KR20150042936A - Mannosylphosphorylation Reaction Using YlMpo1 Protein - Google Patents

Mannosylphosphorylation Reaction Using YlMpo1 Protein Download PDF

Info

Publication number
KR20150042936A
KR20150042936A KR1020130121746A KR20130121746A KR20150042936A KR 20150042936 A KR20150042936 A KR 20150042936A KR 1020130121746 A KR1020130121746 A KR 1020130121746A KR 20130121746 A KR20130121746 A KR 20130121746A KR 20150042936 A KR20150042936 A KR 20150042936A
Authority
KR
South Korea
Prior art keywords
mannose
ylmpo1
glu
phosphate
lys
Prior art date
Application number
KR1020130121746A
Other languages
Korean (ko)
Other versions
KR101638930B1 (en
Inventor
오두병
강지연
길진영
권오석
Original Assignee
한국생명공학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생명공학연구원 filed Critical 한국생명공학연구원
Priority to KR1020130121746A priority Critical patent/KR101638930B1/en
Publication of KR20150042936A publication Critical patent/KR20150042936A/en
Application granted granted Critical
Publication of KR101638930B1 publication Critical patent/KR101638930B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/05Inorganic components
    • C12N2500/10Metals; Metal chelators
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/60Buffer, e.g. pH regulation, osmotic pressure

Abstract

The present invention relates to a mannose phosphorylation using YlMpo1 protein and, more specifically, a method for adding mannose-6-phophate to a sugar chain using recombinant microorganisms having a capacity for producing YlMpo1 and YlMpo1 and a manufacturing method of sugar protein or useful compounds having sugar chain with attached mannose-6-phophate by using the method wherein the method for adding mannose-6-phophate to the sugar chain is allowed to efficiently add mannose phosphate to the sugar protein used as an enzyme treatment agent in vitro human body and is accordingly used for manufacturing various enzyme treatment agents in an yeast whose biosynthetic paths of an animal cell or a sugar chain are redesigned compared with that of directly manufacturing an yeast treatment agent with attached mannose-6-phophate sugar chain, thereby being used for delivering useful materials to cytoplasm or nucleus except for lysosome by combining sugar proteins, peptides for escaping the mannose-6-phophate sugar chain from the inside, lipid or nanomaterials.

Description

YlMpo1 단백질을 이용한 만노스인산화 반응{Mannosylphosphorylation Reaction Using YlMpo1 Protein}Mannosylphosphorylation Reaction Using YlMpo1 Protein}

본 발명은 YlMpo1 단백질을 이용한 만노스 인산화 반응에 관한 것으로, 더욱 자세하게는 YlMpo1 생산능을 가지는 재조합 미생물 및 YlMpo1을 이용하여 당사슬에 만노스-6-인산을 부가시키는 방법, 상기 방법을 이용한 만노스-6-인산이 부가된 당사슬이 부착된 당단백질 또는 유용화합물을 제조하는 방법에 관한 것이다.
The present invention relates to a mannose phosphorylation reaction using YlMpo1 protein, more specifically, a method for adding mannose-6-phosphate to a sugar chain using a recombinant microorganism having YlMpo1 production ability and YlMpo1, a method for producing mannose- To a method for producing a glycoprotein or a useful compound to which the added sugar chain is attached.

당질화를 통해서 당사슬이 부가되는 당단백질들은 현재 전세계 재조합 단백질 의약품 시장의 60% 이상을 차지하며 시장을 주도하고 있다. 특히, 당사슬은 당단백질 의약품의 치료 효능, 체내 지속성, 타겟팅 및 면역반응 등에서 중요한 역할을 하기에 의약품의 품질을 결정하는 주요 인자로 부각되고 있다. 당사슬이 부가되는 반응은 크게 N-결합 또는 O-결합 당질화(N-linked or O-linked glycosylation)의 두 가지 형태가 있으며, 이 중 N-결합 당질화를 통해서 부가되는 당사슬을 N-당사슬(N-glycan)이라 부르며 소포체에서 시작된다. 먼저 소포체 막에 존재하는 돌리콜 피로인산(dolichol pyrophosphate, PP-Dol)에 연결된 형태의 당사슬인 Glc3Man9GlcNAc2-PP-Dol을 형성한다. 그리고 올리고당 전이효소(oligosaccharyltransferase)가 이를 co-translational translocation 기작으로 리보좀에서 소포체로 번역되어 나오는 단백질 중에서 N-X-S/T 서열의 N-당질화 시퀀 (sequon)에 전달한다. 소포체 안에 존재하는 당단백질 폴딩의 품질 제어를 담당하는 기작의 글루코시다아제(glucosidase)와 만노시다제(mannosidase)에 의해서 말단에 존재하는 포도당과 특정 만노스(mannose)가 제거되어 Man8GlcNAc2 구조를 갖는 고만노스형(high-mannose type) 당사슬을 부착한 상태로 골지체에 옮겨지게 된다. Glycoproteins, which are glycosylated through glycosylation, are now leading the market, accounting for more than 60% of the global recombinant protein drug market. In particular, oligosaccharides play an important role in the therapeutic efficacy of glycoprotein drugs, persistence in the body, targeting, and immune response, and thus are becoming important factors in determining drug quality. The addition reaction in which sugar chain is largely N - O bond or a - combination glycosylation and two types of (N -linked or O -linked glycosylation) , the of the N - a sugar chain which is added via the binding glycosylation N - oligosaccharide ( N- glycan) and begins in the endoplasmic reticulum. First, Glc 3 Man 9 GlcNAc 2 -PP-Dol, a glycoconjugate in the form linked to dolichol pyrophosphate (PP-Dol) present in the membrane of the endoplasmic reticulum, is formed. Oligosaccharyltransferase then transfers it to the N -glycosylation sequence of the NXS / T sequence among the proteins that are translated into ribosomal to endoplasmic reticulum by a co-translational translocation mechanism. Glucosidase and mannosidase eliminate the glucose and mannose at the end by the mechanisms responsible for the quality control of the glycoprotein folding in the endoplasmic reticulum, resulting in a Man 8 GlcNAc 2 structure (High-mannose type) oligosaccharide having a Golgi apparatus attached to the Golgi apparatus.

상기에서 소개한 소포체에서 이루어지는 N-당사슬의 초기 생합성 과정은 진핵 미생물인 효모에서 고등동물인 포유류에 이르기까지 거의 동일한 과정으로 보존되어 있다. 그러나, 골지체로 넘어간 당사슬은 각 종에 특이적으로 다양한 당사슬 수식 과정을 거치게 되며, 그 결과로 효모, 곤충, 식물 및 동물 등에서 완전히 다른 형태의 당사슬들이 만들어지게 된다. 고등 동물에서는 골지체로 들어온 당단백질의 당사슬들은 만노시다제들에 의해서 Man5GlcNAc2 형태로 다듬어진다. 그리고 여기에 N-acetylglucosaminyltransferase (GNT) I이 작용해서 GlcNAc이 하나 부가된 후, 만노시다제 II가 작용해서 반대편 가지에 부가되어 있던 만노스 2개를 더 제거하여 trimannosyl core (Man3GlcNAc2) 당사슬에 GlcNAc이 하나 부가되어 있는 혼합형 구조가 만들어진다. 이후 만노스가 제거된 가지에 GNT II가 작용해서 GlcNAc이 하나 더 부가되면서 두 개의 안테나 구조를 갖는 당사슬이 생성된다. 이후에 GNT IV와 V 등이 작용해서 네 개의 안테나 구조가 만들어지기도 하며, 일부에서는 GNT VI, IX 또는 VB 등이 작용해서 6개의 안테나 구조까지 만들어지는 경우도 있다. GlcNAc이 부가되어 안테나의 골격이 만들어진 후에 골지체에 존재하는 β-galactosyltransferase와 α-sialyltrasnferase 등이 작용해서 GlcNAc 위에 갈락토즈와 시알산이 부가된 복합형(complex type) 당사슬 구조가 만들어진다. The initial biosynthetic process of the N - glycoprotein in the above - described ER is preserved in almost the same process from the eukaryotic microorganism yeast to the mammal, the higher animal. However, the oligosaccharide transferred to the Golgi is subjected to a variety of oligosaccharide modification processes specifically for each species, and as a result, completely different types of oligosaccharides are produced in yeast, insects, plants and animals. In higher animals, oligosaccharides of the glycoprotein that enter the Golgi are polished to the Man 5 GlcNAc 2 form by mannosidase. After N- acetylglucosaminyltransferase (GNT) I was added, GlcNAc was added, Mannocidase II was added to remove 2 mannos added to the opposite branch, and trimannosyl core (Man 3 GlcNAc 2 ) A mixed structure in which GlcNAc is added is made. GNT II acts on the branches where mannose has been removed, and GlcNAc is added to produce oligosaccharides with two antenna structures. After that, GNT IV and V works to form four antenna structures. In some cases, GNT VI, IX, or VB works to form six antenna structures. After the addition of GlcNAc, the β-galactosyltransferase and α-sialyltransferase present in the Golgi after action of the antenna make a complex type sugar chain structure in which galactose and sialic acid are added on GlcNAc.

