KR20040039256A - Preparation method of silver-sulfur-silica composite nano-particles for antiseptic, antibiotic, and antifungus function - Google Patents

Preparation method of silver-sulfur-silica composite nano-particles for antiseptic, antibiotic, and antifungus function Download PDF

Info

Publication number
KR20040039256A
KR20040039256A KR1020040027297A KR20040027297A KR20040039256A KR 20040039256 A KR20040039256 A KR 20040039256A KR 1020040027297 A KR1020040027297 A KR 1020040027297A KR 20040027297 A KR20040027297 A KR 20040027297A KR 20040039256 A KR20040039256 A KR 20040039256A
Authority
KR
South Korea
Prior art keywords
silver
sulfur
particles
silica
nanoparticles
Prior art date
Application number
KR1020040027297A
Other languages
Korean (ko)
Inventor
오성근
김대욱
오철
Original Assignee
오성근
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 오성근 filed Critical 오성근
Priority to KR1020040027297A priority Critical patent/KR20040039256A/en
Publication of KR20040039256A publication Critical patent/KR20040039256A/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/02Sulfur; Selenium; Tellurium; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/16Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
    • A61L2/23Solid substances, e.g. granules, powders, blocks, tablets
    • A61L2/238Metals or alloys, e.g. oligodynamic metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/02Preparation of sulfur; Purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G5/00Compounds of silver
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Agronomy & Crop Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

PURPOSE: An immobilization method of silver nano particles on silica nano particles using sulfur constituent is provided to fabricate a white silver/sulfur/silica nano composite having superior antibacterial and anti-mold functions. CONSTITUTION: A white or soft yellow nano composite is characterized in that it is fabricated by bonding silica nano particles of 100 nm or less and silver nano particles of 10 nm or less to each other using a functional additive containing sulfur having antibacterial property. The fabrication method comprises the steps of bonding silver ions to sulfur constituent; reducing the silver ions bonded to sulfur using a reducing agent so that the reduced silver ion bonded sulfur is formed into particles; and bonding the silver/sulfur particles to silica nano particles to form the silver/sulfur/silica nano composite, wherein the nano composite is cleaned, precipitated and recovered using ethanol and organic solvent.

Description

항균, 항곰팡이 기능을 갖는 은-황-실리카 복합 나노 입자의 제조 방법 {Preparation method of silver-sulfur-silica composite nano-particles for antiseptic, antibiotic, and antifungus function}Preparation method of silver-sulfur-silica composite nano-particles for antiseptic, antibiotic, and antifungus function

본 발명은 항균기능을 갖는 은-황-실리카 복합 나노입자의 제조 방법에 관한 것으로 항균 기능이 없는 하얀색의 지지체인 실리카 입자에 나노 사이즈의 은 입자를 황 성분을 이용하여 결합시키는 방법에 관한 것이다.The present invention relates to a method for producing silver-sulfur-silica composite nanoparticles having an antibacterial function, and to a method of bonding nanoparticles of silver particles to a silica support, which is a white support having no antibacterial function, using a sulfur component.

최근에 고순도 은을 나노입자로 만들기 위한 공정과 항균성 제품을 만드는 방법에 관련된 종래의 기술들은 다음과 같다.Recently, conventional techniques related to a process for making high purity silver into nanoparticles and a method for making an antimicrobial product are as follows.

대한민국 특허공보 제 2000-0018196호는 계면활성제를 이용하여 용액 내에서 나노미터 크기의 복합 금속입자를 제조하는 방법을 개시하고 있다. 금, 은, 철, 백금, 아연 등의 염 화합물 중 2종 이상을 용해시킨 복합 금속 이온 용액에 하이드라진, NaBH4등과 같은 환원제를 한 종 또는 2종 이상 넣어 복합 금속 입자로 환원시킨다. 이 과정에서 탄화수소계 또는 실리콘계, 플루오르카본계 등의 계면 활성제 첨가하여 복합 금속입자의 성장을 막아 입자를 나노미터 크기로 유지한다.Korean Patent Publication No. 2000-0018196 discloses a method for producing nanometer-sized composite metal particles in solution using a surfactant. One or two or more reducing agents such as hydrazine and NaBH 4 are added to the composite metal ion solution in which two or more kinds of salt compounds such as gold, silver, iron, platinum, and zinc are dissolved to reduce the composite metal particles. In this process, surfactants such as hydrocarbons, silicones, and fluorocarbons are added to prevent growth of the composite metal particles, thereby maintaining the particles in nanometer size.

