KR20150046570A - Composition for silver nano particle preparation and silver nano particle preparation method using the same - Google Patents

Composition for silver nano particle preparation and silver nano particle preparation method using the same Download PDF

Info

Publication number
KR20150046570A
KR20150046570A KR20130125973A KR20130125973A KR20150046570A KR 20150046570 A KR20150046570 A KR 20150046570A KR 20130125973 A KR20130125973 A KR 20130125973A KR 20130125973 A KR20130125973 A KR 20130125973A KR 20150046570 A KR20150046570 A KR 20150046570A
Authority
KR
South Korea
Prior art keywords
silver
silver nanoparticles
compound
nanoparticles
salt
Prior art date
Application number
KR20130125973A
Other languages
Korean (ko)
Other versions
KR101656551B1 (en
Inventor
강용수
이정현
이성진
김영래
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Priority to KR1020130125973A priority Critical patent/KR101656551B1/en
Publication of KR20150046570A publication Critical patent/KR20150046570A/en
Application granted granted Critical
Publication of KR101656551B1 publication Critical patent/KR101656551B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/18Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member
    • C07D207/22Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D207/24Oxygen or sulfur atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G5/00Compounds of silver
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/30Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members
    • C07D207/34Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D207/36Oxygen or sulfur atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D211/00Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
    • C07D211/04Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D211/68Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member
    • C07D211/72Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen, directly attached to ring carbon atoms
    • C07D211/74Oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

The present invention relates to a compound for producing a silver nanoparticle and a method for producing a silver nanoparticle using the same. The compound is represented by Chemical formula 1 to 4. The silver nanoparticle can be stably produced by using the compound without additionally using a reducing agent or a dispersant. Moreover, produced silver nanoparticles can be easily and quickly separated from a solvent or the like. The shape, the size, and the particle-size can be adjusted. Therefore, the compound can be used for various fields such as an antibacterial material, a facilitated transport gas separation membrane for which the silver nanoparticle is used as a carrier, a solar cell using electrolyte in which the silver nanoparticles are dispersed, and various kinds of sensors. In Chemical formula 1 to 4, n is an integer of 1-18.

Description

은 나노입자 제조용 화합물 및 이를 이용한 은 나노입자의 제조방법{Composition for silver nano particle preparation and silver nano particle preparation method using the same}TECHNICAL FIELD The present invention relates to a silver nanoparticle preparation compound and a silver nanoparticle preparation method using same,

본 발명은 은 나노입자 제조용 화합물 및 이를 이용한 은 나노입자의 제조방법에 관한 것이다.
The present invention relates to a compound for preparing silver nanoparticles and a method for producing silver nanoparticles using the same.

은 나노입자는 현재 많은 분야에서 적극 활용되고 있다. 은 나노입자가 가지고 있는 항균력이나 살균력으로 인해 각종 물품에 함유되는 방부제에 포함되는가 하면, 은 나노입자가 운반체로 사용되는 촉진수송 기체분리막이나 은 나노입자가 분산된 전해질을 사용하는 태양전지 등에 활용되기도 한다. 또한 분리막 및 각종 센서에도 은 나노입자는 적극 활용되고 있는 실정이다. 이렇게 다방면에 활용되는 은 나노입자는 다양한 합성방법에 의해 합성되고 있다.Silver nanoparticles are now widely used in many fields. Is contained in preservatives contained in various articles due to the antibacterial and sterilizing power possessed by the nanoparticles. In addition, silver nanoparticles may be utilized for facilitated transport gas separation membranes used as carriers or solar cells using silver nanoparticles dispersed electrolytes do. In addition, silver nanoparticles are widely used in separation membranes and various sensors. Silver nanoparticles used in this way are synthesized by various synthesis methods.

본래의 은 이온을 이용한 은 나노입자 합성법은 다양한 방법들이 있다. 은 나노입자를 합성하려면 은 이온에서 은 나노입자로 환원시켜줄 수 있는 환원제와 합성된 은 나노입자를 안정하게 분산되도록 하는 안정제가 사용되는데, 이렇게 환원제와 안정제를 어떻게 사용하느냐에 따라 은 나노입자의 합성방법도 달라지게 된다. 그 중에 주로 사용되는 방법인 폴리올 공정(polyol process) 방법은 하이드록실(hydroxyl) 그룹이 2개 이상 달려있는 알코올을 이용해서 은 나노입자를 합성하는 방법이다. 이러한 폴리올 공정(polyol process) 방법은 열을 가해주어야 하기 때문에 제조단가가 상승하면서 최종 제조되는 은 나노입자의 상태가 변질될 수 있는 문제점이 있다. 또 다른 방법으로서 많이 사용되는 방법으로서 시트르산염(citrate) 화합물을 환원제로 사용하는 방법이 있으나, 이는 최종 제조되는 은 나노입자의 크기나 모양이 균일하지 않다는 단점이 있다.There are various methods of synthesizing silver nanoparticles using original silver ions. In order to synthesize silver nanoparticles, a reducing agent capable of reducing silver nanoparticles to silver nanoparticles and a stabilizer capable of stably dispersing the synthesized silver nanoparticles are used. Depending on how the reducing agent and stabilizer are used, . The polyol process method, which is mainly used in the method, is a method of synthesizing silver nanoparticles using an alcohol having two or more hydroxyl groups. Such a polyol process method has a problem that the state of silver nanoparticles to be finally produced may be deteriorated because the manufacturing cost is increased because heat must be applied. As another method, there is a method of using a citrate compound as a reducing agent, which is disadvantageous in that the size and shape of the finally prepared silver nanoparticles are not uniform.