동물세포에서는 많은 당단백질들이 상기에서 설명한 복합형 N-당사슬을 가지고 있으나 당단백질의 종류에 따라서는 소포체에서 넘어온 형태인 고만노스형 당사슬을 가지고 있는 경우들이 있다. 또한, 불필요한 물질들을 분해하여 재활용하도록 하는 소화와 자기 분해 기능을 가진 라이소좀으로 가는 당단백질들은 고만노스형 당사슬에 만노스-6-인산(mannose-6-phosphate)이 부가되기도 한다. 이 경우 골지체에서 N-acetylglucosamine-1-phosphotransferase (GlcNAc-PT)가 라이소좀으로 이동할 당단백질들의 3차 구조를 인식하여 GlcNAc-인산을 당사슬의 만노스 잔기에 부가한다(도 1). 그리고, 여기에 uncovering 효소(N-acetylglucosamine-1-phosphodiester α-N-acetylglucosaminidase)가 작용하여 바깥쪽 GlcNAc 잔기만을 제거하는 2단계 과정으로 만노스-6-인산이 형성된다. 이렇게 형성된 만노스-6-인산을 양이온 의존적 만노스-6-인산 수용체(dependent mannose-6-phosphate receptor, CD-MPR)가 인식하여 이를 내포(endosome)를 거쳐 라이소좀으로 이동시킨다. 그러나, 이때 CD-MPR과 결합하지 못한 당단백질들은 세포 밖으로 분비되게 된다. 이렇게 분비된 당단백질들을 다시 내포 반응(endocytosis)를 통해서 라이소좀으로 이동시키는 “분비-재도입 (secretion-recapture)” 경로가 존재하며 주로 양이온 비의존적 만노스-6-인산 수용체(independent mannose-6-phosphate receptor, CI-MPR)가 그 기능을 한다고 알려져 있다. In animal cells, many glycoproteins have the complex type N - oligosaccharide as described above. However, depending on the type of the glycoprotein, there are cases in which the oligosaccharide type oligosaccharide is introduced from the endoplasmic reticulum. In addition, the glycoproteins that go to lysosomes with digestion and autolysis to digest and recycle unnecessary substances are sometimes added to mannan-6-phosphate in the gonadotropic oligosaccharide. In this case, N- acetylglucosamine-1-phosphotransferase (GIcNAc-PT) recognizes the tertiary structure of glycoproteins migrating to lysosomes in Golgi, and GlcNAc-phosphate is added to the mannose residue of the oligosaccharide (FIG. Then, mannose-6-phosphate is formed in a two-step process in which an uncovering enzyme ( N- acetylglucosamine-1-phosphodiester a- N- acetylglucosaminidase) acts to remove only the outer GlcNAc residue. The mannose-6-phosphate thus formed is recognized by a cation-dependent mannose-6-phosphate receptor (CD-MPR) and is transferred to the lysosome through the endosome. However, at this time, the glycoproteins that do not bind to CD-MPR are secreted out of the cell. There is a " secretion-recapture " pathway in which these secreted glycoproteins are again transferred to lysosomes through endocytosis, and mainly consists of cation-independent mannose-6- phosphate receptor, CI-MPR) is known to function.

라이소좀 저장질환(lysosomal storage disease)은 선천적인 유전자 이상으로 라이소좀에 존재하는 분해효소의 활성이 결핍되어 대사물질이 축적되어 발생하는 질환들이다. 이러한 질환을 선천적으로 갖고 태어난 환자들은 치료를 받지 못하면 대부분 젊은 나이에 죽음을 맞이하게 된다. 현재 거의 유일하게 승인을 받아서 사용되는 치료법은 효소 대체요법(enzyme replacement therapy)으로 정상적인 효소를 외부에서 주입해주는 방법이다. 미국 Genzyme은 1998년에 첫 번째 효소 치료제로서 고셔병 치료를 위한 세레자임(Cerezyme)을 시판한 이래 파브라자임(Fabrazyme), 알두라자임(Aldurazyme) 및 마이오자임(Myozyme) 등을 개발하여 이 분야에서 독보적인 영역을 구축하고 있다. Lysosomal storage disease is a disease caused by accumulation of metabolites due to deficiency of the activity of lysosomal degrading enzyme due to congenital gene abnormality. Patients born with these diseases are most likely to die at a young age if they are not treated. Currently the only approved method of treatment is enzyme replacement therapy, which injects normal enzymes externally. Genzyme of the United States has developed Cerezyme for the treatment of Gaucher disease as the first enzyme treatment in 1998 and has since developed Fabrazyme, Aldurazyme and Myozyme, Which is a unique area.

효소 치료제는 유전적 대사 질환을 가진 소수의 환자들을 대상으로 하고 있음에도 비싼 가격 때문에 전체 규모가 2.5조원이 넘는 큰 시장을 형성하고 있으나, 효소 치료제를 라이소좀으로 타겟팅하기 위해서는 당사슬을 제어하여 원하는 구조로 최적화해야 하는 높은 기술적 장벽을 갖고 있어서 소수의 기업이 전 세계 시장을 독점하는 비정상적인 구조를 보이고 있다. Although the enzyme treatment targets a small number of patients with genetic metabolic diseases, it is a large market with a total size of over 2.5 trillion won due to the high price. However, in order to target the enzyme treatment to lysosome, Due to the high technical barriers that need to be optimized, a few companies are showing an unusual structure that monopolizes the global market.

고셔병 치료제인 세레자임(Cerezyme)은 CHO(Chinese hamster ovary) 세포에서 생산된 인간 글루코세레브로시다아제(glucocerebrosidase)로서 순차적인 엑소글리코시다아제(exoglycosidase) 효소 반응들에 의해서 만노스 잔기를 노출시킨 trimannosyl core 당사슬을 갖는다. 이러한 당사슬을 갖는 글루코세레브로시다아제는 문제가 되는 대식세포의 표면에 존재하는 만노스 수용체를 통해 세포 내로 받아들여진 후에 라이소좀으로 이동된다. 반면에 세레자임(Cerezyme)을 제외한 다른 효소 치료제들은 상기에서 설명한 만노스-6-인산이 부가된 당사슬을 가지고 있어서 만노스-6-인산 수용체를 통해서 세포 내 라이소좀으로 이동한다 (도 1). Cerezyme, a treatment for Gaucher disease, is a human glucocerebrosidase produced in CHO (Chinese hamster ovary) cells, which is produced by sequential exoglycosidase enzymatic reactions and trimannosyl core Oligosaccharide. Glucocerebrosidase with this oligosaccharide is taken into the cell through the mannose receptor present on the surface of the trophoblastic cells in question and then transferred to the lysosome. On the other hand, other enzyme therapeutic agents except cerezyme have the above-described mannose-6-phosphate-added oligosaccharide and migrate to intracellular lysosomes through the mannose-6-phosphate receptor (Fig. 1).

즉, 환자들에게 만노스-6-인산 당사슬을 가진 재조합 효소를 투여하면, 상기에서 설명한 “분비-재도입 경로”의 만노스-6-인산 수용체인 CI-MPR이 이를 인식하고 내포 작용에 의해서 라이소좀으로 이동시켜서 축적된 대사물질을 대신 분해해 주는 것이다. 따라서, 효소 치료제에서는 만노스-6-인산 당사슬이 많이 부가되도록 하는 것이 품질 관리에 있어서 중요하다.That is, when a recombinase having a mannose-6-phosphate oligosaccharide is administered to patients, CI-MPR, which is a mannose-6-phosphate receptor in the above-mentioned "secretory- To metabolize the accumulated metabolites instead. Therefore, it is important in quality control to allow a large amount of mannose-6-phosphate sugar chain to be added in an enzyme therapeutic agent.

효모는 진핵 미생물로서 유전자 조작이 용이하여 다루기 쉽고 저렴한 비용으로 대량의 단백질을 생산할 수 있어서 경제성이 높을 뿐만 아니라, 인간을 감염시키는 바이러스와 프라이온 등에 오염이 될 가능성이 없는 등 안전성 또한 매우 높다는 많은 장점들을 가지고 있다. 그러나, 효모에서 합성된 당사슬 구조는 인간의 것과 매우 상이하여 인체 주입 시 면역 반응을 일으키는 문제점이 있다. 효모는 소포체까지는 고등동물과 동일한 당사슬 생합성 과정을 가지고 있으나, 골지(golgi) 이동한 후에는 만노스가 추가로 부가되는 효모 특이적인 당사슬 수식 경로를 갖는다. 즉, OCH1 유전자 산물에 의해서 소포체에서 넘어온 Man8GlcNAc2 당사슬에 α(1,6)-결합으로 만노스가 부가되는 당사슬 외쇄(glycan outer chain) 개시 반응이 일어나며, 이를 시작으로 α(1,6)-결합 및 α(1,2)-결합으로 만노스가 연속적으로 부가되어 당사슬 외쇄가 합성된다. 전통효모인 사카로미세스 세레비시아(Saccharomyces cerevisiae)의 경우에는 핵심 당사슬에 50-200개의 만노스가 연속적으로 부가되는 과당화 반응이 일어나기도 하며, 인체에서 항원으로 인지될 수 있는 α(1,3)-만노스가 MNN1 유전자 산물에 의해서 부가된다. 또한, 당사슬에 만노스-1-인산이 추가로 부가되는 만노스인산화(mannosylphosphorylation)를 통해서 산성 당사슬이 생성된다는 사실도 알려졌다. MNN6 유전자가 발현하는 효소에 의한 만노스인산화 반응에 의해서 일어나며(Wang et al , J Biol Chem , 272:18117, 1997), 이를 제어하는 단백질을 발현하는 유전자로 MNN4가 제시되었다 (Odani et al ., Glycobiol ., 6:805, 1996; Odani et al ., FEBS Lett ., 420:1860, 1997). Yeast is a eukaryotic microorganism that is easy to manipulate because it is eukaryotic microorganism. It is easy to handle and can produce large amount of proteins at low cost, which not only makes it economical, but also has many advantages such that there is no possibility of contamination with viruses and plasters that infect humans. . However, the oligosaccharide structure synthesized in yeast is very different from that of human, which causes an immune response upon human body injection. The yeast has the same oligosaccharide biosynthetic process as the higher animal to the endoplasmic reticulum but has a yeast-specific oligosaccharide modification pathway in which mannose is further added after golgi migration. That is, a glycan outer chain initiation reaction occurs in which mannose is added to the Man 8 GlcNAc 2 oligosaccharide transferred from the endoplasmic reticulum by the OCH1 gene product through α (1,6) -binding, and α (1,6) -Bonded and? (1,2) -bonded mannose is continuously added to synthesize a sugar chain outer chain. Traditional yeast Saccharomyces ( Saccharomyces) In the case of S. cerevisiae , 50-200 mannose is continuously added to the core sugar chain, and α (1,3) -mannoscemia , which can be recognized as an antigen in the human body, is added by the MNN1 gene product . It has also been found that acidic oligosaccharides are produced by mannosylphosphorylation, in which mannose-1-phosphate is additionally added to the oligosaccharide. It is caused by mannose phosphorylation by an enzyme expressed by MNN6 gene (Wang et < RTI ID = 0.0 > al , J Biol Chem. , 272: 18117, 1997), MNN4 has been proposed as a gene expressing a protein that controls it (Odani et al ., Glycobiol ., 6: 805, 1996; Odani et al ., FEBS Lett ., 420: 1860,1997).

