d) 단계에서 제조된 형질전환 식물 개체들을 교배하는 단계를 포함하는 이중특이항체(bispecific antibody)를 생산하는 형질전환 식물의 제조방법을 제공한다.
and (e) crossing the transgenic plants produced in the steps (b) and (d). The present invention also provides a method for producing a bispecific antibody.

상기 단일클론항체란 단일한 항원성 부위(단일 에피토프)에 대해서 지시되어 이와 특이적인 결합을 하는 단백질 분자를 의미한다. 상기 단일클론항체는 당해 기술 분야에서 잘 알려져 있는 융합 방법(fusion method)에 의해 만들어질 수 있다(Kohler et al., European Journal of Immunology 6;511-519). 일반적으로, 단일클론항체를 분비하는 하이브리도마 세포는 항원 단백질을 주사한 마우스와 같은 면역학적으로 적합한 숙주 동물로부터의 면역 세포와 암 세포주를 융합함으로써 만들어진다. 이런 두 집단의 세포 융합은 폴리에틸렌글리콜과 같이 본 발명이 속하는 기술 분야에 공지되어 있는 방법을 이용하여 융합시키고 항체 생산 세포를 표준적인 배양 방법에 의해 증식시킨다. 한계 희석법(limited dilution)에 의한 서브 클로닝을 실시하여 균일한 세포 집단을 수득하고 난 뒤 항원에 특이적인 항체를 생산할 수 있는 하이브리도마 세포를 시험관 또는 생체 내에서 대량으로 배양한다.
The monoclonal antibody refers to a protein molecule that is directed against and specifically binds to a single antigenic site (single epitope). The monoclonal antibody can be made by a fusion method well known in the art (Kohler et al., European Journal of Immunology 6; 511-519). Generally, hybridoma cells that secrete monoclonal antibodies are made by fusing immune cells from cancer cells with immunologically appropriate host animals, such as mice injected with antigen proteins. The cell fusion of these two groups is fused using a method known in the art such as polyethylene glycol, and the antibody producing cells are proliferated by a standard culture method. After subcloning by limited dilution to obtain a uniform cell population, hybridoma cells capable of producing an antigen-specific antibody are cultured in vitro or in vivo.

생체에서 생산되는 천연 항체는 통상적으로, 2개의 동일한 경쇄 (L)와 2개의 동일한 중쇄 (H)로 구성된, 약 150,000 달톤의 이종-사량체성 당단백질이다. 각 경쇄는 1개의 공유 디설파이드 결합에 의해 중쇄와 연결되지만, 디설파이드 연쇄수는 상이한 면역글로불린 이소형의 중쇄들 간에 다양하다. 각 중쇄 및 경쇄는 규칙적으로 이격된 쇄내 디설파이드 브릿지를 또한 갖고 있다. 각 중쇄는 한 말단에 가변 도메인(VH)에 이어 수 많은 불변 도메인을 갖는다. 각 경쇄는 한 말단에 가변 도메인(VL)을 갖고, 그의 다른 말단에 불변 도메인을 갖는데; 경쇄의 불변 도메인은 중쇄의 제1 불변 도메인과 정렬되고, 경쇄 가변 도메인은 중쇄의 가변 도메인과 정렬된다. 특별한 아미노산 잔기가 경쇄 가변 도메인과 중쇄 가변 도메인 간에 계면을 형성하는 것으로 여겨진다.Natural antibodies produced in vivo are typically about 150,000 daltons, heterotetrameric glycoproteins, consisting of two identical light chains (L) and two identical heavy chains (H). Each light chain is linked to the heavy chain by one covalent disulfide bond, but the disulfide chain number varies between the heavy chains of the different immunoglobulin isoforms. Each heavy and light chain also has regularly spaced intra-chain disulfide bridges. Each heavy chain has a variable domain (VH) followed by a number of constant domains at one end. Each light chain has a variable domain (VL) at one end and a constant domain at the other end; The constant domain of the light chain is aligned with the first constant domain of the heavy chain and the light chain variable domain is aligned with the variable domain of the heavy chain. It is believed that a particular amino acid residue forms an interface between the light chain variable domain and the heavy chain variable domain.

항체의 "가변 영역" 또는 "가변 도메인"은 항체의 중쇄 또는 경쇄의 아미노-말단 도메인을 지칭한다. 중쇄의 가변 영역은 "VH" 또는"VH"로 기재하며, 경쇄의 가변 영역은 "VL" 또는 "VL"로 기재한다. 이들 도메인은 일반적으로, 항체의 가장 가변 부분이고, 항원 결합 부위를 포함한다.
"Variable domain" or "variable domain" of an antibody refers to the amino-terminal domain of the heavy or light chain of the antibody. The variable region of the heavy chain is referred to as "VH" or "V H ", and the variable region of the light chain is referred to as "VL" or "V L ". These domains are generally the most variable part of the antibody and comprise an antigen binding site.

상기 단일클론항체의 전체(whole) 항체 형태는 경쇄(LC,light chain) 및 중쇄(HC,Heavy Chain) 의 2개의 쌍으로 이루어진다. 이러한 항체의 경쇄 및 중쇄는 여러 도메인으로 이루어진 폴리펩티드이다. 전체 항체에서, 각각의 중쇄는 중쇄 가변부위(VH) 및 중쇄 불변부위를 포함한다. 상기 중쇄 불변부위는 중쇄 불변 부위는 중쇄 불변 도메인 CH1, CH2 및 CH3 (항체 부류 IgA, IgD 및 IgG) 및 임의로 중쇄 불변 도메인 CH4 (항체 부류 IgE 및 IgM)를 포함한다. 각각의 경쇄는 경쇄 가변 도메인 VL 및 경쇄 불변 도메인 CL을 포함한다. 가변 도메인 VH 및 VL은 보다 보존된, 골격 부위 (FR)라 불리는 부위 내에 산재된 상보성 결정 부위 (CDR)라 불리는 과가변성 부위로 보다 세분될 수 있다. 각각의 VH 및 VL은 3개의 CDR 및 4개의 FR로, 아미노-말단에서 카르복시-말단으로 배열된 하기 순서: FR1, CDR1, FR2, CDR2, FR3, CDR3, FR4로 구성되어 있다 (Janeway, C.A., Jr. 등 (2001). Immunobiology., 5th ed., Garland Publishing; and Woof, J., Burton, D., Nat Rev Immunol 4 (2004) 89-99).
The whole antibody form of the monoclonal antibody is composed of two pairs of a light chain (LC) and a heavy chain (HC). The light and heavy chains of such antibodies are polypeptides composed of several domains. In whole antibodies, each heavy chain comprises a heavy chain variable region (VH) and a heavy chain constant region. The heavy chain constant region comprises a heavy chain constant domain CH1, CH2 and CH3 (antibody classes IgA, IgD and IgG) and optionally a heavy chain constant domain CH4 (antibody classes IgE and IgM). Each light chain comprises a light chain variable domain VL and a light chain constant domain CL. The variable domains VH and VL can be subdivided into more conserved, hypervariable regions called complementarity determining regions (CDRs) scattered within sites called framework regions (FRs). Each VH and VL consists of three CDRs and four FRs, in the following order: FR1, CDR1, FR2, CDR2, FR3, CDR3, FR4 arranged at the amino-terminus carboxy-terminal (Janeway, CA, Jr. et al. (2001) Immunobiology., 5th ed., Garland Publishing; and Woof, J., Burton, D., Nat Rev Immunol 4 (2004) 89-99).

(a) 단계는 상기 전체 항체가 중쇄 및 경쇄의 2쌍으로 되어있던 것을, 중쇄 및 경쇄를 이어 하나의 사슬(single chain)로 연결하는 과정이다. 본 단계는 식물체 내에서 발현이 용이하도록 식물 특이적인 서열로 변형하는 과정이다. 일반적으로 상기 전체 형태의 단일항체를 발현하기 위해서는 중쇄 (heavy chain)와 경쇄 (light chain) 각각을 발현해야 하기 때문에 프로모터가 2개인 binary 발현벡터를 사용해야만 한다. 이는 발현벡터를 선정함에 있어 몇가지 제한을 갖게한다 (항생제 마커 선정에 따른 최종 임상적 실험의 제한, 사용가능한 벡터 종류 수 등). 하지만 본 단계를 수행함으로서 하나의 프로모터(promoter)에서도 발현이 가능하다.
In step (a), the whole antibody is in the form of two pairs of heavy chain and light chain, and the heavy chain and the light chain are connected to each other through a single chain. This step is a process of transforming into a plant-specific sequence to facilitate expression in the plant. Generally, in order to express the whole type of monoclonal antibody, it is necessary to use a binary expression vector having two promoters in order to express each of a heavy chain and a light chain. This has some limitations in the selection of expression vectors (limitations of the final clinical trial with antibiotic marker selection, number of available vectors, etc.). However, by carrying out this step, it is possible to express it in a single promoter.

상기 ‘하나의 사슬로 연결’시키는 방법은 항체의 중쇄와 경쇄를 하나의 사슬로 연결 할 수 있는 방법이라면 제한되지 않으나, 예를 들어 중쇄 전체와 경쇄 전체를 중쇄의 VH 부위와 경쇄의 CL 부위에서 링커로 연결하는 방법일 수 있고 또는 중쇄 전체와 경쇄의 VL 영역을 중쇄 VH 부위와 경쇄 VL 부위에서 링커로 연결하는 방법일 수 있다. 바람직하게 중쇄 전체와 경쇄의 VL 영역을 중쇄 가변영역(VH)과 경쇄 가변영역(VL)에서 링커로 연결시킴으로써 C-말단에서 N-말단 방향으로 CH3-CH2-CH1-VH-VL 의 순서로 연결된 것일 수 있다. The method of 'linking with one chain' is not limited as long as the method of linking the heavy chain and the light chain of the antibody by a single chain. For example, when the entire heavy chain and the light chain are linked to the VH region of the heavy chain and the CL region of the light chain Linker, or a method of linking the VL region of the entire heavy chain and the light chain to the linker at the heavy chain VH region and the light chain VL region. Preferably in the order of CH3-CH2-CH1-VH-VL in the N-terminal direction at the C-terminus by linking the VL region of the heavy chain and the light chain to the heavy chain variable region (VH) and the light chain variable region (VL) Lt; / RTI >

본 발명의 발명자는 상기 중쇄 전체와 경쇄의 VL 영역을 중쇄 VH 부위와 경쇄 VL 부위에서 링커로 연결하여 만든 단쇄 항체를 large single chain 항체라 명명하였다.
The inventors of the present invention named a single-chain antibody made by linking the VL region of the heavy chain and the light chain at the heavy chain VH region and the light chain VL region with a linker, as a large single chain antibody.

상기 링커는 항체의 각 도메인을 연결할 수 있는 폴리펩타이드 서열을 의미한다. 상기 링커는 단일클론 항체의 항원 인식 및 결합 능력에 영향을 주지 않는다면 어떤 것이든 제한되지 않으나 바람직하게 서열번호 1로 표시되는 (G4S)3 아미노산 서열일 수 있다.
The linker refers to a polypeptide sequence capable of linking each domain of an antibody. The linker may be any (G4S) 3 amino acid sequence as shown in SEQ ID NO: 1, although it is not limited as long as it does not affect the antigen recognition and binding ability of the monoclonal antibody.

본 발명의 일실시예에서는 CO17-1A의 전체 항체 염기서열 중 중쇄 VH 부위와 경쇄의 VL 부위를 linker [아미노산 서열, (G4S)3]로 연결하여 단쇄 항체를 제조하였고, 이를 Large single chain CO17-1A라 명명하였다. CO17-1A는 대장암 표면에 과량 발현되는 표면단백질인 GA733-2를 에피토프로 인지하는 단일클론항체이다.
In one embodiment of the present invention, a single-chain antibody was prepared by linking the heavy chain VH region of the whole antibody sequence of CO17-1A with the VL region of the light chain with a linker (amino acid sequence, (G4S) 3 ] 1A. CO17-1A is a monoclonal antibody that recognizes the surface protein GA733-2 as an epitope, which is overexpressed on the surface of colon cancer.

(b) 단계는 (a) 단계에서 제조된 단쇄 항체의 유전자를 식물 세포에 도입하여 형질전환된 식물 개체를 얻는 단계이다.
(b) is a step of introducing the gene of the single chain antibody prepared in the step (a) into a plant cell to obtain a transformed plant.

본 발명의 (b) 단계에서 상기 ‘단쇄 항체를 코딩하는 유전자’는 서열번호 2로 표시되는 소포체 저장 유도서열(KDEL) 을 추가로 포함 할 수 있다. KDEL을 특정 유전자(본 발명에서는 단쇄 항체 유전자)내에 삽입함으로서, 최종산물의 아미노산 말단에 KDEL이 노출될 수 있도록 한다. 이것은 생산된 단백질이 식물세포 외부로 분비되지 않고 형질전환된 세포 내의 소포체에 존재할 수 있도록 유도한다. 상기 특정 유전자가 도입된 숙수 세포 속에서 생산되는 단백질은 KDEL 서열에 의하여 소포체 내에 저장되고 식물체 내에서 이루어질 수 있는 번역 후 과정(post-translational modification)을 거친다. 이는 세포내 항체단백질의 발현량 증가와 이종간 면역반응의 중요한 역할을 하는 이종간 당구조 차이에 따른 문제점을 해결하는데에 중요한 역할을 한다.In the step (b) of the present invention, the 'gene coding for a single chain antibody' may further comprise an ERK storage induction sequence (KDEL) shown in SEQ ID NO: 2. By inserting KDEL into a specific gene (a single-chain antibody gene in the present invention), the KDEL can be exposed at the amino acid end of the final product. This induces the produced protein to be present in the endoplasmic reticulum in the transformed cell without being secreted outside the plant cell. Proteins produced in the osteocyte cells into which the specific gene is introduced are post-translationally modified by the KDEL sequence, which can be stored in the endoplasmic reticulum and can be made in the plant. This plays an important role in solving the problems caused by the increased amount of intracellular antibody protein and the difference in interspecific sugar structure, which plays an important role in the interspecific immune response.

상기 소포체 저장 유도서열(KDEL)의 삽입부위는 단쇄 단일클론항체의 항원 인식 및 결합 능력에 영향을 주지 않는한 제한되지 않으나, 바람직하게 단일클론항체 단백질 펩타이드 서열의 말단일 수 있고, 더욱 바람직하게는 단일클론항체 단백질 펩타이드 서열의 c-말단 부위 일 수 있다.
The insertion site of the ERK storage-inducing sequence (KDEL) is not limited so long as it does not affect the antigen recognition and binding ability of the short-chain monoclonal antibody, but preferably it may be a monoclonal antibody protein protein peptide sequence, Terminal region of the monoclonal antibody protein peptide sequence.

상기 용어‘도입’은 유전자 또는 유전자군을 인위적으로 표적하는 세포에 삽입하여 그 유전자군을 발현시키거나 또는 그 세포의 게놈(genome)에 다른 유전자(군)을 부가하는 조작을 의미한다. 이러한 유전자의 도입은 박테리오파아지에 의한 형질도입(세균), 토양세균인 Agrobacterium spp.을 매개로 한 간접적인 방법, 유전자 총(genegun), 전기자극(electrophoration), 현미주입법(microinjection) 등에 의한 방법으로 수행 될 수 있으며, 이 외에도 표적 세포 및 삽입 유전자의 특징에 따라 당업자가 공지된 유전자 도입 기술을 선택적으로 사용할 수 있다.식물 게놈 DNA내로 외인성 DNA를 안정하게 삽입하는 주된 방법은 다음의 2 가지 주요 접근법을 포함한다;The term " introduction " refers to an operation of inserting a gene or a gene group into a cell that artificially targets and expressing the gene group, or adding another gene (group) to the genome of the cell. The introduction of these genes can be achieved by indirect methods such as transfection by bacteriophage (bacteria), Agrobacterium spp. Which is a soil bacterium, genegun, electrophoresis, microinjection, etc. In addition, depending on the characteristics of the target cell and the insert gene, a gene transfer technique known to a person skilled in the art can be selectively used. The main methods for stably inserting the exogenous DNA into the plant genome DNA are the following two main approaches / RTI >

(i) 아그로박테리움(Agrobacterium)-매개 유전자 전달.[참조예: Klee, H. J. et al. (1987). Annu Rev Plant Physiol 38, 467-486; Klee, H. J. and Rogers, S. G. (1989). Cell Culture and Somatic Cell Genetics of Plants, Vol. 6, Molecular Biology of Plant Nuclear Genes, pp. 2-25, J. Schell and L. K. Vasil, eds., Academic Publishers, San Diego, Cal.; and Gatenby, A. A. (1989). Regulation and Expression of Plant Genes in Microorganisms, pp. 93-112, Plant Biotechnology, S. Kung and C. J. Arntzen, eds., Butterworth Publishers, Boston, Mass]. (i) Agrobacterium-mediated gene transfer. See, e.g., Klee, H. J. et al. (1987). Annu Rev Plant Physiol 38, 467-486; Klee, H.J. and Rogers, S.G. (1989). Cell Culture and Somatic Cell Genetics of Plants, Vol. 6, Molecular Biology of Plant Nuclear Genes, pp. 2-25, J. Schell and L. K. Vasil, eds., Academic Publishers, San Diego, Cal .; and Gatenby, A. A. (1989). Regulation and Expression of Plant Genes in Microorganisms, pp. 93-112, Plant Biotechnology, S. Kung and C. J. Arntzen, eds., Butterworth Publishers, Boston, Mass.

(ii) 직접 DNA 흡수[참조예: Paszkowski, J. et al. (1989). Cell Culture and Somatic Cell Genetics of Plants, Vol. 6, Molecular Biology of Plant Nuclear Genes, pp. 52-68, J. Schell and L. K. Vasil, eds., Academic Publishers, San Diego, Cal; and Toriyama, K. et al. (1988). Bio/Technol 6, 1072-1074 (methods for direct uptake of DNA into protoplasts)]. [참조예: Zhang et al. (1988). Plant Cell Rep 7, 379-384; and Fromm, M. E. et al. (1986). Stable transformation of maize after gene transfer by electroporation. Nature 319, 791-793 (DNA uptake induced by brief electric shock of plant cells]. [참조예: Klein et al. (1988). Bio/Technology 6, 559-563; McCabe, D. E. et al. (1988). Stable transformation of soybean (Glycine max) by particle acceleration. Bio/Technology 6, 923-926; and Sanford, J. C. (1990). Biolistic plant transformation. Physiol Plant 79, 206-209 (DNA injection into plant cells or tissues by particle bombardment). [참조예: Neuhaus, J. M. et al. (1987). Theor Appl Genet 75, 30-36; and Neuhaus, J. M. and Spangenberg, G. C. (1990). Physiol Plant 79, 213-217 (use of micropipette systems)]. [참조 예: 미국 특허 제 5,464,765 호(glass fibers or silicon carbide whisker transformation of cell cultures, embryos or callus tissue)]. [참조예: DeWet, J. M. J. et al. (1985). "Exogenous gene transfer in maize (Zea mays) using DNAtreated pollen," Experimental Manipulation of Ovule Tissue, G. P. Chapman et al., eds., Longman, New York- London, pp. 197-209; 및 Ohta, Y. (1986). High-Efficiency Genetic Transformation of Maize by a Mixture of Pollen and exogenous DNA. Proc Natl Acad Sci USA 83, 715-719 (direct incubation of DNA with germinating pollen)].(ii) direct DNA uptake (see, e.g., Paszkowski, J. et al. (1989). Cell Culture and Somatic Cell Genetics of Plants, Vol. 6, Molecular Biology of Plant Nuclear Genes, pp. 52-68, J. Schell and L. K. Vasil, eds., Academic Publishers, San Diego, CA; and Toriyama, K. et al. (1988). Bio / Technol 6, 1072-1074 (methods for direct uptake of DNA into protoplasts)]. [Reference example: Zhang et al. (1988). Plant Cell Rep 7, 379-384; and Fromm, M.E. et al. (1986). Stable transformation of maize after gene transfer by electroporation. Nature 319, 791-793 (reference example: Klein et al. (1988). Bio / Technology 6, 559-563; McCabe, DE et al. Stable transformation of soybean (Glycine max) by particle acceleration. Bio / Technology 6, 923-926 and Sanford, JC (1990) Biolistic plant transformation.Physiol Plant 79, 206-209 (DNA injection into plant cells or tissues by particle Physiol Plant 79, 213-217 (use of micropipette systems (1987)), and Neuhaus, JM and Spangenberg, GC (1990) (See, for example, DeWet, JMJ et al. (1985), "Exogenous gene transfer in (Zea mays) using DNAtreated pollen, " Experimental Manipulation of Ovule Tissue, GP Chapman et al., eds., Longman, New York- London, pp. 197-209 and Ohta, fficiency Genetic Transformation of Maize by a Mixture of Pollen and exogenous DNA. Proc Natl Acad Sci USA 83, 715-719 (direct incubation of DNA with germinating pollen).

바람직하게 본 발명의 유전자 ‘도입’ 방법은 아그로박테리움(Agrobacterium) -매개 유전자 전달방법이다. 아그로박테리움(Agrobacterium)-매개 시스템은 식물 게놈 DNA내로 삽입된 한정(defined) DNA 세그먼트를 가진 플라스미드 벡터의 사용을 포함한다. 식물 조직의 접종 방법은 식물 종 및 아그로박테리움(Agrobacterium) 전달 시스템에 따라 달라진다. 널리 사용되는 접근법은 전체-식물 분화의 개시에 대한 우수한 소스(source)를 제공하는 임의의 조직 외식편으로 수행될 수 있는 리프-디스크(leaf-dic) 방법이다[Horsch, R. B. et al. (1988). "Leaf disc transformation." Plant Molecular Biology Manual A5, 1-9, Kluwer Academic Publishers, Dordrecht)]. 추가적인 접근법은 진공 침투와 함께 아그로박테리움 (Agrobacterium) 전달 시스템을 사용한다. 아그로박테리움(Agrobacterium) 시스템은 유전자이식 쌍자엽 식물의 발생에 특히 유용하다.
Preferably, the gene introduction method of the present invention is an Agrobacterium-mediated gene transfer method. The Agrobacterium-mediated system involves the use of a plasmid vector with a defined DNA segment inserted into the plant genomic DNA. The method of inoculation of plant tissue depends on the plant species and the Agrobacterium delivery system. A widely used approach is the leaf-dic method, which can be performed with any tissue excision providing an excellent source for the initiation of whole-plant differentiation (Horsch, RB et al. (1988). "Leaf disc transformation." Plant Molecular Biology Manual A5, 1-9, Kluwer Academic Publishers, Dordrecht). An additional approach uses the Agrobacterium delivery system with vacuum infiltration. The Agrobacterium system is particularly useful for the generation of transgenic dicot plants.

상기 용어‘형질전환(transformation)’은 외래성 폴리뉴클레오티드(본 발명에서는 (a)단계에서 제조된 단쇄 단일클론항체를 암호화하는 폴리뉴클레오티드를 의미함)가 도입됨에 의한 숙주 세포의 유전자형의 변형을 의미하며, 그 형질전환에 사용된 방법과 상관없이 외래성 폴리뉴클레오티드가 숙주 세포 내로 도입된 것을 의미한다. 숙주 세포내로 도입된 외래성 폴리뉴클레오티드는 숙주 세포의 게놈내로 통합되어 유지되거나 통합되지 않고 유지될 수 있는데, 본 발명은 양자 모두 포함한다.
The term "transformation" refers to a modification of the genotype of a host cell by the introduction of a foreign polynucleotide (meaning a polynucleotide encoding the short-chain monoclonal antibody produced in step (a) in the present invention) Means that the exogenous polynucleotide has been introduced into the host cell irrespective of the method used for its transformation. The exogenous polynucleotide introduced into the host cell may be maintained integrated or maintained in the genome of the host cell, but the present invention encompasses both.

본 발명의 (b) 단계 ‘단쇄 항체의 유전자를 식물 세포에 도입하여 형질전환된 식물 개체를 얻는’것은 공지의 식물세포 형질전환 방법에 의해 수행될 수 있으며 이에 제한되지 않으나, 예를 들어 원하는 유전자(본 발명에서는 (a)단계에서 제조된 단쇄 항체를 코딩하는 유전자를 의미함)를 벡터(vertor)에 삽입하여 재조합 벡터를 만들고, 상기 재조합 벡터를 Agrobacterium 속의 균주에 형질전환 시킨 다음, 상기 균주를 식물 세포에 감염시키는 방법일 수 있다. Step (b) of the present invention can be carried out by a known plant cell transformation method, for example, by introducing a gene of a short-chain antibody into a plant cell to obtain a transformed plant, (In the present invention, a gene coding for a single-chain antibody produced in step (a)) is inserted into a vector to form a recombinant vector, and the recombinant vector is transformed into a strain of the genus Agrobacterium. And infecting the plant cell.