대한민국 공개특허공보 제 2001-0069644호는 은 콜로이드를 이용하여 고농도의 은이 함유된 항균성 비누를 제조하는 방법을 개시하고 있다. 즉, 기존의 은비누가 지닌 고비용, 대량생산의 한계 등의 단점을 해결하여 저비용 항균 은 비누 제조 방법을 개시하는 것이다. 여기서 사용하는 은 콜로이드는 은염 용액 상태에서 환원제와 계면활성제를 이용하여 제조한 50,000ppm 이상의 고농도 은을 함유하고 있다.Korean Laid-Open Patent Publication No. 2001-0069644 discloses a method for producing an antimicrobial soap containing a high concentration of silver using a silver colloid. That is, the low-cost antibacterial silver soap manufacturing method to solve the disadvantages such as the high cost, the limitation of mass production of the existing silver soap. The silver colloid used here contains a high concentration of silver of 50,000 ppm or more produced using a reducing agent and a surfactant in a silver salt solution state.

대한민국 공개특허공보 제 2001-0044617호는 항균제 및 식품포장지의 제조방법을 개시하고 있다. 이 제조법에서는 은과 산화 제1석의 혼합 분말에 질산과 염산의 혼합 산 용액을 서서히 투입하여 가열, 교반하여 은을 용해시키고, 여기에 가성소다 용액을 투입하여 pH 7.5의 은 콜로이드 용액을 제조하고, 황토 및 세라믹 지장수에 황산 제1석을 투입 용해한 후, 상기 제조한 은 콜로이드 용액과 교반하여 식품무기항균제를 만든다. 상기에서 제조한 무기항균제를 황토와 세라믹 지장수 혼합용액에 희석하여 식품포장지를 침지하고 건조하여 항균 식품포장지를 만든다.Korean Laid-Open Patent Publication No. 2001-0044617 discloses a method for producing an antimicrobial agent and food packaging paper. In this manufacturing method, a mixed acid solution of nitric acid and hydrochloric acid is gradually added to a mixed powder of silver and first oxide, heated and stirred to dissolve silver, and a caustic soda solution is added thereto to prepare a silver colloidal solution having a pH of 7.5, After dissolving first stone of sulfuric acid in yellow clay and ceramic jijangsu, and then stirring with the prepared silver colloidal solution to prepare a food inorganic antibacterial agent. The antimicrobial agent prepared above is diluted in a mixed solution of ocher and ceramic jijangsu to immerse and dry the food wrapping paper to make an antimicrobial food wrapping paper.

고순도의 은은 대부분의 박테리아에 대해서 항균성을 지닌다 하지만, 일부 박테리아와 곰팡이류는 은의 항균성에 대한 저항성을 가지고 있다. 황 성분은 이런 박테리아와 곰팡이류에 대해서도 항균성을 지니는 것으로 알려져 있다. 또한, 은나노입자가 노란색에서 검은색까지 다양한 색깔을 갖는 반면에 실리카 입자는 하얀색을 띠기 때문에, 은 나노입자와 실리카 나노입자를 결합시키면 은 나노입자의 색깔을 갖는 복합 나노입자가 형성된다. 따라서 제품의 색깔을 중시하는 제품의 경우에는 이런 색깔을 띤 은 복합 나노재료를 사용하는데 제한이 되고 있다.High purity silver is antibacterial to most bacteria, but some bacteria and fungi are resistant to silver. Sulfur is known to be antimicrobial against these bacteria and fungi. In addition, since the silver nanoparticles have a variety of colors from yellow to black, while the silica particles have a white color, when the silver nanoparticles and the silica nanoparticles are combined, composite nanoparticles having the color of the silver nanoparticles are formed. Therefore, in the case of products that focus on the color of the product, there is a limit to using such a composite silver nanomaterial.