상기에서 기술한 바와 같이 효모에서 생산한 당단백질에 부착된 당사슬은 인간의 것과 구조가 달라서 인체 주입 시 면역 반응을 일으키기 때문에 의약용으로 사용할 수 없으므로, 이러한 문제를 해결하기 위해서 효모 특이적인 당사슬을 부가하는 당전이효소 유전자들을 파쇄하는 방법들이 제시되었다. 특히 S. cerevisiae 효모에서는 당사슬 외쇄 연장 반응을 개시하는 OCH1 유전자와 α(1,3)-만노스를 부가하는 MNN1 유전자 등을 파쇄하여 효모 특이적인 당사슬의 부가를 막는 방법들이 제시되었다 (Nakayama et al ., EMBO J, 11:2511, 1992; Nakanishi-Shindo et al ., J Biol Chem , 268:26338, 1993).As described above, the oligosaccharide attached to the glycoprotein produced by the yeast is different from that of the human, so that the oligosaccharide can not be used for medicinal purposes because it causes an immune reaction upon injection of the human body. Therefore, Methods for disrupting the glycosyltransferase genes have been proposed. In particular, the yeast S. cerevisiae OCH1 gene and α (1,3) for initiating a oeswae sugar chain extension reaction - such as by crushing the MNN1 gene of adding mannose presented are methods to prevent the addition of yeast-specific sugar chain (Nakayama et al ., EMBO J., 11: 2511, 1992; Nakanishi-Shindo et al ., J Biol Chem. , 268: 26338, 1993).

또한, 상기에서 언급한 MNN4 MNN6가 만노스 잔기에 만노스 인산을 부가하여 형성되는 만노스-6-인산-1-만노스(Man-6-P-1-Man)의 형태의 당사슬 가지도 인체 주입시 면역 반응을 일으킬 수 있으므로, 의약용 당단백질 생산을 위해서는 이를 제거해 주어야 한다. 효소 치료제의 경우에는 만노스-6-인산이 부가된 당사슬이 필요하므로 만노스-6-인산-1-만노스 구조에서 바깥쪽 만노스를 제거하여 만노스-6-인산 당사슬을 형성시키는 기술이 개발되었다. In addition, the above-mentioned MNN4 And mannose-6-phosphate-1-mannose forms in which MNN6 is formed by adding mannose phosphoric acid to the mannose residue may also cause an immune response upon human body injection, For the production of glycoproteins, it must be removed. In the case of the enzyme treatment, a mannose-6-phosphate-added sugar chain is required, so that a technique for forming a mannose-6-phosphate sugar chain by removing the outer mannose from the mannose-6-phosphate-1-mannose structure has been developed.

일본 AIST (National Institute of Advanced Industrial Science and Technology) 그룹은 효모에서 효소 치료제를 발현하기 위해서 OCH1MNN1 등의 유전자를 파쇄하고, MNN4를 과발현해서 더 많은 만노스인산화를 유도하였으며(Chiba et al ., Glycobiol , 12:821, 2002; Akeboshi et al ., Glycobiol , 19:1002), 한국 등록특허 제0888316호에서는 셀룰로모나스(Cellulomonas) 속 세균의 배양액에서 유래된 α-만노시다제로 처리하여 바깥쪽 만노스를 제거하여 만노스-6-인산을 형성시키는 방법이 개시되었다. Japan, AIST (National Institute of Advanced Industrial Science and Technology) group in order to express the enzyme treatments in yeast disrupted genes such as OCH1 and MNN1 and to overexpress MNN4 induced more mannose phosphorylation (Chiba et al., Glycobiol , 12: 821, 2002; Akeboshi et al ., Glycobiol , 19: 1002), Korean Patent No. 0888316 discloses that mannose-6-phosphate is formed by treating outer mannose by treatment with a-mannosidase derived from the culture medium of Cellulomonas bacteria . ≪ / RTI >

상기 기술에서는 바깥쪽 만노스를 제거하는 캡핑 제거(uncapping) 활성을 가진 효소를 분자 수준까지 동정하지는 못하고 배양액으로부터 부분 정제한 효소 활성 용액을 사용하였으나, 벨기에 겐트 대학의 Callewaert 교수 연구팀은 Cellulosimicrobium cellulans으로부터 바깥쪽 만노스를 제거하여 만노스-6-인산을 형성할 수 있는 효소 CcGH92_5를 발굴하였으며(Tiels et al ., Nature Biotech , 30:1225, 2012), 이를 재조합 발현하여 야로위아 리포리티카(Yarrowia lipolytica) 효모에서 생산한 효소 치료제에 처리하여 만노스-6-인산을 노출시키는데 성공적으로 사용하였다. In this technique, the enzyme having uncapping activity to remove the outer mannose can not be identified to the molecular level, but an enzyme-active solution partially purified from the culture medium was used. However, Callewaert's team of Ghent University in Belgium reported that the outer part of the cellulosimicrobium cellulans The enzyme CcGH92_5, which can form mannose-6-phosphate, was isolated by removing the mannose (Tiels et al ., Nature Biotech , 30: 1225, 2012), recombinantly expressing it and producing Yarrowia lipolytica ) yeast to treat mannose-6-phosphate.

전통 효모인 S. cerevisiae 외에도 메탄올자화 효모인 피히아 파스토리스(Pichia pastoris)를 비롯한 여러 효모들에서도 만노스 인산의 부가 반응과 관련된 유전자들이 밝혀졌다. 일본 Miura 박사 그룹은 S. cerevisiaeMNN4 유전자 서열을 탐침으로 이용해서 만노스 인산의 부가에서 중요한 역할을 하는 P. pstorisPNO1 유전자를 찾았고, 이를 파쇄하였을 때 만노스인산화 반응이 제어될 수 있다고 보고하였다 (Miura et al ., Gene , 324:129, 2004). 그러나 미국의 GlycoFi사는 PNO1 유전자의 파쇄로 만노스 인산의 부가를 어느 정도 저해할 수 있으나 이를 완전히 제거할 수 없다는 사실을 발견하였으며(미국등록특허 제07259007호), P. pastoris에서 S. cerevisiae의 Mnn4 단백질과 서열이 유사한 유전자들을 발견하고, 이들을 각각 MNN4A, MNN4BMNN4C로 명명하였다. 또한 이들 중에서 PNO1과 함께 MNN4B 유전자를 이중 파쇄하면 만노스 인산의 부가를 완전히 제어할 수 있음을 보여주었다. In addition to the traditional yeast S. cerevisiae , genes related to the addition reaction of mannose phosphate were also found in various yeasts, including the methanol-induced yeast Pichia pastoris . In Japan, Miura et al . Found the PNO1 gene of P. pstoris , which plays an important role in the addition of mannose phosphate using the MNN4 gene sequence of S. cerevisiae as a probe, and reported that the mannose phosphorylation can be controlled by disrupting the PNO1 gene Miura et al . , Gene , 324: 129, 2004). However, the US GlycoFi company found that the addition of mannose phosphate could be inhibited to some extent by the disruption of the PNO1 gene, but it could not be completely eliminated (US Patent No. 07259007). In P. pastoris , Mnn4 protein of S. cerevisiae , And named MNN4A , MNN4B and MNN4C , respectively. We also showed that double-disruption of MNN4B gene with PNO1 completely controls the addition of mannose phosphate.