한편, 이들 이외에도 현재 은 나노입자의 합성에 가장 많이 이용되는 방법은 폴리비닐피롤리돈(Polyvinylpyrrolidone, PVP)을 이용한 합성방법이 있다. 이 방법의 경우 폴리비닐피롤리돈이 은 나노입자의 합성에 있어서 환원제의 역할과 안정제의 역할을 동시에 수행하며, 안정제로서의 역할이 뛰어나기 때문에 은 나노입자가 고르게 형성되고 오랜 시간 안정한 장점이 있다. 하지만, 이 합성방법은 고분자 속에서도 안정한 상태이기 때문에 은 나노입자를 고분자 밖으로 분리하기 매우 힘들어, 이를 이용하고자 하는 경우 고분자에 분산된 상태로 이용할 수 밖에 없다는 문제점이 있다.
In addition to these, there is a synthesis method using polyvinylpyrrolidone (PVP), which is the most widely used method for synthesizing nanoparticles at present. In this method, polyvinylpyrrolidone acts both as a reducing agent and as a stabilizer in the synthesis of silver nanoparticles, and because it acts as a stabilizer, silver nanoparticles are uniformly formed and stable for a long time. However, since this synthesis method is stable even in a polymer, it is very difficult to separate silver nanoparticles out of the polymer. In order to use the silver nanoparticles, the silver nanoparticles can not be used in a dispersed state in the polymer.

대한민국 공개특허 제10-2004-0039256호Korean Patent Publication No. 10-2004-0039256

따라서, 본 발명이 해결하고자 하는 과제는 환원제나 분산제를 따로 사용할 필요 없이 안정하게 은 나노입자를 제조할 수 있는 화합물과 이를 이용하여 은 나노입자를 제조하는 방법을 제공하고자 한다.Accordingly, an object of the present invention is to provide a compound capable of stably producing silver nanoparticles without using a reducing agent or a dispersing agent separately, and a method for producing silver nanoparticles using the same.

또한, 제조된 은 나노입자를 용매 등으로부터 쉽고 빠르게 분리함과 동시에, 분리 후에도 제조된 은 나노입자가 원형에 가까운 상태로 수득하는 은 나노입자의 제조방법을 제공하고자 하고, 나아가서는 제조하고자 하는 은 나노입자의 모양, 크기 및 분산도를 조절할 수 있는 은 나노입자의 제조방법을 제공하고자 한다.
It is another object of the present invention to provide silver nanoparticles which can be easily and rapidly separated from silver nanoparticles prepared from a solvent and obtained silver nanoparticles close to a circular shape even after separation, The present invention provides a method for preparing silver nanoparticles capable of controlling the shape, size and dispersion of nanoparticles.

본 발명은 상기 과제를 해결하기 위하여, 하기 [화학식 1] 내지 [화학식 4]으로 표시되는 것을 특징으로 하는 은 나노입자 제조용 화합물을 제공한다.In order to solve the above-described problems, the present invention provides a compound for producing silver nanoparticles, which is represented by the following formulas (1) to (4).

Figure pat00001
Figure pat00001

상기 [화학식 1] 내지 [화학식 4]에서, n은 1 내지 18의 정수이다.
In the above Chemical Formulas 1 to 4, n is an integer of 1 to 18.

또한, 본 발명은 상기 [화학식 1] 내지 [화학식 4]으로 표시되는 것을 특징으로 하는 은 나노입자 제조용 화합물과 은 염을 혼합하여 반응시키는 단계를 포함하는 은 나노입자의 제조방법을 제공한다.The present invention also provides a method for preparing silver nanoparticles comprising mixing a silver salt with a silver nanoparticle-forming compound represented by any of the above Chemical Formulas 1 to 4 and reacting them.