본 발명에서는 박테리아와 곰팡이류에 대한 항균 성분으로서 잘 알려진 은과 황 성분을 함께 가지고 있는 은-황-실리카 복합 나노입자의 제조 방법을 제시하고, 은 나노입자를 함유하고 있는 실리카 복합재료입자가 실리카 입자의 본래 색인 하얀색을 유지하게 하도록 하는 방법을 제시하는데 있다.The present invention provides a method for producing silver-sulfur-silica composite nanoparticles having a well-known silver and sulfur component as an antibacterial component against bacteria and fungi, wherein the silica composite particles containing silver nanoparticles are silica particles. This is to suggest a way to keep the original index of white.

또한 본 발명의 다른 목적은, 은과 황 성분을 함께 가지고 있는 실리카 나노복합재료입자를 대량으로 생산하고 제공하는데 있다.Another object of the present invention is to produce and provide a large amount of silica nanocomposite particles having a silver and a sulfur component together.

도 1은 콜로이드 실리카 입자에 은 나노입자가 결합된 상태의 TEM 사진1 is a TEM photograph of silver nanoparticles bonded to colloidal silica particles

도 2는 은 나노입자가 결합된 실리카 입자의 SEM 사진Figure 2 is a SEM photograph of the silica particles combined with silver nanoparticles

1: NaBH4로 환원시킨 은-황-실리카 나노입자1: Silver-Sulfur-Silica Nanoparticles Reduced with NaBH 4

2: Ascorbic Acid로 환원시킨 은-황-실리카 나노입자2: Silver-Sulfur-Silica Nanoparticles Reduced with Ascorbic Acid

도 3은 은-황-실리카 나노입자의 EDS 성분 분석 자료Figure 3 is the EDS component analysis data of silver-sulfur-silica nanoparticles

(은 1.55중량%와 황 0.10중량%를 가진 나노입자)(Nanoparticle with 1.55% silver and 0.10% sulfur)

도 4는 은-황-실리카 나노입자의 EDS 성분 분석 자료Figure 4 is the EDS component analysis data of silver-sulfur-silica nanoparticles

1: 은 0.87중량%1: 0.87 wt% silver

2: 황 0.35중량%2: sulfur 0.35% by weight

이하, 본 발명을 좀 더 구체적으로 설명하면 다음과 같다. 30-40 nm 크기의 실리카 나노 입자의 표면에 황 성분을 포함하고 있는 기능성 첨가제인(3-Mercaptopropyl) trimethoxysilane을 이용하여 은 이온을 결합시키고 NaBH4, Ascorbic Acid 등을 이용해서 은 이온을 은 입자로 환원시킨다.Hereinafter, the present invention will be described in more detail. Silver ions are bonded to the surface of 30-40 nm silica nanoparticles by using sulfur-containing functional additive (3-Mercaptopropyl) trimethoxysilane and reduced silver ions to silver particles using NaBH4, Ascorbic Acid, etc. Let's do it.

본 발명에서는 항균성 실리카-황-은 복합 나노입자를 제조하기 위해서 수상합성방법을 사용하였다. 수상합성 방법은 기상합성 방법에 비해서 저온인 30℃∼40℃에서 합성이 가능하기 때문에 실리카 콜로이드가 안정한 상태에서 합성 과정을 진행할 수 있다. 또한, 합성에는 실리카 함량이 50중량%인 실리카 콜로이드가 사용되었는데, 실리카 함량이 큰 콜로이드를 사용하는 것을 통해서 복합 나노입자의 대량생산이 가능하게 하였다.In the present invention, a water phase synthesis method was used to prepare the antimicrobial silica-sulfur-silver composite nanoparticles. Since the water phase synthesis method can be synthesized at a low temperature of 30 ℃ ~ 40 ℃ compared to the gas phase synthesis method, the synthesis process can be carried out in a stable state of silica colloid. In addition, a silica colloid having a silica content of 50% by weight was used in the synthesis, and mass production of the composite nanoparticles was enabled by using a colloid having a high silica content.