본 발명자들은 이형효모인 Y. lipolytica로부터 S. cerevisiaeMNN4와 서열 유사성이 높은 유전자를 발견하였고, 해당 유전자를 Y. lipolytica 효모에서 파쇄하면 만노스 인산의 부가가 완전히 제어된다는 사실을 발견하였다 (한국 등록특허 제0915670호). S. cerevisiaeMNN4와 서열이 유사한 Y. lipolytica의 본 유전자는 단일 유전자의 파쇄만으로 만노스인산화를 완전히 제어할 수 있는 새로운 유전자로서 YlMPO1 (Y. lipolytica Mannosyl Phosphorylation of Oligosaccharide)이라 명명하였다. 그리고 더 나아가 추가적인 연구를 통하여 YlMPO1N-당사슬 뿐만 아니라 O-당사슬의 만노스인산화에 핵심적인 역할을 하며, 이는 모두 MNN6 유전자의 도움 없이 단독으로 이루어진다는 것을 보고하였다 (Park et al, Appl Env Microbiol, 77:1187, 2011).
The present inventors have found a gene having high sequence similarity to MNN4 of S. cerevisiae from Y. lipolytica, which is a heterozygous yeast, and discovered that the addition of mannose phosphate is completely controlled by disrupting the gene in Y. lipolytica yeast Patent No. 0915670). This gene of Y. lipolytica , which is similar in sequence to MNN4 of S. cerevisiae , was named YlMPO1 ( Y. lipolytica Mannosyl Phosphorylation of Oligosaccharide) as a novel gene that can completely control mannose phosphorylation by disruption of a single gene. Furthermore, further studies have shown that YlMPO1 plays a key role in mannose phosphorylation of O - glycosylation as well as N - glycosylation , all of which are carried out singly without the help of MNN6 gene (Park et al, Appl Env Microbiol, 77: 1187, 2011).

이에 본 발명자들은 YlMpo1은 직접 만노스인산화 반응을 담당하는 효소라고 유추하고, 상기 효소를 이용하여 만노스인산화 반응을 수행하기 위해 노력한 결과, YlMpo1 생산능을 가지는 재조합 미생물을 제조하고, YlMpo1의 만노스인산화 반응을 이용하면 당사슬에 만노스-6-인산-1-만노스가 부가되는 것을 확인하였으며, 생성된 만노스-6-인산-1-만노스가 부가된 당사슬의 바깥쪽 만노스를 약산 가수분해 또는 캡핑 제거(uncapping) 반응 등을 통해 제거시키면 만노오스-6-인산(mannose-6-phosphate)이 형성되는 것을 확인하고 본 발명을 완성하게 되었다.
Therefore, the present inventors have inferred that YlMpo1 is an enzyme responsible for direct mannose phosphorylation, and as a result of efforts to perform the mannose phosphorylation reaction using the enzyme, a recombinant microorganism having YlMpo1 production ability was produced and YlMpo1 was subjected to mannose phosphorylation 6-phosphate-1-mannose was added to the oligosaccharide, and the outer mannose of the oligosaccharide to which the resulting mannose-6-phosphate-1-mannose was added was subjected to weak acid hydrolysis or uncapping (Mannose-6-phosphate) was formed when the enzyme was removed through the enzyme-catalyzed reaction.

상기의 목적을 달성하기 위해서, 본 발명은In order to achieve the above object,

YlMpo1을 코딩하는 유전자 또는 상기 유전자를 함유하는 재조합 벡터가 숙주세포에 도입되어 있는 것을 특징으로 하는 YlMpo1 생산능을 가지는 재조합 미생물을 제공한다.
A recombinant microorganism having the ability to produce YlMpo1, wherein a gene encoding YlMpo1 or a recombinant vector containing the gene is introduced into a host cell.

다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술 분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로 본 명세서에서 사용된 명명법은 본 기술 분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.
Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In general, the nomenclature used herein is well known and commonly used in the art.

본 발명에 있어서, 상기 YlMpo1은 야로위아 리포리티카(Yarrowia lipolytica) 유래인 것을 특징으로 하며, 상기 YlMpo1는 서열번호 2, 서열번호 4, 서열번호 6 또는 서열번호 8의 아미노산 서열로 표시되는 YlMpo1인 것을 특징으로 할 수 있다. In the present invention, the YlMpo1 may be Yarrowia < RTI ID = 0.0 > lipolytica , wherein YlMpo1 is YlMpo1 represented by the amino acid sequence of SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6 or SEQ ID NO: 8.

미국국립생명공학정보센터(National Center for Biotechnology Information; NCBI)에는 Y. lipolytica CLIB122 strain의 유전체 염기 서열이 결정되어 있다. YlMpo1에 해당하는 염기 및 아미노산 서열이 XM_503217와 XP_503217에 기재되어 있으며, 칸디다 알비칸스(Candida albicans)의 Mnn4의 homologue로 서술되어 있다. 본 발명자들은 선행연구에서 YlMpo1은 NCBI의 XP_503217에 기재되어 있는 서열보다 N-말단에 47개의 아미노산 서열(141개 염기 서열)이 더 있다는 사실을 발견하고 특허(한국 등록특허 제0915670호)에 기재하였다 (서열번호 1 염기서열, 서열번호 2 아미노산 서열). 본 발명에서는 Y. lipolytica SMS397A strain의 유전체 DNA로부터 YlMpo1 유전자를 중합효소연쇄반응을 이용하여 증폭하고 다시 서열을 결정하였는데, 646 및 655번째 염기가 기존에 공지된 서열과 다른 것을 확인하였다 (서열번호 3 염기 서열). 이 중 646번째 염기 서열의 변화는 아미노산 서열의 변화를 동반하여 216번 Asn이 His으로 변경된 것을 확인하였다 (서열번호 4 아미노산 서열).
The National Center for Biotechnology Information (NCBI) has determined the genomic sequence of the Y. lipolytica CLIB122 strain. The base and amino acid sequences corresponding to YlMpo1 are described in XM_503217 and XP_503217 and are described in the homologue of Mnn4 of Candida albicans . The present inventors found that YlMpo1 has 47 amino acid sequences (141 nucleotide sequences) at the N-terminus than the sequence described in XP_503217 of NCBI in the prior art and described in the patent (Korean Patent No. 0915670) (SEQ ID NO: 1 base sequence, SEQ ID NO: 2 amino acid sequence). In the present invention, the YlMpo1 gene was amplified from the genomic DNA of strain Y. lipolytica SMS397A using a polymerase chain reaction and the sequence was determined again. It was confirmed that the 646th and 655th bases were different from the previously known sequences (SEQ ID NO: Base sequence). Of these, the change of the 646th nucleotide sequence was accompanied by the change of the amino acid sequence, confirming that Asn was changed to His (SEQ ID NO: 4 amino acid sequence).

본 발명에 있어서, 상기 서열번호 2의 아미노산 서열로 표시되는 YlMpo1은 서열번호 1의 염기서열로 표시되는 유전자로, 서열번호 4의 아미노산 서열로 표시되는 YlMpo1은 서열번호 3의 염기서열로 표시되는 유전자로, 서열번호 6의 아미노산 서열로 표시되는 YlMpo1은 서열번호 5의 염기서열로 표시되는 유전자로, 서열번호 8의 아미노산 서열로 표시되는 YlMpo1은 서열번호 7의 염기서열로 표시되는 유전자로 코딩되는 것을 특징으로 할 수 있다. In the present invention, YlMpo1 represented by the amino acid sequence of SEQ ID NO: 2 is the gene represented by the nucleotide sequence of SEQ ID NO: 1, YlMpo1 represented by the amino acid sequence of SEQ ID NO: 4 is the gene represented by the nucleotide sequence of SEQ ID NO: , YlMpo1 represented by the amino acid sequence of SEQ ID NO: 6 is a gene represented by the nucleotide sequence of SEQ ID NO: 5 and YlMpo1 represented by the amino acid sequence of SEQ ID NO: 8 is encoded by the gene represented by the nucleotide sequence of SEQ ID NO: 7 .

본 발명에 있어서, 상기 재조합 벡터는 pET21-YlMpo1-dTM1, pET21-YlMpo1-dTM2 또는 pFN18A-YlMpo1인 것을 특징으로 할 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the recombinant vector may be pET21-YlMpo1-dTM1, pET21-YlMpo1-dTM2 or pFN18A-YlMpo1, but is not limited thereto.

본 발명에서, "벡터 (vector)"는 적합한 숙주 내에서 DNA를 발현시킬 수 있는 적합한 조절 서열에 작동가능하게 연결된 DNA 서열을 함유하는 DNA 제조물을 의미한다. 벡터는 플라스미드, 파지 입자 또는 간단하게 잠재적 게놈 삽입물일 수 있다. 적당한 숙주로 형질전환되면, 벡터는 숙주 게놈과 무관하게 복제하고 기능할 수 있거나, 또는 일부 경우에 게놈 그 자체에 통합될 수 있다. 플라스미드가 현재 벡터의 가장 통상적으로 사용되는 형태이므로, 본 발명의 명세서에서 "플라스미드 (plasmid)" 및 "벡터 (vector)"는 때로 상호 교환적으로 사용된다. 본 발명의 목적상, 플라스미드 벡터를 이용하는 게 바람직하다. 이러한 목적에 사용될 수 있는 전형적인 플라스미드 벡터는 (a) 숙주세포당 수백 개의 플라스미드 벡터를 포함하도록 복제가 효율적으로 이루어지도록 하는 복제 개시점, (b) 플라스미드 벡터로 형질전환된 숙주세포가 선발될 수 있도록 하는 항생제 내성 유전자 및 (c) 외래 DNA 절편이 삽입될 수 있는 제한효소 절단부위를 포함하는 구조를 지니고 있다. 적절한 제한효소 절단부위가 존재하지 않을지라도, 통상의 방법에 따른 합성 올리고뉴클레오타이드 어댑터(oligonucleotide adaptor) 또는 링커(linker)를 사용하면 벡터와 외래 DNA를 용이하게 라이게이션(ligation)할 수 있다. In the present invention, "vector" means a DNA product containing a DNA sequence operably linked to a suitable regulatory sequence capable of expressing the DNA in an appropriate host. The vector may be a plasmid, phage particle or simply a potential genome insert. Once transformed into the appropriate host, the vector may replicate and function independently of the host genome, or, in some cases, integrate into the genome itself. Because the plasmid is the most commonly used form of the current vector, the terms "plasmid" and "vector" are sometimes used interchangeably in the context of the present invention. For the purpose of the present invention, it is preferable to use a plasmid vector. Typical plasmid vectors that can be used for this purpose include (a) a cloning start point that allows replication to be efficiently made to include several hundred plasmid vectors per host cell, (b) a host cell transformed with the plasmid vector And (c) a restriction enzyme cleavage site into which the foreign DNA fragment can be inserted. Even if an appropriate restriction enzyme cleavage site is not present, using a synthetic oligonucleotide adapter or a linker according to a conventional method can easily ligate the vector and the foreign DNA.