본 발명의 일 실시예에 의하면, 상기 은 염은 AgBrO3, Ag2CO3, AgClO3, Ag2CrO4, AgOCN, AgCN, C6H11(CH2)3CO2Ag, AgF, AgF2, CF3CF2CF2CO2Ag, AgSbF6, AgAsF6, AgPF6, AgNO3, AgNO2, AgHF2, CH3CH(OH)COOAg, AgVO3, Ag2MoO4, C2F5CO2Ag, AgClO4, AgReO4, Ag3PO4, C10H9AgN4O2S, Ag2SO4, Ag2SO3, AgBF4, AgSCN, AgO2CCH2C(OH)(CO2Ag)CH2CO2AgㆍxH2O 및 CH3C6H4SO3Ag 중에서 선택되는 1종 이상일 수 있다.According to an embodiment of the present invention, the silver salt may be AgBrO 3 , Ag 2 CO 3 , AgClO 3 , Ag 2 CrO 4 , AgOCN, AgCN, C 6 H 11 (CH 2 ) 3 CO 2 Ag, AgF, AgF 2 , CF 3 CF 2 CF 2 CO 2 Ag, AgSbF 6, AgAsF 6, AgPF 6, AgNO 3, AgNO 2, AgHF 2, CH 3 CH (OH) COOAg, AgVO 3, Ag 2 MoO 4, C 2 F 5 CO 2 Ag, AgClO 4, AgReO 4 , Ag 3 PO 4, C 10 H 9 AgN 4 O 2 S, Ag 2 SO 4, Ag 2 SO 3, AgBF 4, AgSCN, AgO 2 CCH 2 C (OH) (CO 2 Ag) CH 2 CO 2 Ag xH 2 O and CH 3 C 6 H 4 SO 3 Ag.

본 발명의 일 실시예에 의하면, 상기 은 염은 상기 은 나노입자 제조용 화합물에 대하여 0.01-10 mol/L의 농도로 혼합될 수 있다.According to an embodiment of the present invention, the silver salt may be mixed at a concentration of 0.01-10 mol / L with respect to the compound for preparing silver nanoparticles.

본 발명의 일 실시예에 의하면, 상기 은 나노입자 제조용 화합물과 은 염의 혼합 반응 온도는 20-80 ℃인이고, 반응 시간은 0.5-10 분일 수 있다.According to an embodiment of the present invention, the mixing temperature of the compound for preparing silver nanoparticles and the silver salt is 20-80 ° C, and the reaction time may be 0.5-10 min.

또한, 본 발명에 따른 은 나노입자의 제조방법은 상기 반응시 [화학식 1] 내지 [화학식 4]으로 표시되는 은 나노입자 제조용 화합물 및 염의 종류을 달리하고, 반응되는 은 염의 농도, 혼합 반응 온도 및 혼합 반응 시간을 각각 조절하는 단계를 더 포함할 수 있으며, 이에 의해서 은 나노입자의 형상 및 크기를 조절하는 것을 특징으로 한다.
The method for preparing silver nanoparticles according to the present invention is characterized in that the silver nanoparticle-forming compound represented by any one of the above Chemical Formulas 1 to 4 and the salt thereof are different in the above reaction and the concentration of the silver salt to be reacted, And controlling the reaction time, respectively, thereby controlling the shape and size of the silver nanoparticles.

본 발명에 따른 은나노입자 제조용 화합물을 이용하면, 환원제나 분산제를 따로 사용할 필요 없이 보다 간단한 방법으로 다양한 물성을 갖는 은 나노입자를 안정적으로 제조할 수 있고, 제조된 은 나노입자를 용매 등으로부터 쉽고 빠르게 분리할 수 있을 뿐만 아니라 은나노입자의 모양, 크기 및 입도 등을 다양하게 조절할 수 있어 항균 소재, 은 나노입자가 운반체로 사용되는 촉진수송 기체분리막, 은 나노입자가 분산된 전해질을 사용하는 태양전지 및 각종 센서 등 다양한 분야에 활용할 수 있다.
Using the compound for producing silver nanoparticles according to the present invention, it is possible to stably produce silver nanoparticles having various physical properties by a simpler method without using a reducing agent or a dispersant separately, and to easily and rapidly In addition, it is possible to control the shape, size and grain size of the silver nanoparticles as well as the antibacterial material, the facilitated transport gas separation membrane in which the silver nanoparticles are used as the carrier, the solar cell using the silver nanoparticles dispersed electrolyte, It can be applied to various fields such as various sensors.