본 발명에서는 복합 나노입자의 합성을 위해서 pH 10-11 정도의 염기성 실리카 콜로이드 수용액을 사용하였다. 이는 염기성 실리카 콜로이드의 pH가 8이하인 중성 영역이 되면 그 안정성이 크게 떨어지고, pH가 12 이상일 경우에는 실리카 입자가 분해되어 실리케이트 이온이 되기 때문이다. 또한, 기능성 첨가제로 사용한 (3-Mercaptopropyl)trimethoxysilane이 염기성에서 수화되어 실리카 입자의 표면에 결합되어 은의 결합을 위한 연결 고리 역할을 하게 되기 때문이다.In the present invention, a basic silica colloid aqueous solution having a pH of about 10-11 was used for the synthesis of the composite nanoparticles. This is because, when the pH of the basic silica colloid reaches a neutral region of 8 or less, its stability is greatly reduced, and when the pH is 12 or more, the silica particles decompose and become silicate ions. In addition, (3-Mercaptopropyl) trimethoxysilane used as a functional additive is hydrated in the basic to be bonded to the surface of the silica particles to act as a link for the bonding of silver.

본 발명에서 회수된 복합 나노입자의 크기는 30-40 nm로 매우 작다. 기존의 원심 분리를 통한 회수 방법으로는 회수율이 매우 낮게 되어 많은 양의 복합 나노입자가 손실되게 된다. 따라서 본 발명에서는 에탄올을 이용한 복합 나노입자의 침전을 통해서 회수율 85%까지 크게 높였다. 또한, 에탄올이 입자간의 응집력을 약화시켜서 회수 후 분쇄 과정을 원활하게 하도록 하는 역할을 하였다.The size of the composite nanoparticles recovered in the present invention is very small, 30-40 nm. In the conventional centrifugation method, the recovery rate is very low, and a large amount of the composite nanoparticles is lost. Therefore, in the present invention, the recovery rate was greatly increased to 85% through precipitation of the composite nanoparticles using ethanol. In addition, ethanol weakened the cohesion between particles to play a role in smoothing the grinding process after recovery.

본 발명에서 회수된 복합 나노입자는 환원제를 이용한 환원 과정을 거치면서 짙은 보라색을 띠고 있다. 또한, 환원된 은 입자가 실리카 입자에 강하게 결합되어 있어서 반응기의 벽면에 흡착되어 코팅되는 부반응이 일어나지 않는다. 일반적인은 입자의 환원 및 형성 과정에서처럼 은 입자 때문에 생기는 복합 나노입자의 짙은 보라색은 건조 과정 전까지 유지된다. 하지만, 80℃에서의 건조과정 후에 은-황-실리카의 결합 특성 때문에 복합 나노입자의 색깔은 하얀색으로 변화된다.The composite nanoparticles recovered in the present invention are dark purple while undergoing a reduction process using a reducing agent. In addition, the reduced silver particles are strongly bound to the silica particles, so that no side reaction occurs due to the adsorption and coating on the wall of the reactor. In general, as in the reduction and formation of particles, the dark purple color of the composite nanoparticles due to the silver particles is maintained until the drying process. However, after drying at 80 ° C., the color of the composite nanoparticles changed to white due to the bonding properties of silver-sulfur-silica.

[실시예] EXAMPLES

[실시예1] Example 1

실리카 입자에 은성분 또는 입자와 함께 황 또는 황성분을 첨가하였다. 이때 은 성분 계열 물질의 첨가량은 실리카 입자에 대해서 1.55wt%가 추가되었고 황 계열성분은 실리카 입자에 대해서 0.10%가 첨가되었다.Sulfur or a sulfur component was added to the silica particles together with the silver component or the particles. In this case, 1.55 wt% of the silver component-based material was added to the silica particles, and 0.10% of the sulfur-based material was added to the silica particles.

[실시예2] Example 2

실리카 입자에 은성분 또는 입자와 함께 황 또는 황성분을 첨가하였다. 이때 은 성분 계열 물질의 첨가량은 실리카 입자에 대해서 1.08wt%가 추가되었고 황 계열성분은 실리카 입자에 대해서 0.50%가 첨가되었다. 은 입자의 환원을 위해서 환원제로는 NaBH4가 사용되었다.Sulfur or a sulfur component was added to the silica particles together with the silver component or the particles. At this time, 1.08 wt% of the silver component-based material was added to the silica particles, and 0.50% of the sulfur-based material was added to the silica particles. NaBH 4 was used as a reducing agent for the reduction of silver particles.