상기 벡터는 일반적으로 시그날 서열, 복제 기원, 하나 이상의 마커 유전자, 인핸서 요소, 프로모터 및 전사 종결 서열 중 하나 이상을 포함하는 것으로 바람직하게 발현 벡터이다. 상기 발현벡터(expression vector)는 선택된 폴리뉴클레오티드가 발현할 수 있는 벡터의 한 형태이다. 하나의 폴리뉴클레오티드 시퀀스는, 조절 시퀀스가 상기 폴리뉴클레오티드 시퀀스의 발현(예를 들어, 수준, 타이밍 또는 발현의 위치)에 영향을 주는 경우, 상기 조절 시퀀스(regulatory sequence)에 "작동가능하게 연결"된다. 상기 조절 시퀀스는 그것이 작동가능하게 연결되는 핵산의 발현(예를 들어, 수준, 타이밍 또는 발현의 위치)에 영향을 주는 서열이다. 상기 조절 시퀀스는, 예를 들어, 조절된 핵산에 직접적으로 또는 하나 또는 그 이상의 다른 분자들(예를 들어, 상기 조절 시퀀스 및/또는 상기 핵산에 결합하는 폴리펩티드들)의 작용을 통하여 그의 영향이 미치도록 할 수 있다. 상기 조절 시퀀스에는 프로모터(promoters), 인핸서(enhancers) 및 다른 발현 조절 요소들이 포함된다.
The vector is preferably an expression vector comprising at least one of a signal sequence, a replication origin, one or more marker genes, an enhancer element, a promoter and a transcription termination sequence. The expression vector is a form of a vector into which a selected polynucleotide can express. One polynucleotide sequence is "operably linked" to the regulatory sequence when the regulatory sequence affects the expression (e.g., level, timing, or location of expression) of the polynucleotide sequence . The modulatory sequence is a sequence that affects the expression (e.g., level, timing, or location of expression) of the nucleic acid to which it is operatively linked. The modulation sequence can be, for example, a nucleic acid whose effect is directly or indirectly affected by the action of one or more other molecules (e. G., Polypeptides that bind to the regulatory sequence and / . The regulatory sequence includes promoters, enhancers, and other expression control elements.

상기의 당 분야에 공지된 분자생물학적 기법인 표준 재조합 DNA 및 분자 클로닝 기술은 다음 문헌에 기재되어있다(Sambrook, J., Fritsch, E. F. and Maniatis, T., Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory: Cold Spring Harbor, NY, 1989; by Silhavy, T. J., Bennan, M. L. and Enquist, L. W., Experiments with Gene Fusions, Cold Spring Harbor Laboratory: Cold Spring Harbor, NY, 1984; and by Ausubel, F. M. et al., Current Protocols in Molecular Biology, published by Greene Publishing Assoc. and Wiley-lnterscience , 1987).
Standard recombinant DNA and molecular cloning techniques, which are known in the art, are described in Sambrook, J., Fritsch, EF and Maniatis, T., Molecular Cloning: A Laboratory Manual, 2nd ed. , Cold Spring Harbor Laboratory, NY, 1984, and by Ausubel, FM (1987), Cold Spring Harbor Laboratory, NY, 1989; by Silhavy, TJ, Bennan, ML and Enquist, LW, Experiments with Gene Fusions, et al., Current Protocols in Molecular Biology, published by Greene Publishing Assoc. and Wiley-lnterscience, 1987).

안정한 형질전환 후, 이어 형질 전환된 식물을 번식시킨다. 상기 번식은 식물의 개체수를 증가시는 것을 의미한다. 상기 식물의 번식은 재생 식물의 특성과 모(母) 유전자 이식 식물이 발현하는 특성이 동일하게 유지되는 방법이면 제한되지 않으나, 바람직하게 미세증식 일 수 있다. After stable transformation, the transformed plants are then propagated. This breeding means increasing the number of plants. The propagation of the plant is not limited as long as the characteristics of the regenerating plant and the expression of the parent gene transplanting plant remain the same, but may be preferably microproliferation.

상기 미세증식은 선택된 모 식물 또는 재배종으로부터 잘라낸 단일 조직 샘플로부터 제 2 세대 식물을 성장시키는 방법이다. 이 방법에 의해 바람직한 조직을 가지며 융합 단백질을 발현하는 식물의 대량 재생산이 가능하다. 새로 생성된 식물은 최초 식물과 유전학적으로 동일하고 최초 식물의 특징 모두를 가진다. 미세증식은 단기간에 우수 식물 재료의 대량 생산을 가능케 하고, 최초 유전자이식 또는 형질전환 식물의 특징을 보존하면서 선택된 작물을 신속하게 증식 가능케 한다. 식물 클로닝 방법의 이점으로 식물 증식의 신속성 및 생성된 식물의 우수성 및 균일성이 포함된다.
The microproliferation is a method of growing a second generation plant from a single tissue sample cut from a selected parent plant or cultivar. By this method, it is possible to mass-reproduce a plant having a desired tissue and expressing the fusion protein. The newly created plant is genetically identical to the original plant and has all of the characteristics of the original plant. Microproliferation allows mass production of excellent plant material in a short period of time and enables rapid propagation of selected crops while preserving the characteristics of the original transgenic or transgenic plant. Advantages of plant cloning methods include the rapidity of plant propagation and the superiority and uniformity of the plant produced.

본 발명의 일 실시예에서는 단쇄 단일클론항체인 Large single chain CO17-1A 의 중쇄 말단(중쇄 CH3의 c-terminal 말단) 뉴클레오티드 서열에 KDEL 을 코딩하는 뉴클레오티드 서열이 삽입된 Large single chain CO17-1AK를 제조하였다. 또한 상기 Large single chain CO17-1AK 를 코딩하는 유전자가 포함된 식물발현 벡터를 제조하고, 식물발현벡터를 Agrobacterium tumefaciens (LB4404) 균주에 형질전환 시킨 후, 형질 전환된 균주를 담배 식물의 잎 절편에 감염시키고 배양하여 줄기와 잎, 뿌리가 모두 유도된 형질전환 담배식물체를 제조하였다.
In one embodiment of the present invention, large single chain CO17-1AK having a nucleotide sequence encoding KDEL was inserted into the heavy chain terminal (c-terminal terminal of heavy chain CH3) nucleotide sequence of large single chain CO17-1A, which is a short chain monoclonal antibody Respectively. Also, a plant expression vector containing the gene encoding the large single chain CO17-1AK was prepared, and the plant expression vector was transformed into Agrobacterium was transformed into tumefaciens (LB4404) strains, transformed by infecting the transformed strain in the leaf segment of the tobacco plant culture was prepared in the stems and leaves, the roots are all derived transgenic tobacco plants.

(c) 단계는 상기 (a) 단계의 단일클론항체와는 다른 단일클론항체의 중쇄 불변부위 CH1 도메인과 경쇄 가변영역(VL)을 링커로 연결하여 단쇄 항체(single chain antibody)로 만드는 단계이다.
(c) is a step of linking the CH1 domain of the heavy chain constant region and the light chain variable region (VL) of the monoclonal antibody different from the monoclonal antibody of the step (a) to form a single chain antibody.

상기 ‘다른 단일클론항체’란 (a) 단계의 단일클론항체가 에피토프(epitope)로 인지하는 물질과 다른 물질을 에피토프로 인지하는 단일클론항체를 의미한다.The 'other monoclonal antibody' refers to a monoclonal antibody that recognizes a monoclonal antibody of step (a) as an epitope from a substance different from a substance recognized as an epitope.

본 발명의 상기 (c) 단계는 사용되는 단일클론항체가 (a) 단계의 그것과 다르다는 것을 제외하고는, 항체의 중쇄 및 경쇄를 이어 하나의 사슬(single chain)로 연결하는 과정으로서 상기 (a) 단계의 실시 목적이 같다. 본 단계의 단쇄 항체 제조에 관하여서는 상기 (a) 단계에서 전술한 바와 같다.
The step (c) of the present invention is a process for connecting a heavy chain and a light chain of an antibody to a single chain, except that the monoclonal antibody used is different from that of the step (a) ) The purpose of the step is the same. The preparation of the single-chain antibody of this step is as described above in step (a).

본 발명의 일 실시예에서는 본 발명의 일실시예에서는 BR55의 전체 항체 염기서열 중 중쇄 VH 부위와 경쇄의 VL 부위를 linker [아미노산 서열, (G4S)3]로 연결하여 단쇄 항체를 제조하였고, 이를 Large single chain BR55라 명명하였다. BR55는 유방암 표면에 과량발현되는 당사슬인 Lewis Y를 에피토프로 인지하는 단일클론항체이다.
In one embodiment of the present invention, a single-chain antibody is prepared by linking the heavy chain VH region of the whole antibody sequence of BR55 and the VL region of the light chain with a linker (amino acid sequence, (G4S) 3 ] Large single chain BR55. BR55 is a monoclonal antibody that recognizes Lewis Y as an epitope, an over-expressed oligosaccharide on the surface of breast cancer.

(d) 단계는 상기 (c) 단계에서 제조된 단쇄 항체의 유전자를 식물 세포에 도입하여 형질전환된 식물 개체를 얻는 단계이다.(d) is a step of introducing a gene of the single chain antibody prepared in the step (c) into a plant cell to obtain a transformed plant.

상기 (d) 단계의 ‘단쇄 항체의 유전자’는 서열번호 2로 표시되는 소포체 저장 유도서열(KDEL) 을 추가로 포함 할 수 있다. 상기 소포체 저장 유도서열에 관해서는 상기 (b) 단계에서 전술 한바와 동일하다.The 'short chain antibody gene' in the step (d) may further include an ERK storage induction sequence (KDEL) shown in SEQ ID NO: 2. The endoplasmic reticulum storage induction sequence is the same as that described above in step (b).

또한 상기 (d) 단계에서 유전자 도입 및 형질전환 식물의 제조에 관하여서는 (b) 단계에서 전술 한바와 동일하다.
The introduction of the gene and the production of the transgenic plant in step (d) are the same as described above in step (b).

본 발명의 일 실시예에서는 단쇄 단일클론항체인 Large single chain BR55 의 중쇄 말단(중쇄 CH3의 c-terminal 말단) 뉴클레오티드 서열에 KDEL 을 코딩하는 뉴클레오티드 서열이 삽입된 Large single chain BR55K를 제조하였다. 또한 상기 Large single chain BR55K 를 코딩하는 유전자가 포함된 식물발현 벡터를 제조하고, 식물발현벡터를 Agrobacterium tumefaciens (LB4404) 균주에 형질전환 시킨 후, 형질 전환된 균주를 담배 식물의 잎 절편에 감염시키고 배양하여 줄기와 잎, 뿌리가 모두 유도된 형질전환 담배식물체를 제조하였다.
In one embodiment of the present invention, a large single chain BR55K having a nucleotide sequence encoding KDEL was prepared at the heavy chain end (c-terminal end of heavy chain CH3) nucleotide sequence of large single chain BR55, which is a short chain monoclonal antibody. Also, a plant expression vector containing the gene coding for the large single chain BR55K was prepared, and the plant expression vector was transformed into Agrobacterium was transformed into tumefaciens (LB4404) strains, transformed by infecting the transformed strain in the leaf segment of the tobacco plant culture was prepared in the stems and leaves, the roots are all derived transgenic tobacco plants.

(e) 단계는 상기 (b) 및 (d) 단계에서 제조된 형질전환 식물 개체들을 교배하는 단계이다.
(e) is a step of crossing the transgenic plants produced in the steps (b) and (d).

상기 ‘교배(mating)’는 유성생식을 위하여 암·수 또는 서로 다른 교배형(mating type)의 두 개체 사이에 여러 가지 방법으로 수정이 이루어지고, 암·수 양배우자가 접합하여 접합체를 형성하는 것을 말하며, 이 때 양친의 유전자형이 같고 다름은 문제로 하지 않는다. 유전자형이 다른 두 개체의 교배는 교잡(crossing)이라고 하는데, 본 발명의 ‘교배’는 교잡을 포함한다.
The 'mating' refers to a method in which, for sexual reproduction, a modification is made between two individuals of a female, a male, or a different mating type, and the male and female spouses are joined to form a conjugate At this time, the genotype of the parents is the same, and the difference is not a problem. Crossing of two individuals having different genotypes is called crossing, and the 'crossing' of the present invention includes crossing.

본 발명의 (a) 내지 (e) 단계에서 상기‘식물’의 종들은 (b) 단계 및 (d) 단계에서 사용된 식물이 동종이고 이들이 교배된 (e) 단계의 식물도 동종인 경우, (b) 단계 및 (d) 단계에서 사용된 식물이 서로 이종이고 이들이 교배된 (e) 단계의 식물도 이종(특히, 잡종)인 경우를 모두 포함한다. 바람직하게는 (b) 단계 및 (d) 단계에서 사용된 식물이 동종이고 이들이 교배된 (e) 단계의 식물도 동종인 경우일 수 있다.
The species of the plant in the step (a) to the step (e) of the present invention may be the same species as the plant used in step (b) and step (d) ) And the plants used in step (d) are heterogeneous and the plants in step (e) in which they are crossed are also heterogeneous (in particular, hybrid). Preferably, the plants used in steps (b) and (d) are homologous and the plants in step (e) in which they are crossed may be homologous.

본 발명의 (a) 내지 (e) 단계에서 상기‘식물’은 외래 유전자가 도입 될 수 있는 식물이면 제한되지 않으나, 예를 들어 단자엽 식물인 벼, 밀, 보리, 죽순, 옥수수, 토란, 아스파라거스, 양파, 마늘, 파, 부추, 달래, 마 및 생강이 있다. 쌍자엽 식물의 예로는 이에 한정되지는 않으나, 애기 장대, 가지, 담배, 고추, 토마토, 우엉, 쑥갓, 상추, 도라지, 시금치, 근대, 고구마, 샐러리, 당근, 미나리, 파슬리, 배추, 양배추, 갓무, 수박, 참외, 오이 호박, 박, 딸기, 대두, 녹두, 강낭콩, 버즈풋 트레포일, 감자, 개구리밥, 들깨, 비둘기콩 및 완두 일 수 있다. 바람직하게는 담배(Nicotiana tabacum)일 수 있다.
The 'plant' in the steps (a) to (e) of the present invention is not limited as long as the plant is capable of introducing a foreign gene. For example, rice, wheat, barley, bamboo shoot, corn, taro, asparagus, There are onions, garlic, leeks, leeks, soya, hemp and ginger. Examples of dicotyledonous plants include, but are not limited to, Arabidopsis thaliana, eggplant, cigarette, red pepper, tomato, burdock, ciliaceae, lettuce, bellflower, spinach, modern sweet potato, celery, carrot, parsley, parsley, cabbage, cabbage, Watermelon, melon, cucumber, pak, strawberry, soybean, mung bean, kidney bean, buzz foot trefoil, potato, fowl, perilla, dove bean and pea. Preferably tobacco ( Nicotiana tabacum ).

상기 (e) 단계에서 생산된 교배식물에는 이중특이적 항체(bispecific antibody)항체가 식물세포 속에서 발현되는 것을 특징으로 한다. 상기 ‘이중특이적(bispecific)’이란 하나의 항체가 동시에 두개의 서로 다른 항원 또는 에피토프를 인지하는 것을 의미한다. 바람직하게는 (a) 단계의 단일클론항체 및 (c) 단계의 단일클론항체가 인지하는 각각의 에피토프들을 동시에 인지 및 결합하는 것을 의미한다.
The hybrid plant produced in the step (e) is characterized in that a bispecific antibody antibody is expressed in plant cells. By "bispecific" is meant that one antibody recognizes two different antigens or epitopes at the same time. Preferably means recognizing and binding the monoclonal antibody of step (a) and the respective epitope recognized by the monoclonal antibody of step (c) simultaneously.

또한 본 발명은 전술한 ‘(a) 내지 (e) 단계를 포함하는 이중특이항체(bispecific antibody)를 생산하는 형질전환 식물의 제조방법’을 구체화하여,The present invention further provides a method for producing a transgenic plant for producing a bispecific antibody comprising the steps (a) to (e) described above,

(a) 대장암 세포 표면 단백질인 GA733-2를 에피토프(epitope)로 인지하는 단일클론항체의 중쇄 가변영역(VH)과 경쇄 가변영역(VL)을 링커로 연결하여 단쇄 항체(single chain antibody)로 만드는 단계;(a) A single chain antibody (heavy chain variable region (VH) and light chain variable region (VL) linked by a linker to a monoclonal antibody recognizing GA733-2 epitope) Creating;

(b) 상기 (a) 단계에서 제조된 단쇄 항체의 유전자를 식물 세포에 도입하여 형질전환된 식물 개체를 얻는 단계;(b) introducing the gene of the single chain antibody prepared in the step (a) into a plant cell to obtain a transformed plant;

(c) 유방암 세포 표면 당사슬인 Lewis Y를 에피토프로 인지하는 단일클론항체와는 다른 단일클론항체의 중쇄 가변영역(VH)과 경쇄 가변영역(VL)을 링커로 연결하여 단쇄 항체(single chain antibody)로 만드는 단계;(c) A single chain antibody is obtained by linking the heavy chain variable region (VH) and the light chain variable region (VL) of a monoclonal antibody different from the monoclonal antibody recognizing Lewis Y as a epitope of breast cancer cell surface glycoprotein, ;

(d) 상기 (c) 단계에서 제조된 단쇄 항체의 유전자를 식물 세포에 도입하여 형질전환된 식물 개체를 얻는 단계;(d) introducing the gene of the single chain antibody produced in the step (c) into a plant cell to obtain a transformed plant;

(e) 상기 (b) 및 (d) 단계에서 제조된 형질전환 식물 개체들을 교배하여 교배 식물을 제조하는 단계를 포함하는 이중특이항체(bispecific antibody)를 생산하는 형질전환 식물의 제조방법을 제공한다.
(e) producing transgenic plants by crossing the transgenic plants produced in steps (b) and (d) above, to produce a transgenic plant producing bispecific antibodies .

상기 방법에 의해 제조된 교배 식물에는 대장암 세포 표면 단백질인 GA733-2 및 유방암 세포 표면 당사슬인 Lewis Y를 동시에 인지 및 결합하는 이중특이적 항체가 발현되는 것을 특징으로 한다.
The hybridization plant produced by the above method is characterized in that a bispecific antibody that simultaneously recognizes and binds to the colon cancer cell surface protein GA733-2 and Lewis Y, a breast cancer cell surface sugar chain, is expressed.

본 발명은 (a) 단일클론항체(monoclonal antibody)의 중쇄 가변영역(VH)과 경쇄 가변영역(VL)을 링커로 연결하여 단쇄 항체(single chain antibody)로 만드는 단계;(A) linking a heavy chain variable region (VH) and a light chain variable region (VL) of a monoclonal antibody with a linker to form a single chain antibody;

(b) 상기 (a) 단계에서 제조된 단쇄 항체의 유전자를 식물 세포에 도입하여 형질전환된 식물 개체를 얻는 단계;(b) introducing the gene of the single chain antibody prepared in the step (a) into a plant cell to obtain a transformed plant;

(c) 상기 (a) 단계의 단일클론항체와는 다른 단일클론항체의 중쇄 가변영역(VH)과 경쇄 가변영역(VL)을 링커로 연결하여 단쇄 항체(single chain antibody)로 만드는 단계;(c) linking the heavy chain variable region (VH) and the light chain variable region (VL) of the monoclonal antibody different from the monoclonal antibody of the step (a) with a linker to form a single chain antibody;

(d) 상기 (c) 단계에서 제조된 단쇄 항체의 유전자를 식물 세포에 도입하여 형질전환된 식물 개체를 얻는 단계; (d) introducing the gene of the single chain antibody produced in the step (c) into a plant cell to obtain a transformed plant;

(e) 상기 (b) 및 (d) 단계에서 제조된 형질전환 식물 개체들을 교배하는 단계; 및(e) crossing the transgenic plants produced in steps (b) and (d) above; And

(f) 상기 (e) 단계에서 제조된 교배 식물로부터 단백질을 수득하는 단계를 포함하는 항체 생산 방법을 제공한다.
(f) obtaining a protein from the crossed plant produced in the step (e).

상기 항체 생산 방법의 (a) 내지 (e) 단계는, 앞서‘(a) 내지 (e) 단계를 포함하는 이중특이항체(bispecific antibody)를 생산하는 형질전환 식물의 제조방법’에서 전술하였던 (a) 내지 (e) 단계의 내용과 동일하다.
The steps (a) to (e) of the above antibody production method are the same as the above-mentioned (a) to (e) in the method for producing a transgenic plant producing a bispecific antibody, ) To (e).

상기 (f) 단계는 (a) 내지 (e) 단계를 거쳐 생산된 교배 식물로 부터 단백질을 수득하는 단계이다. 특히, (e) 단계에서 생성된 교배 식물에는 이중 특이적 항체가 다량 포함되어있어, 상기 이중 특이적 항체의 수득을 목표로 한다.
The step (f) is a step of obtaining a protein from a crossed plant produced through steps (a) to (e). In particular, the hybridization plant produced in step (e) contains a large amount of bispecific antibody, thus aiming to obtain the bispecific antibody.

(f) 단계의 상기‘교배 식물로부터 단백질을 수득’하는 것은 공지의 식물 세포 유래 단백질 수득 방법에 의하여 행해질 수 있으며 이에 제한되지 않으나, 예를 들어 교배 식물을 파쇄 및 분쇄하여 추출 버퍼(buffer, 완충용액)에 균질화하는 방법 일 수 있다. 상기 추출 버퍼는 이에 제한되지 않으나, 예를 들어 인산완충식염수(Phosphate buffered saline;PBS)일 수 있고, 또는 트리스-HCl pH 8, 디티오트레이톨 (DTT), 프로테아제 억제제 (예를 들어 애프로티닌(aprotinin), 펩스태틴 (pepstatin), 루펩틴(leupeptine), 페닐메틸설포닐 플로오라이드(phenyl methyl sulphonyl fluoride) 및 [(N-(N-(L-3-트랜스-카복시옥시레인(carboxyoxirane)-2-카보닐)-L루실)-애그맨틴(agmantine)]등을 포함하는 조성물 일 수 있다.
The step of obtaining the protein from the hybrid plant in step (f) may be carried out by a method of obtaining a known plant cell-derived protein, but is not limited thereto. For example, the hybrid plant is disrupted and pulverized to prepare an extraction buffer Solution). ≪ / RTI > The extraction buffer may be, for example, but not limited to, phosphate buffered saline (PBS), or Tris-HCl pH 8, dithiothreitol (DTT), protease inhibitors aprotinin, pepstatin, leupeptine, phenyl methylsulphonyl fluoride, and [(N- (N- (L-3- trans- carboxyoxirane) 2-carbonyl) -Lucyl) -agmantine], and the like.

또한 상기(f) 단계는 단백질 정제 과정을 추가로 포함할 수 있다. 상기 ‘단백질 정제’는 통상의 방식으로 정제될 수 있으며, 예를 들어, 염석(예를 들어 황산암모늄 침전, 인산나트륨 침전), 용매 침전(아세톤, 에탄올 등을 이용한 단백질 분획 침전), 투석, 겔 여과, 이온 교환, 역상 칼럼 크로마토그래피와 같은 칼럼 크로마토그래피 및 한외여과 등의 기법을 단독 또는 조합으로 적용시킬 수 있다( Deutscher, M., Guide to Protein Purification Methods Enzymology, vol. 182. AcademicPress. Inc., San Diego, CA(1990)).
The step (f) may further include a protein purification process. The 'protein purification' can be purified in a conventional manner, for example, by salting out (eg, ammonium sulfate precipitation, sodium phosphate precipitation), solvent precipitation (protein fraction precipitation using acetone, ethanol, etc.) Techniques such as filtration, ion exchange, column chromatography such as reversed phase column chromatography and ultrafiltration can be applied alone or in combination (Deutscher, M., Guide to Protein Purification Methods Enzymology, vol. , San Diego, CA (1990)).

상기 (a) 내지 (f) 단계를 포함하는 항체 생산방법은 키메리즘(chimerism)이 없이 높은 수율로 이중특이적 항체를 얻을 수 있어, 생산률이 높은 항체 생산 방법이다.
The method for producing an antibody comprising the steps (a) to (f) is a method for producing an antibody having a high production rate because it can obtain a bispecific antibody with high yield without chimerism.

또한 본 발명은 전술한 ‘(a) 내지 (f) 단계를 포함하는 항체생산 방법’을 구체화하여,The present invention further provides a method for producing an antibody comprising the steps (a) to (f) described above,

(a) 대장암 세포 표면 단백질인 GA733-2를 에피토프(epitope)로 인지하는 단일클론항체의 중쇄 가변영역(VH)과 경쇄 가변영역(VL)을 링커로 연결하여 단쇄 항체(single chain antibody)로 만드는 단계;(a) A single chain antibody (heavy chain variable region (VH) and light chain variable region (VL) linked by a linker to a monoclonal antibody recognizing GA733-2 epitope) Creating;

(b) 상기 (a) 단계에서 제조된 단쇄 항체의 유전자를 식물 세포에 도입하여 형질전환된 식물 개체를 얻는 단계;(b) introducing the gene of the single chain antibody prepared in the step (a) into a plant cell to obtain a transformed plant;

(c) 유방암 세포 표면 당사슬인 Lewis Y를 에피토프로 인지하는 단일클론항체와는 다른 단일클론항체의 중쇄 가변영역(VH)과 경쇄 가변영역(VL)을 링커로 연결하여 단쇄 항체(single chain antibody)로 만드는 단계;(c) A single chain antibody is obtained by linking the heavy chain variable region (VH) and the light chain variable region (VL) of a monoclonal antibody different from the monoclonal antibody recognizing Lewis Y as a epitope of breast cancer cell surface glycoprotein, ;

(d) 상기 (c) 단계에서 제조된 단쇄 항체의 유전자를 식물 세포에 도입하여 형질전환된 식물 개체를 얻는 단계;(d) introducing the gene of the single chain antibody produced in the step (c) into a plant cell to obtain a transformed plant;

(e) 상기 (b) 및 (d) 단계에서 제조된 형질전환 식물 개체들을 교배하여 교배 식물을 제조하는 단계; 및(e) preparing transgenic plants by crossing the transgenic plants produced in the steps (b) and (d); And

(f) 상기 (e) 단계에서 제조된 교배 식물로부터 단백질을 수득하는 단계를 포함하는 항체 생산 방법을 제공한다.
(f) obtaining a protein from the crossed plant produced in the step (e).