도 1은 HAP의 종류를 달리하여 합성한 은 나노입자의 TEM 이미지이다.
도 2는 HAP의 종류를 달리하여 합성한 은 나노입자의 UV-Vis 스펙트럼이다.
도 3은 은 염의 종류를 달리하여 합성한 은 나노입자의 TEM 이미지이다.
도 4는 은 염의 종류를 달리하여 합성한 은 나노입자의 UV-Vis 스펙트럼이다.
FIG. 1 is a TEM image of silver nanoparticles synthesized by different kinds of HAPs.
Fig. 2 is a UV-Vis spectrum of silver nanoparticles synthesized by different kinds of HAPs.
3 is a TEM image of silver nanoparticles synthesized by different kinds of silver salts.
4 is a UV-Vis spectrum of silver nanoparticles synthesized by different kinds of silver salts.

이하, 본 발명을 더욱 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명의 일 측면은 환원제나 분산제를 따로 사용할 필요 없이 보다 간단한 방법으로 다양한 물성을 갖는 은 나노입자를 안정적으로 제조할 수 있는 은 나노입자 제조용 화합물에 관한 것으로서, 하기 [화학식 1] 내지 [화학식 4]으로 표시되는 것을 특징으로 한다.One aspect of the present invention relates to a silver nanoparticle preparation compound capable of stably producing silver nanoparticles having various physical properties by a simpler method without using a reducing agent or a dispersant separately, ]. ≪ / RTI >

Figure pat00002
Figure pat00002

상기 [화학식 1] 내지 [화학식 4]에서, n은 1 내지 18의 정수이다.In the above Chemical Formulas 1 to 4, n is an integer of 1 to 18.

즉, 상기 화합물은 하이드록실기가 피롤리돈, 피페리딘 또는 피리딘 유도체와 알킬레이션된 화합물(HAP)로서, 상기 n은 1 내지 18의 정수일 수 있다. [화학식 1]로 표시되는 화합물의 일 구체적인 예는 1-(2-하이드록시알킬)-2-피롤리돈일 수 있고, [화학식 2]로 표시되는 화합물의 일 구체적인 예는 1-(하이드록시메틸)피롤-2(3)H-온일 수 있으며, [화학식 3]로 표시되는 화합물의 일 구체적인 예는 1-(하이드록시메틸)피페리디논일 수 있으며, [화학식 4]으로 표시되는 화합물의 일 구체적인 예는 1-(하이드록시메틸)피리딘-2(1H)-온일 수 있다.That is, the compound is a compound (HAP) in which a hydroxyl group is alkylated with a pyrrolidone, piperidine or pyridine derivative, and n may be an integer of 1 to 18. One specific example of the compound represented by the formula (1) may be 1- (2-hydroxyalkyl) -2-pyrrolidone and one specific example of the compound represented by the formula (2) is 1- (hydroxymethyl ) Pyrrole-2 (3) H-one, and one specific example of the compound represented by the formula 3 may be 1- (hydroxymethyl) piperidinone, and one specific example of the compound represented by the formula An example is 1- (hydroxymethyl) pyridin-2 (1H) -one.

본 발명에 따른 상기 화합물을 이용하여 은 나노입자를 제조하게 되면, 환원제나 안정제를 추가로 사용하지 않고도 안정적으로 은 나노입자의 제조가 가능하다.When silver nanoparticles are prepared using the compound according to the present invention, silver nanoparticles can be stably prepared without using a reducing agent or a stabilizer.

본 발명에 따른 상기 화합물은 피롤리돈, 피페리딘 또는 피리딘 유도체와 하이드록실기를 동시에 존재하는 단분자 형태로서, 이러한 피롤리돈, 피페리딘 또는 피리딘기와 하이드록실기로 인해 은 나노입자의 합성을 가능하게 한다.The compound according to the present invention is a monomolecular form in which a pyrrolidone, piperidine or pyridine derivative and a hydroxyl group are present at the same time, and the pyrrolidone, piperidine or pyridine group and the hydroxyl group, Enabling synthesis.

또한, 본 발명에 따른 상기 화합물은 고분자 형태가 아닌 단분자 형태로 피롤리돈기와 하이드록실기가 함께 존재하기 때문에 상기 화합물과 은 염과의 접근이 보다 용이하여 종래 폴리비닐피롤리돈(PVP) 고분자 보다 훨씬 빠르면서 손쉽게 은 나노입자를 제조하는 것이 가능하다.In addition, since the compound according to the present invention has both a pyrrolidone group and a hydroxyl group in a monomolecular form rather than a polymeric form, the compound and the silver salt are more easily accessible, and thus, polyvinylpyrrolidone (PVP) It is possible to manufacture silver nanoparticles much faster and more easily than polymers.