본 발명에 따른 상기 재조합 미생물은 통상의 방법에 따라 상기 유전자를 미생물의 염색체(chromosome) 상에 삽입시키거나, 상기 재조합 벡터를 미생물의 플라스미드(plasmid) 상에 도입시킴으로써 제조할 수 있다. The recombinant microorganism according to the present invention can be prepared by inserting the gene on a chromosome of a microorganism according to a conventional method, or introducing the recombinant vector onto a plasmid of a microorganism.

라이게이션 후에, 벡터는 적절한 숙주세포로 형질전환되어야 한다. 본 발명에 있어서, 선호되는 숙주세포는 원핵세포이다. 적합한 원핵 숙주세포는 E. coli XL -1 Blue ( Stratagene ), E. coli DH5 α, E. coli JM101, E. coli K12 , E. coli W3110 , E. coli X1776 , E. coli BL21 등을 포함한다. 그러나 FMB101 , NM522 , NM538 NM539와 같은 E. coli 균주 및 다른 원핵생물의 종(speices) 및 속(genera) 등이 또한 사용될 수 있다. 상기 E. coli에 덧붙여, 아그로박테리움 A4와 같은 아그로박테리움 속 균주, 바실루스 섭틸리스(Bacillus subtilis)와 같은 바실리(bacilli), 살모넬라 타이피뮤리움(Salmonella typhimurium) 또는 세라티아 마르게센스(Serratia marcescens)와 같은 또 다른 장내세균 및 다양한 슈도모나스(Pseudomonas) 속 균주가 숙주세포로서 이용될 수 있다.After ligation, the vector should be transformed into the appropriate host cell. In the present invention, the preferred host cells are prokaryotic cells. Suitable prokaryotic host cells include E. coli XL -1 Blue ( Stratagene ), E. coli DH5 [alpha], E. coli JM101, E. coli K12 , E. coli W3110 , E. coli X1776 , E. coli BL21 and the like. However , E. coli such as FMB101 , NM522 , NM538 and NM539 Speices and genera of strains and other prokaryotes may also be used. In addition to the E. coli, such as Agrobacterium sp, Bacillus subtilis (Bacillus subtilis), such as Agrobacterium A4 Bashile (bacilli), S. typhimurium (Salmonella typhimurium ) or Serratia margensense ( Serratia marcescens ) and various strains of the genus Pseudomonas can be used as host cells.

원핵세포의 형질전환은 Sambrook et al ., supra의 1.82 섹션에 기술된 칼슘 클로라이드 방법을 사용해서 용이하게 달성될 수 있다. 선택적으로, 전기천공법(electroporation)(Neumann et al., EMBO J., 1:841, 1982) 또한 이러한 세포들의 형질전환에 사용될 수 있다.Transformation of prokaryotic cells was performed by Sambrook et al ., supra , using the calcium chloride method described in section 1.82. Alternatively, electroporation (Neumann et < RTI ID = 0.0 > al ., EMBO J., 1: 841, 1982 ) can also be used to transform these cells.

본 발명에서 재조합 YlMpo1을 코딩하는 유전자를 숙주세포의 염색체상에 삽입하는 방법으로는 통상적으로 알려진 유전자조작방법을 사용할 수 있다. 예를 들어, 물리적인 방법으로서, microinjection(세포에 DNA를 직접 넣는 것), liposome, directed DNA uptake, receptor~mediated DNA transfer 또는 Ca++을 이용한 DNA 운반 방법 등이 있으며, 최근에는 바이러스(virus)를 이용한 유전자 운반 방법이 많이 사용되고 있다. 일례로는 레트로바이러스 벡터, 아데노바이러스 벡터, 아데노-연관 바이러스 벡터, 헤르페스 심플렉스 바이러스 벡터, 폭스바이러스 벡터 또는 렌티바이러스 벡터를 이용하는 방법 등이 있으며, 특히, 레트로바이러스는 유전자 전달 효율이 높고 gross deletion이나 숙주 DNA와 재정렬(rearrangement : 숙주 DNA 중 자기 DNA와 유사한 부위를 바꾸는 것으로 숙주 DNA 기능의 변화를 초래함)에 의한 결합 없이 넓은 범위의 세포들에서 사용할 수 있다.As a method for inserting the gene encoding the recombinant YlMpo1 into the chromosome of the host cell in the present invention, a commonly known gene manipulation method can be used. For example, microinjection (direct insertion of DNA into cells), liposome, directed DNA uptake, receptor ~ mediated DNA transfer, or DNA transport using Ca ++ . Is widely used. Examples include retrovirus vectors, adenovirus vectors, adeno-associated viral vectors, herpes simplex virus vectors, poxvirus vectors, or lentiviral vectors. Particularly, retroviruses have a high gene transfer efficiency, gross deletion It can be used in a wide range of cells without binding by host DNA and rearrangement (resulting in alteration of host DNA function by altering the region of the host DNA similar to that of the host DNA).

핵산은 다른 핵산 서열과 기능적 관계로 배치될 때 "작동가능하게 연결(operably linked)"된다. 이것은 적절한 분자 (예를 들면, 전사 활성화 단백질)가 조절 서열(들)에 결합될 때 유전자 발현을 가능하게 하는 방식으로 연결된 유전자 및 조절 서열(들)일 수 있다. 예를 들면, 전서열 (pre-sequence) 또는 분비 리더 (leader)에 대한 DNA는 폴리펩타이드의 분비에 참여하는 전단백질로서 발현되는 경우 폴리펩타이드에 대한 DNA에 작동가능하게 연결되고; 프로모터 또는 인핸서(enhancer)는 서열의 전사에 영향을 끼치는 경우 코딩서열에 작동가능하게 연결되거나; 또는 리보좀 결합 부위는 서열의 전사에 영향을 끼치는 경우 코딩 서열에 작동가능하게 연결되거나; 또는 리보좀 결합 부위는 번역을 용이하게 하도록 배치되는 경우 코딩 서열에 작동가능하게 연결된다. 일반적으로, "작동가능하게 연결된"은 연결된 DNA 서열이 접촉하고, 또한 분비 리더의 경우 접촉하고 리딩 프레임 내에 존재하는 것을 의미한다. 그러나, 인핸서 (enhancer)는 접촉할 필요가 없다. 이들 서열의 연결은 편리한 제한 효소 부위에서 라이게이션 (연결)에 의해 수행된다. 그러한 부위가 존재하지 않는 경우, 통상의 방법에 따른 합성 올리고뉴클레오티드 어댑터 (oligonucleotide adaptor) 또는 링커 (linker)를 사용한다. A nucleic acid is "operably linked" when placed in a functional relationship with another nucleic acid sequence. This may be the gene and regulatory sequence (s) linked in such a way as to enable gene expression when a suitable molecule (e. G., Transcriptional activator protein) is attached to the regulatory sequence (s). For example, DNA for a pre-sequence or secretory leader is operably linked to DNA for a polypeptide when expressed as a whole protein participating in the secretion of the polypeptide; A promoter or enhancer may be operably linked to a coding sequence if it affects the transcription of the sequence; Or the ribosome binding site is operably linked to a coding sequence if it affects the transcription of the sequence; Or a ribosome binding site is operably linked to a coding sequence if positioned to facilitate translation. Generally, "operably linked" means that the linked DNA sequences are in contact and, in the case of a secretory leader, are in contact and present in the reading frame. However, the enhancer need not be in contact. The linkage of these sequences is carried out by ligation (linkage) at convenient restriction sites. If such a site does not exist, a synthetic oligonucleotide adapter or a linker according to a conventional method is used.