상기 항체 생산 방법에 의해 수득된 항체는 대장암 세포 표면 단백질인 GA733-2 및 유방암 세포 표면 당사슬인 Lewis Y를 동시에 에피토프로 인지하는 것을 특징으로 한다. 따라서 상기 방법에 의해 만들어진 항체는 대장암 및 유방암을 동시에 진단 및 치료할 수 있는 것이 특징이다.
The antibody obtained by the antibody production method is characterized by simultaneously recognizing GA733-2, a surface protein of colon cancer cells, and Lewis Y, a breast cancer cell surface sugar chain, as epitopes. Therefore, the antibody produced by the above method is characterized in being able to simultaneously diagnose and treat colorectal cancer and breast cancer.

따라서 본 발명은 상기 방법에 의해 제조된 GA733-2 및 Lewis Y를 동시에 인지 또는 결합하는 이중특이적 항체를 제공한다.
Accordingly, the present invention provides a bispecific antibody that simultaneously recognizes or binds to GA733-2 and Lewis Y produced by the above method.

본 발명의 이중특이항체를 생산하는 식물의 제조 방법을 이용하면, 이중특이적 항체를 대량으로 생산하기 용이할 뿐만 아니라, 경제적으로도 저렴한 단일클론항체의 대량생산에 효과적이다.
Using the method of producing a plant for producing a bispecific antibody of the present invention, it is not only easy to produce a large amount of bispecific antibodies, but also is economically effective for mass production of monoclonal antibodies.

도 1은 식물발현벡터로 사용된 pBIN PLUS에 Large single chain 항체의 유전자가 삽입된 최종식물발현벡터의 모식도를 나타낸다.
도 2의 A 및 B는 생산된 여러 개의 형질전환 담배식물 중 무작위로 선택된 개체로부터 Genomic DNA를 분리해낸 후 Large single chain (LSC) 항체 유전자 삽입여부를 PCR 및 전기영동을 통해 확인한 결과를 나타낸 것이다(M: DNA marker, P: positive control (LSC Ab T easy vector), NT: non-transgenic plant genomic DNA, LSC CH: plant-derived LSC CO17-1A gene, LSC CK: plant-derived LSC CO17-1AK gene, LSC BK: plant-derived LSC BR55K gene, Numbers: plant transformant numbers).
도 3은 Large single chain (LSC) 항체 유전자 삽입여부가 확인 된 형질전환 담배식물 개체들로부터 항체의 발현여부를 Western blot 법을 통해 확인한 결과를 나타낸 것이다(NT: non-transgenic plant leaf extract, LSC CH: LSC CO17-1A transgenic plant leaf extract, LSC CK: LSC CO17-1AK transgenic plant leaf extract, LSC BK: LSC BR55K transgenic plant leaf extract, Numbers: plant transformant numbers).
도 4는 large single chain CO17-1A 항체의 단백질 구조 모식도 이다.
도 5는 large single chain CO17-1AK 및 large single chain BR55K 항체의 단백질 구조 모식도이다.
Fig. 1 shows a schematic diagram of a final plant expression vector into which a large single chain antibody gene is inserted into pBIN PLUS used as a plant expression vector.
FIGS. 2A and 2B show results obtained by isolating genomic DNA from randomly selected individuals among several transgenic tobacco plants produced, followed by PCR and electrophoresis for the insertion of a large single chain (LSC) antibody gene M: DNA marker, P: positive control (LSC Ab easy vector), NT: non-transgenic plant genomic DNA, LSC CH: plant-derived LSC CO17-1A gene, LSC CK: plant- LSC BK: plant-derived LSC BR55K gene, Numbers: plant transformant numbers).
FIG. 3 shows Western blot analysis of the expression of antibodies from transgenic tobacco plant individuals in which large single chain (LSC) antibody genes were confirmed (NT: non-transgenic plant leaf extract, LSC CH : LSC CO17-1A transgenic plant leaf extract, LSC CK: LSC CO17-1AK transgenic plant leaf extract, LSC BK: LSC BR55K transgenic plant leaf extract, Numbers: plant transformant numbers).
4 is a schematic diagram of the protein structure of a large single chain CO17-1A antibody.
FIG. 5 is a protein structure diagram of large single chain CO17-1AK and large single chain BR55K antibodies.

이하 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.
However, the following examples are illustrative of the present invention, and the present invention is not limited to the following examples.

<실시예 1> &Lt; Example 1 >

CO17-1A의 단쇄 항체의 제조Preparation of single chain antibody of CO17-1A

mAb CO17-1A는 대장암 표면에 과량발현되는 표면단백질인 GA733-2를 에피토프로 인지하는 모노클로날항체이다(경쇄; 서열번호 15 및 17, 중쇄; 서열번호 16 및 18). CO17-1A의 염기서열 중 중쇄의 VH 부위와 경쇄의 VL 부위를 linker [아미노산 서열, (G4S)3]로 연결하여 하나의 promoter에서도 발현이 가능하도록 하였고, 이를 Large single chain CO17-1A(서열번호 11 및 서열번호 23)로 명명하였다. 상기 Large single chain CO17-1A 항체 뉴클레오티드 서열 마지막 부분에 소포체 잔류 펩티드 (Endoplasmic Reticulum retention peptide) 인 KDEL의 뉴클레오티드 서열(5'- aaggacgaactt -3', 서열번호 26)을 삽입하였으며 바로 그 뒤에 종결코돈 서열을 삽입하였고, 이를 Large single chain CO17-1AK 라 명명하였다(서열번호 12 및 24 ). 상기 과정은 mAb CO17-1A유전자 서열에서 PCR 법을 사용하여 pGEM T easy vector에 유전자를 합성하는 방법으로 이루어졌다. Large single chain CO17-1A 및 Large single chain CO17-1AK를 제작하기 위해서 사용한 프라이머 정보는[표 1]에 나타낸다. 구체적으로 Large single chain CO17-1A 및 Large single chain CO17-1AK에 대한 유전자 합성방법은 다음과 같다. restriction 5' end primer (carrying restriction enzyme, NcoI) 그리고 restriction 3' end primer (carrying restriction enzyme, XbaI)을 이용하여 mAb CO17-1A에 linker가 달린 Large single chain CO17-1A와 mAb CO17-1A에 linker와 KDEL이 달린 Large single chain CO17-1AK 유전자를 각각 합성하였다. 유전자는 3‘방향에서 5’방향으로 단일염기가 하나씩 차례로 붙으면서 염기사슬(올리고뉴클레오타이드)을 신장시키는 자동화된 합성기를 사용하여 합성하였다. 유전자 합성 과정은 detritylation, coupling, capping, oxidation으로 나뉘며, 한 주기동안 1개의 nucleotide가 결합하여 합성하고자 하는 염기서열 순서대로 dA, dG, dT, dC를 순서에 맞게 각반응에 참여시킴으로 oligomer를 합성하였다. 합성이 완료되면 ammonium hydroxide를 넣어 지지체로부터 oligomer를 분리한다. Oligonucleotide는 3'쪽 끝의 nucleoside를 움직이지 못하도록 고형 지지체 (solid support)에 결합한 후 컬럼에서 반응시킴으로 합성을 유도하였다. 합성된 oligomer는 원하는 oligomer만을 추출하기 위하여 PAGE prep으로 정제 하였다.
mAb CO17-1A is a monoclonal antibody (light chain; SEQ ID NOs: 15 and 17, heavy chain; SEQ ID NOs: 16 and 18) that recognizes the surface protein GA733-2 as an epitope overexpressed on the surface of colon cancer. In the nucleotide sequence of CO17-1A, the VH region of the heavy chain and the VL region of the light chain were linked by a linker (amino acid sequence, (G4S) 3 ] so that they could be expressed in one promoter. 11 and SEQ ID NO: 23). The nucleotide sequence of KDEL (5'-aaggacgaactt-3 ', SEQ ID NO: 26), which is an endoplasmic reticulum retention peptide, was inserted at the end of the nucleotide sequence of the large single chain CO17-1A antibody, followed by a termination codon sequence And named Large single chain CO17-1AK (SEQ ID NOS: 12 and 24). The above procedure was performed by synthesizing a gene in pGEM T easy vector using the PCR method in the mAb CO17-1A gene sequence. The primer information used to construct large single chain CO17-1A and large single chain CO17-1AK is shown in [Table 1]. Specifically, the gene synthesis method for large single chain CO17-1A and large single chain CO17-1AK is as follows. Large single chain CO17-1A with linker to mAb CO17-1A and mAb CO17-1A with restriction 5 'end primer (carrying restriction enzyme, Nco I) and restriction 3' end primer ( Xba I) Large single chain CO17-1AK gene with linker and KDEL were synthesized. The genes were synthesized using an automated synthesizer that elongates the base chain (oligonucleotides) with single bases one after the other in the 3 'to 5' direction. The oligomer was synthesized by sequencing dA, dG, dT, and dC in the order of nucleotide sequence to be synthesized by combining one nucleotide for one cycle in the order of detritylation, coupling, capping, and oxidation. . When synthesis is complete, add ammonium hydroxide to separate the oligomer from the support. Oligonucleotides were synthesized by binding to the solid support to immobilize the nucleoside at the 3 'end and then reacting in the column. The synthesized oligomers were purified by PAGE prep to extract only desired oligomers.

Name of AntibodyName of Antibody PrimerPrimer 서열
번호
order
number
LSC CO17-1ALSC CO17-1A Forward primer:
5'-cgctcgagggatccatgggcattaaaatgcg-3'
Forward primer:
5'-cgctcgagggatccatgggcattaaaatgcg-3 '
2828
Reverse primer:
5'-gcggtacctctagaatcgattttacccgggc-3'
Reverse primer:
5'-gcggtacctctagaatcgattttacccgggc-3 '
2929
LSC CO17-1AKLSC CO17-1AK Forward primer:
5'-cgctcgagggatccatgggcattaaaatgcg-3'
Forward primer:
5'-cgctcgagggatccatgggcattaaaatgcg-3 '
3030
Reverse primer:
5'-gcggtacctctagattaaagttcgtccttatcgatgc-3'
Reverse primer:
5'-gcggtacctctagattaaagttcgtccttatcgatgc-3 '
3131
LSC BR55KLSC BR55K Forward primer:
5'-cggtcgactctagaatgctcccggccgctcg-3'
Forward primer:
5'-cggtcgactctagaatgctcccggccgctcg-3 '
3232
Reverse primer:
5'-gcactagtggatcctcaaagttcatctttacccggc-3'
Reverse primer:
5'-gcactagtggatcctcaaagttcatctttacccggc-3 '
3333

(LSC= large single chain)
(LSC = large single chain)

<< 실시예Example 2>  2>

BR55BR55 of 단쇄Short chain 항체의 제조 Preparation of antibodies

mAb BR55는 유방암 표면에 과량발현되는 당사슬인 Lewis Y를 에피토프로 인지하는 항체이다(경쇄; 서열번호 19 및 서열번호 21, 중쇄; 서열번호 20 및 22). mAb BR55의 아미노산 서열 중 중쇄의 VH 부위와 경쇄의 VL 부위를 linker [아미노산 서열, (G4S)3]로 연결하여 하나의 promoter에서도 발현이 가능하도록 하였고, 이를 Large single chain BR55 (서열번호 14)로 명명하였다. 상기 Large single chain BR55 항체 뉴클레오티드 서열 마지막 부분에 소포체 잔류 펩티드 (Endoplasmic Reticulum retention peptide) 인 KDEL의 뉴클레오티드 서열(5'- aaagatgaactt -3', 서열번호 27)을 삽입하였으며 바로 그 뒤에 종결코돈 서열을 삽입하였고, 이를 Large single chain BR55K라 명명하였다(서열번호 13 및 25). 상기 과정은 mAb BR55 유전자 서열에서 PCR 법을 사용하여 pGEM T easy vector에 유전자를 합성하는 방법으로 이루어졌다. Large single chain BR55K를 합성하기 위해서 사용한 프라이머 정보는[표 1]에 나타낸다. 구체적으로 LSC BR55K에 대한 유전자 합성방법은 다음과 같다. restriction 5' end primer (carrying restriction enzyme, XbaI) 그리고 restriction 3' end primer (carrying restriction enzyme, BamHI)을 이용하여 mAb BR55에 linker와 KDEL이 달린 Large single chain BR55K 유전자를 합성하였다. 유전자는 3‘방향에서 5’방향으로 단일염기가 하나씩 차례로 붙으면서 염기사슬(올리고뉴클레오타이드)을 신장시키는 자동화된 합성기를 사용하여 합성하였다. 유전자 합성 과정은 detritylation, coupling, capping, oxidation으로 나뉘며, 한 주기동안 1개의 nucleotide가 결합하여 합성하고자 하는 염기서열 순서대로 dA, dG, dT, dC를 순서에 맞게 각반응에 참여시킴으로 oligomer를 합성하였다. 합성이 완료되면 ammonium hydroxide를 넣어 지지체로부터 oligomer를 분리한다. Oligonucleotide는 3'쪽 끝의 nucleoside를 움직이지 못하도록 고형 지지체 (solid support)에 결합한 후 컬럼에서 반응시킴으로 합성을 유도하였다. 합성된 oligomer는 원하는 oligomer만을 추출하기 위하여 PAGE prep으로 정제 하였다.
mAb BR55 is an antibody that recognizes Lewis Y, an oligosaccharide that is overexpressed on the surface of breast cancer, as an epitope (light chain; SEQ ID NO: 19 and SEQ ID NO: 21, heavy chain; SEQ ID NOs: 20 and 22). The VH region of the heavy chain of the mAb BR55 and the VL region of the light chain were linked by a linker (amino acid sequence, (G4S) 3 ] so that they could be expressed in one promoter. Respectively. The nucleotide sequence of KDEL (5'-aaagatgaactt-3 ', SEQ ID NO: 27), which is an endoplasmic reticulum retention peptide, was inserted at the end of the large single chain BR55 antibody nucleotide sequence, followed by insertion of a termination codon sequence , Named Large single chain BR55K (SEQ ID NOS: 13 and 25). The above procedure was performed by synthesizing a gene in pGEM T easy vector using the PCR method in the mAb BR55 gene sequence. The primer information used to synthesize large single chain BR55K is shown in [Table 1]. Specifically, the gene synthesis method for LSC BR55K is as follows. Large single chain BR55K gene with linker and KDEL was synthesized in mAb BR55 using restriction 5 'end primer (carrying restriction enzyme, Xba I) and restriction 3' end primer (carrying restriction enzyme, Bam HI) The genes were synthesized using an automated synthesizer that elongates the base chain (oligonucleotides) with single bases one after the other in the 3 'to 5' direction. The oligomer was synthesized by sequencing dA, dG, dT, and dC in the order of nucleotide sequence to be synthesized by combining one nucleotide for one cycle in the order of detritylation, coupling, capping, and oxidation. . When synthesis is complete, add ammonium hydroxide to separate the oligomer from the support. Oligonucleotides were synthesized by binding to the solid support to immobilize the nucleoside at the 3 'end and then reacting in the column. The synthesized oligomers were purified by PAGE prep to extract only desired oligomers.

<< 실시예Example 3> 3>

CO17-1A의 단쇄 항체가 발현되는 형질전환 식물 및 BR55의 단쇄 항체가 발현되는 형질전환 식물의 제조Production of a transgenic plant expressing a single-chain antibody of CO17-1A and a transgenic plant expressing a single-chain antibody of BR55

상기 <실시예 1> 에서 제조된 Large single chain CO17-1A, Large single chain CO17-1AK 또는 <실시예 2>에서 제조된 Large single chain BR55K의 유전자를 담배(Nicotiana tabacum)식물세포에 도입하여, 서로 다른 항체를 발현하는 형질전환 식물체들을 제조하였다.
Large single chain CO17-1A, Large single chain CO17-1AK prepared in Example 1 above, or Large single chain BR55K gene prepared in Example 2 was transformed into Nicotiana tabacum ) plant cells to produce transgenic plants expressing different antibodies.

식물체 내에서 발현이 용이하도록 식물 특이적인 서열로 변형(modification)된 Large single chain CO17-1A(서열번호 11), Large single chain CO17-1AK(서열번호 12) 또는 Large single chain BR55K(서열번호 13)의 유전자서열들은, 각각 monoclonal mAb CO17-1A 또는 monoclonal mAb BR55의 유전자 서열에서 PCR 법을 사용하여 pGEM T easy vector에 유전자를 합성하였고 합성된 Large single chain pGEM T easy vector를 E.coli (DH5a) 형질전환법을 통해 클로닝을 하였다. E.coli 형질전환 실험방법은 DH5a competenet cell 100μl 에 합성된 유전자 플라스미드 10μl를 넣은 후 얼음에서 15분간 방치한 후 42℃에서 90초간 열 충격을 실시하였다. 이 후 얼음에서 2분간 방치한 후 항생제(+Ampicillin, 50μg/ml)가 첨가된 LB 고체배지에 도말하였다. 도말한 배지를 37℃에서 16시간동안 배양 하였다. 상기와 같은 방법에 의하여 각각의 Large single chain 항체(Large single chain CO17-1A 또는 Large single chain CO17-1AK 또는 Large single chain BR55K를 의미함)를 얻었다.Large single chain CO17-1AK (SEQ ID NO: 12) or Large single chain BR55K (SEQ ID NO: 13) modified to a plant specific sequence to facilitate expression in plants, The gene sequences of monoclonal mAb CO17-1A or monoclonal mAb BR55 were synthesized by PCR in pGEM T easy vector, and the synthesized large single chain pGEM T easy vector was used for E.coli (DH5a) Cloning was carried out by the conversion method. In the E. coli transformation experiment, 10 μl of the synthesized gene plasmid was added to 100 μl of DH5a competenet cells, left for 15 minutes on ice, and then thermally shocked at 42 ° C. for 90 seconds. After incubation for 2 minutes on ice, the cells were spread on LB solid medium supplemented with antibiotic (+ Ampicillin, 50 μg / ml). The stained medium was incubated at 37 DEG C for 16 hours. Each large single chain antibody (large single chain CO17-1A or large single chain CO17-1AK or large single chain BR55K) was obtained by the above method.

duplicated CaMV 35S promoter를 Large single chain 항체 유전자 발현에 사용하기 위해 제한효소로 NcoI 및 XbaI를 사용하여 pBI 525 shuttle vector에 Large single chain 항체 유전자를 삽입하였다. Large single chain 항체 유전자가 삽입된 pBI 525 shuttle vector에 제한효소인 EcoRI 과 HindIII 를 처리하여 pBIN PLUS vector의 Muliple cloning site (MCS) 내에 삽입하였다. 최종 완성된 식물발현벡터의 유전자 발현카셋트 (gene expression cassette) 는 [도 1]과 같다. 완성된 Large single chain 항체 식물발현벡터를 Agrobacterium tumefaciens (LB4404) 균주에 형질전환 시켰다. 형질전환된 Agrobacterium tumefaciens (LB4404) 균주를 기내배양 된 담배식물의 잎 절편에 감염시켰다. 감염시킨 담배식물의 잎 절편을 Co-cultivation 배지 (M/S vitaminB5 0.48%, Sucrose 3%, NAA 50 ng/ml, 6-BAP 500 ng/ml) 에 암조건 23℃에서 3일간 배양하였다. 배양이 끝난 잎 절편은 Regeneration 배지 (M/S vitaminB5 0.48%, Sucrose 3%, NAA 100 ng/ml, 6-BAP 1 μg/ml, Kanamycin 100 μg/ml, Cefotaxime 250 μg/ml) 에 명조건 16시간 암조건 8시간, 23 ℃에서 배양하며 줄기와 잎, 뿌리가 모두 유도된 형질전환 담배식물체를 제조하였다.
Large single chain antibody gene was inserted into pBI 525 shuttle vector using NcoI and XbaI as restriction enzymes for the duplicated CaMV 35S promoter for the expression of large single chain antibody gene. The pBI 525 shuttle vector containing the large single chain antibody gene was inserted into the Muliple cloning site (MCS) of the pBIN PLUS vector by restriction enzymes EcoRI and HindIII. The gene expression cassette of the final plant expression vector is shown in Fig. The completed large single chain antibody plant expression vector was transformed into Agrobacterium tumefaciens (LB4404) strain. The transgenic Agrobacterium tumefaciens (LB4404) strain was infected with leaf sections of tobacco plants cultured in vitro. The leaf sections of the infected tobacco plants were cultured in Co-cultivation medium (M / S vitamin B5 0.48%, Sucrose 3%, NAA 50 ng / ml, 6-BAP 500 ng / ml) for 3 days under dark condition at 23 ° C. The cultured leaf slices were cultured in regeneration medium (M / S vitamin B5 0.48%, Sucrose 3%, NAA 100 ng / ml, 6-BAP 1 μg / ml, Kanamycin 100 μg / ml, Cefotaxime 250 μg / The transgenic tobacco plants were cultured at 23 ℃ for 8 hours under the dark condition.

<실시예 4><Example 4>

형질전환 식물체 속에 단쇄항체 유전자의 존재 확인Identification of the presence of a single-chain antibody gene in transgenic plants

상기 <실시예3>에서 제조된 Large single chain CO17-1A를 발현하는 형질전환 담배식물체, Large single chain CO17-1AK를 발현하는 형질전환 담배식물체, Large single chain BR55K를 발현하는 형질전환 담배 식물체에서 각각의 Large single chain 항체 유전자가 도입되었는지 확인하였다. The transgenic tobacco plants expressing the large single chain CO17-1A, the transgenic tobacco plants expressing the large single chain CO17-1AK, and the transgenic tobacco plants expressing the large single chain BR55K prepared in Example 3 above Of large single chain antibody genes were introduced.

상시 <실시예 3>에서 생산된 여러개의 형질전환 담배 식물 중 무작위로 몇 개의 개체를 선별하였고, 식물의 줄기와 잎, 뿌리가 모두 유도된 형질전환 담배식물체의 잎을 잘라서 식물 Genomic DNA를 분리해 내었다. Genomic DNA 추출 방법으로 RBC Bioscience Genomic DNA 추출 키트 (Cat.No. YGB100)를 사용하여 기내배양된 형질전환 식물체의 잎 50 mg에서 Genomic DNA를 추출하였다.Several randomly selected transgenic tobacco plants produced at the time of Example 3 were randomly selected and the leaves of transgenic tobacco plants in which all the stem, leaf and root of the plant were cut were cut to isolate the plant genomic DNA I got it. Genomic DNA was extracted from 50 mg of leaf of transgenic plant cultured in vitro using RBC Bioscience Genomic DNA Extraction Kit (Cat. No. YGB100).

분리해낸 식물 Genomic DNA를 Polymerase chain reaction(PCR)법을 통하여 Large single chain 항체 유전자의 존재여부를 확인 하였다. 식물 발현 벡터 내의 Large single chain 항체 유전자 삽입여부 확인을 위해 사용된 프라이머 서열은 [표 2]와 같다. 상기 PCR 과정을 수행하기 위하여 iNtRON Biotechnology Maxime PCR PreMix Kit (i-Taq), Cat.No. 25025), plant genomic DNA, LSC Ab gene Forward primer (10 pmol/μl) ,LSC Ab gene Reverse primer (10 pmol/μl) 및 Distilled water가 포함된 PCR 조성물을 사용하였고, PCR 장비 Biometra Thermocycler (Cat. No. 050-901)를 사용하였으며 구체적인 PCR 수행 조건은 다음과 같다 ; 최초 denature 94℃ 2분후, denature 94℃ 30초, anealing 65℃ 30초, extention 72℃ 1분 30초를 30번 반복하였음. 이 후 최종 extention 72℃ 5분간 실시 후 4℃에서 PCR 반응 종료하였음. Polymerase chain reaction (PCR) was used to confirm the presence of the large single chain antibody gene in the isolated plant genomic DNA. The primer sequences used to confirm the insertion of the large single chain antibody gene in the plant expression vector are shown in [Table 2]. To perform the PCR, iNtRON Biotechnology Maxime PCR PreMix Kit (i-Taq), Cat. PCR instrument Biometra Thermocycler (Cat. No. 25025), plant genomic DNA, LSC Ab gene forward primer (10 pmol / μl), LSC Ab gene reverse primer (10 pmol / . 050-901) was used. Specific PCR conditions were as follows; First denature 94 ℃ for 2 minutes, denature 94 ℃ for 30 seconds, anealing for 65 ℃ for 30 seconds, extention 72 ℃ for 1 minute 30 seconds. After the final extension at 72 ° C for 5 minutes, the PCR reaction was terminated at 4 ° C.