[실시예3] Example 3

실리카 입자에 은성분 또는 입자와 함께 황 또는 황성분을 첨가하였다. 이때 은 성분 계열 물질의 첨가량은 실리카 입자에 대해서 0.55wt%가 추가되었고 황 계열성분은 실리카 입자에 대해서 0.25%가 첨가되었다. 은 입자의 환원을 위해서 환원제로는 NaBH4가 사용되었다.Sulfur or a sulfur component was added to the silica particles together with the silver component or the particles. In this case, 0.55 wt% of the silver component-based material was added to the silica particles and 0.25% of the sulfur-based material was added to the silica particles. NaBH 4 was used as a reducing agent for the reduction of silver particles.

[실시예4] Example 4

실리카 입자에 은성분 또는 입자와 함께 황 또는 황성분을 첨가하였다. 이때 은성분 계열 물질의 첨가량은 실리카 입자에 대해서 0.55wt%가 추가되었고 황 계열성분은 실리카 입자에 대해서 0.25%가 첨가되었다. 은 입자의 환원을 위해서 환원제로는 Ascorbic Acid가 사용되었다.Sulfur or a sulfur component was added to the silica particles together with the silver component or the particles. In this case, the amount of the silver-based material added was 0.55 wt% based on the silica particles, and the sulfur-based material added 0.25% to the silica particles. Ascorbic Acid was used as a reducing agent for the reduction of silver particles.

실리카 나노입자에 항균성을 지닌 은 나노입자와 황 성분을 결합시켜서 박테리아 및 곰팡이류의 증식을 억제시킬 수 있는 복합 나노입자를 제조하였다. 또한, 대량 생산이 가능하고, 입자간 응집력을 약화시켜서 개개의 입자로 분쇄하기에 용이하도록 만들었기 때문에 산업적으로 사용하는 것이 가능하게 되었다. 기존의 은 입자들과는 달리 실리카 나노입자와의 결합을 통해서 복합 나노입자의 색깔이 하얀색을 띠기 때문에 색깔을 중시하는 페인트, 실란트, 플라스틱 제품 등에 사용하기에 적합하다.By combining the silver nanoparticles and sulfur components with antimicrobial activity to the silica nanoparticles were prepared composite nanoparticles that can inhibit the growth of bacteria and fungi. In addition, since mass production is possible and the cohesion force between particles is weakened to make it easy to grind into individual particles, it is possible to use industrially. Unlike the existing silver particles, the color of the composite nanoparticles is white through the combination with the silica nanoparticles, so it is suitable for use in paints, sealants and plastic products that focus on color.

Claims (3)

항균성을 목적으로 황을 포함하고 있는 기능성 첨가제를 이용하여 100nm 이하의 실리카 나노입자와 10nm 이하의 은 나노입자를 결합시켜 만든 하얀색 또는 연한 노란색의 나노복합재료White or light yellow nanocomposites made by combining silica nanoparticles of less than 100nm and silver nanoparticles of less than 10nm using functional additives containing sulfur for the purpose of antibacterial activity. 청구항 1에서 은 나노입자를 결합시킴에 있어서 은을 이온상태로 황 성분에 결합시킨 후 환원제를 이용하여 환원시켜 입자화하고 실리카 나노입자에 결합시키는 방법In claim 1, in the bonding of silver nanoparticles, the silver is bound to the sulfur component in an ionic state, and then reduced by using a reducing agent to granulate and bind to the silica nanoparticles. 청구항 1에서 에탄올 및 유기용매를 이용하여 복합 나노 입자를 세척, 침전, 회수하는 방법Method for washing, precipitation and recovery of composite nanoparticles using ethanol and organic solvent in claim 1
KR1020040027297A 2004-04-20 2004-04-20 Preparation method of silver-sulfur-silica composite nano-particles for antiseptic, antibiotic, and antifungus function KR20040039256A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020040027297A KR20040039256A (en) 2004-04-20 2004-04-20 Preparation method of silver-sulfur-silica composite nano-particles for antiseptic, antibiotic, and antifungus function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040027297A KR20040039256A (en) 2004-04-20 2004-04-20 Preparation method of silver-sulfur-silica composite nano-particles for antiseptic, antibiotic, and antifungus function

Publications (1)

Publication Number Publication Date
KR20040039256A true KR20040039256A (en) 2004-05-10