또한, 본 발명에 따른 상기 화합물은 고분자가 아닌 단분자이기 때문에 은 나노입자를 합성한 이후에, 원심분리 및 증발법을 통해 은 나노입자만을 제외한 용매나 본 발명에 따른 상기 화합물을 용이하게 제거할 수 있다.Since the compound according to the present invention is a polymer that is not a polymer, silver nanoparticles are synthesized, and then the silver nanoparticles alone or the compound according to the present invention is easily removed through centrifugation and evaporation .

또한, 본 발명에 따른 상기 화합물을 사용하여 은 나노입자를 제조하는 경우 용매의 역할과 환원제의 역할을 동시에 수행하기 때문에 기존의 방법보다 합성 공정 및 효율에 있어 많은 이점이 있고, 고분자를 사용하지 않아 다른 고분자에 분산시키는데에 제약이 없다는 장점도 있다.
In addition, when silver nanoparticles are prepared using the compound according to the present invention, the silver nanoparticles have both a solvent and a reducing agent, and thus have many advantages in the synthesis process and efficiency than the conventional silver nanoparticles. There is also an advantage in that there is no restriction on dispersion in other polymers.

본 발명의 다른 측면은 상기 [화학식 1] 내지 [화학식 4]에 따른 화합물과 은 염을 혼합하여 반응시키는 단계를 포함하는 은 나노입자의 제조방법에 관한 것이다.Another aspect of the present invention relates to a method for producing silver nanoparticles comprising the step of mixing and reacting a compound according to the above Chemical Formulas 1 to 4 with a silver salt.

또한, 상기 은 나노입자의 제조방법은 상기 반응시 은 염의 종류, 은 염의 농도, 혼합 반응 온도 및 혼합 반응 시간을 각각 조절하는 단계를 더 포함할 수 있고, 이에 의해서 은 나노입자의 형상 및 크기를 조절하는 것을 특징으로 한다.In addition, the silver nanoparticle manufacturing method may further include adjusting the silver salt type, the silver salt concentration, the mixing reaction temperature, and the mixing reaction time during the reaction so that the shape and size of silver nanoparticles .

또한, 반응하는 은 염의 농도는 상기 은 나노입자 제조용 화합물에 대하여 0.01-10 mol/L의 농도로 조절하고, 반응 온도는 상온에서 수행이 가능하며, 특별히 제한되지 않으나 20-80 ℃로 조절하며, 반응 시간은 0.5-10분으로 조절하여 다양한 형태, 크기 및 입도 분포를 갖는 은 나노입자를 제조할 수 있다.
The concentration of the silver salt to be reacted is adjusted to 0.01-10 mol / L with respect to the compound for preparing silver nanoparticles. The reaction temperature can be adjusted at room temperature, and is not particularly limited, Silver nanoparticles having various shapes, sizes and particle size distributions can be prepared by adjusting the reaction time to 0.5 to 10 minutes.

이하 본 발명을 바람직한 실시예를 참고로 하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되는 것은 아니다.
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. The present invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein.

실시예Example

1-(n-HydroxyAlkyl)-2-Pyrrolidone(HAP)를 5 ㎖ 준비하였다. 그리고 여기에 은 염(Ag salt) 0.5 g을 넣었다. 이를 상온, 1 atm의 조건으로 교반시켰다. 교반이 시작된 후 1분이 지나면서부터 은 나노입자가 합성되기 시작하였고, 교반은 10분 동안 계속되었다. 이러한 방법을 통하여 은나노입자를 제조하였다.
5 ml of 1- (n-HydroxyAlkyl) -2-pyrrolidone (HAP) was prepared. Then, 0.5 g of silver salt was added thereto. This was stirred at room temperature and 1 atm. After 1 minute from the start of stirring, silver nanoparticles began to be synthesized, and stirring was continued for 10 minutes. Silver nanoparticles were prepared by this method.

실험예Experimental Example 1 :  One : HAPHAP 의 n에 따른 According to n 은나노입자의Of silver nanoparticles 형태적 관찰 Morphological observation

상기 HAP 중 알킬기가 n=1, 3, 4, 6을 갖는 HAP를 이용해 은 나노입자를 합성하였고, 합성된 은 나노입자를 UV-Vis 스펙트럼과 TEM 이미지로 확인하였다. 또한, 은 염은 AgBF4로 고정하였다.Silver nanoparticles were synthesized using HAP having alkyl groups of n = 1, 3, 4, and 6 in the HAP. The silver nanoparticles synthesized were identified by UV-Vis spectra and TEM images. The silver salt was fixed with AgBF 4 .