PCR 반응 종료 후, PCR 산물을 확인하기 위해서 1% agarose gel상에서 PCR 산물 20μl를 1X TAE 완충용액에서 전기영동하여 UV 광선을 조사하여 유전자 밴드를 확인 하였다.
After completion of the PCR reaction, 20 μl of the PCR product on 1% agarose gel was electrophoresed in 1 × TAE buffer solution to confirm the gene product by UV light irradiation.

서열번호SEQ ID NO: 프라이머 명Primer name 서열order 33 lsc BR55_primer1lsc BR55_primer1 5‘-GCTTGATCTCCAAGACTTAC-3’5'-GCTTGATCTCCAAGACTTAC-3 ' 44 lsc BR55_primer2lsc BR55_primer2 5‘-CTGATGTTCTGGATTCCTGC-3’5'-CTGATGTTCTGGATTCCTGC-3 ' 55 lsc BR55_primer3lsc BR55_primer3 5‘-GTAGACAGTGTAAAGGGCAG-3’5'-GTAGACAGTGTAAAGGGCAG-3 ' 66 lsc BR55_primer4lsc BR55_primer4 5‘-GACTGGATGAGTGGCAAGG-3’5'-GACTGGATGAGTGGCAAGG-3 ' 77 lsc CO17_primer1lsc CO17_primer1 5‘-GCTTCTGTTGATACCAGGAA-3’5'-GCTTCTGTTGATACCAGGAA-3 ' 88 lsc CO17_primer2lsc CO17_primer2 5‘-TCTCCCAAATCTATGAGCAT-3’5'-TCTCCCAAATCTATGAGCAT-3 ' 99 lsc CO17_primer3lsc CO17_primer3 5‘-GTACTCTGGTCACTGTATCT-3’5'-GTACTCTGGTCACTGTATCT-3 ' 1010 lsc CO17_primer4lsc CO17_primer4 5‘-AATAGCACTCTTCGAGTGGT-3’5'-AATAGCACTCTTCGAGTGGT-3 '

그 결과 [도 2]에서 보는 바와 같이, 각각의 형질전환 식물체 세포속에 각각 Large single chain CO17-1A 유전자, Large single chain CO17-1AK 유전자, Large single chain BR55K 유전자가 존재하는 것을 확인하였다.
As a result, as shown in FIG. 2, it was confirmed that Large single chain CO17-1A gene, Large single chain CO17-1AK gene and Large single chain BR55K gene were present in each transgenic plant cell, respectively.

<< 실시예Example 5> 5>

형질전환 식물체로부터 From transgenic plants 단쇄항체의Single-chain antibody 발현 확인 Confirmation of expression

상기 <실시예3>에서 제조된 Large single chain CO17-1A를 발현하는 형질전환 담배식물체, Large single chain CO17-1AK를 발현하는 형질전환 담배식물체, Large single chain BR55K를 발현하는 형질전환 담배 식물체에서 실제로 각각의 Large single chain 항체를 발현하는지 확인하였다.In a transgenic tobacco plant expressing large single chain CO17-1A, a transgenic tobacco plant expressing large single chain CO17-1AK, and a transgenic tobacco plant expressing large single chain BR55K produced in Example 3 above Each large single chain antibody was expressed.

상시 <실시예 3>에서 생산된 여러개의 형질전환 담배 식물 중 무작위로 몇 개의 개체를 선별하였고, 식물의 줄기와 잎, 뿌리가 모두 유도된 형질전환 담배식물체의 잎을 잘라서 Phosphate buffered saline 에 잎을 갈아낸 후 Western blot 법을 통해 Large single chain 항체의 발현여부를 확인 하였다.Several randomly selected transgenic tobacco plants produced at the time of Example 3 were screened and the leaves of transgenic tobacco plants in which all the stem, leaf and root of the plant were cut were cut into a phosphate buffered saline Western blots were used to confirm the expression of large single chain antibodies.

구체적인 잎 속의 항체 추출 방법 및 western blot 실험 방법은 하기와 같다. 기내배양된 형질전환 식물체의 잎 100 mg을 1.5 ml tube에 넣고, 1X Phosphate buffered saline 300 μl를 첨가하여, 전동드릴에 homogenizer를 장착하여, 식물 잎을 파쇄하였다. 파쇄된 식물시료를 5X protein loading buffer (0.06% 1M Tris-HCl, 25% glycerol, 2% SDS, 0.05% 2-mercaptoethanol, 0.01% bromophenol blue, distilled water)와 5:1 비율(파쇄된 식물시료 96μl + 5X protein loading buffer 24μl) 로 섞어준 후 96℃에서 5분간 열처리를 하였다. 이후 13,000rpm에서 1분간 원심분리 하여 얻은 상층액을 10% SDS gel에서 전기영동 후 NC membrane으로 항체 단백질을 부착시킨 후 5% skimmilk 가 함유된 TBS-T 용액에 상온에서 1시간동안 흔들며 방치한다. 이 후 Goat-anti mouse IgG H+L HRP conjugated를 1:3000 비율로 희석하여 첨가한 후 상온에서 2시간동안 흔들며 방치한다. 이 후 TBS-T 용액에 10분씩 3 반복하여 세척한다. 마지막으로 chemiluminescent substrate를 처리한다. 암실에서 필름현상을 통해 항체 단백질 발현여부를 확인 하였다.
Specific methods of extracting antibodies in leaves and western blotting methods are as follows. 100 mg of leaf of transgenic plant cultivated in vitro was placed in a 1.5 ml tube, and 300 μl of 1 × Phosphate buffered saline was added. A homogenizer was attached to the electric drill and the plant leaf was disrupted. The crushed plant samples were mixed with 5X protein loading buffer (0.06% 1M Tris-HCl, 25% glycerol, 2% SDS, 0.05% 2-mercaptoethanol, 0.01% bromophenol blue, distilled water) + 5X protein loading buffer (24 μl) and heat-treated at 96 ° C for 5 minutes. After centrifugation at 13,000 rpm for 1 minute, the supernatant is electrophoresed on 10% SDS gel, attached to the NC membrane with antibody protein, and incubated in TBS-T solution containing 5% skimmilk for 1 hour at room temperature. After adding Goat-anti mouse IgG H + L HRP conjugate at a ratio of 1: 3000, the mixture was incubated at room temperature for 2 hours. This is followed by washing the TBS-T solution three times for 10 minutes each. Finally, the chemiluminescent substrate is treated. Antibody protein expression was confirmed by film development in the dark room.

그 결과 [도 3]에서 보는 바와 같이, 각각의 형질전환 식물체로부터 각각 Large single chain CO17-1A 항체, Large single chain CO17-1AK 항체, Large single chain BR55K 항체가 발현되는 것을 확인하였다.
As a result, as shown in FIG. 3, large single chain CO17-1A antibody, large single chain CO17-1AK antibody and large single chain BR55K antibody were expressed from each transgenic plant, respectively.

또한 상기에서 제작된 각각의 형질 전환식물체들(Large single chain CO17-1A 항체를 발현하는 식물체, Large single chain CO17-1AK 항체를 발현하는 식물체 및 Large single chain BR55K 항체를 발현하는 식물체)을 서로 교배하여, 새로운 교배식물을 얻었다. 새로운 교배 식물에서 상기와 같은 방법으로 식물세포 속에 포함된 단백질 성분을 추출 및 조사하였다. 그 결과 교배 식물 세포에서 이중특이적인 항체가 생산된 것을 확인하였다.
Each of the transgenic plants prepared above (large single chain CO17-1A antibody expressing plant, large single chain CO17-1AK antibody expressing plant and large single chain BR55K antibody expressing plant) were crossed with each other , And got new hybrid plants. Protein components contained in plant cells were extracted and examined in the new hybrid plants in the same manner as described above. As a result, it was confirmed that a bispecific antibody was produced in hybridized plant cells.

이상 살펴본 바와 같이, 본 발명은 이중특이항체를 생산하는 식물의 제조 방법에 관한 것으로, 더욱 상세하게는 (a) 단일클론항체(monoclonal antibody)의 중쇄 가변영역(VH)과 경쇄 가변영역(VL)을 링커로 연결하여 단쇄 항체(single chain antibody)로 만드는 단계;(b) 상기 (a) 단계에서 제조된 단쇄 항체의 유전자를 식물 세포에 도입하여 형질전환된 식물 개체를 얻는 단계; (c) 상기 (a) 단계의 단일클론항체와는 다른 단일클론항체의 중쇄 가변영역(VH)과 경쇄 가변영역(VL)을 링커로 연결하여 단쇄 항체(single chain antibody)로 만드는 단계;(d) 상기 (c) 단계에서 제조된 단쇄 항체의 유전자를 식물 세포에 도입하여 형질전환된 식물 개체를 얻는 단계; 및(e) 상기 (b) 및 (d) 단계에서 제조된 형질전환 식물 개체들을 교배하는 단계를 포함하는 이중특이항체(bispecific antibody)를 생산하는 형질전환 식물의 제조방법 및 상기 제조방법에 의해 제조된 형질전환 식물로부터 단백질을 수득하는 단계를 포함하는 항체 생산 방법에 관한 것이다. (A) a heavy chain variable region (VH) of a monoclonal antibody and a light chain variable region (VL) of a monoclonal antibody. The present invention relates to a method for producing a bispecific antibody, (B) introducing the gene of the single chain antibody prepared in the step (a) into a plant cell to obtain a transformed plant; (c) linking a heavy chain variable region (VH) and a light chain variable region (VL) of a monoclonal antibody different from the monoclonal antibody of the step (a) by a linker to form a single chain antibody; ) Introducing the gene of the single chain antibody prepared in the step (c) into a plant cell to obtain a transformed plant; And (e) crossing the transformed plant individuals produced in steps (b) and (d) above, and a method for producing a transgenic plant producing the bispecific antibody, To obtain a protein from the transformed plant.

본 발명의 이중특이항체를 생산하는 식물의 제조 방법을 이용하면, 이중특이적 항체를 대량으로 생산하기 용이할 뿐만아니라, 경제적으로도 저렴한 단일클론항체의 대량생산에 효과적이므로 산업적 이용가능성이 크다.
The use of the method of producing a plant for producing a bispecific antibody of the present invention is not only easy to produce a large amount of bispecific antibodies, but also is effective for mass production of economically cheap monoclonal antibodies, and thus is highly industrially applicable.