Family

ID=37337050

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040027297A KR20040039256A (en) 2004-04-20 2004-04-20 Preparation method of silver-sulfur-silica composite nano-particles for antiseptic, antibiotic, and antifungus function

Country Status (1)

Country Link
KR (1) KR20040039256A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100916360B1 (en) * 2007-08-21 2009-09-11 주식회사 비아이티범우연구소 Colloidal solution of silver-sulfur-silica nano complex, water-soluble composition for processing metal including the nano complex and manufacturing methods therefor
US7893104B2 (en) 2007-03-01 2011-02-22 Jong-Min Lee Process for synthesizing silver-silica particles and applications
KR20150046570A (en) 2013-10-22 2015-04-30 한양대학교 산학협력단 Composition for silver nano particle preparation and silver nano particle preparation method using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7893104B2 (en) 2007-03-01 2011-02-22 Jong-Min Lee Process for synthesizing silver-silica particles and applications
KR100916360B1 (en) * 2007-08-21 2009-09-11 주식회사 비아이티범우연구소 Colloidal solution of silver-sulfur-silica nano complex, water-soluble composition for processing metal including the nano complex and manufacturing methods therefor
KR20150046570A (en) 2013-10-22 2015-04-30 한양대학교 산학협력단 Composition for silver nano particle preparation and silver nano particle preparation method using the same

Similar Documents

Publication Publication Date Title
Yu et al. Modulation of Bi2MoO6‐based materials for photocatalytic water splitting and environmental application: a critical review
KR20100105845A (en) Method for preparing dispersions of precious metal nanoparticles and for isolating such nanoparticles from said dispersions
KR20090064576A (en) Low temperature process for producing nano-sized titanium dioxide particles
CN101559952A (en) Method for preparing nanoscale mesoporous silica spheres
NZ537747A (en) Nano-structured silicate, functionalised forms thereof, preparation and uses
Liang et al. Mineral-TiO2 composites: Preparation and application in papermaking, paints and plastics
CN103992660B (en) A kind of ZrO 2coated γ-Ce 2s 3the preparation method of red stain
CN101555040A (en) Preparation method of manganese sulfide nano material
CN109110795B (en) Copper-based nano/micron composite particles and preparation method and application thereof
Afzaal et al. Zwitterionic surfactant assisted synthesis of Fe doped SnO2-SiO2 nanocomposite with enhanced photocatalytic activity under sun light
CN103381486A (en) Method for preparing surface modified Cu@SiO2 nano particles adopting shell structures
JP4077495B1 (en) Method for producing titanium oxide particle dispersion
JPH0811693B2 (en) Titania sol and method for producing the same
KR20040105245A (en) Preparation of nanosized copper(i) compounds
KR20040039256A (en) Preparation method of silver-sulfur-silica composite nano-particles for antiseptic, antibiotic, and antifungus function
CN1876698A (en) Production method of rubber sulfuration accelerator dibenzothiazole disulfide
Wang et al. A microemulsion-based preparation of tin/tin oxide core/shell nanoparticles with particle size control
EP3010857A1 (en) Method for preparing a composition comprising functionalised silico/germano-metal particles and composition obtained
KR100629112B1 (en) Manufacturing method of silver superfine nanoparticles
JP2009114030A (en) Binder for photocatalyst coating agent and its manufacturing method, photocatalyst coating agent and its manufacturing method
CA3032285A1 (en) Co-deposition products, composite materials and processes for the production thereof
JP4217035B2 (en) Method for producing inorganic or metal fine particle-calcium carbonate composite particle, method for producing composite composition containing the composite particle, and method for producing composite
Mai et al. High catalytic performance of raspberry-like gold nanoparticles and enhancement of stability by silica coating
TWI403358B (en) Method for dispersing metallic nanoparticle and composite thereof
AU2011384233A1 (en) Processes for the preparation of stannic oxide

Legal Events

Date Code Title Description
A201 Request for examination
AMND Amendment
E902 Notification of reason for refusal
E601 Decision to refuse application
J201 Request for trial against refusal decision
AMND Amendment
E801 Decision on dismissal of amendment
B601 Maintenance of original decision after re-examination before a trial
J301 Trial decision

Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20060331

Effective date: 20061130