이의 결과는 하기 도 1(TEM 이미지) 및 도 2(UV-Vis Spectroscopy)에 나타내었다. 도 1a 및 도 2a는 n=1인 경우이고, 도 1b 및 도 2b는 n=3인 경우이며, 도 1c 및 도 2c는 n=4인 경우이고, 도 1d 및 도 2d는 n=6인 경우이다.
The results are shown in FIG. 1 (TEM image) and FIG. 2 (UV-Vis Spectroscopy). FIGS. 1A and 2A show the case where n = 1, FIGS. 1B and 2B show the case where n = 3, FIGS. 1C and 2C show the case where n = 4, FIGS. 1D and 2D show the case where n = 6 to be.

실험예Experimental Example 2 : 은 염의 종류에 따른  2: Depending on the type of silver salt 은나노입자의Of silver nanoparticles 형태적 관찰 Morphological observation

HAP의 종류를 1-(2-Hydroxyethyl)-2-pyrrolidone으로 고정시키고 다양한 은 염의 종류를 이용하여 은 나노입자를 합성하였고, 합성된 은 나노입자를 UV-Vis 스펙트럼과 TEM 이미지로 확인하였다.Silver nanoparticles were synthesized by immobilizing HAP with 1- (2-Hydroxyethyl) -2-pyrrolidone and various silver salts. The silver nanoparticles synthesized were identified by UV-Vis spectra and TEM images.

이의 결과는 하기 도 3(TEM) 및 도 4(UV-Vis Spectroscopy)에 나타내었다. 도 3a 및 도 4a는 은 염이 AgBF4인 경우이며, 도 3b 및 도 4 b는 AgNO3인 경우이고, 도 3c 및 도 4c는 AgOCN인 경우이며, 도 3d 및 도 4d는 AgPF6인 경우이고, 도 3e 및 도 4e는 AgClO4인 경우이며, 도 3f 및 도 4f는 Ag2SO4인 경우이다.
The results are shown in FIG. 3 (TEM) and FIG. 4 (UV-Vis Spectroscopy). FIGS. 3A and 4A show the case where the silver salt is AgBF 4 , FIGS. 3B and 4B show the case of AgNO 3 , FIGS. 3C and 4C show the case of AgOCN, FIGS. 3D and 4D show the case of AgPF 6 3E and 4E show the case of AgClO 4 , and FIGS. 3F and 4F show the case of Ag 2 SO 4 .

상기 실험예 1 및 실험예 2를 통하여 여러가지 종류의 은 염과 HAP를 이용해서 상온에서 나노입자를 합성하고, 이를 UV-Vis 스펙트럼과 TEM 이미지로 확인하였다.Through the above Experimental Examples 1 and 2, nanoparticles were synthesized at room temperature using various kinds of silver salts and HAP, and confirmed by UV-Vis spectra and TEM images.

TEM 이미지에서 각 염의 종류에 따른 합성된 은 나노입자의 크기 및 모양과 분산 정도는 모두 모두 다른 양상을 보였으나, 모두 나노물질의 형태를 띄는 것을 확인하였다. 이로 인하여 은 염과 HAP의 종류 및 시간에 따라서 합성하고자 하는 은 나노입자의 모양과 크기, 및 분산도를 조절할 수 있다는 것을 알 수 있다.The size, shape, and degree of dispersion of the synthesized silver nanoparticles were different according to the type of salt in the TEM image, but all of them were found to be in the form of nanomaterials. Therefore, it can be seen that the shape, size, and dispersion of silver nanoparticles to be synthesized can be controlled depending on the kind and time of silver salt and HAP.

또한, UV-Vis 스펙트럼에서 은 나노입자를 400-420 nm 파장대에서 확인할 수 있고, 시간별로 420 nm 대에서 흡광도가 증가하는 것으로 보아 합성된 은 나노입자의 농도가 점점 짙어져 많은 개수의 나노입자가 합성되는 것을 확인할 수 있다.
In addition, in the UV-Vis spectrum, the silver nanoparticles can be confirmed at the wavelength range of 400-420 nm, and the absorbance at the 420 nm band increases with time. As a result, the concentration of the silver nanoparticles synthesized becomes thicker and a large number of nanoparticles It can be confirmed that it is synthesized.

Claims (7)

하기 [화학식 1] 내지 [화학식 4]으로 표시되는 것을 특징으로 하는 은 나노입자 제조용 화합물:
Figure pat00003

상기 [화학식 1] 내지 [화학식 4]에서, n은 1 내지 18의 정수이다.
A silver nanoparticle preparation compound represented by the following Chemical Formulas 1 to 4:
Figure pat00003