<110> Chung-Ang University Industry-Academy Cooperation Foundation <120> Method for preparing the plant producing bispecific antibody <130> NP13-0061 <160> 33 <170> KopatentIn 2.0 <210> 1 <211> 15 <212> PRT <213> Artificial Sequence <220> <223> linker (amino acid sequence) <400> 1 Gly Ser Ser Ser Ser Gly Ser Ser Ser Ser Gly Ser Ser Ser Ser 1 5 10 15 <210> 2 <211> 4 <212> PRT <213> Artificial Sequence <220> <223> Endoplasmic Reticulum retention peptide (amino acid sequence) <400> 2 Lys Asp Glu Leu 1 <210> 3 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> lsc BR55_primer1 <400> 3 gcttgatctc caagacttac 20 <210> 4 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> lsc BR55_primer2 <400> 4 ctgatgttct ggattcctgc 20 <210> 5 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> lsc BR55_primer3 <400> 5 gtagacagtg taaagggcag 20 <210> 6 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> lsc BR55_primer4 <400> 6 gactggatga gtggcaagg 19 <210> 7 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> lsc CO17_primer1 <400> 7 gcttctgttg ataccaggaa 20 <210> 8 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> lsc CO17_primer2 <400> 8 tctcccaaat ctatgagcat 20 <210> 9 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> lsc CO17_primer3 <400> 9 gtactctggt cactgtatct 20 <210> 10 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> lsc CO17_primer4 <400> 10 aatagcactc ttcgagtggt 20 <210> 11 <211> 1866 <212> DNA <213> Artificial Sequence <220> <223> Large single chain CO17-1A (nucleotide sequence) <400> 11 ctcgagggat ccatgggcat taaaatggaa tcacaaactc tggtcttcat ttccattctg 60 ctctggttat atggagctga tggaaacatt gtaatgaccc aatctcccaa atctatgagc 120 atgtctgtcg gagagagggt taccttgaca tgcaaggcaa gtgaaaatgt ggttacttat 180 gtttcctggt atcaacagaa gccagagcag tcgcctaaat tactgatata cggggcctcc 240 aatcggtata ctggcgtacc tgatcgcttt acaggcagtg gatctgcaac agattttact 300 ctgaccattt catcggtgca agctgaagac cttgcagatt atcattgcgg acaaggttat 360 tcatatccgt acacgttcgg agggggcacg aagctggaaa taaaaggtgg aggtggttct 420 gggggtggag gttcaggtgg tggtggttct atggaatgga gcagagtttt tatctttctt 480 ctatcagtaa ccgcaggagt gcattcccaa gtccagttgc agcagtctgg agctgagctg 540 gtcaggcctg gtacttcagt taaggtgtct tgcaaggctt ctggatatgc ttttactaat 600 tacttaatag agtgggtcaa gcaaaggcct ggacaaggcc ttgaatggat tggggtgatt 660 aatcctggaa gtggtggtac taactacaat gaaaagttta agggcaaggc aacacttact 720 gccgataaat cctcaagcac tgcttatatg cagctatcca gcctgacaag cgatgactct 780 gcggtctatt tctgtgctag agatggcccc tggttcgctt actggggcca aggtactctg 840 gtcactgtat ctgctgctaa aactacagct ccaagtgtgt atccactggc ccctgtgtgt 900 ggagatacta ctggctcctc tgtgactcta gggtgtctgg tcaaaggtta ttttcctgag 960 ccagtaacct tgacatggaa ctctggatct ctctccagtg gtgtgcacac cttcccagct 1020 gtcctgcaat ctgacctcta cacactctct agttcagtaa ctgtaacctc gtcaacttgg 1080 ccgagtcagt ccattacatg caatgtggcc cacccggcaa gcagtaccaa agttgataag 1140 aagattgaac ctagagggcc tacaattaag ccttgtcctc catgcaaatg tccagcacca 1200 aatcttttgg gtggaccatc cgtcttcatc ttccctccaa agatcaagga tgttttgatg 1260 atttcactta gtcccatagt aacatgtgta gtggtggatg tgagcgagga tgacccagat 1320 gtccagatca gctggtttgt gaataacgtg gaagtacata cagcacaaac acaaacccat 1380 agagaggatt acaatagcac tcttcgagtg gtcagtgctc tcccaatcca gcaccaagac 1440 tggatgagtg gaaaggagtt taagtgcaaa gttaataata aagacctgcc agcgcccata 1500 gagagaacaa tatcaaaacc caaagggtca gtacgtgcac ctcaagtata tgtcttgcct 1560 ccaccagaag aagaaatgac gaagaaacag gtcactctta catgtatggt gacagatttc 1620 atgccagaag acatttacgt taagtggacc aacaacggga aaacagagct aaactacaaa 1680 aacactgagc cagtactgga ctctgatgga tcttacttta tgtatagcaa actgagagtg 1740 gaaaagaaga actgggtgga aagaaattcc tattcctgtt cagtggtcca tgagggtctg 1800 cacaatcatc atacgactaa gtcgttctcc agaactccgg gtaaaatcga ttaatctaga 1860 ggtacc 1866 <210> 12 <211> 1878 <212> DNA <213> Artificial Sequence <220> <223> Large single chain CO17-1AK (nucleotide sequence) <400> 12 ctcgagggat ccatgggcat taaaatggaa tcacaaactc tggtcttcat ttccattctg 60 ctctggttat atggagctga tggaaacatt gtaatgaccc aatctcccaa atctatgagc 120 atgtctgtcg gagagagggt taccttgaca tgcaaggcaa gtgaaaatgt ggttacttat 180 gtttcctggt atcaacagaa gccagagcag tcgcctaaat tactgatata cggggcctcc 240 aatcggtata ctggcgtacc tgatcgcttt acaggcagtg gatctgcaac agattttact 300 ctgaccattt catcggtgca agctgaagac cttgcagatt atcattgcgg acaaggttat 360 tcatatccgt acacgttcgg agggggcacg aagctggaaa taaaaggtgg aggtggttct 420 gggggtggag gttcaggtgg tggtggttct atggaatgga gcagagtttt tatctttctt 480 ctatcagtaa ccgcaggagt gcattcccaa gtccagttgc agcagtctgg agctgagctg 540 gtcaggcctg gtacttcagt taaggtgtct tgcaaggctt ctggatatgc ttttactaat 600 tacttaatag agtgggtcaa gcaaaggcct ggacaaggcc ttgaatggat tggggtgatt 660 aatcctggaa gtggtggtac taactacaat gaaaagttta agggcaaggc aacacttact 720 gccgataaat cctcaagcac tgcttatatg cagctatcca gcctgacaag cgatgactct 780 gcggtctatt tctgtgctag agatggcccc tggttcgctt actggggcca aggtactctg 840 gtcactgtat ctgctgctaa aactacagct ccaagtgtgt atccactggc ccctgtgtgt 900 ggagatacta ctggctcctc tgtgactcta gggtgtctgg tcaaaggtta ttttcctgag 960 ccagtaacct tgacatggaa ctctggatct ctctccagtg gtgtgcacac cttcccagct 1020 gtcctgcaat ctgacctcta cacactctct agttcagtaa ctgtaacctc gtcaacttgg 1080 ccgagtcagt ccattacatg caatgtggcc cacccggcaa gcagtaccaa agttgataag 1140 aagattgaac ctagagggcc tacaattaag ccttgtcctc catgcaaatg tccagcacca 1200 aatcttttgg gtggaccatc cgtcttcatc ttccctccaa agatcaagga tgttttgatg 1260 atttcactta gtcccatagt aacatgtgta gtggtggatg tgagcgagga tgacccagat 1320 gtccagatca gctggtttgt gaataacgtg gaagtacata cagcacaaac acaaacccat 1380 agagaggatt acaatagcac tcttcgagtg gtcagtgctc tcccaatcca gcaccaagac 1440 tggatgagtg gaaaggagtt taagtgcaaa gttaataata aagacctgcc agcgcccata 1500 gagagaacaa tatcaaaacc caaagggtca gtacgtgcac ctcaagtata tgtcttgcct 1560 ccaccagaag aagaaatgac gaagaaacag gtcactctta catgtatggt gacagatttc 1620 atgccagaag acatttacgt taagtggacc aacaacggga aaacagagct aaactacaaa 1680 aacactgagc cagtactgga ctctgatgga tcttacttta tgtatagcaa actgagagtg 1740 gaaaagaaga actgggtgga aagaaattcc tattcctgtt cagtggtcca tgagggtctg 1800 cacaatcatc atacgactaa gtcgttctcc agaactccgg gtaaaatcga taaggacgaa 1860 ctttaatcta gaggtacc 1878 <210> 13 <211> 2022 <212> DNA <213> Artificial Sequence <220> <223> Large single chain BR55K (nucleotide sequence) <400> 13 gtcgactcta gaatgctccc ggccgctatg gctgcgggat ttatgaaatt gcctgttagg 60 cttttggtgc tgatgttctg gattcctgct tcgtcttctg atgttttgat gacacaaact 120 ccattatccc tgcctgtaag tcttggagat caagcatcca tatcttgcag atcgagtcaa 180 tcaattgtac atagtaatgg aaatacctat ttagaatggt acttgcaaaa accaggccaa 240 agtccaaaac tcctgatctc caaagttagt aaccgatttt ctggggttcc agataggttc 300 agtggcagtg gatcagggac agactttaca ctaaagatta gcagggttga agctgaagat 360 ttaggagttt attactgctt tcaaggttca catgttccat ttacgttcgg atcgggcaca 420 aagttggaaa taaaaggagg aggtggttct ggtggaggtg gttctggtgg tggtggttct 480 atgcatccaa cgcgttggga actctcccat atggtcgatc ttcaagccgc cgcactggtt 540 attacaatgg atttggggtt gtcgttgatt tttcttgtcc ttgttttaaa aggtgttcaa 600 tgtgaagtga agctggtgga gagtgggggg ggtttagtgc agcctggagg gtccctgaaa 660 ctatcctgtg caacctctgg atttactttc agtgactatt acatgtattg ggttcgccag 720 actccagaga agaggctcga atgggttgca tacatttcaa atggtggtgg tagtagccat 780 tatgtagaca gtgtaaaggg cagattcaca atctccagag acaatgctaa gaacaccctg 840 tacctgcaaa tgagccgtct gaggtctgaa gatacagcca tgtatcactg tgcaagggga 900 atggattatg gagcatggtt tgcttactgg gggcaaggaa ctctggtcac tgtgtcggca 960 gctactacaa cagctccatc agtctatcct ttggtcccag gctgtagtga tacatctgga 1020 tcgagcgtga cactgggatg ccttgtaaaa ggctacttcc ctgagcctgt aactgtaaaa 1080 tggaactatg gagcattatc cagcggtgtg cgcacagtca gttctgtctt gcaatctggg 1140 ttttactccc tcagctcttt ggtgactgtt ccttcctcta cgtggcccag ccaaactgtc 1200 atctgcaatg tggctcatcc agcatcaaag actgagctaa ttaagagaat tgaacctaga 1260 ataccgaagc ctagtattcc cccaggatct tcatgtccac agcctagagg accaacaata 1320 aagccatgtc ctccatgtaa atgcccagct cctaacttgt tgggtggacc aagtgtgttt 1380 atcttccctc caaaaatcaa ggatgtactc atgatatccc tgagcccgat agtcacctgc 1440 gtggtggtgg atgtgagcga ggatgaccca gatgttcaga tcagctggtt tgtgaataac 1500 gtggaagtac atacagccca gacacaaacc catcgggagg attacaacag tactctacgt 1560 gtggtcagtg ccttgcccat ccagcatcag gactggatga gtggcaagga gttcaaatgc 1620 aaggtcaaca acaaagactt accagcgccc atcgagagaa ccatctcaaa acccaaaggg 1680 tcagtaagag ctccacaggt atatgtcttg cccccacctg aagaagagat gactaaaaaa 1740 caggtaactc tgacctgtat ggttactgac ttcatgcctg aagacattta cgtggagtgg 1800 accaacaacg gtaaaactga gctaaactat aagaacactg aaccagttct ggactctgat 1860 ggttcttact tcatgtactc taagttaagg gtggaaaaga agaattgggt ggaaagaaat 1920 agttattctt gttcagtggt ccacgaaggt ctccacaatc accacacgac taagagtttt 1980 tcccggactc cgggtaaaga tgaactttga ggatccacta gt 2022 <210> 14 <211> 2010 <212> DNA <213> Artificial Sequence <220> <223> Large single chain BR55(nucleotide sequence) <400> 14 gtcgactcta gaatgctccc ggccgctatg gctgcgggat ttatgaaatt gcctgttagg 60 cttttggtgc tgatgttctg gattcctgct tcgtcttctg atgttttgat gacacaaact 120 ccattatccc tgcctgtaag tcttggagat caagcatcca tatcttgcag atcgagtcaa 180 tcaattgtac atagtaatgg aaatacctat ttagaatggt acttgcaaaa accaggccaa 240 agtccaaaac tcctgatctc caaagttagt aaccgatttt ctggggttcc agataggttc 300 agtggcagtg gatcagggac agactttaca ctaaagatta gcagggttga agctgaagat 360 ttaggagttt attactgctt tcaaggttca catgttccat ttacgttcgg atcgggcaca 420 aagttggaaa taaaaggagg aggtggttct ggtggaggtg gttctggtgg tggtggttct 480 atgcatccaa cgcgttggga actctcccat atggtcgatc ttcaagccgc cgcactggtt 540 attacaatgg atttggggtt gtcgttgatt tttcttgtcc ttgttttaaa aggtgttcaa 600 tgtgaagtga agctggtgga gagtgggggg ggtttagtgc agcctggagg gtccctgaaa 660 ctatcctgtg caacctctgg atttactttc agtgactatt acatgtattg ggttcgccag 720 actccagaga agaggctcga atgggttgca tacatttcaa atggtggtgg tagtagccat 780 tatgtagaca gtgtaaaggg cagattcaca atctccagag acaatgctaa gaacaccctg 840 tacctgcaaa tgagccgtct gaggtctgaa gatacagcca tgtatcactg tgcaagggga 900 atggattatg gagcatggtt tgcttactgg gggcaaggaa ctctggtcac tgtgtcggca 960 gctactacaa cagctccatc agtctatcct ttggtcccag gctgtagtga tacatctgga 1020 tcgagcgtga cactgggatg ccttgtaaaa ggctacttcc ctgagcctgt aactgtaaaa 1080 tggaactatg gagcattatc cagcggtgtg cgcacagtca gttctgtctt gcaatctggg 1140 ttttactccc tcagctcttt ggtgactgtt ccttcctcta cgtggcccag ccaaactgtc 1200 atctgcaatg tggctcatcc agcatcaaag actgagctaa ttaagagaat tgaacctaga 1260 ataccgaagc ctagtattcc cccaggatct tcatgtccac agcctagagg accaacaata 1320 aagccatgtc ctccatgtaa atgcccagct cctaacttgt tgggtggacc aagtgtgttt 1380 atcttccctc caaaaatcaa ggatgtactc atgatatccc tgagcccgat agtcacctgc 1440 gtggtggtgg atgtgagcga ggatgaccca gatgttcaga tcagctggtt tgtgaataac 1500 gtggaagtac atacagccca gacacaaacc catcgggagg attacaacag tactctacgt 1560 gtggtcagtg ccttgcccat ccagcatcag gactggatga gtggcaagga gttcaaatgc 1620 aaggtcaaca acaaagactt accagcgccc atcgagagaa ccatctcaaa acccaaaggg 1680 tcagtaagag ctccacaggt atatgtcttg cccccacctg aagaagagat gactaaaaaa 1740 caggtaactc tgacctgtat ggttactgac ttcatgcctg aagacattta cgtggagtgg 1800 accaacaacg gtaaaactga gctaaactat aagaacactg aaccagttct ggactctgat 1860 ggttcttact tcatgtactc taagttaagg gtggaaaaga agaattgggt ggaaagaaat 1920 agttattctt gttcagtggt ccacgaaggt ctccacaatc accacacgac taagagtttt 1980 tcccggactc cgggttgagg atccactagt 2010 <210> 15 <211> 717 <212> DNA <213> Artificial Sequence <220> <223> mAb CO17-1A light chain (nucleotide sequence) <400> 15 atgggcatca agatggaatc acagactctg gtcttcatat ccatactgct ctggttatat 60 ggagctgatg ggaacattgt aatgacccaa tctcccaaat ccatgtccat gtcagtagga 120 gagagggtca ccttgacctg caaggccagt gagaatgtgg ttacttatgt ttcctggtat 180 caacagaaac cagagcagtc tcctaaactg ctgatatacg gggcatccaa ccggtacact 240 ggggtccccg atcgcttcac aggcagtgga tctgcaacag atttcactct gaccatcagc 300 agtgtgcagg ctgaagacct tgcagattat cactgtggac agggttacag ctatccgtac 360 acgttcggag gggggaccaa gctggaaata aaacgggctg atgctgcacc aactgtatcc 420 atcttcccac catccagtga gcagttaaca tctggaggtg cctcagtcgt gtgcttcttg 480 aacaacttct accccaaaga catcaatgtc aagtggaaga ttgatggcag tgaacgacaa 540 aatggcgtcc tgaacagttg gactgatcag gacagcaaag acagcaccta cagcatgagc 600 agcaccctca cgttgaccaa ggacgagtat gaacgacata acagctatac ctgtgaggcc 660 actcacaaga catcaacttc acccattgtc aagagcttca acaggaatga gtgttag 717 <210> 16 <211> 1404 <212> DNA <213> Artificial Sequence <220> <223> mAb CO17-1A heavy chain (nucleotide sequence) <400> 16 atggaatgga gcagagtctt tatctttctc ctatcagtaa ctgcaggtgt tcactcccag 60 gtccagttgc agcagtctgg agctgagctg gtaaggcctg ggacttcagt gaaggtgtcc 120 tgcaaggctt ctggatacgc cttcactaat tacttgatag agtgggtaaa gcagaggcct 180 ggacagggcc ttgagtggat tggggtgatt aatcctggaa gtggtggtac taactacaat 240 gagaagttca agggcaaggc aacactgact gcagacaaat cctccagcac tgcctacatg 300 cagctcagca gcctgacatc tgatgactct gcggtctatt tctgtgcaag agatggtccc 360 tggtttgctt actggggcca agggactctg gtcactgtct ctgcagccaa aacaacagcc 420 ccatcggtct atccactggc ccctgtgtgt ggagatacaa ctggctcctc ggtgactcta 480 ggatgcctgg tcaagggtta tttccctgag ccagtgacct tgacctggaa ctctggatcc 540 ctgtccagtg gtgtgcacac cttcccagct gtcctgcagt ctgacctcta caccctcagc 600 agctcagtga ctgtaacctc gagcacctgg cccagccagt ccatcacctg caatgtggcc 660 cacccggcaa gcagcaccaa ggtggacaag aaaattgagc ccagagggcc cacaatcaag 720 ccctgtcctc catgcaaatg cccagcacct aacctcttgg gtggaccatc cgtcttcatc 780 ttccctccaa agatcaagga tgtactcatg atctccctga gccccatagt cacatgtgtg 840 gtggtggatg tgagcgagga tgacccagat gtccagatca gctggtttgt gaacaacgtg 900 gaagtacaca cagctcagac acaaacccat agagaggatt acaacagtac tctccgggtg 960 gtcagtgccc tccccatcca gcaccaggac tggatgagtg gcaaggagtt caaatgcaag 1020 gtcaacaaca aagacctccc agcgcccatc gagagaacca tctcaaaacc caaagggtca 1080 gtaagagctc cacaggtata tgtcttgcct ccaccagaag aagagatgac taagaaacag 1140 gtcactctga cctgcatggt cacagacttc atgcctgaag acatttacgt gaagtggacc 1200 aacaacggga aaacagagct aaactacaag aacactgaac cagtcctgga ctctgatggt 1260 tcttacttca tgtacagcaa gctgagagtg gaaaagaaga actgggtgga aagaaatagc 1320 tactcctgtt cagtggtcca cgagggtctg cacaatcacc acacgactaa gagcttctcc 1380 cggactccgg gtaaaatcga ttaa 1404 <210> 17 <211> 238 <212> PRT <213> Artificial Sequence <220> <223> mAb CO17-1A light chain (amino acid sequence) <400> 17 Met Gly Ile Lys Met Glu Ser Gln Thr Leu Val Phe Ile Ser Ile Leu 1 5 10 15 Leu Trp Leu Tyr Gly Ala Asp Gly Asn Ile Val Met Thr Gln Ser Pro 20 25 30 Lys Ser Met Ser Met Ser Val Gly Glu Arg Val Thr Leu Thr Cys Lys 35 40 45 Ala Ser Glu Asn Val Val Thr Tyr Val Ser Trp Tyr Gln Gln Lys Pro 50 55 60 Glu Gln Ser Pro Lys Leu Leu Ile Tyr Gly Ala Ser Asn Arg Tyr Thr 65 70 75 80 Gly Val Pro Asp Arg Phe Thr Gly Ser Gly Ser Ala Thr Asp Phe Thr 85 90 95 Leu Thr Ile Ser Ser Val Gln Ala Glu Asp Leu Ala Asp Tyr His Cys 100 105 110 Gly Gln Gly Tyr Ser Tyr Pro Tyr Thr Phe Gly Gly Gly Thr Lys Leu 115 120 125 Glu Ile Lys Arg Ala Asp Ala Ala Pro Thr Val Ser Ile Phe Pro Pro 130 135 140 Ser Ser Glu Gln Leu Thr Ser Gly Gly Ala Ser Val Val Cys Phe Leu 145 150 155 160 Asn Asn Phe Tyr Pro Lys Asp Ile Asn Val Lys Trp Lys Ile Asp Gly 165 170 175 Ser Glu Arg Gln Asn Gly Val Leu Asn Ser Trp Thr Asp Gln Asp Ser 180 185 190 Lys Asp Ser Thr Tyr Ser Met Ser Ser Thr Leu Thr Leu Thr Lys Asp 195 200 205 Glu Tyr Glu Arg His Asn Ser Tyr Thr Cys Glu Ala Thr His Lys Thr 210 215 220 Ser Thr Ser Pro Ile Val Lys Ser Phe Asn Arg Asn Glu Cys 225 230 235 <210> 18 <211> 467 <212> PRT <213> Artificial Sequence <220> <223> mAb CO17-1A heavy chain (amino acid sequence) <400> 18 Met Glu Trp Ser Arg Val Phe Ile Phe Leu Leu Ser Val Thr Ala Gly 1 5 10 15 Val His Ser Gln Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Val Arg 20 25 30 Pro Gly Thr Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Ala Phe 35 40 45 Thr Asn Tyr Leu Ile Glu Trp Val Lys Gln Arg Pro Gly Gln Gly Leu 50 55 60 Glu Trp Ile Gly Val Ile Asn Pro Gly Ser Gly Gly Thr Asn Tyr Asn 65 70 75 80 Glu Lys Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser 85 90 95 Thr Ala Tyr Met Gln Leu Ser Ser Leu Thr Ser Asp Asp Ser Ala Val 100 105 110 Tyr Phe Cys Ala Arg Asp Gly Pro Trp Phe Ala Tyr Trp Gly Gln Gly 115 120 125 Thr Leu Val Thr Val Ser Ala Ala Lys Thr Thr Ala Pro Ser Val Tyr 130 135 140 Pro Leu Ala Pro Val Cys Gly Asp Thr Thr Gly Ser Ser Val Thr Leu 145 150 155 160 Gly Cys Leu Val Lys Gly Tyr Phe Pro Glu Pro Val Thr Leu Thr Trp 165 170 175 Asn Ser Gly Ser Leu Ser Ser Gly Val His Thr Phe Pro Ala Val Leu 180 185 190 Gln Ser Asp Leu Tyr Thr Leu Ser Ser Ser Val Thr Val Thr Ser Ser 195 200 205 Thr Trp Pro Ser Gln Ser Ile Thr Cys Asn Val Ala His Pro Ala Ser 210 215 220 Ser Thr Lys Val Asp Lys Lys Ile Glu Pro Arg Gly Pro Thr Ile Lys 225 230 235 240 Pro Cys Pro Pro Cys Lys Cys Pro Ala Pro Asn Leu Leu Gly Gly Pro 245 250 255 Ser Val Phe Ile Phe Pro Pro Lys Ile Lys Asp Val Leu Met Ile Ser 260 265 270 Leu Ser Pro Ile Val Thr Cys Val Val Val Asp Val Ser Glu Asp Asp 275 280 285 Pro Asp Val Gln Ile Ser Trp Phe Val Asn Asn Val Glu Val His Thr 290 295 300 Ala Gln Thr Gln Thr His Arg Glu Asp Tyr Asn Ser Thr Leu Arg Val 305 310 315 320 Val Ser Ala Leu Pro Ile Gln His Gln Asp Trp Met Ser Gly Lys Glu 325 330 335 Phe Lys Cys Lys Val Asn Asn Lys Asp Leu Pro Ala Pro Ile Glu Arg 340 345 350 Thr Ile Ser Lys Pro Lys Gly Ser Val Arg Ala Pro Gln Val Tyr Val 355 360 365 Leu Pro Pro Pro Glu Glu Glu Met Thr Lys Lys Gln Val Thr Leu Thr 370 375 380 Cys Met Val Thr Asp Phe Met Pro Glu Asp Ile Tyr Val Lys Trp Thr 385 390 395 400 Asn Asn Gly Lys Thr Glu Leu Asn Tyr Lys Asn Thr Glu Pro Val Leu 405 410 415 Asp Ser Asp Gly Ser Tyr Phe Met Tyr Ser Lys Leu Arg Val Glu Lys 420 425 430 Lys Asn Trp Val Glu Arg Asn Ser Tyr Ser Cys Ser Val Val His Glu 435 440 445 Gly Leu His Asn His His Thr Thr Lys Ser Phe Ser Arg Thr Pro Gly 450 455 460 Lys Ile Asp 465 <210> 19 <211> 771 <212> DNA <213> Artificial Sequence <220> <223> mAb BR55 light chain (nucleotide sequence) <400> 19 ctcgagggat ccatgctacc ggccgctatg gcagcgggat tcatgaagct accagttagg 60 cttcttgtgc tgatgttttg gattcccgca tcctctagtg atgttttgat gactcaaact 120 ccactttccc tccctgtatc tcttggggat caagcatcta tttcatgtcg atcaagccag 180 tctatcgttc acagtaatgg aaacacatac ttagagtggt acttgcagaa accaggtcaa 240 agtcctaaac tcctgatctc caaagtttct aatcgtttct ctggtgtacc tgataggttt 300 agtggcagtg gatcagggac agattttaca ctcaagatta gcagagtgga ggctgaggat 360 ttaggagttt attactgctt ccaaggttca catgtcccat ttacctttgg ctctggaaca 420 aagttggaga taaaaagagc tgatgctgca ccaactgtat ctatcttccc accttcttca 480 gaacagttaa catcgggtgg tgcctcagtc gtttgctttt tgaacaactt ctaccctaag 540 gacataaatg tgaaatggaa aattgatggg agtgaaagac aaaatggcgt gcttaatagt 600 tggaccgatc aggacagcaa agactccacc tattctatgt catcgacact tactttgact 660 aaggacgagt atgaacggca taatagctat acctgtgaag ctactcacaa gacgtccact 720 tcacccattg tcaagagctt taacaggaac gaatgttaac tgcagggtac c 771 <210> 20 <211> 1542 <212> DNA <213> Artificial Sequence <220> <223> mAb BR55 heavy chain (nucleotide sequence) <400> 20 gtcgactcta gaatgcatcc aacgaggtgg gagttgtcgc atatggtcga tctacaggct 60 gctgcactgg tcattacaat ggatttgggg ctctctttga tttttttagt ccttgtttta 120 aaaggtgtcc agtgtgaagt gaaactggtg gaatctggag gaggcttagt gcaaccagga 180 gggtctctga aactcagttg tgcaacctct ggtttcactt tttctgatta ttatatgtat 240 tgggttcgcc aaactccaga gaagaggctg gagtgggtcg catatataag taatggtggg 300 ggtagttctc attatgtaga ttcagtaaaa ggccgattta ccatcagcag ggataatgcc 360 aagaatacac tgtacctgca aatgtcccgt ctgaggtcag aggatacagc catgtatcac 420 tgtgcaaggg gaatggatta cggggcgtgg tttgcttact ggggccaagg gactcttgtt 480 actgttagcg cagctacaac aaccgctcct tctgtctatc ctttggtccc tggttgcagt 540 gacacctctg gatcatcggt gacactggga tgccttgtta aaggctactt tcctgagccg 600 gtaactgtaa agtggaatta tggagcactg tccagcggtg ttagaacagt ctcatctgtc 660 ctgcaatctg gattctattc cctaagcagc ttggtgactg taccctccag cacctggcca 720 tctcagactg tgatatgcaa tgtagctcac ccagccagca agaccgagtt gattaagaga 780 atcgaaccta gaatacccaa accatctatc ccacctggtt cttcatgtcc acaaccgcgt 840 ggtcccacaa ttaaaccttg tcctccatgt aaatgcccag cacctaatct attaggtgga 900 ccatccgttt tcatattccc tccaaagatc aaagatgttc tcatgatttc ccttagcccc 960 attgtaacat gtgtggtcgt ggatgtgtca gaggatgatc cagacgtcca aattagctgg 1020 tttgtgaaca acgtggaggt acatacagct cagacacaaa ctcatagaga agattacaac 1080 agtactctcc gagtcgtcag tgccctcccg atacagcacc aggactggat gagtggcaaa 1140 gaatttaagt gtaaggtcaa taataaagac cttccagctc ccattgaaag aacgatttca 1200 aaacctaaag gatcagttag agctccacaa gtatatgttt tgcctccacc agaagaagaa 1260 atgactaaga aacaagtcac tttgacatgc atggttacag acttcatgcc tgaagatatt 1320 tacgttgagt ggaccaacaa cggcaaaact gaactaaact acaagaacac tgaaccagtc 1380 ctggactctg atggttcata ttttatgtac tcgaagctga gagtggaaaa aaagaattgg 1440 gtggaaagaa atagctactc ttgttcagtt gttcatgaag gtctgcataa tcatcacacg 1500 actaagagct tctcccggac tccgggttaa ggatccacta gt 1542 <210> 21 <211> 256 <212> PRT <213> Artificial Sequence <220> <223> mAb BR55 light chain (amino acid sequence) <400> 21 Leu Glu Gly Ser Met Leu Pro Ala Ala Met Ala Ala Gly Phe Met Lys 1 5 10 15 Leu Pro Val Arg Leu Leu Val Leu Met Phe Trp Ile Pro Ala Ser Ser 20 25 30 Ser Asp Val Leu Met Thr Gln Thr Pro Leu Ser Leu Pro Val Ser Leu 35 40 45 Gly Asp Gln Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Ile Val His 50 55 60 Ser Asn Gly Asn Thr Tyr Leu Glu Trp Tyr Leu Gln Lys Pro Gly Gln 65 70 75 80 Ser Pro Lys Leu Leu Ile Ser Lys Val Ser Asn Arg Phe Ser Gly Val 85 90 95 Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys 100 105 110 Ile Ser Arg Val Glu Ala Glu Asp Leu Gly Val Tyr Tyr Cys Phe Gln 115 120 125 Gly Ser His Val Pro Phe Thr Phe Gly Ser Gly Thr Lys Leu Glu Ile 130 135 140 Lys Arg Ala Asp Ala Ala Pro Thr Val Ser Ile Phe Pro Pro Ser Ser 145 150 155 160 Glu Gln Leu Thr Ser Gly Gly Ala Ser Val Val Cys Phe Leu Asn Asn 165 170 175 Phe Tyr Pro Lys Asp Ile Asn Val Lys Trp Lys Ile Asp Gly Ser Glu 180 185 190 Arg Gln Asn Gly Val Leu Asn Ser Trp Thr Asp Gln Asp Ser Lys Asp 195 200 205 Ser Thr Tyr Ser Met Ser Ser Thr Leu Thr Leu Thr Lys Asp Glu Tyr 210 215 220 Glu Arg His Asn Ser Tyr Thr Cys Glu Ala Thr His Lys Thr Ser Thr 225 230 235 240 Ser Pro Ile Val Lys Ser Phe Asn Arg Asn Glu Cys Leu Gln Gly Thr 245 250 255 <210> 22 <211> 493 <212> PRT <213> Artificial Sequence <220> <223> mAb BR55 heavy chain (amino acid sequence) <400> 22 Val Asp Ser Arg Met His Pro Thr Arg Trp Glu Leu Ser His Met Val 1 5 10 15 Asp Leu Gln Ala Ala Ala Leu Val Ile Thr Met Asp Leu Gly Leu Ser 20 25 30 Leu Ile Phe Leu Val Leu Val Leu Lys Gly Val Gln Cys Glu Val Lys 35 40 45 Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly Ser Leu Lys 50 55 60 Leu Ser Cys Ala Thr Ser Gly Phe Thr Phe Ser Asp Tyr Tyr Met Tyr 65 70 75 80 Trp Val Arg Gln Thr Pro Glu Lys Arg Leu Glu Trp Val Ala Tyr Ile 85 90 95 Ser Asn Gly Gly Gly Ser Ser His Tyr Val Asp Ser Val Lys Gly Arg 100 105 110 Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Leu Tyr Leu Gln Met 115 120 125 Ser Arg Leu Arg Ser Glu Asp Thr Ala Met Tyr His Cys Ala Arg Gly 130 135 140 Met Asp Tyr Gly Ala Trp Phe Ala Tyr Trp Gly Gln Gly Thr Leu Val 145 150 155 160 Thr Val Ser Ala Ala Thr Thr Thr Ala Pro Ser Val Tyr Pro Leu Val 165 170 175 Pro Gly Cys Ser Asp Thr Ser Gly Ser Ser Val Thr Leu Gly Cys Leu 180 185 190 Val Lys Gly Tyr Phe Pro Glu Pro Val Thr Val Lys Trp Asn Tyr Gly 195 200 205 Ala Leu Ser Ser Gly Val Arg Thr Val Ser Ser Val Leu Gln Ser Gly 210 215 220 Phe Tyr Ser Leu Ser Ser Leu Val Thr Val Pro Ser Ser Thr Trp Pro 225 230 235 240 Ser Gln Thr Val Ile Cys Asn Val Ala His Pro Ala Ser Lys Thr Glu 245 250 255 Leu Ile Lys Arg Ile Glu Pro Arg Ile Pro Lys Pro Ser Ile Pro Pro 260 265 270 Gly Ser Ser Cys Pro Gln Pro Arg Gly Pro Thr Ile Lys Pro Cys Pro 275 280 285 Pro Cys Lys Cys Pro Ala Pro Asn Leu Leu Gly Gly Pro Ser Val Phe 290 295 300 Ile Phe Pro Pro Lys Ile Lys Asp Val Leu Met Ile Ser Leu Ser Pro 305 310 315 320 Ile Val Thr Cys Val Val Val Asp Val Ser Glu Asp Asp Pro Asp Val 325 330 335 Gln Ile Ser Trp Phe Val Asn Asn Val Glu Val His Thr Ala Gln Thr 340 345 350 Gln Thr His Arg Glu Asp Tyr Asn Ser Thr Leu Arg Val Val Ser Ala 355 360 365 Leu Pro Ile Gln His Gln Asp Trp Met Ser Gly Lys Glu Phe Lys Cys 370 375 380 Lys Val Asn Asn Lys Asp Leu Pro Ala Pro Ile Glu Arg Thr Ile Ser 385 390 395 400 Lys Pro Lys Gly Ser Val Arg Ala Pro Gln Val Tyr Val Leu Pro Pro 405 410 415 Pro Glu Glu Glu Met Thr Lys Lys Gln Val Thr Leu Thr Cys Met Val 420 425 430 Thr Asp Phe Met Pro Glu Asp Ile Tyr Val Glu Trp Thr Asn Asn Gly 435 440 445 Lys Thr Glu Leu Asn Tyr Lys Asn Thr Glu Pro Val Leu Asp Ser Asp 450 455 460 Gly Ser Tyr Phe Met Tyr Ser Lys Leu Arg Val Glu Lys Lys Asn Trp 465 470 475 480 Val Glu Arg Asn Ser Tyr Ser Cys Ser Val Val His Glu 485 490 <210> 23 <211> 621 <212> PRT <213> Artificial Sequence <220> <223> Large single chain CO17-1A (amino acid sequence) <400> 23 Leu Glu Gly Ser Met Gly Ile Lys Met Glu Ser Gln Thr Leu Val Phe 1 5 10 15 Ile Ser Ile Leu Leu Trp Leu Tyr Gly Ala Asp Gly Asn Ile Val Met 20 25 30 Thr Gln Ser Pro Lys Ser Met Ser Met Ser Val Gly Glu Arg Val Thr 35 40 45 Leu Thr Cys Lys Ala Ser Glu Asn Val Val Thr Tyr Val Ser Trp Tyr 50 55 60 Gln Gln Lys Pro Glu Gln Ser Pro Lys Leu Leu Ile Tyr Gly Ala Ser 65 70 75 80 Asn Arg Tyr Thr Gly Val Pro Asp Arg Phe Thr Gly Ser Gly Ser Ala 85 90 95 Thr Asp Phe Thr Leu Thr Ile Ser Ser Val Gln Ala Glu Asp Leu Ala 100 105 110 Asp Tyr His Cys Gly Gln Gly Tyr Ser Tyr Pro Tyr Thr Phe Gly Gly 115 120 125 Gly Thr Lys Leu Glu Ile Lys Gly Gly Gly Gly Ser Gly Gly Gly Gly 130 135 140 Ser Gly Gly Gly Gly Ser Met Glu Trp Ser Arg Val Phe Ile Phe Leu 145 150 155 160 Leu Ser Val Thr Ala Gly Val His Ser Gln Val Gln Leu Gln Gln Ser 165 170 175 Gly Ala Glu Leu Val Arg Pro Gly Thr Ser Val Lys Val Ser Cys Lys 180 185 190 Ala Ser Gly Tyr Ala Phe Thr Asn Tyr Leu Ile Glu Trp Val Lys Gln 195 200 205 Arg Pro Gly Gln Gly Leu Glu Trp Ile Gly Val Ile Asn Pro Gly Ser 210 215 220 Gly Gly Thr Asn Tyr Asn Glu Lys Phe Lys Gly Lys Ala Thr Leu Thr 225 230 235 240 Ala Asp Lys Ser Ser Ser Thr Ala Tyr Met Gln Leu Ser Ser Leu Thr 245 250 255 Ser Asp Asp Ser Ala Val Tyr Phe Cys Ala Arg Asp Gly Pro Trp Phe 260 265 270 Ala Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ala Ala Lys Thr 275 280 285 Thr Ala Pro Ser Val Tyr Pro Leu Ala Pro Val Cys Gly Asp Thr Thr 290 295 300 Gly Ser Ser Val Thr Leu Gly Cys Leu Val Lys Gly Tyr Phe Pro Glu 305 310 315 320 Pro Val Thr Leu Thr Trp Asn Ser Gly Ser Leu Ser Ser Gly Val His 325 330 335 Thr Phe Pro Ala Val Leu Gln Ser Asp Leu Tyr Thr Leu Ser Ser Ser 340 345 350 Val Thr Val Thr Ser Ser Thr Trp Pro Ser Gln Ser Ile Thr Cys Asn 355 360 365 Val Ala His Pro Ala Ser Ser Thr Lys Val Asp Lys Lys Ile Glu Pro 370 375 380 Arg Gly Pro Thr Ile Lys Pro Cys Pro Pro Cys Lys Cys Pro Ala Pro 385 390 395 400 Asn Leu Leu Gly Gly Pro Ser Val Phe Ile Phe Pro Pro Lys Ile Lys 405 410 415 Asp Val Leu Met Ile Ser Leu Ser Pro Ile Val Thr Cys Val Val Val 420 425 430 Asp Val Ser Glu Asp Asp Pro Asp Val Gln Ile Ser Trp Phe Val Asn 435 440 445 Asn Val Glu Val His Thr Ala Gln Thr Gln Thr His Arg Glu Asp Tyr 450 455 460 Asn Ser Thr Leu Arg Val Val Ser Ala Leu Pro Ile Gln His Gln Asp 465 470 475 480 Trp Met Ser Gly Lys Glu Phe Lys Cys Lys Val Asn Asn Lys Asp Leu 485 490 495 Pro Ala Pro Ile Glu Arg Thr Ile Ser Lys Pro Lys Gly Ser Val Arg 500 505 510 Ala Pro Gln Val Tyr Val Leu Pro Pro Pro Glu Glu Glu Met Thr Lys 515 520 525 Lys Gln Val Thr Leu Thr Cys Met Val Thr Asp Phe Met Pro Glu Asp 530 535 540 Ile Tyr Val Lys Trp Thr Asn Asn Gly Lys Thr Glu Leu Asn Tyr Lys 545 550 555 560 Asn Thr Glu Pro Val Leu Asp Ser Asp Gly Ser Tyr Phe Met Tyr Ser 565 570 575 Lys Leu Arg Val Glu Lys Lys Asn Trp Val Glu Arg Asn Ser Tyr Ser 580 585 590 Cys Ser Val Val His Glu Gly Leu His Asn His His Thr Thr Lys Ser 595 600 605 Phe Ser Arg Thr Pro Gly Lys Ile Asp Ser Arg Gly Thr 610 615 620 <210> 24 <211> 625 <212> PRT <213> Artificial Sequence <220> <223> Large single chain CO17-1AK(amino acid sequence) <400> 24 Leu Glu Gly Ser Met Gly Ile Lys Met Glu Ser Gln Thr Leu Val Phe 1 5 10 15 Ile Ser Ile Leu Leu Trp Leu Tyr Gly Ala Asp Gly Asn Ile Val Met 20 25 30 Thr Gln Ser Pro Lys Ser Met Ser Met Ser Val Gly Glu Arg Val Thr 35 40 45 Leu Thr Cys Lys Ala Ser Glu Asn Val Val Thr Tyr Val Ser Trp Tyr 50 55 60 Gln Gln Lys Pro Glu Gln Ser Pro Lys Leu Leu Ile Tyr Gly Ala Ser 65 70 75 80 Asn Arg Tyr Thr Gly Val Pro Asp Arg Phe Thr Gly Ser Gly Ser Ala 85 90 95 Thr Asp Phe Thr Leu Thr Ile Ser Ser Val Gln Ala Glu Asp Leu Ala 100 105 110 Asp Tyr His Cys Gly Gln Gly Tyr Ser Tyr Pro Tyr Thr Phe Gly Gly 115 120 125 Gly Thr Lys Leu Glu Ile Lys Gly Gly Gly Gly Ser Gly Gly Gly Gly 130 135 140 Ser Gly Gly Gly Gly Ser Met Glu Trp Ser Arg Val Phe Ile Phe Leu 145 150 155 160 Leu Ser Val Thr Ala Gly Val His Ser Gln Val Gln Leu Gln Gln Ser 165 170 175 Gly Ala Glu Leu Val Arg Pro Gly Thr Ser Val Lys Val Ser Cys Lys 180 185 190 Ala Ser Gly Tyr Ala Phe Thr Asn Tyr Leu Ile Glu Trp Val Lys Gln 195 200 205 Arg Pro Gly Gln Gly Leu Glu Trp Ile Gly Val Ile Asn Pro Gly Ser 210 215 220 Gly Gly Thr Asn Tyr Asn Glu Lys Phe Lys Gly Lys Ala Thr Leu Thr 225 230 235 240 Ala Asp Lys Ser Ser Ser Thr Ala Tyr Met Gln Leu Ser Ser Leu Thr 245 250 255 Ser Asp Asp Ser Ala Val Tyr Phe Cys Ala Arg Asp Gly Pro Trp Phe 260 265 270 Ala Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ala Ala Lys Thr 275 280 285 Thr Ala Pro Ser Val Tyr Pro Leu Ala Pro Val Cys Gly Asp Thr Thr 290 295 300 Gly Ser Ser Val Thr Leu Gly Cys Leu Val Lys Gly Tyr Phe Pro Glu 305 310 315 320 Pro Val Thr Leu Thr Trp Asn Ser Gly Ser Leu Ser Ser Gly Val His 325 330 335 Thr Phe Pro Ala Val Leu Gln Ser Asp Leu Tyr Thr Leu Ser Ser Ser 340 345 350 Val Thr Val Thr Ser Ser Thr Trp Pro Ser Gln Ser Ile Thr Cys Asn 355 360 365 Val Ala His Pro Ala Ser Ser Thr Lys Val Asp Lys Lys Ile Glu Pro 370 375 380 Arg Gly Pro Thr Ile Lys Pro Cys Pro Pro Cys Lys Cys Pro Ala Pro 385 390 395 400 Asn Leu Leu Gly Gly Pro Ser Val Phe Ile Phe Pro Pro Lys Ile Lys 405 410 415 Asp Val Leu Met Ile Ser Leu Ser Pro Ile Val Thr Cys Val Val Val 420 425 430 Asp Val Ser Glu Asp Asp Pro Asp Val Gln Ile Ser Trp Phe Val Asn 435 440 445 Asn Val Glu Val His Thr Ala Gln Thr Gln Thr His Arg Glu Asp Tyr 450 455 460 Asn Ser Thr Leu Arg Val Val Ser Ala Leu Pro Ile Gln His Gln Asp 465 470 475 480 Trp Met Ser Gly Lys Glu Phe Lys Cys Lys Val Asn Asn Lys Asp Leu 485 490 495 Pro Ala Pro Ile Glu Arg Thr Ile Ser Lys Pro Lys Gly Ser Val Arg 500 505 510 Ala Pro Gln Val Tyr Val Leu Pro Pro Pro Glu Glu Glu Met Thr Lys 515 520 525 Lys Gln Val Thr Leu Thr Cys Met Val Thr Asp Phe Met Pro Glu Asp 530 535 540 Ile Tyr Val Lys Trp Thr Asn Asn Gly Lys Thr Glu Leu Asn Tyr Lys 545 550 555 560 Asn Thr Glu Pro Val Leu Asp Ser Asp Gly Ser Tyr Phe Met Tyr Ser 565 570 575 Lys Leu Arg Val Glu Lys Lys Asn Trp Val Glu Arg Asn Ser Tyr Ser 580 585 590 Cys Ser Val Val His Glu Gly Leu His Asn His His Thr Thr Lys Ser 595 600 605 Phe Ser Arg Thr Pro Gly Lys Ile Asp Lys Asp Glu Leu Ser Arg Gly 610 615 620 Thr 625 <210> 25 <211> 673 <212> PRT <213> Artificial Sequence <220> <223> Large single chain BR55K (amino acid sequence) <400> 25 Val Asp Ser Arg Met Leu Pro Ala Ala Met Ala Ala Gly Phe Met Lys 1 5 10 15 Leu Pro Val Arg Leu Leu Val Leu Met Phe Trp Ile Pro Ala Ser Ser 20 25 30 Ser Asp Val Leu Met Thr Gln Thr Pro Leu Ser Leu Pro Val Ser Leu 35 40 45 Gly Asp Gln Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Ile Val His 50 55 60 Ser Asn Gly Asn Thr Tyr Leu Glu Trp Tyr Leu Gln Lys Pro Gly Gln 65 70 75 80 Ser Pro Lys Leu Leu Ile Ser Lys Val Ser Asn Arg Phe Ser Gly Val 85 90 95 Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys 100 105 110 Ile Ser Arg Val Glu Ala Glu Asp Leu Gly Val Tyr Tyr Cys Phe Gln 115 120 125 Gly Ser His Val Pro Phe Thr Phe Gly Ser Gly Thr Lys Leu Glu Ile 130 135 140 Lys Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser 145 150 155 160 Met His Pro Thr Arg Trp Glu Leu Ser His Met Val Asp Leu Gln Ala 165 170 175 Ala Ala Leu Val Ile Thr Met Asp Leu Gly Leu Ser Leu Ile Phe Leu 180 185 190 Val Leu Val Leu Lys Gly Val Gln Cys Glu Val Lys Leu Val Glu Ser 195 200 205 Gly Gly Gly Leu Val Gln Pro Gly Gly Ser Leu Lys Leu Ser Cys Ala 210 215 220 Thr Ser Gly Phe Thr Phe Ser Asp Tyr Tyr Met Tyr Trp Val Arg Gln 225 230 235 240 Thr Pro Glu Lys Arg Leu Glu Trp Val Ala Tyr Ile Ser Asn Gly Gly 245 250 255 Gly Ser Ser His Tyr Val Asp Ser Val Lys Gly Arg Phe Thr Ile Ser 260 265 270 Arg Asp Asn Ala Lys Asn Thr Leu Tyr Leu Gln Met Ser Arg Leu Arg 275 280 285 Ser Glu Asp Thr Ala Met Tyr His Cys Ala Arg Gly Met Asp Tyr Gly 290 295 300 Ala Trp Phe Ala Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ala 305 310 315 320 Ala Thr Thr Thr Ala Pro Ser Val Tyr Pro Leu Val Pro Gly Cys Ser 325 330 335 Asp Thr Ser Gly Ser Ser Val Thr Leu Gly Cys Leu Val Lys Gly Tyr 340 345 350 Phe Pro Glu Pro Val Thr Val Lys Trp Asn Tyr Gly Ala Leu Ser Ser 355 360 365 Gly Val Arg Thr Val Ser Ser Val Leu Gln Ser Gly Phe Tyr Ser Leu 370 375 380 Ser Ser Leu Val Thr Val Pro Ser Ser Thr Trp Pro Ser Gln Thr Val 385 390 395 400 Ile Cys Asn Val Ala His Pro Ala Ser Lys Thr Glu Leu Ile Lys Arg 405 410 415 Ile Glu Pro Arg Ile Pro Lys Pro Ser Ile Pro Pro Gly Ser Ser Cys 420 425 430 Pro Gln Pro Arg Gly Pro Thr Ile Lys Pro Cys Pro Pro Cys Lys Cys 435 440 445 Pro Ala Pro Asn Leu Leu Gly Gly Pro Ser Val Phe Ile Phe Pro Pro 450 455 460 Lys Ile Lys Asp Val Leu Met Ile Ser Leu Ser Pro Ile Val Thr Cys 465 470 475 480 Val Val Val Asp Val Ser Glu Asp Asp Pro Asp Val Gln Ile Ser Trp 485 490 495 Phe Val Asn Asn Val Glu Val His Thr Ala Gln Thr Gln Thr His Arg 500 505 510 Glu Asp Tyr Asn Ser Thr Leu Arg Val Val Ser Ala Leu Pro Ile Gln 515 520 525 His Gln Asp Trp Met Ser Gly Lys Glu Phe Lys Cys Lys Val Asn Asn 530 535 540 Lys Asp Leu Pro Ala Pro Ile Glu Arg Thr Ile Ser Lys Pro Lys Gly 545 550 555 560 Ser Val Arg Ala Pro Gln Val Tyr Val Leu Pro Pro Pro Glu Glu Glu 565 570 575 Met Thr Lys Lys Gln Val Thr Leu Thr Cys Met Val Thr Asp Phe Met 580 585 590 Pro Glu Asp Ile Tyr Val Glu Trp Thr Asn Asn Gly Lys Thr Glu Leu 595 600 605 Asn Tyr Lys Asn Thr Glu Pro Val Leu Asp Ser Asp Gly Ser Tyr Phe 610 615 620 Met Tyr Ser Lys Leu Arg Val Glu Lys Lys Asn Trp Val Glu Arg Asn 625 630 635 640 Ser Tyr Ser Cys Ser Val Val His Glu Gly Leu His Asn His His Thr 645 650 655 Thr Lys Ser Phe Ser Arg Thr Pro Gly Lys Asp Glu Leu Gly Ser Thr 660 665 670 Ser <210> 26 <211> 12 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence encoding KDEL in Large single chain CO17-1AK <400> 26 aaggacgaac tt 12 <210> 27 <211> 12 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence encoding KDEL in Large single chain BR55K <400> 27 aaagatgaac tt 12 <210> 28 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for Large Single Chain CO17-1A <400> 28 cgctcgaggg atccatgggc attaaaatgc g 31 <210> 29 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for Large Single Chain CO17-1A <400> 29 gcggtacctc tagaatcgat tttacccggg c 31 <210> 30 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for Large Single Chain CO17-1AK <400> 30 cgctcgaggg atccatgggc attaaaatgc g 31 <210> 31 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for Large Single Chain CO17-1AK <400> 31 gcggtacctc tagattaaag ttcgtcctta tcgatgc 37 <210> 32 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for Large Single Chain BR55K <400> 32 cggtcgactc tagaatgctc ccggccgctc g 31 <210> 33 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for Large Single Chain BR55K <400> 33 gcactagtgg atcctcaaag ttcatcttta cccggc 36 <110> Chung-Ang University Industry-Academy Cooperation Foundation <120> Method for preparing the plant producing bispecific antibody <130> NP13-0061 <160> 33 <170> Kopatentin 2.0 <210> 1 <211> 15 <212> PRT <213> Artificial Sequence <220> Linker (amino acid sequence) <400> 1 Gly Ser Ser Ser Gly Ser Ser Ser Ser Ser Ser Ser Ser Ser   1 5 10 15 <210> 2 <211> 4 <212> PRT <213> Artificial Sequence <220> <223> Endoplasmic Reticulum retention peptide (amino acid sequence) <400> 2 Lys Asp Glu Leu   One <210> 3 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> lsc BR55_primer1 <400> 3 gcttgatctc caagacttac 20 <210> 4 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> lsc BR55_primer2 <400> 4 ctgatgttct ggattcctgc 20 <210> 5 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> lsc BR55_primer3 <400> 5 gtagacagtg taaagggcag 20 <210> 