본 발명에 있어서, 상기 미생물은 Agrobacterium 속, Aspergillus 속, Acetobacter 속, Aminobacter 속, Agromonas 속, Acidphilium 속, Bulleromyces 속, Bullera 속, Brevundimonas 속, Cryptococcus 속, Chionosphaera 속, Candida 속, Cerinosterus 속, Escherichia 속, Exisophiala 속, Exobasidium 속, Fellomyces 속, Filobasidium 속, Geotrichum 속, Graphiola 속, Gluconobacter 속, Kockovaella 속, Curtzmanomyces 속, Lalaria 속, Leucospoidium 속, Legionella 속, Psedozyma 속, Paracoccus 속, Petromyc 속, Rhodotorula 속, Rhodosporidium 속, Rhizomonas 속, Rhodobium 속, Rhodoplanes 속, Rhodopseudomonas 속, Rhodobacter 속, Sporobolomyces 속, Spridobolus 속, Saitoella 속, Schizosaccharomyces 속, Sphingomonas 속, Sporotrichum 속, Sympodiomycopsis 속, Sterigmatosporidium 속, Tapharina 속, Tremella 속, Trichosporon 속, Tilletiaria 속, Tilletia 속, Tolyposporium 속, Tilletiposis 속, Ustilago 속, Udenlomyce 속, Xanthophilomyces 속, Xanthobacter 속, Paecilomyces 속, Acremonium 속, Hyhomonus 속, Rhizobium 속 등을 예시할 수 있으며, 대장균(Escherichia coli)인 것이 바람직하다.In the present invention, the microorganism is selected from the group consisting of Agrobacterium genus, Aspergillus genus, Acetobacter genus, Aminobacter genus, Agromonas genus, Acidphilium genus, Bulleromyces genus, Buller genus, Brevundimonas genus, Cryptococcus genus, Chionosphaera genus, Candida genus, Cerinosterus genus, Escherichia genus, Exisophiala in, Exobasidium in, Fellomyces in, Filobasidium in, Geotrichum genus, Graphiola genus, Gluconobacter genus, Kockovaella in, Curtzmanomyces in, Lalaria in, Leucospoidium genus, Legionella genus, Psedozyma in, Paracoccus genus, Petromyc genus, Rhodotorula genus, Rhodosporidium in , Rhizomonas in, Rhodobium in, Rhodoplanes in, Rhodopseudomonas in, Rhodobacter genus, Sporobolomyces in, Spridobolus in, Saitoella in, Schizosaccharomyces genus, Sphingomonas genus, Sporotrichum genus, Sympodiomycopsis in, Sterigmatosporidium in, Tapharina in, Tremella genus, Trichosporon genus, Tilletiaria genus, genus Tilletia, Tolyposporium genus, genus Tilletiposis, Ustilago genus, genus Udenlomyce, Xanthophilomyces genus, genus Xanthobacter, P aceylomyces sp., Acremonium sp., Hyhomon sp., Rhizobium sp. It is preferably Escherichia coli .

본 발명의 일 실시예에서는 야로위아 리포리티카(Yarrowia lipolytica) 유래의 YlMpo1(서열번호 1 또는 3 염기서열, 서열번호 2 또는 4 아미노산 서열)의 N-말단 부분에 막투과 영역으로 예측되는 아미노산 서열을 제거한 YlMpo1_dTM1(서열번호 5 염기서열, 서열번호 6 아미노산 서열)과 그 뒤에 이어서 나오는 소수성 부위까지 함께 제거한 YlMpo1_dTM2(서열번호 7 염기서열, 서열번호 8 아미노산 서열)의 단백질을 발현시키기 위해 Y. lipolytica 효모의 유전체 DNA로부터 dTM1 및 dTM2 부분의 염기서열을 증폭시켰으며(도 3), pET21-YlMpo1-dTM1와 pET21-YlMpo1-dTM2 벡터를 제조하고 대장균에 형질전환시켜 His-tagged YlMpo1-dTM1 및 His-tagged YlMpo1-dTM2를 발현시켰다. 상기 발현된 His-tagged YlMpo1_dTM1과 His-tagged YlMpo1_dTM2를 분석한 결과, 막투과 영역 단백질(transmembrane regions)을 제거하였음에도 His-tagged YlMpo1_dTM1과 His-tagged YlMpo1_dTM2 모두 불용성 부분에서 대부분이 관찰되는 것을 확인하였으며(도 5), 이 후 His-tagged YlMpo1_dTM2를 발현시켜 정제하였다.In one embodiment of the invention, Yarrowia < RTI ID = 0.0 > lipolytica) YlMpo1_dTM1 (SEQ ID NO: removal of amino acid sequence predicted transmembrane region for N- terminal portion of YlMpo1 (SEQ ID NO: 1 or 3 nucleotide sequence, SEQ ID NO: 2 or 4 amino acid sequence) derived from the 5-base sequence, SEQ ID NO: 6 amino acids The nucleotide sequence of the dTM1 and dTM2 portions was amplified from the genomic DNA of Y. lipolytica yeast in order to express the protein of YlMpo1_dTM2 (SEQ ID NO: 7 sequence, SEQ ID NO: 8 amino acid sequence) which was removed together with the hydrophobic region following the sequence (Fig. 3), pET21-YlMpo1-dTM1 and pET21-YlMpo1-dTM2 vectors were prepared and E. coli was transformed to express His-tagged YlMpo1-dTM1 and His-tagged YlMpo1-dTM2. Analysis of the expressed His-tagged YlMpo1_dTM1 and His-tagged YlMpo1_dTM2 revealed that most of the His-tagged YlMpo1_dTM1 and His-tagged YlMpo1_dTM2 were observed in the insoluble portion even though the transmembrane regions were removed 5), and then purified by expressing His-tagged YlMpo1_dTM2.

또한, Halo-tagged YlMpo1를 발현시키기 위해, pFN18A-YlMpo1 벡터를 제작하고, 대장균 KRX 균주에 형질전환시켜 발현 및 정제한 결과, 도 7에 나타난 바와 같이, 예상했던 약 74 kDa의 YlMpo1 단백질이 분리, 정제되었음을 확인하였다. In order to express Halo-tagged YlMpo1, the pFN18A-YlMpo1 vector was prepared and transformed into Escherichia coli KRX strain. As a result, as shown in Fig. 7, the predicted YlMpo1 protein of about 74 kDa was isolated, Purified.

상기 형질전환체는 KRX/pFN18A-YlMpo1으로 명명하고, 이를 특허 절차상 미생물 기탁의 국제적 승인에 관한 부다페스트 조약 규정에 따라, 2013년 9월 25일자로 한국생명공학연구원(Korea Research Institute of Bioscience and Biotechnology, KRIBB) 내 유전자은행(Korea Collection for Type Cultures, KCTC)에 기탁번호 제KCTC12493BP로 기탁하였다.
The transformant was named KRX / pFN18A-YlMpo1 and was deposited with the Korea Research Institute of Bioscience and Biotechnology on Sep. 25, 2013, in accordance with the Budapest Treaty on the International Recognition of Microorganism Deposit under Patent Procedure , KRIBB) deposited with Korea Collection for Type Cultures (KCTC) under accession number KCTC12493BP.

본 발명은 다른 관점에서, (a) YlMpo1을 이용하여 당사슬에 만노스-6-인산-1-만노스를 부가시키는 단계; 및 (b) 상기 만노스-6-인산-1-만노스가 부가된 당사슬의 바깥쪽 만노스를 제거하여 만노스-6-인산이 부가된 당사슬을 생성시키는 단계를 포함하는 YlMpo1 단백질을 이용하여 당사슬에 만노스-6-인산을 부가시키는 방법에 관한 것이다.(A) adding mannose-6-phosphate-1-mannose to the oligosaccharide using YlMpo1; And (b) removing the outer mannoside of the mannose-6-phosphate-1-mannose-added oligosaccharide to produce a mannose-6-phosphate-added oligosaccharide, 6-phosphate is added.

본 발명에 있어서, 상기 YlMpo1은 서열번호 2, 서열번호 4, 서열번호 6 또는 서열번호 8의 아미노산 서열로 표시되며, 야로위아 리포리티카(Yarrowia lipolytica) 유래인 것을 특징으로 할 수 있다.In the present invention, the YlMpo1 is represented by the amino acid sequence of SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6 or SEQ ID NO: 8, and Yarrowia lipolytica . < / RTI >

본 발명에 있어서, 상기 (a) 단계의 당사슬은 고만노스형(high-mannose type) 및 포시만노스형(pauci-mannose type) 당사슬인 것을 특징으로 할 수 있으며, 구체적으로는 Man3 -9GlcNAc2 당사슬(M3-9)인 것을 특징으로 한다. In the present invention, the oligosaccharide of step (a) may be characterized by being a high-mannose type and a pauci-mannose type oligosaccharide. Specifically, Man 3 -9 GlcNAc 2 (M3-9).

본 발명의 일 실시예에서, pFN18A-YlMpo1 벡터(Halo-tagged YlMpo1)를 이용하여 발현시킨 YlMpo1이 생체 외(in vitro)에서 Man8GlcNAc2 (M8) 당사슬을 기질로하여 만노스 인산화 반응을 수행하는지 확인하였으며, DNA sequencer 분석을 통해 덱스트란 래더(Dextran ladder)를 이용한 글루코오스 유닛(glucose unit; GU)을 통해서 APTS로 표지된 당사슬들을 비교 분석하였다. 그 결과, M8 당사슬 피크는 GU 9 위치에서 검출되었고, YlMpo1에 의한 만노스 인산화 반응 후에는 만노스 인산이 하나 부가된 당사슬 피크는 GU 6 위치에서 검출되었으며, 두 개의 만노스 인산이 부가된 당사슬 피크는 GU 4 위치에서 검출되었다 (도 8). 즉, 본 발명의 방법으로 제조한 YlMpo1가 생체 외(in vitro)에서 당사슬에 만노스 인산을 부가시켜 만노스-6-인산-1-만노스 구조를 가진 당사슬을 제조할 수 있는 것을 확인하였다. In one embodiment of the invention, pFN18A-YlMpo1 vector (Halo-tagged YlMpo1) by the expression that YlMpo1 in vitro use (in with APTS through GU); vitro) from Man 8 GlcNAc 2 (M8) it was found that by a sugar chain as a substrate to perform a phosphorylation mannose, through a DNA sequencer analysis dextran ladder (Dextran ladder) and the glucose unit (glucose unit using The labeled oligosaccharides were compared and analyzed. As a result, the M8 oligosaccharide peak was detected at the GU 9 position, and after the mannose phosphorylation by YlMpo1, the monosaccharide peak added with mannose phosphate was detected at the GU 6 position, and the two monosaccharide added oligosaccharides were found to be GU 4 (Fig. 8). That is, YlMpo1 prepared by the method of the present invention is in vitro ( in vitro ), it was confirmed that a sugar chain having mannos-6-phosphate-1-mannose structure can be produced by adding mannose phosphoric acid to the sugar chain.