In the above Chemical Formulas 1 to 4, n is an integer of 1 to 18.
제1항에 따른 상기 [화학식 1] 내지 [화학식 4]으로 표시되는 것을 특징으로 하는 은 나노입자 제조용 화합물과 은 염을 혼합하여 반응시키는 단계를 포함하는 은 나노입자의 제조방법.
A method for producing silver nanoparticles, which comprises mixing a silver salt with a silver nanoparticle-forming compound represented by any one of the above Chemical Formulas 1 to 4 according to Claim 1 and reacting the silver nanoparticles.
제2항에 있어서,
상기 은 염은 AgBrO3, Ag2CO3, AgClO3, Ag2CrO4, AgOCN, AgCN, C6H11(CH2)3CO2Ag, AgF, AgF2, CF3CF2CF2CO2Ag, AgSbF6, AgAsF6, AgPF6, AgNO3, AgNO2, AgHF2, CH3CH(OH)COOAg, AgVO3, Ag2MoO4, C2F5CO2Ag, AgClO4, AgReO4, Ag3PO4, C10H9AgN4O2S, Ag2SO4, Ag2SO3, AgBF4, AgSCN, AgO2CCH2C(OH)(CO2Ag)CH2CO2AgㆍxH2O 및 CH3C6H4SO3Ag 중에서 선택되는 1종 이상인 것을 특징으로 하는 은 나노입자의 제조방법.
3. The method of claim 2,
The silver salt may be at least one selected from AgBrO 3 , Ag 2 CO 3 , AgClO 3 , Ag 2 CrO 4 , AgOCN, AgCN, C 6 H 11 (CH 2 ) 3 CO 2 Ag, AgF, AgF 2 , CF 3 CF 2 CF 2 CO 2 Ag, AgSbF 6, AgAsF 6, AgPF 6, AgNO 3, AgNO 2, AgHF 2, CH 3 CH (OH) COOAg, AgVO 3, Ag 2 MoO 4, C 2 F 5 CO 2 Ag, AgClO 4, AgReO 4, Ag 3 PO 4, C 10 H 9 AgN 4 O 2 S, Ag 2 SO 4, Ag 2 SO 3, AgBF 4, AgSCN, AgO 2 CCH 2 C (OH) (CO 2 Ag) CH 2 CO 2 Ag and xH 2 O and CH 3 C 6 H 4 SO 3 Ag.
제2항에 있어서,
상기 은 염은 상기 은 나노입자 제조용 화합물에 대하여 0.01-10 mol/L의 농도로 혼합되는 것을 특징으로 하는 은 나노입자의 제조방법.
3. The method of claim 2,
Wherein the silver salt is mixed at a concentration of 0.01-10 mol / L with respect to the compound for preparing silver nanoparticles.
제2항에 있어서,
상기 은 나노입자 제조용 화합물과 은 염의 혼합 반응 온도는 20-80 ℃인이고, 반응 시간은 0.5-10 분인 것을 특징으로 하는 은 나노입자의 제조방법.
3. The method of claim 2,
Wherein the mixing temperature of the compound for preparing silver nanoparticles and the silver salt is 20-80 ° C, and the reaction time is 0.5-10 minutes.
제2항에 있어서,
상기 반응시 은 염의 종류, 은 염의 농도, 혼합 반응 온도 및 혼합 반응 시간을 각각 조절하는 단계를 더 포함하고,
상기 단계에 의해서 은 나노입자의 형상 및 크기를 조절하는 것을 특징으로 하는 은나노입자의 제조방법.
3. The method of claim 2,
The method of claim 1, further comprising the step of controlling the type of the salt, the concentration of the silver salt, the mixing reaction temperature,
Wherein the shape and size of the silver nanoparticles are controlled by the above step.
제2항 내지 제5항 중 어느 한 항에 따른 제조방법에 의해 제조된 은나노입자.
A silver nanoparticle produced by the manufacturing method according to any one of claims 2 to 5.
KR1020130125973A 2013-10-22 2013-10-22 Composition for silver nano particle preparation and silver nano particle preparation method using the same KR101656551B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020130125973A KR101656551B1 (en) 2013-10-22 2013-10-22 Composition for silver nano particle preparation and silver nano particle preparation method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130125973A KR101656551B1 (en) 2013-10-22 2013-10-22 Composition for silver nano particle preparation and silver nano particle preparation method using the same

Publications (2)

Publication Number Publication Date
KR20150046570A true KR20150046570A (en) 2015-04-30
KR101656551B1 KR101656551B1 (en) 2016-09-09

Family

ID=53037900

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130125973A KR101656551B1 (en) 2013-10-22 2013-10-22 Composition for silver nano particle preparation and silver nano particle preparation method using the same

Country Status (1)

Country Link
KR (1) KR101656551B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106984348A (en) * 2017-03-30 2017-07-28 常州大学 A kind of preparation method of the silver-colored photochemical catalyst of silver metavanadate compound phosphoric acid
CN106984311A (en) * 2017-03-30 2017-07-28 常州大学 A kind of silver metavanadate is combined the preparation method of the silver-colored photochemical catalyst of wolframic acid