6 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> lsc BR55_primer4 <400> 6 gactggatga gtggcaagg 19 <210> 7 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> lsc CO17_primer1 <400> 7 gcttctgttg ataccaggaa 20 <210> 8 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> lsc CO17_primer2 <400> 8 tctcccaaat ctatgagcat 20 <210> 9 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> lsc CO17_primer3 <400> 9 gtactctggt cactgtatct 20 <210> 10 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> lsc CO17_primer4 <400> 10 aatagcactc ttcgagtggt 20 <210> 11 <211> 1866 <212> DNA <213> Artificial Sequence <220> <223> Large single chain CO17-1A (nucleotide sequence) <400> 11 ctcgagggat ccatgggcat taaaatggaa tcacaaactc tggtcttcat ttccattctg 60 ctctggttat atggagctga tggaaacatt gtaatgaccc aatctcccaa atctatgagc 120 atgtctgtcg gagagagggt taccttgaca tgcaaggcaa gtgaaaatgt ggttacttat 180 gtttcctggt atcaacagaa gccagagcag tcgcctaaat tactgatata cggggcctcc 240 aatcggtata ctggcgtacc tgatcgcttt acaggcagtg gatctgcaac agattttact 300 ctgaccattt catcggtgca agctgaagac cttgcagatt atcattgcgg acaaggttat 360 tcatatccgt acacgttcgg agggggcacg aagctggaaa taaaaggtgg aggtggttct 420 gggggtggag gttcaggtgg tggtggttct atggaatgga gcagagtttt tatctttctt 480 ctatcagtaa ccgcaggagt gcattcccaa gtccagttgc agcagtctgg agctgagctg 540 gtcaggcctg gtacttcagt taaggtgtct tgcaaggctt ctggatatgc ttttactaat 600 tacttaatag agtgggtcaa gcaaaggcct ggacaaggcc ttgaatggat tggggtgatt 660 aatcctggaa gtggtggtac taactacaat gaaaagttta agggcaaggc aacacttact 720 gccgataaat cctcaagcac tgcttatatg cagctatcca gcctgacaag cgatgactct 780 gcggtctatt tctgtgctag agatggcccc tggttcgctt actggggcca aggtactctg 840 gtcactgtat ctgctgctaa aactacagct ccaagtgtgt atccactggc ccctgtgtgt 900 ggagatacta ctggctcctc tgtgactcta gggtgtctgg tcaaaggtta ttttcctgag 960 ccagtaacct tgacatggaa ctctggatct ctctccagtg gtgtgcacac cttcccagct 1020 gtcctgcaat ctgacctcta cacactctct agttcagtaa ctgtaacctc gtcaacttgg 1080 ccgagtcagt ccattacatg caatgtggcc cacccggcaa gcagtaccaa agttgataag 1140 aagattgaac ctagagggcc tacaattaag ccttgtcctc catgcaaatg tccagcacca 1200 aatcttttgg gtggaccatc cgtcttcatc ttccctccaa agatcaagga tgttttgatg 1260 atttcactta gtcccatagt aacatgtgta gtggtggatg tgagcgagga tgacccagat 1320 gtccagatca gctggtttgt gaataacgtg gaagtacata cagcacaaac acaaacccat 1380 agagaggatt acaatagcac tcttcgagtg gtcagtgctc tcccaatcca gcaccaagac 1440 tggatgagtg gaaaggagtt taagtgcaaa gttaataata aagacctgcc agcgcccata 1500 gagagaacaa tatcaaaacc caaagggtca gtacgtgcac ctcaagtata tgtcttgcct 1560 ccaccagaag aagaaatgac gaagaaacag gtcactctta catgtatggt gacagatttc 1620 atgccagaag acatttacgt taagtggacc aacaacggga aaacagagct aaactacaaa 1680 aacactgagc cagtactgga ctctgatgga tcttacttta tgtatagcaa actgagagtg 1740 gaaaagaaga actgggtgga aagaaattcc tattcctgtt cagtggtcca tgagggtctg 1800 cacaatcatc atacgactaa gtcgttctcc agaactccgg gtaaaatcga ttaatctaga 1860 ggtacc 1866 <210> 12 <211> 1878 <212> DNA <213> Artificial Sequence <220> Large single chain CO17-1AK (nucleotide sequence) <400> 12 ctcgagggat ccatgggcat taaaatggaa tcacaaactc tggtcttcat ttccattctg 60 ctctggttat atggagctga tggaaacatt gtaatgaccc aatctcccaa atctatgagc 120 atgtctgtcg gagagagggt taccttgaca tgcaaggcaa gtgaaaatgt ggttacttat 180 gtttcctggt atcaacagaa gccagagcag tcgcctaaat tactgatata cggggcctcc 240 aatcggtata ctggcgtacc tgatcgcttt acaggcagtg gatctgcaac agattttact 300 ctgaccattt catcggtgca agctgaagac cttgcagatt atcattgcgg acaaggttat 360 tcatatccgt acacgttcgg agggggcacg aagctggaaa taaaaggtgg aggtggttct 420 gggggtggag gttcaggtgg tggtggttct atggaatgga gcagagtttt tatctttctt 480 ctatcagtaa ccgcaggagt gcattcccaa gtccagttgc agcagtctgg agctgagctg 540 gtcaggcctg gtacttcagt taaggtgtct tgcaaggctt ctggatatgc ttttactaat 600 tacttaatag agtgggtcaa gcaaaggcct ggacaaggcc ttgaatggat tggggtgatt 660 aatcctggaa gtggtggtac taactacaat gaaaagttta agggcaaggc aacacttact 720 gccgataaat cctcaagcac tgcttatatg cagctatcca gcctgacaag cgatgactct 780 gcggtctatt tctgtgctag agatggcccc tggttcgctt actggggcca aggtactctg 840 gtcactgtat ctgctgctaa aactacagct ccaagtgtgt atccactggc ccctgtgtgt 900 ggagatacta ctggctcctc tgtgactcta gggtgtctgg tcaaaggtta ttttcctgag 960 ccagtaacct tgacatggaa ctctggatct ctctccagtg gtgtgcacac cttcccagct 1020 gtcctgcaat ctgacctcta cacactctct agttcagtaa ctgtaacctc gtcaacttgg 1080 ccgagtcagt ccattacatg caatgtggcc cacccggcaa gcagtaccaa agttgataag 1140 aagattgaac ctagagggcc tacaattaag ccttgtcctc catgcaaatg tccagcacca 1200 aatcttttgg gtggaccatc cgtcttcatc ttccctccaa agatcaagga tgttttgatg 1260 atttcactta gtcccatagt aacatgtgta gtggtggatg tgagcgagga tgacccagat 1320 gtccagatca gctggtttgt gaataacgtg gaagtacata cagcacaaac acaaacccat 1380 agagaggatt acaatagcac tcttcgagtg gtcagtgctc tcccaatcca gcaccaagac 1440 tggatgagtg gaaaggagtt taagtgcaaa gttaataata aagacctgcc agcgcccata 1500 gagagaacaa tatcaaaacc caaagggtca gtacgtgcac ctcaagtata tgtcttgcct 1560 ccaccagaag aagaaatgac gaagaaacag gtcactctta catgtatggt gacagatttc 1620 atgccagaag acatttacgt taagtggacc aacaacggga aaacagagct aaactacaaa 1680 aacactgagc cagtactgga ctctgatgga tcttacttta tgtatagcaa actgagagtg 1740 gaaaagaaga actgggtgga aagaaattcc tattcctgtt cagtggtcca tgagggtctg 1800 cacaatcatc atacgactaa gtcgttctcc agaactccgg gtaaaatcga taaggacgaa 1860 ctttaatcta gaggtacc 1878 <210> 13 <211> 2022 <212> DNA <213> Artificial Sequence <220> <223> Large single chain BR55K (nucleotide sequence) <400> 13 gtcgactcta gaatgctccc ggccgctatg gctgcgggat ttatgaaatt gcctgttagg 60 cttttggtgc tgatgttctg gattcctgct tcgtcttctg atgttttgat gacacaaact 120 ccattatccc tgcctgtaag tcttggagat caagcatcca tatcttgcag atcgagtcaa 180 tcaattgtac atagtaatgg aaatacctat ttagaatggt acttgcaaaa accaggccaa 240 agtccaaaac tcctgatctc caaagttagt aaccgatttt ctggggttcc agataggttc 300 agtggcagtg gatcagggac agactttaca ctaaagatta gcagggttga agctgaagat 360 ttaggagttt attactgctt tcaaggttca catgttccat ttacgttcgg atcgggcaca 420 aagttggaaa taaaaggagg aggtggttct ggtggaggtg gttctggtgg tggtggttct 480 atgcatccaa cgcgttggga actctcccat atggtcgatc ttcaagccgc cgcactggtt 540 attacaatgg atttggggtt gtcgttgatt tttcttgtcc ttgttttaaa aggtgttcaa 600 tgtgaagtga agctggtgga gagtgggggg ggtttagtgc agcctggagg gtccctgaaa 660 ctatcctgtg caacctctgg atttactttc agtgactatt acatgtattg ggttcgccag 720 actccagaga agaggctcga atgggttgca tacatttcaa atggtggtgg tagtagccat 780 tatgtagaca gtgtaaaggg cagattcaca atctccagag acaatgctaa gaacaccctg 840 tacctgcaaa tgagccgtct gaggtctgaa gatacagcca tgtatcactg tgcaagggga 900 atggattatg gagcatggtt tgcttactgg gggcaaggaa ctctggtcac tgtgtcggca 960 gctactacaa cagctccatc agtctatcct ttggtcccag gctgtagtga tacatctgga 1020 tcgagcgtga cactgggatg ccttgtaaaa ggctacttcc ctgagcctgt aactgtaaaa 1080 tggaactatg gagcattatc cagcggtgtg cgcacagtca gttctgtctt gcaatctggg 1140 ttttactccc tcagctcttt ggtgactgtt ccttcctcta cgtggcccag ccaaactgtc 1200 atctgcaatg tggctcatcc agcatcaaag actgagctaa ttaagagaat tgaacctaga 1260 ataccgaagc ctagtattcc cccaggatct tcatgtccac agcctagagg accaacaata 1320 aagccatgtc ctccatgtaa atgcccagct cctaacttgt tgggtggacc aagtgtgttt 1380 atcttccctc caaaaatcaa ggatgtactc atgatatccc tgagcccgat agtcacctgc 1440 gtggtggtgg atgtgagcga ggatgaccca gatgttcaga tcagctggtt tgtgaataac 1500 gtggaagtac atacagccca gacacaaacc catcgggagg attacaacag tactctacgt 1560 gtggtcagtg ccttgcccat ccagcatcag gactggatga gtggcaagga gttcaaatgc 1620 aaggtcaaca acaaagactt accagcgccc atcgagagaa ccatctcaaa acccaaaggg 1680 tcagtaagag ctccacaggt atatgtcttg cccccacctg aagaagagat gactaaaaaa 1740 caggtaactc tgacctgtat ggttactgac ttcatgcctg aagacattta cgtggagtgg 1800 accaacaacg gtaaaactga gctaaactat aagaacactg aaccagttct ggactctgat 1860 ggttcttact tcatgtactc taagttaagg gtggaaaaga agaattgggt ggaaagaaat 1920 agttattctt gttcagtggt ccacgaaggt ctccacaatc accacacgac taagagtttt 1980 tcccggactc cgggtaaaga tgaactttga ggatccacta gt 2022 <210> 14 <211> 2010 <212> DNA <213> Artificial Sequence <220> <223> Large single chain BR55 (nucleotide sequence) <400> 14 gtcgactcta gaatgctccc ggccgctatg gctgcgggat ttatgaaatt gcctgttagg 60 cttttggtgc tgatgttctg gattcctgct tcgtcttctg atgttttgat gacacaaact 120 ccattatccc tgcctgtaag tcttggagat caagcatcca tatcttgcag atcgagtcaa 180 tcaattgtac atagtaatgg aaatacctat ttagaatggt acttgcaaaa accaggccaa 240 agtccaaaac tcctgatctc caaagttagt aaccgatttt ctggggttcc agataggttc 300 agtggcagtg gatcagggac agactttaca ctaaagatta gcagggttga agctgaagat 360 ttaggagttt attactgctt tcaaggttca catgttccat ttacgttcgg atcgggcaca 420 aagttggaaa taaaaggagg aggtggttct ggtggaggtg gttctggtgg tggtggttct 480 atgcatccaa cgcgttggga actctcccat atggtcgatc ttcaagccgc cgcactggtt 540 attacaatgg atttggggtt gtcgttgatt tttcttgtcc ttgttttaaa aggtgttcaa 600 tgtgaagtga agctggtgga gagtgggggg ggtttagtgc agcctggagg gtccctgaaa 660 ctatcctgtg caacctctgg atttactttc agtgactatt acatgtattg ggttcgccag 720 actccagaga agaggctcga atgggttgca tacatttcaa atggtggtgg tagtagccat 780 tatgtagaca gtgtaaaggg cagattcaca atctccagag acaatgctaa gaacaccctg 840 tacctgcaaa tgagccgtct gaggtctgaa gatacagcca tgtatcactg tgcaagggga 900 atggattatg gagcatggtt tgcttactgg gggcaaggaa ctctggtcac tgtgtcggca 960 gctactacaa cagctccatc agtctatcct ttggtcccag gctgtagtga tacatctgga 1020 tcgagcgtga cactgggatg ccttgtaaaa ggctacttcc ctgagcctgt aactgtaaaa 1080 tggaactatg gagcattatc cagcggtgtg cgcacagtca gttctgtctt gcaatctggg 1140 ttttactccc tcagctcttt ggtgactgtt ccttcctcta cgtggcccag ccaaactgtc 1200 atctgcaatg tggctcatcc agcatcaaag actgagctaa ttaagagaat tgaacctaga 1260 ataccgaagc ctagtattcc cccaggatct tcatgtccac agcctagagg accaacaata 1320 aagccatgtc ctccatgtaa atgcccagct cctaacttgt tgggtggacc aagtgtgttt 1380 atcttccctc caaaaatcaa ggatgtactc atgatatccc tgagcccgat agtcacctgc 1440 gtggtggtgg atgtgagcga ggatgaccca gatgttcaga tcagctggtt tgtgaataac 1500 gtggaagtac atacagccca gacacaaacc catcgggagg attacaacag tactctacgt 1560 gtggtcagtg ccttgcccat ccagcatcag gactggatga gtggcaagga gttcaaatgc 1620 aaggtcaaca acaaagactt accagcgccc atcgagagaa ccatctcaaa acccaaaggg 1680 tcagtaagag ctccacaggt atatgtcttg cccccacctg aagaagagat gactaaaaaa 1740 caggtaactc tgacctgtat ggttactgac ttcatgcctg aagacattta cgtggagtgg 1800 accaacaacg gtaaaactga gctaaactat aagaacactg aaccagttct ggactctgat 1860 ggttcttact tcatgtactc taagttaagg gtggaaaaga agaattgggt ggaaagaaat 1920 agttattctt gttcagtggt ccacgaaggt ctccacaatc accacacgac taagagtttt 1980 tcccggactc cgggttgagg atccactagt 2010 <210> 15 <211> 717 <212> DNA <213> Artificial Sequence <220> <223> mAb CO17-1A light chain (nucleotide sequence) <400> 15 atgggcatca agatggaatc acagactctg gtcttcatat ccatactgct ctggttatat 60 ggagctgatg ggaacattgt aatgacccaa tctcccaaat ccatgtccat gtcagtagga 120 gagagggtca ccttgacctg caaggccagt gagaatgtgg ttacttatgt ttcctggtat 180 caacagaaac cagagcagtc tcctaaactg ctgatatacg gggcatccaa ccggtacact 240 ggggtccccg atcgcttcac aggcagtgga tctgcaacag atttcactct gaccatcagc 300 agtgtgcagg ctgaagacct tgcagattat cactgtggac agggttacag ctatccgtac 360 acgttcggag gggggaccaa gctggaaata aaacgggctg atgctgcacc aactgtatcc 420 atcttcccac catccagtga gcagttaaca tctggaggtg cctcagtcgt gtgcttcttg 480 aacaacttct accccaaaga catcaatgtc aagtggaaga ttgatggcag tgaacgacaa 540 aatggcgtcc tgaacagttg gactgatcag gacagcaaag acagcaccta cagcatgagc 600 agcaccctca cgttgaccaa ggacgagtat gaacgacata acagctatac ctgtgaggcc 660 actcacaaga catcaacttc acccattgtc aagagcttca acaggaatga gtgttag 717 <210> 16 <211> 1404 <212> DNA <213> Artificial Sequence <220> <223> mAb CO17-1A heavy chain (nucleotide sequence) <400> 16 atggaatgga gcagagtctt tatctttctc ctatcagtaa ctgcaggtgt tcactcccag 60 gtccagttgc agcagtctgg agctgagctg gtaaggcctg ggacttcagt gaaggtgtcc 120 tgcaaggctt ctggatacgc cttcactaat tacttgatag agtgggtaaa gcagaggcct 180 ggacagggcc ttgagtggat tggggtgatt aatcctggaa gtggtggtac taactacaat 240 gagaagttca agggcaaggc aacactgact gcagacaaat cctccagcac tgcctacatg 300 cagctcagca gcctgacatc tgatgactct gcggtctatt tctgtgcaag agatggtccc 360 tggtttgctt actggggcca agggactctg gtcactgtct ctgcagccaa aacaacagcc 420 ccatcggtct atccactggc ccctgtgtgt ggagatacaa ctggctcctc ggtgactcta 480 ggatgcctgg tcaagggtta tttccctgag ccagtgacct tgacctggaa ctctggatcc 540 ctgtccagtg gtgtgcacac cttcccagct gtcctgcagt ctgacctcta caccctcagc 600 agctcagtga ctgtaacctc gagcacctgg cccagccagt ccatcacctg caatgtggcc 660 cacccggcaa gcagcaccaa ggtggacaag aaaattgagc ccagagggcc cacaatcaag 720 ccctgtcctc catgcaaatg cccagcacct aacctcttgg gtggaccatc cgtcttcatc 780 ttccctccaa agatcaagga tgtactcatg atctccctga gccccatagt cacatgtgtg 840 gtggtggatg tgagcgagga tgacccagat gtccagatca gctggtttgt gaacaacgtg 900 gaagtacaca cagctcagac acaaacccat agagaggatt acaacagtac tctccgggtg 960 gtcagtgccc tccccatcca gcaccaggac tggatgagtg gcaaggagtt caaatgcaag 1020 gtcaacaaca aagacctccc agcgcccatc gagagaacca tctcaaaacc caaagggtca 1080 gtaagagctc cacaggtata tgtcttgcct ccaccagaag aagagatgac taagaaacag 1140 gtcactctga cctgcatggt cacagacttc atgcctgaag acatttacgt gaagtggacc 1200 aacaacggga aaacagagct aaactacaag aacactgaac cagtcctgga ctctgatggt 1260 tcttacttca tgtacagcaa gctgagagtg gaaaagaaga actgggtgga aagaaatagc 1320 tactcctgtt cagtggtcca cgagggtctg cacaatcacc acacgactaa gagcttctcc 1380 cggactccgg gtaaaatcga ttaa 1404 <210> 17 <211> 238 <212> PRT <213> Artificial Sequence <220> <223> mAb CO17-1A light chain (amino acid sequence) <400> 17 Met Gly Ile Lys Met Glu Ser Gln Thr Leu Val Phe Ile Ser Ile Leu   1 5 10 15 Leu Trp Leu Tyr Gly Ala Asp Gly Asn Ile Val Met Thr Gln Ser Pro              20 25 30 Lys Ser Met Ser Ser Ser Val Gly Glu Arg Val Thr Leu Thr Cys Lys          35 40 45 Ala Ser Glu Asn Val Val Thr Tyr Val Ser Trp Tyr Gln Gln Lys Pro      50 55 60 Glu Gln Ser Pro Lys Leu Leu Ile Tyr Gly Ala Ser Asn Arg Tyr Thr  65 70 75 80 Gly Val Pro Asp Arg Phe Thr Gly Ser Gly Ser Ala Thr Asp Phe Thr                  85 90 95 Leu Thr Ile Ser Ser Val Gln Ala Glu Asp Leu Ala Asp Tyr His Cys             100 105 110 Gly Gln Gly Tyr Ser Tyr Pro Tyr Thr Phe Gly Gly Gly Thr Lys Leu         115 120 125 Glu Ile Lys Arg Ala Asp Ala Ala Pro Thr Val Ser Ile Phe Pro Pro     130 135 140 Ser Ser Glu Gln Leu Thr Ser Gly Gly Ala Ser Val Val Cys Phe Leu 145 150 155 160 Asn Asn Phe Tyr Pro Lys Asp Ile Asn Val Lys Trp Lys Ile Asp Gly                 165 170 175 Ser Glu Arg Gln Asn Gly Val Leu Asn Ser Trp Thr Asp Gln Asp Ser             180 185 190 Lys Asp Ser Thr Ser Ser Met Ser Thr Leu Thr Leu Thr Lys Asp         195 200 205 Glu Tyr Glu Arg His Asn Ser Tyr Thr Cys Glu Ala Thr His Lys Thr     210 215 220 Ser Thr Ser Pro Ile Val Lys Ser Phe Asn Arg Asn Glu Cys 225 230 235 <210> 18 <211> 467 <212> PRT <213> Artificial Sequence <220> <223> mAb CO17-1A heavy chain (amino acid sequence) <400> 18 Met Glu Trp Ser Arg Val Phe Ile Phe Leu Leu Ser Val Thr Ala Gly   1 5 10 15 Val His Ser Gln Val Gln Leu Gln Gln Ser Gly Ala Glu Leu Val Arg              20 25 30 Pro Gly Thr Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Ala Phe          35 40 45 Thr Asn Tyr Leu Ile Glu Trp Val Lys Gln Arg Pro Gly Gln Gly Leu      50 55 60 Glu Trp Ile Gly Val Ile Asn Pro Gly Ser Gly Gly Thr Asn Tyr Asn  65 70 75 80 Glu Lys Phe Lys Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser                  85 90 95 Thr Ala Tyr Met Gln Leu Ser Ser Leu Thr Ser Asp Asp Ser Ala Val             100 105 110 Tyr Phe Cys Ala Arg Asp Gly Pro Trp Phe Ala Tyr Trp Gly Gln Gly         115 120 125 Thr Leu Val Thr Val Ser Ala Ala Lys Thr Thr Ala Pro Ser Val Tyr     130 135 140 Pro Leu Ala Pro Val Cys Gly Asp Thr Thr Gly Ser Ser Val Thr Leu 145 150 155 160 Gly Cys Leu Val Lys Gly Tyr Phe Pro Glu Pro Val Thr Leu Thr Trp                 165 170 175 Ser Ser Ser Ser Ser Val Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Ser Val Ser             180 185 190 Gln Ser Asp Leu Tyr Thr Leu Ser Ser Ser Val Thr Val Thr Ser Ser         195 200 205 Thr Trp Pro Ser Gln Ser Ile Thr Cys Asn Val Ala His Pro Ala Ser     210 215 220 Ser Thr Lys Val Asp Lys Lys Ile Glu Pro Arg Gly Pro Thr Ile Lys 225 230 235 240 Pro Cys Pro Pro Cys Lys Cys Pro Ala Pro Asn Leu Leu Gly Gly Pro                 245 250 255 Ser Val Phe Ile Phe Pro Pro Lys Ile Lys Asp Val Leu Met Ile Ser             260 265 270 Leu Ser Pro Ile Val Thr Cys Val Val Val Asp Val Ser Glu Asp Asp         275 280 285 Pro Asp Val Gln Ile Ser Trp Phe Val Asn Asn Val Glu Val His Thr     290 295 300 Ala Gln Thr Gln Thr His Arg Glu Asp Tyr Asn Ser Thr Leu Arg Val 305 310 315 320 Val Ser Ala Leu Pro Ile Gln His Gln Asp Trp Met Ser Gly Lys Glu                 325 330 335 Phe Lys Cys Lys Val Asn Asn Lys Asp Leu Pro Ala Pro Ile Glu Arg             340 345 350 Thr Ile Ser Lys Pro Lys Gly Ser Val Arg Ala Pro Gln Val Tyr Val         355 360 365 Leu Pro Pro Pro Glu Glu Glu Met Thr Lys Lys Gln Val Thr Leu Thr     370 375 380 Cys Met Val Thr Asp Phe Met Pro Glu Asp Ile Tyr Val Lys Trp Thr 385 390 395 400 Asn Asn Gly Lys Thr Glu Leu Asn Tyr Lys Asn Thr Glu Pro Val Leu                 405 410 415 Asp Ser Asp Gly Ser Tyr Phe Met Tyr Ser Lys Leu Arg Val Glu Lys             420 425 430 Lys Asn Trp Val Glu Arg Asn Ser Tyr Ser Cys Ser Val Val His Glu         435 440 445 Gly Leu His Asn His His Thr Thr Lys Ser Phe Ser Arg Thr Pro Gly     450 455 460 Lys Ile Asp 465 <210> 19 <211> 771 <212> DNA <213> Artificial Sequence <220> <223> mAb BR55 light chain (nucleotide sequence) <400> 19 ctcgagggat ccatgctacc ggccgctatg gcagcgggat tcatgaagct accagttagg 60 cttcttgtgc tgatgttttg gattcccgca tcctctagtg atgttttgat gactcaaact 120 ccactttccc tccctgtatc tcttggggat caagcatcta tttcatgtcg atcaagccag 180 tctatcgttc acagtaatgg aaacacatac ttagagtggt acttgcagaa accaggtcaa 240 agtcctaaac tcctgatctc caaagtttct aatcgtttct ctggtgtacc tgataggttt 300 agtggcagtg gatcagggac agattttaca ctcaagatta gcagagtgga ggctgaggat 360 ttaggagttt attactgctt ccaaggttca catgtcccat ttacctttgg ctctggaaca 420 aagttggaga taaaaagagc tgatgctgca ccaactgtat ctatcttccc accttcttca 480 gaacagttaa catcgggtgg tgcctcagtc gtttgctttt tgaacaactt ctaccctaag 540 gacataaatg tgaaatggaa aattgatggg agtgaaagac aaaatggcgt gcttaatagt 600 tggaccgatc aggacagcaa agactccacc tattctatgt catcgacact tactttgact 660 aaggacgagt atgaacggca taatagctat acctgtgaag ctactcacaa gacgtccact 720 tcacccattg tcaagagctt taacaggaac gaatgttaac tgcagggtac c 771 <210> 20 <211> 1542 <212> DNA <213> Artificial Sequence <220> <223> mAb BR55 heavy chain (nucleotide sequence) <400> 20 gtcgactcta gaatgcatcc aacgaggtgg gagttgtcgc atatggtcga tctacaggct 60 gctgcactgg tcattacaat ggatttgggg ctctctttga tttttttagt ccttgtttta 120 aaaggtgtcc agtgtgaagt gaaactggtg gaatctggag gaggcttagt gcaaccagga 180 gggtctctga aactcagttg tgcaacctct ggtttcactt tttctgatta ttatatgtat 240 tgggttcgcc aaactccaga gaagaggctg gagtgggtcg catatataag taatggtggg 300 ggtagttctc attatgtaga ttcagtaaaa ggccgattta ccatcagcag ggataatgcc 360 aagaatacac tgtacctgca aatgtcccgt ctgaggtcag aggatacagc catgtatcac 420 tgtgcaaggg gaatggatta cggggcgtgg tttgcttact ggggccaagg gactcttgtt 480 actgttagcg cagctacaac aaccgctcct tctgtctatc ctttggtccc tggttgcagt 540 gacacctctg gatcatcggt gacactggga tgccttgtta aaggctactt tcctgagccg 600 gtaactgtaa agtggaatta tggagcactg tccagcggtg ttagaacagt ctcatctgtc 660 ctgcaatctg gattctattc cctaagcagc ttggtgactg taccctccag cacctggcca 720 tctcagactg tgatatgcaa tgtagctcac ccagccagca agaccgagtt gattaagaga 780 atcgaaccta gaatacccaa accatctatc ccacctggtt cttcatgtcc acaaccgcgt 840 ggtcccacaa ttaaaccttg tcctccatgt aaatgcccag cacctaatct attaggtgga 900 ccatccgttt tcatattccc tccaaagatc aaagatgttc tcatgatttc ccttagcccc 960 attgtaacat gtgtggtcgt ggatgtgtca gaggatgatc cagacgtcca aattagctgg 1020 tttgtgaaca acgtggaggt acatacagct cagacacaaa ctcatagaga agattacaac 1080 agtactctcc gagtcgtcag tgccctcccg atacagcacc aggactggat gagtggcaaa 1140 gaatttaagt gtaaggtcaa taataaagac cttccagctc ccattgaaag aacgatttca 1200 aaacctaaag gatcagttag agctccacaa gtatatgttt tgcctccacc agaagaagaa 1260 atgactaaga aacaagtcac tttgacatgc atggttacag acttcatgcc tgaagatatt 1320 tacgttgagt ggaccaacaa cggcaaaact gaactaaact acaagaacac tgaaccagtc 1380 ctggactctg atggttcata ttttatgtac tcgaagctga gagtggaaaa aaagaattgg 1440 gtggaaagaa atagctactc ttgttcagtt gttcatgaag gtctgcataa tcatcacacg 1500 actaagagct tctcccggac tccgggttaa ggatccacta gt 1542 <210> 21 <211> 256 <212> PRT <213> Artificial Sequence <220> MAb BR55 light chain (amino acid sequence) <400> 21 Leu Glu Gly Ser Met Leu Pro Ala Ala Met Ala Ala Gly Phe Met Lys   1 5 10 15 Leu Pro Val Arg Leu Leu Val Leu Met Phe Trp Ile Pro Ala Ser Ser              20 25 30 Ser Asp Val Leu Met Thr Gln Thr Pro Leu Ser Leu Pro Val Ser Leu          35 40 45 Gly Asp Gln Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Ile Val His      50 55 60 Ser Asn Gly Asn Thr Tyr Leu Glu Trp Tyr Leu Gln Lys Pro Gly Gln  65 70 75 80 Ser Pro Lys Leu Leu Ile Ser Lys Val Ser Asn Arg Phe Ser Gly Val                  85 90 95 Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys             100 105 110 Ile Ser Arg Val Glu Ala Glu Asp Leu Gly Val Tyr Tyr Cys Phe Gln         115 120 125 Gly Ser His Val Pro Phe Thr Phe Gly Ser Gly Thr Lys Leu Glu Ile     130 135 140 Lys Arg Ala Asp Ala Ala Pro Thr Val Ser Ile Phe Pro Pro Ser Ser 145 150 155 160 Glu Gln Leu Thr Ser Gly Gly Ala Ser Val Val Cys Phe Leu Asn Asn                 165 170 175 Phe Tyr Pro Lys Asp Ile Asn Val Lys Trp Lys Ile Asp Gly Ser Glu             180 185 190 Arg Gln Asn Gly Val Leu Asn Ser Trp Thr Asp Gln Asp Ser Lys Asp         195 200 205 Ser Thr Ser Ser Ser Ser Thr Leu Thr Leu Thr Lys Asp Glu Tyr     210 215 220 Glu Arg His Asn Ser Tyr Thr Cys Glu Ala Thr His Lys Thr Ser Thr 225 230 235 240 Ser Pro Ile Val Lys Ser Phe Asn Arg Asn Glu Cys Leu Gln Gly Thr                 245 250 255 <210> 22 <211> 493 <212> PRT <213> Artificial Sequence <220> &Lt; 223 > mAb BR55 heavy chain (amino acid sequence) <400> 22 Val Asp Ser Arg Met His Pro Thr Arg Trp Glu Leu Ser His Met Val   1 5 10 15 Asp Leu Gln Ala Ala Leu Val Ile Thr Asp Leu Gly Leu Ser              20 25 30 Leu Ile Phe Leu Val Leu Val Leu Lys Gly Val Gln Cys Glu Val Lys          35 40 45 Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly Ser Leu Lys      50 55 60 Leu Ser Cys Ala Thr Ser Gly Phe Thr Phe Ser Asp Tyr Tyr Met Tyr  65 70 75 80 Trp Val Arg Gln Thr Pro Glu Lys Arg Leu Glu Trp Val Ala Tyr Ile                  85 90 95 Ser Asn Gly Gly Gly Ser Ser His Tyr Val Asp Ser Val Lys Gly Arg             100 105 110 Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Leu Tyr Leu Gln Met         115 120 125 Ser Arg Leu Arg Ser Glu Asp Thr Ala Met Tyr His Cys Ala Arg Gly     130 135 140 Met Asp Tyr Gly Ala Trp Phe Ala Tyr Trp Gly Gln Gly Thr Leu Val 145 150 155 160 Thr Val Ser Ala Ala Thr Thr Thr Ala Pro Ser Val Tyr Pro Leu Val                 165 170 175 Pro Gly Cys Ser Asp Thr Ser Gly Ser Ser Val Thr Leu Gly Cys Leu             180 185 190 Val Lys Gly Tyr Phe Pro Glu Pro Val Thr Val Lys Trp Asn Tyr Gly         195 200 205 Ala Leu Ser Ser Gly Val Arg Thr Val Ser Ser Val Leu Gln Ser Gly     210 215 220 Phe Tyr Ser Leu Ser Ser Leu Val Thr Val Ser Ser Thr Trp Pro 225 230 235 240 Ser Gln Thr Val Ile Cys Asn Val Ala His Pro Ala Ser Lys Thr Glu                 245 250 255 Leu Ile Lys Arg Ile Glu Pro Arg Ile Pro Lys Pro Ser Ile Pro Pro             260 265 270 Gly Ser Ser Cys Pro Gln Pro Arg Gly Pro Thr Ile Lys Pro Cys Pro         275 280 285 Pro Cys Lys Cys Pro Ala Pro Asn Leu Leu Gly Gly Pro Ser Val Phe     290 295 300 Ile Phe Pro Pro Lys Ile Lys Asp Val Leu Met Ile Ser Leu Ser Pro 305 310 315 320 Ile Val Thr Cys Val Val Val Asp Val Ser Glu Asp Asp Pro Asp Val                 325 330 335 Gln Ile Ser Trp Phe Val Asn Asn Val Glu Val His Thr Ala Gln Thr             340 345 350 Gln Thr His Arg Glu Asp Tyr Asn Ser Thr Leu Arg Val Val Ser Ala         355 360 365 Leu Pro Ile Gln His Gln Asp Trp Met Ser Gly Lys Glu Phe Lys Cys     370 375 380 Lys Val Asn Asn Lys Asp Leu Pro Ala Pro Ile Glu Arg Thr Ile Ser 385 390 395 400 Lys Pro Lys Gly Ser Val Arg Ala Pro Gln Val Tyr Val Leu Pro Pro                 405 410 415 Pro Glu Glu Glu Met Thr Lys Lys Gln Val Thr Leu Thr Cys Met Val             420 425 430 Thr Asp Phe Met Pro Glu Asp Ile Tyr Val Glu Trp Thr Asn Asn Gly         435 440 445 Lys Thr Glu Leu Asn Tyr Lys Asn Thr Glu Pro Val Leu Asp Ser Asp     450 455 460 Gly Ser Tyr Phe Met Tyr Ser Lys Leu Arg Val Glu Lys Lys Asn Trp 465 470 475 480 Val Glu Arg Asn Ser Tyr Ser Cys Ser Val Val His Glu                 485 490 <210> 23 <211> 621 <212> PRT <213> Artificial Sequence <220> Large single chain CO17-1A (amino acid sequence) <400> 23 Leu Glu Gly Ser Met Gly Ile Lys Met Glu Ser Gln Thr Leu Val Phe   1 5 10 15 Ile Ser Ile Leu Leu Trp Leu Tyr Gly Ala Asp Gly Asn Ile Val Met              20 25 30 Thr Gln Ser Pro Lys Ser Met Ser Ser Ser Val Gly Glu Arg Val Thr          35 40 45 Leu Thr Cys Lys Ala Ser Glu Asn Val Val Thr Tyr Val Ser Trp Tyr      50 55 60 Gln Gln Lys Pro Glu Gln Ser Pro Lys Leu Leu Ile Tyr Gly Ala Ser  65 70 75 80 Asn Arg Tyr Thr Gly Val Pro Asp Arg Phe Thr Gly Ser Gly Ser Ala                  85 90 95 Thr Asp Phe Thr Leu Thr Ile Ser Ser Val Gln Ala Glu Asp Leu Ala             100 105 110 Asp Tyr His Cys Gly Gln Gly Tyr Ser Tyr Pro Tyr Thr Phe Gly Gly         115 120 125 Gly Thr Lys Leu Gly Ily Lys Gly Gly Gly Gly Gly Gly Gly Gly Gly Gly     130 135 140 Ser Gly Gly Gly Gly Ser Met Glu Trp Ser Arg Val Phe Ile Phe Leu 145 150 155 160 Leu Ser Val Thr Ala Gly Val His Ser Gln Val Gln Leu Gln Gln Ser                 165 170 175 Gly Ala Glu Leu Val Arg Pro Gly Thr Ser Val Lys Val Ser Cys Lys             180 185 190 Ala Ser Gly Tyr Ala Phe Thr Asn Tyr Leu Ile Glu Trp Val Lys Gln         195 200 205 Arg Pro Gly Gln Gly Leu Glu Trp Ile Gly Val Ile Asn Pro Gly Ser     210 215 220 Gly Gly Thr Asn Tyr Asn Glu Lys Phe Lys Gly Lys Ala Thr Leu Thr 225 230 235 240 Ala Asp Lys Ser Ser Thr Ala Tyr Met Gln Leu Ser Ser Leu Thr                 245 250 255 Ser Asp Ser Ala Val Tyr Phe Cys Ala Arg Asp Gly Pro Trp Phe             260 265 270 Ala Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ala Ala Lys Thr         275 280 285 Thr Ala Pro Ser Val Tyr Pro Leu Ala Pro Val Cys Gly Asp Thr Thr     290 295 300 Gly Ser Ser Val Thr Leu Gly Cys Leu Val Lys Gly Tyr Phe Pro Glu 305 310 315 320 Pro Val Thr Leu Thr Trp Asn Ser Gly Ser Leu Ser Ser Gly Val His                 325 330 335 Thr Phe Pro Ala Val Leu Gln Ser Asp Leu Tyr Thr Leu Ser Ser Ser             340 345 350 Val Thr Val Thr Ser Ser Thr Trp Pro Ser Gln Ser Ile Thr Cys Asn         355 360 365 Val Ala His Pro Ala Ser Ser Thr Lys Val Asp Lys Lys Ile Glu Pro     370 375 380 Arg Gly Pro Thr Ile Lys Pro Cys Pro Pro Cys Lys Cys Pro Ala Pro 385 390 395 400 Asn Leu Leu Gly Gly Pro Ser Val Phe Ile Phe Pro Pro Lys Ile Lys                 405 410 415 Asp Val Leu Met Ile Ser Leu Ser Pro Ile Val Thr Cys Val Val Val             420 425 430 Asp Val Ser Glu Asp Asp Pro Asp Val Gln Ile Ser Trp Phe Val Asn         435 440 445 Asn Val Glu Val His Thr Ala Gln Thr Gln Thr His Arg Glu Asp Tyr     450 455 460 Asn Ser Thr Leu Arg Val Val Ser Ala Leu Pro Ile Gln His Gln Asp 465 470 475 480 Trp Met Ser Gly Lys Glu Phe Lys Cys Lys Val Asn Asn Lys Asp Leu                 485 490 495 Pro Ala Pro Ile Glu Arg Thr Ile Ser Lys Pro Lys Gly Ser Val Arg             500 505 510 Ala Pro Gln Val Tyr Val Leu Pro Pro Pro Glu Glu Glu Met Thr Lys         515 520 525 Lys Gln Val Thr Leu Thr Cys Met Val Thr Asp Phe Met Pro Glu Asp     530 535 540 Ile Tyr Val Lys Trp Thr Asn Asn Gly Lys Thr Glu Leu Asn Tyr Lys 545 550 555 560 Asn Thr Glu Pro Val Leu Asp Ser Asp Gly Ser Tyr Phe Met Tyr Ser                 565 570 575 Lys Leu Arg Val Glu Lys Lys Asn Trp Val Glu Arg Asn Ser Tyr Ser             580 585 590 Cys Ser Val Val His Glu Gly Leu His Asn His His Thr Thr Lys Ser         595 600 605 Phe Ser Arg Thr Pro Gly Lys Ile Asp Ser Arg Gly Thr     610 615 620 <210> 24 <211> 625 <212> PRT <213> Artificial Sequence <220> Large single chain CO17-1AK (amino acid sequence) <400> 24 Leu Glu Gly Ser Met Gly Ile Lys Met Glu Ser Gln Thr Leu Val Phe   1 5 10 15 Ile Ser Ile Leu Leu Trp Leu Tyr Gly Ala Asp Gly Asn Ile Val Met              20 25 30 Thr Gln Ser Pro Lys Ser Met Ser Ser Ser Val Gly Glu Arg Val Thr          35 40 45 Leu Thr Cys Lys Ala Ser Glu Asn Val Val Thr Tyr Val Ser Trp Tyr      50 55 60 Gln Gln Lys Pro Glu Gln Ser Pro Lys Leu Leu Ile Tyr Gly Ala Ser  65 70 75 80 Asn Arg Tyr Thr Gly Val Pro Asp Arg Phe Thr Gly Ser Gly Ser Ala                  85 90 95 Thr Asp Phe Thr Leu Thr Ile Ser Ser Val Gln Ala Glu Asp Leu Ala             100 105 110 Asp Tyr His Cys Gly Gln Gly Tyr Ser Tyr Pro Tyr Thr Phe Gly Gly         115 120 125 Gly Thr Lys Leu Gly Ily Lys Gly Gly Gly Gly Gly Gly Gly Gly Gly Gly     130 135 140 Ser Gly Gly Gly Gly Ser Met Glu Trp Ser Arg Val Phe Ile Phe Leu 145 150 155 160 Leu Ser Val Thr Ala Gly Val His Ser Gln Val Gln Leu Gln Gln Ser                 165 170 175 Gly Ala Glu Leu Val Arg Pro Gly Thr Ser Val Lys Val Ser Cys Lys             180 185 190 Ala Ser Gly Tyr Ala Phe Thr Asn Tyr Leu Ile Glu Trp Val Lys Gln         195 200 205 Arg Pro Gly Gln Gly Leu Glu Trp Ile Gly Val Ile Asn Pro Gly Ser     210 215 220 Gly Gly Thr Asn Tyr Asn Glu Lys Phe Lys Gly Lys Ala Thr Leu Thr 225 230 235 240 Ala Asp Lys Ser Ser Thr Ala Tyr Met Gln Leu Ser Ser Leu Thr                 245 250 255 Ser Asp Ser Ala Val Tyr Phe Cys Ala Arg Asp Gly Pro Trp Phe             260 265 270 Ala Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ala Ala Lys Thr         275 280 285 Thr Ala Pro Ser Val Tyr Pro Leu Ala Pro Val Cys Gly Asp Thr Thr     290 295 300 Gly Ser Ser Val Thr Leu Gly Cys Leu Val Lys Gly Tyr Phe Pro Glu 305 310 315 320 Pro Val Thr Leu Thr Trp Asn Ser Gly Ser Leu Ser Ser Gly Val His                 325 330 335 Thr Phe Pro Ala Val Leu Gln Ser Asp Leu Tyr Thr Leu Ser Ser Ser             340 345 350 Val Thr Val Thr Ser Ser Thr Trp Pro Ser Gln Ser Ile Thr Cys Asn         355 360 365 Val Ala His Pro Ala Ser Ser Thr Lys Val Asp Lys Lys Ile Glu Pro     370 375 380 Arg Gly Pro Thr Ile Lys Pro Cys Pro Pro Cys Lys Cys Pro Ala Pro 385 390 395 400 Asn Leu Leu Gly Gly Pro Ser Val Phe Ile Phe Pro Pro Lys Ile Lys                 405 410 415 Asp Val Leu Met Ile Ser Leu Ser Pro Ile Val Thr Cys Val Val Val             420 425 430 Asp Val Ser Glu Asp Asp Pro Asp Val Gln Ile Ser Trp Phe Val Asn         435 440 445 Asn Val Glu Val His Thr Ala Gln Thr Gln Thr His Arg Glu Asp Tyr     450 455 460 Asn Ser Thr Leu Arg Val Val Ser Ala Leu Pro Ile Gln His Gln Asp 465 470 475 480 Trp Met Ser Gly Lys Glu Phe Lys Cys Lys Val Asn Asn Lys Asp Leu                 485 490 495 Pro Ala Pro Ile Glu Arg Thr Ile Ser Lys Pro Lys Gly Ser Val Arg             500 505 510 Ala Pro Gln Val Tyr Val Leu Pro Pro Pro Glu Glu Glu Met Thr Lys         515 520 525 Lys Gln Val Thr Leu Thr Cys Met Val Thr Asp Phe Met Pro Glu Asp     530 535 540 Ile Tyr Val Lys Trp Thr Asn Asn Gly Lys Thr Glu Leu Asn Tyr Lys 545 550 555 560 Asn Thr Glu Pro Val Leu Asp Ser Asp Gly Ser Tyr Phe Met Tyr Ser                 565 570 575 Lys Leu Arg Val Glu Lys Lys Asn Trp Val Glu Arg Asn Ser Tyr Ser             580 585 590 Cys Ser Val Val His Glu Gly Leu His Asn His His Thr Thr Lys Ser         595 600 605 Phe Ser Arg Thr Pro Gly Lys Ile Asp Lys Asp Glu Leu Ser Arg Gly     610 615 620 Thr 625 <210> 25 <211> 673 <212> PRT <213> Artificial Sequence <220> Large single chain BR55K (amino acid sequence) <400> 25 Val Asp Ser Arg Met Leu Pro Ala Ala Met Ala Ala Gly Phe Met Lys   1 5 10 15 Leu Pro Val Arg Leu Leu Val Leu Met Phe Trp Ile Pro Ala Ser Ser              20 25 30 Ser Asp Val Leu Met Thr Gln Thr Pro Leu Ser Leu Pro Val Ser Leu          35 40 45 Gly Asp Gln Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Ile Val His      50 55 60 Ser Asn Gly Asn Thr Tyr Leu Glu Trp Tyr Leu Gln Lys Pro Gly Gln  65 70 75 80 Ser Pro Lys Leu Leu Ile Ser Lys Val Ser Asn Arg Phe Ser Gly Val                  85 90 95 Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys             100 105 110 Ile Ser Arg Val Glu Ala Glu Asp Leu Gly Val Tyr Tyr Cys Phe Gln         115 120 125 Gly Ser His Val Pro Phe Thr Phe Gly Ser Gly Thr Lys Leu Glu Ile     130 135 140 Lys Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser 145 150 155 160 Met His Pro Thr Arg Trp Glu Leu Ser His Met Val Asp Leu Gln Ala                 165 170 175 Ala Ala Leu Val Ile Thr Met Asp Leu Gly Leu Ser Leu Ile Phe Leu             180 185 190 Val Leu Val Leu Lys Gly Val Gln Cys Glu Val Lys Leu Val Glu Ser         195 200 205 Gly Gly Gly Leu Val Gln Pro Gly Gly Ser Leu Lys Leu Ser Cys Ala     210 215 220 Thr Ser Gly Phe Thr Phe Ser Asp Tyr Tyr Met Tyr Trp Val Arg Gln 225 230 235 240 Thr Pro Glu Lys Arg Leu Glu Trp Val Ala Tyr Ile Ser Asn Gly Gly                 245 250 255 Gly Ser Ser His Tyr Val Asp Ser Val Lys Gly Arg Phe Thr Ile Ser             260 265 270 Arg Asp Asn Ala Lys Asn Thr Leu Tyr Leu Gln Met Ser Arg Leu Arg         275 280 285 Ser Glu Asp Thr Ala Met Tyr His Cys Ala Arg Gly Met Asp Tyr Gly     290 295 300 Ala Trp Phe Ala Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ala 305 310 315 320 Ala Thr Thr Ala Pro Ser Val Tyr Pro Leu Val Pro Gly Cys Ser                 325 330 335 Asp Thr Ser Gly Ser Ser Val Thr Leu Gly Cys Leu Val Lys Gly Tyr             340 345 350 Phe Pro Glu Pro Val Thr Val Lys Trp Asn Tyr Gly Ala Leu Ser Ser         355 360 365 Gly Val Arg Thr Val Ser Ser Val Leu Gln Ser Gly Phe Tyr Ser Leu     370 375 380 Ser Ser Leu Val Thr Val Ser Ser Thr Trp Ser Ser Gln Thr Val 385 390 395 400 Ile Cys Asn Val Ala His Pro Ala Ser Lys Thr Glu Leu Ile Lys Arg                 405 410 415 Ile Glu Pro Arg Ile Pro Lys Pro Ser Ile Pro Pro Gly Ser Ser Cys             420 425 430 Pro Gln Pro Arg Gly Pro Thr Ile Lys Pro Cys Pro Pro Cys Lys Cys         435 440 445 Pro Ala Pro Asn Leu Leu Gly Gly Pro Ser Val Phe Ile Phe Pro Pro     450 455 460 Lys Ile Lys Asp Val Leu Met Ile Ser Leu Ser Pro Ile Val Thr Cys 465 470 475 480 Val Val Val Asp Val Ser Glu Asp Asp Pro Asp Val Gln Ile Ser Trp                 485 490 495 Phe Val Asn Asn Val Glu Val His Thr Ala Gln Thr Gln Thr His Arg             500 505 510 Glu Asp Tyr Asn Ser Thr Leu Arg Val Val Ser Ala Leu Pro Ile Gln         515 520 525 His Gln Asp Trp Met Ser Gly Lys Glu Phe Lys Cys Lys Val Asn Asn     530 535 540 Lys Asp Leu Pro Ala Pro Ile Glu Arg Thr Ile Ser Lys Pro Lys Gly 545 550 555 560 Ser Val Arg Ala Pro Gln Val Tyr Val Leu Pro Pro Pro Glu Glu Glu                 565 570 575 Met Thr Lys Lys Gln Val Thr Leu Thr Cys Met Val Thr Asp Phe Met             580 585 590 Pro Glu Asp Ile Tyr Val Glu Trp Thr Asn Asn Gly Lys Thr Glu Leu         595 600 605 Asn Tyr Lys Asn Thr Glu Pro Val Leu Asp Ser Asp Gly Ser Tyr Phe     610 615 620 Met Tyr Ser Lys Leu Arg Val Glu Lys Lys Asn Trp Val Glu Arg Asn 625 630 635 640 Ser Tyr Ser Cys Ser Val Val His Glu Gly Leu His Asn His His Thr                 645 650 655 Thr Lys Ser Phe Ser Arg Thr Pro Gly Lys Asp Glu Leu Gly Ser Thr             660 665 670 Ser     <210> 26 <211> 12 <212> DNA <213> Artificial Sequence <220> <223> nucleotide sequence encoding KDEL in Large single chain CO17-1AK <400> 26 aaggacgaac tt 12 <210> 27 <211> 12 <212> DNA <213> Artificial Sequence <220> <223> Nucleotide sequence encoding KDEL in Large single chain BR55K <400> 27 aaagatgaac tt 12 <210> 28 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for Large Single Chain CO17-1A <400> 28 cgctcgaggg atccatgggc attaaaatgc g 31 <210> 29 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for Large Single Chain CO17-1A <400> 29 gcggtacctc tagaatcgat tttacccggg c 31 <210> 30 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for Large Single Chain CO17-1AK <400> 30 cgctcgaggg atccatgggc attaaaatgc g 31 <210> 31 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for Large Single Chain CO17-1AK <400> 31 gcggtacctc tagattaaag ttcgtcctta tcgatgc 37 <210> 32 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Forward primer for Large Single Chain BR55K <400> 32 cggtcgactc tagaatgctc ccggccgctc g 31 <210> 33 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> Reverse primer for Large Single Chain BR55K <400> 33 gcactagtgg atcctcaaag ttcatcttta cccggc 36