본 발명에 있어서, 상기 (a) 단계의 당사슬에 만노스-6-인산-1-만노스를 부가시키는 과정은 완충용액, 금속이온 및 GDP-만노스(mannose)가 추가로 첨가되는 것을 특징으로 할 수 있다. In the present invention, the process of adding mannose-6-phosphate-1-mannose to the oligosaccharide of step (a) may be characterized in that a buffer solution, a metal ion and GDP-mannose are further added .

상기 완충용액은 pH 5.0 내지 8.0의 인산나트륨 (sodium phosphate)인 것을 특징으로 할 수 있으며, 금속이온은 칼슘이온 또는 망간이온인 것을 특징으로 할 수 있다.The buffer solution may be sodium phosphate of pH 5.0 to 8.0, and the metal ion may be calcium ion or manganese ion.

또한, 상기 (a) 단계에 계면활성제(surfactant)를 추가로 첨가할 수 있으며, 상기 계면활성제(surfactant)는 노닐 페녹시폴리에톡시에탄올(nonyl phenoxypolyethoxylethanol; NP-40), 폴리옥시에틸렌옥틸페닐에테르(polyoxyethylene octyl phenyl ether; Triton X-100), 폴리옥시에칠렌소르비톨모노라우레이트(Polyoxyethylene Sorbitan Monolaurate; Tween-20), 폴리옥시에틸렌 (23) 라우릴 에테르(Polyoxyethylene (23) lauryl ether; Brij-35) 및 3-[(3-콜아미도프로필)디메틸암모니오]-1-프로페인셀퍼네이트(3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate; CHAPS)로 구성된 군에서 선택되는 하나 이상인 것을 특징으로 할 수 있다. Further, a surfactant may be further added to the step (a), and the surfactant may be selected from nonyl phenoxypolyethoxylethanol (NP-40), polyoxyethylene octylphenyl ether polyoxyethylene octyl phenyl ether (Triton X-100), polyoxyethylene sorbitan monolaurate (Tween-20), polyoxyethylene (23) lauryl ether (Brij-35) And 3 - [(3-cholamidopropyl) dimethylammonio] -1-propanephosphate (3 - [(3-cholamidopropyl) dimethylammonio] -1-propanesulfonate .

본 발명의 재조합 YlMpo1의 만노스 인산화 활성을 증가시키기 위해, YlMpo1의 최적 반응조건을 확립하기 위해, 반응시간, YlMpo1처리 농도, pH 변화, 금속이온 및 계면활성제 첨가에 따른 만노스 인산화 활성을 분석하였다. 반응 시간에 따른 YlMpo1에 의한 만노스 인산화 반응의 차이를 분석한 결과, 반응 시간이 240분 일 때 나머지 반응 시간과 비교하여 만노스 인산화가 증가하였으나, 120분의 반응 시간을 주었을 때 가장 효율적인 것을 확인하고, 이 후의 실험들에서 반응시간은 2시간으로 진행하였다 (도 9A). To increase the mannose phosphorylation activity of the recombinant YlMpo1 of the present invention, the reaction time, YlMpo1 treatment concentration, pH change, mannose phosphorylation activity by addition of metal ion and surfactant were analyzed in order to establish optimal reaction conditions of YlMpo1. As a result of analyzing the difference of mannos phosphorylation by YlMpo1 according to the reaction time, mannose phosphorylation was increased compared to the rest of the reaction time when the reaction time was 240 minutes. However, when the reaction time was 120 minutes, In the subsequent experiments, the reaction time was 2 hours (Fig. 9A).

YlMpo1 농도가 증가할수록 만노스 인산이 부가된 당사슬의 비율이 증가하는 것을 확인하였으나, 농도에 따라 크게 증가하지 않는 것을 확인하였으며(도 9B), 최적의 pH을 확인하기 pH가 상이한 다양한 완충액을 사용하여 실험을 수행한 결과, pH 5.0 내지 8.0의 인산 나트륨(sodium phosphate) 완충액을 사용하였을 때 대체적으로 활성이 높게 나타났고, 특히 pH 6.0, 6.5, 7.0일 때 가장 높게 나타난 것을 확인하였다 (도 9C).As the YlMpo1 concentration was increased, it was confirmed that the proportion of glucose-added oligosaccharides increased, but it was confirmed that the concentration did not increase significantly depending on the concentration (FIG. 9B). The optimum pH was confirmed. As a result, the activity was generally high when sodium phosphate buffer having a pH of 5.0 to 8.0 was used, and the highest activity was observed especially at pH 6.0, 6.5 and 7.0 (FIG. 9C).

또한, 금속 이온이 YlMpo1의 만노산 인산화 반응에 미치는 영향을 분석한 결과, 이온을 포함하지 않았을 때보다 10 mM 칼슘이온(CaCl2)을 넣고 반응할 때 가장 높은 활성을 보였으며, 망간이온(MnCl2)를 넣었을 때 다음으로 높은 활성을 보였다(도 10A). 가장 크게 활성을 증가시키는 칼슘이온(CaCl2)을 0.4 mM, 2 mM, 10 mM과 20 mM으로 첨가하여 만노스 인산화 활성을 분석한 결과, 2 mM의 칼슘이온에서 가장 높은 활성을 보이는 것을 확인하였다 (도 10B).As a result of analyzing the effect of the metal ion on the mannosylation phosphorylation of YlMpo1, the highest activity was shown when 10 mM calcium ion (CaCl 2 ) was added and the manganese ion (MnCl 2 ) 2 ), the next highest activity was shown (Fig. 10A). The highest activity of CaCl 2 was observed at 2 mM CaCl 2 by adding 0.4 mM, 2 mM, 10 mM and 20 mM CaCl 2 , 10B).

계면활성제(surfactant)가 YlMpo1에 만노스 인산화 활성에 미치는 영향을 알아보기 위해, NP-40(nonyl phenoxypolyethoxylethanol), Triton-X100(polyoxyethylene octyl phenyl ether), Tween-20(Polyoxyethylene Sorbitan Monolaurate), Brij-35(Polyoxyethylene (23) lauryl ether), CHAPS((3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate)를 첨가하여 분석한 결과, 계면활성제(surfactant)를 첨가하였을 때, 전반적으로 활성이 조금 증가하는 것을 관찰하였으며, 특히 Tween-20과 CHAPS가 있을 때 활성이 가장 높은 것을 확인하였으며(도 11A), Tween-20과 CHAPS의 농도에 따른 활성변화를 알아보기 위해서 두 종류의 계면활성제를 0.05%, 0.1%, 0.5%, 2% 농도별 처리한 결과, Tween-20의 경우 0.5% 일 때 가장 높은 활성을 보이고, 2%일 때 활성이 크게 감소한 반면, CHAPS의 경우에는 2%로 처리하였을 때 활성이 높게 나타났다 (도 11B 및 도 11C). To investigate the effect of surfactant on the mannose phosphorylation activity in YlMpo1, we used NP-40 (nonyl phenoxypolyethoxylethanol), Triton-X100 (polyoxyethylene octylphenyl ether), Tween-20 (Polyoxyethylene Sorbitan Monolaurate) The addition of surfactant to polyoxyethylene (23) lauryl ether and CHAPS (3 - [(3-cholamidopropyl) dimethylammonio] -1-propanesulfonate (Fig. 11A). In order to investigate the activity changes depending on the concentration of Tween-20 and CHAPS, two kinds of surfactants were 0.05% and 0.1%, respectively, %, 0.5%, and 2% concentration, the activity of Tween-20 was the highest at 0.5% and the activity at 2% was significantly decreased while the activity of CHAPS was 2% (Fig. 11B and Fig. 11C).

His-tagged YlMpo1_dTM2를 가용화시켜서 정제하고, 상기 조건으로 만노스 인산화 반응을 수행한 결과, 가용화 시킨 His-tagged YlMpo1에 의해서 M8 당사슬에 만노스 인산이 부가된 것을 확인하였으며, 만노스-6-인산-1-만노스 구조도 생성되는 것을 확인하였다 (도 12).His-tagged YlMpo1_dTM2 was solubilized and purified. Mannos phosphorylation was performed under the above conditions. As a result, it was confirmed that mannosylphosphate was added to the M8 oligosaccharide by solubilized His-tagged YlMpo1. Mannos-6-phosphate- Structure was also generated (Fig. 12).

본 발명에 있어서, 상기 (a) 단계의 만노스-6-인산-1-만노스가 부가된 당사슬의 바깥쪽 만노스를 제거하는 과정은 약산 가수분해 또는 캡핑 제거(uncapping) 효소를 이용하는 것을 특징으로 할 수 있다. 상기 약산은 황산 또는 염산을 사용할 수도 있으나 바람직하게는 0.1 내지 5 M의 포름산(formic acid)인 것을 특징으로 하며, 보다 바람직하게는 0.5 mM의 포름산(formic acid)를 사용한다. 캡핑 제거(uncapping) 효소는 α-만노시다제(α-mannosidase)인 것을 특징으로 할 수 있다. In the present invention, the step of removing the outer mannose of the oligosaccharide to which mannose-6-phosphate-1-mannose is added in step (a) may be characterized in that a weak acid hydrolysis or uncapping enzyme is used have. The weak acid may be sulfuric acid or hydrochloric acid, but it is preferably 0.1 to 5 M formic acid, more preferably 0.5 mM formic acid. The uncapping enzyme may be characterized as an α-mannosidase.