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040039256A (en) 2004-04-20 2004-05-10 오성근 Preparation method of silver-sulfur-silica composite nano-particles for antiseptic, antibiotic, and antifungus function
WO2007084386A1 (en) * 2006-01-17 2007-07-26 3M Innovative Properties Company Photocurable hygroscopic composition and organic el device
JP2011124073A (en) * 2009-12-10 2011-06-23 Toyota Motor Corp Nonaqueous electrolyte, and use thereof
JP2011225974A (en) * 2010-03-31 2011-11-10 Tokyo Printing Ink Mfg Co Ltd Method of manufacturing silver nanoparticle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040039256A (en) 2004-04-20 2004-05-10 오성근 Preparation method of silver-sulfur-silica composite nano-particles for antiseptic, antibiotic, and antifungus function
WO2007084386A1 (en) * 2006-01-17 2007-07-26 3M Innovative Properties Company Photocurable hygroscopic composition and organic el device
JP2011124073A (en) * 2009-12-10 2011-06-23 Toyota Motor Corp Nonaqueous electrolyte, and use thereof
JP2011225974A (en) * 2010-03-31 2011-11-10 Tokyo Printing Ink Mfg Co Ltd Method of manufacturing silver nanoparticle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
N.D.Zelinskii Institute of Organic Chemistry. no.3, pp.605-612 (1976.). *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106984348A (en) * 2017-03-30 2017-07-28 常州大学 A kind of preparation method of the silver-colored photochemical catalyst of silver metavanadate compound phosphoric acid
CN106984311A (en) * 2017-03-30 2017-07-28 常州大学 A kind of silver metavanadate is combined the preparation method of the silver-colored photochemical catalyst of wolframic acid

Also Published As

Publication number Publication date
KR101656551B1 (en) 2016-09-09

Similar Documents

Publication Publication Date Title
ES2967195T3 (en) Nanoreactors for the synthesis of porous crystalline materials
Nunes et al. Ultraporous films with uniform nanochannels by block copolymer micelles assembly
KR101305052B1 (en) PREPRERATION METHOD OF ZnO NANORING USING SELF-ASSEMBLY OF DIBLOCK COPOLYMER AND SOL-GEL PROCESS
Ren et al. Polyacrylic acid@ zeolitic imidazolate framework-8 nanoparticles with ultrahigh drug loading capability for pH-sensitive drug release
KR101771264B1 (en) Preparation of shaped metal particles and their uses
KR101526335B1 (en) Method for preparing silver nanoparticles
Ghorbani et al. Biological and non-biological methods for silver nanoparticles synthesis
Elashmawi et al. Quantum confinement effect of CdS nanoparticles dispersed within PVP/PVA nanocomposites
Renna et al. Polymer nanoparticle assemblies: a versatile route to functional mesostructures
Wattanodorn et al. Antibacterial anionic waterborne polyurethanes/Ag nanocomposites with enhanced mechanical properties
Jiang et al. Large-scaled, uniform, monodispersed ZnO colloidal microspheres
Yang et al. A detour strategy for colloidally stable block-copolymer grafted MAPbBr 3 quantum dots in water with long photoluminescence lifetime
CN105268991A (en) Method for preparing high-concentration nano silver monomer dispersion liquid
Kowsari et al. Ultrasound and ionic-liquid-assisted synthesis and characterization of polyaniline/Y2O3 nanocomposite with controlled conductivity
EP1969046A2 (en) Stabilization of polymers with zinc oxide nanoparticles
Sun et al. A green method for synthesis of silver nanodendrites
Haldorai et al. Synthesis of polyaniline/Q-CdSe composite via ultrasonically assisted dynamic inverse emulsion polymerization
Kundu et al. Shape-selective synthesis of non-micellar cobalt oxide (CoO) nanomaterials by microwave irradiations
Schacher et al. Responsive Vesicles from the Self‐Assembly of Crystalline‐Coil Polyferrocenylsilane‐block‐Poly (ethylene Oxide) Star‐Block Copolymers
KR101656551B1 (en) Composition for silver nano particle preparation and silver nano particle preparation method using the same
KR20110113877A (en) Process for large-scale production of uniform silver nanoparticle
Bashiri et al. Nanopowders of 3D AgI coordination polymer: A new precursor for preparation of silver nanoparticles
Mejia-Ariza et al. Size-controlled and redox-responsive supramolecular nanoparticles
KR20200047352A (en) Nanoparticle comprising modulated zeolitic imidazolate framework and method of preparing the same
Wang et al. Uniform Fe 3 O 4–PANi/PS composite spheres with conductive and magnetic properties and their hollow spheres

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
GRNT Written decision to grant