Claims (6)

(a) 단일클론항체(monoclonal antibody)의 중쇄 가변영역(VH)과 경쇄 가변영역(VL)을 링커로 연결하여 단쇄 항체(single chain antibody)로 만드는 단계;
(b) 상기 (a) 단계에서 제조된 단쇄 항체의 유전자를 식물 세포에 도입하여 형질전환된 식물 개체를 얻는 단계;
(c) 상기 (a) 단계의 단일클론항체와는 다른 단일클론항체의 중쇄 가변영역(VH)과 경쇄 가변영역(VL)을 링커로 연결하여 단쇄 항체(single chain antibody)로 만드는 단계;
(d) 상기 (c) 단계에서 제조된 단쇄 항체의 유전자를 식물 세포에 도입하여 형질전환된 식물 개체를 얻는 단계; 및
(e) 상기 (b) 및 (d) 단계에서 제조된 형질전환 식물 개체들을 교배하는 단계를 포함하는 이중특이항체(bispecific antibody)를 생산하는 형질전환 식물의 제조방법.
(a) linking a heavy chain variable region (VH) and a light chain variable region (VL) of a monoclonal antibody with a linker to form a single chain antibody;
(b) introducing the gene of the single chain antibody prepared in the step (a) into a plant cell to obtain a transformed plant;
(c) linking the heavy chain variable region (VH) and the light chain variable region (VL) of the monoclonal antibody different from the monoclonal antibody of the step (a) with a linker to form a single chain antibody;
(d) introducing the gene of the single chain antibody produced in the step (c) into a plant cell to obtain a transformed plant; And
(e) crossing the transgenic plant individuals produced in steps (b) and (d) above to produce a bispecific antibody.
제1항에 있어서,
(a) 대장암 세포 표면 단백질인 GA733-2를 에피토프(epitope)로 인지하는 단일클론항체의 중쇄 가변영역(VH)과 경쇄 가변영역(VL)을 링커로 연결하여 단쇄 항체(single chain antibody)로 만드는 단계;
(b) 상기 (a) 단계에서 제조된 단쇄 항체의 유전자를 식물 세포에 도입하여 형질전환된 식물 개체를 얻는 단계;
(c) 유방암 세포 표면 당사슬인 Lewis Y를 에피토프로 인지하는 단일클론항체와는 다른 단일클론항체의 중쇄 가변영역(VH)과 경쇄 가변영역(VL)을 링커로 연결하여 단쇄 항체(single chain antibody)로 만드는 단계;
(d) 상기 (c) 단계에서 제조된 단쇄 항체의 유전자를 식물 세포에 도입하여 형질전환된 식물 개체를 얻는 단계;
(e) 상기 (b) 및 (d) 단계에서 제조된 형질전환 식물 개체들을 교배하여 교배 식물을 제조하는 단계를 포함하는 이중특이항체(bispecific antibody)를 생산하는 형질전환 식물의 제조방법.
The method according to claim 1,
(a) A single chain antibody (heavy chain variable region (VH) and light chain variable region (VL) linked by a linker to a monoclonal antibody recognizing GA733-2 epitope) Creating;
(b) introducing the gene of the single chain antibody prepared in the step (a) into a plant cell to obtain a transformed plant;
(c) A single chain antibody is obtained by linking the heavy chain variable region (VH) and the light chain variable region (VL) of a monoclonal antibody different from the monoclonal antibody recognizing Lewis Y as a epitope of breast cancer cell surface glycoprotein, ;
(d) introducing the gene of the single chain antibody produced in the step (c) into a plant cell to obtain a transformed plant;
(e) crossing the transgenic plants produced in steps (b) and (d) to produce a hybrid plant.
(a) 단일클론항체(monoclonal antibody)의 중쇄 가변영역(VH)과 경쇄 가변영역(VL)을 링커로 연결하여 단쇄 항체(single chain antibody)로 만드는 단계;
(b) 상기 (a) 단계에서 제조된 단쇄 항체의 유전자를 식물 세포에 도입하여 형질전환된 식물 개체를 얻는 단계;
(c) 상기 (a) 단계의 단일클론항체와는 다른 단일클론항체의 중쇄 가변영역(VH)과 경쇄 가변영역(VL)을 링커로 연결하여 단쇄 항체(single chain antibody)로 만드는 단계;
(d) 상기 (c) 단계에서 제조된 단쇄 항체의 유전자를 식물 세포에 도입하여 형질전환된 식물 개체를 얻는 단계;
(e) 상기 (b) 및 (d) 단계에서 제조된 형질전환 식물 개체들을 교배하는 단계; 및
(f) 상기 (e) 단계에서 제조된 교배 식물로부터 단백질을 수득하는 단계를 포함하는 항체 생산 방법.
(a) linking a heavy chain variable region (VH) and a light chain variable region (VL) of a monoclonal antibody with a linker to form a single chain antibody;
(b) introducing the gene of the single chain antibody prepared in the step (a) into a plant cell to obtain a transformed plant;
(c) linking the heavy chain variable region (VH) and the light chain variable region (VL) of the monoclonal antibody different from the monoclonal antibody of the step (a) with a linker to form a single chain antibody;
(d) introducing the gene of the single chain antibody produced in the step (c) into a plant cell to obtain a transformed plant;
(e) crossing the transgenic plants produced in steps (b) and (d) above; And
(f) obtaining a protein from the crossed plant produced in step (e).
제1항 내지 제3항의 어느 한 항에 있어서, 상기 링커는 서열번호 1로 표시되는 폴리펩타이드인 것을 특징으로 하는 방법.
4. The method according to any one of claims 1 to 3, wherein the linker is a polypeptide represented by SEQ ID NO: 1.
제1항 내지 제3항의 어느 한 항에 있어서, 상기 (b) 및 (d) 단계의 단쇄 항체를 코딩하는 유전자는 서열번호 2로 표시되는 소포체 잔류 펩타이드를 추가로 포함할 수 있는 것을 특징으로 하는 방법.
4. The method according to any one of claims 1 to 3, wherein the gene coding for the short-chain antibody of steps (b) and (d) is further characterized in that it further comprises an endoplasmic reticulum residual peptide represented by SEQ ID NO: 2 Way.
제1항 내지 제5항에 있어서, 상기 식물은 담배 (Nicotiana tabacum)인 것을 특징으로 하는 방법.
6. The method according to any one of claims 1 to 5, wherein the plant is a tobacco ( Nicotiana tabacum ). &lt; / RTI &gt;
KR1020130137838A 2013-11-13 2013-11-13 Method for preparing the plant producing bispecific antibody KR20150055676A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020130137838A KR20150055676A (en) 2013-11-13 2013-11-13 Method for preparing the plant producing bispecific antibody

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130137838A KR20150055676A (en) 2013-11-13 2013-11-13 Method for preparing the plant producing bispecific antibody

Publications (1)

Publication Number Publication Date
KR20150055676A true KR20150055676A (en) 2015-05-22

Family

ID=53391169

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130137838A KR20150055676A (en) 2013-11-13 2013-11-13 Method for preparing the plant producing bispecific antibody

Country Status (1)

Country Link
KR (1) KR20150055676A (en)

Similar Documents

Publication Publication Date Title
Stöger et al. Cereal crops as viable production and storage systems for pharmaceutical scFv antibodies
KR101442209B1 (en) Fusion proteins, uses thereof and processes for producing same
US7084256B2 (en) Self antigen vaccines for treating B cell lymphomas and other cancers
KR101957561B1 (en) A method of high level expression of target proteins as RbcS fusion proteins and method of preparing composition for oral delivery of the RbcS-fused target proteins expressed in leaf tissues as protein drugs
CA2388955A1 (en) Recombinant fusion molecules
KR101342974B1 (en) Novel peptide tag and uses thereof
CN112851794B (en) Epitope based on CD271 and application thereof
JP2006506056A (en) Multimeric protein manipulation
KR20210094895A (en) Novel Peptide Tag, Antibodies Binding to the Same and Uses thereof
US20060018900A1 (en) Self antigen vaccines for treating B-cell lymphomas and other cancers
CN108300725B (en) Soluble single-chain antibody superantigen fusion gene and protein, and preparation and application thereof
KR20200033037A (en) A antigen fused with porcine Fc fragment and vaccine composition comprising the same
US20150191532A1 (en) Antibody For Epitope Tagging, Hybridoma Cell Line and Uses Thereof
KR20150055676A (en) Method for preparing the plant producing bispecific antibody
CN107384948B (en) Method for highly expressing target protein in plant and method for producing composition for oral administration of medical protein for expressing plant
JP6633002B2 (en) Method for producing transformed plant producing immunogenic complex protein and immunogenic complex protein obtained therefrom
CN114773456B (en) anti-PK 34 monoclonal antibody and hybridoma cell line as well as preparation and purification methods thereof
CN117402250B (en) Taq DNA polymerase antibody, modified Taq DNA polymerase and application thereof
KR101728365B1 (en) Peptide tag with improved affinity toward 3H7 antibody and use thereof
CN117384293B (en) Taq DNA polymerase antibody and composition thereof, modified Taq DNA polymerase and application thereof
CN113637079B (en) Monoclonal antibody against SETD3 and application thereof
WO2009048354A1 (en) Method for overproducing anti-her2/neu oncogene antibodies in plant
CN110054674B (en) Immunogenic polypeptide, anti-TTC 36 antibody AP2-19 and application
CN107987167B (en) Monoclonal antibody of RNA polymerase II transcription subunit 37e mediator and application thereof
CA2402086A1 (en) Self antigen vaccines for treating b cell lymphomas and other cancers

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application