본 발명의 YlMpo1에 의해 당사슬에 부가된 만노스-6-인산-1-만노스 구조는 인간에게서 존재하지 않는 당사슬 구조이기 때문에 대부분의 의약용 당단백질 생산을 위해서는 이를 제거해주어야 한다. 만노스-6-인산-1-만노스 구조에서 바깥쪽 만노스를 제거하여 만노스-6-인산 당사슬을 형성시키는 방법은 약산 가수분해와 같은 당업계에 공지된 화학적인 방법을 이용할 수 있으며, 재조합 발현한 캡핑 제거(uncapping) 효소 CcGH92_5를 이용하거나(Tiels et al, Nature Biotech 30: 1225-1231, 2012), 셀룰로모나스(Cellulomonas) 속 세균의 배양액에서 유래된 α -만노시다제를 사용할 수 있다 (한국 등록특허 제0888316호).Since the mannose-6-phosphate-1-mannose structure added to the oligosaccharide by the YlMpo1 of the present invention is an oligosaccharide structure that does not exist in humans, it must be removed in order to produce most pharmaceutical glycoproteins. The mannose-6-phosphate-1-mannose structure can be chemically modified by weakly acidic hydrolysis, such as by removing the outer mannose from the mannose-6-phosphate-1-mannose structure, Mannosidase derived from a culture of Cellulomonas bacteria can be used using the uncapping enzyme CcGH92_5 (Tiels et al, Nature Biotech 30: 1225-1231, 2012) Patent No. 0888316).

본 발명의 실시예에서, 만노스-6-인산-1-만노스가 부가된 당사슬의 바깥쪽 만노스를 제거하고 만노스-6-인산이 부가된 당사슬을 제조하기 위해 셀룰로시마이크로비움 셀루란스(Cellulosimicrobium cellulans)유래 uncapping 효소인 CcGH92_5의 효소 활성 도메인(1-774)을 클로닝하여 발현시켰으며(도 13), 만노스-6-인산-1-만노스가 부가된 당사슬에 상기 분리 정제된 uncapping 효소를 처리하여 반응시킨 결과, 바깥쪽 만노스가 제거되어 형성된 만노스-6-인산이 부가된 당사슬이 생성되는 것을 확인하였다 (도 14). In the examples of the present invention, the outer mannos of the oligosaccharide to which mannose-6-phosphate-1-mannose was added was removed, and in order to prepare an oligosaccharide to which mannose-6-phosphate was added, Cellulosimicrobium cellulans ) Was cloned and expressed by the enzyme activity domain (1-774) of CcGH92_5, which is the uncapping enzyme derived from the cisplatin gene (Fig. 13), and the uncapped enzyme cleaved by the above-described isolated and purified mannose-6-phosphate- As a result, it was confirmed that the mannose-6-phosphate-added oligosaccharide formed by removing the outer mannose was formed (FIG. 14).

또한, 만노스-6-인산-1-만노스가 부가된 당사슬에 0.5 M 포름산(formic acid)을 처리하여 약산 가수 분해를 진행한 결과, 만노스-6-인산이 부가된 당사슬이 형성되는 것을 확인하였으며, 상기 당사슬에 칼프 인텐스티날 알칼라인 포스파테이즈(calf intestinal alkaline phosphatase; CIP)처리하면, 인산이 완전히 제거되어 M8 당사슬로 변환되는 것을 확인하였다 (도 15).
In addition, the oligosaccharide to which mannose-6-phosphate-1-mannose was added was treated with 0.5 M formic acid to conduct weakly acidic hydrolysis. As a result, it was confirmed that an oligosaccharide added with mannose- When the oligosaccharide was treated with calf intestinal alkaline phosphatase (CIP), it was confirmed that phosphoric acid was completely removed and converted to M8 oligosaccharide (FIG. 15).

본 발명은 또 다른 관점에서, 상기 당사슬에 만노스-6-인산을 부가시키는 방법에 의해 만노스-6-인산을 부가하는 것을 특징으로 하는 당단백질의 제조방법에 관한 것이다. In another aspect, the present invention relates to a method for producing a glycoprotein, wherein mannose-6-phosphate is added by adding mannose-6-phosphate to the sugar chain.

본 발명은 또 다른 관점에서, 상기 당사슬에 만노스-6-인산을 부가시키는 방법에 의해 제조된 만노스-6-인산이 부가된 당사슬과 단백질을 화학적 또는 물리적인 방법으로 결합시키는 것을 특징으로 하는 당단백질의 제조방법에 관한 것이다. In another aspect of the present invention, there is provided a method for producing a glycoprotein comprising the steps of chemically or physically binding a mannose-6-phosphate-added oligosaccharide prepared by adding mannose-6- And a method for producing the same.

상기의 방법은 동물세포 또는 당사슬 생합성 경로가 재설계된 효모에서 만노스-6-인산 당사슬이 부착된 효소 치료제를 직접 생산하는 것보다 훨씬 더 다양하고 융통성 있는 응용 가능성을 가진다는 장점을 가진다. 예를 들면 만노스가 포함된 당사슬에 생체 외(in vitro)에서 YlMpo1을 이용하여 만노스 인산을 부가하고 바깥 쪽 만노스를 캡핑 제거(uncapping)하여 제조된 만노스-6-인산을 화학적 또는 물리적인 방법으로 당단백질에 결합시킬 수 있다. 이러한 방법을 이용한다면 당사슬 부가 능력이 없으나 생산성과 경제성이 높은 대장균에서 효소 단백질을 생산하고, 여기에 상기에서 기술한 방법으로 만노스-6-인산 당사슬을 부착하는 방식으로 세포 내 라이소좀으로 타겟팅이 가능한 당단백질을 생산할 수 있다.The above method has the advantage that it is possible to have a much more versatile and flexible application possibility than the direct production of an enzyme therapeutic agent to which mannose-6-phosphate oligosaccharide is attached in an animal cell or a yeast whose sugar chain biosynthetic pathway has been redesigned. For example, in mannose-containing oligosaccharides ( in vitro , Mannos-6-phosphate prepared by adding mannose phosphate using YlMpo1 and uncapping the outer mannose can be chemically or physically bound to the glycoprotein. If this method is used, the enzyme protein is produced in Escherichia coli having high productivity and economical efficiency, but it can be targeted to intracellular lysosomes by attaching mannose-6-phosphate oligosaccharide thereto by the method described above It is possible to produce a glycoprotein.

본 발명에 있어서, 상기 단백질은 병원체 단백질(pathogen protein), 라이소좀 단백질(lysosomal protein), 성장 인자(growth factor), 사이토카인(cytokine), 케모카인(chemokine), 항체 또는 이의 항원-결합 단편(antigen-binding fragment), 또는 융합 단백질(fusion protein)인 것을 특징으로 할 수 있다. In the present invention, the protein may be a pathogen protein, a lysosomal protein, a growth factor, a cytokine, a chemokine, an antibody or an antigen-binding fragment thereof -binding fragment, or a fusion protein.

본 발명에 있어서, 상기 라이소좀 단백질(lysosomal protein)은 라이소좀 저장질환(lysosomal storage disease; LSD) 관련된 분해효소인 것을 특징으로 할 수 있다.In the present invention, the lysosomal protein may be a lysosomal storage disease (LSD) -related degrading enzyme.

상기 라이소좀 저장질환은 파브리병(Fabry's disease), 점액다당류증 Ⅰ(mucopolysaccharidosis I), 파버 질병(Farberdisease), 고셰병(Gaucher disease), GM1-강글리오시드증(GM1-gangliosidosis), 테이-샥스병(Tay-Sachs disease), 샌드호프병(Sandhoff disease), GM2 활성제 질병(GM2 activator disease), 크라베병(Krabbe disease), 이염성백질이영양증(metachromatic leukodystrophy), 니만-피크병(Niemann-Pick disease), 샤이에 질병(Scheie disease), 헌터 질병(Hunter disease), 산필립포 질병(Sanfilippo disease), 모르키오병(Morquio disease), 마로토-라미 질병(Maroteaux-Lamy disease), 히알루로니다아제 결핍증 (hyaluronidase deficiency), 아스파르틸글루코스아민뇨증 (aspartylglucosaminuria), 푸코시드축적증(fucosidosis), 만노시도시스 (mannosidosis), 쉰들러 병(Schindler disease), 사이알산축적증 유형 1(sialidosis type 1), 폼피병(Pompe disease), 피크노디소토시스(Pycnodysostosis), 세로이드 리포푸신증(ceroid lipofuscinosis), 콜레스테롤 에스테르 축적 질병(cholesterol ester storage disease), 월만병(Wolman disease), 다종 술파타아제 결손증 (Multiple sulfatase deficiency), 갈락토시알리도시스(galactosialidosis), 뮤코리피드증(mucolipidosis), 시스틴축적증(cystinosis), 시알산 축적 질병(sialic acid storage disorder), 마리네스코-쉐글렌 증후군(

Figure pat00001
)을 갖는 킬로미크론 보유 질병(chylomicron retention disease), 헤르만스키-푸드락 증후군(Hermansky-Pudlak syndrome), 체디아크-히가시 증후군(Chediak-Higashi syndrome), 다논병(Danon disease), 또는 겔레오피직 이형성증(Geleophysic dysplasia) 등이 포함된다.The lysosomal storage disease may be selected from the group consisting of Fabry's disease, mucopolysaccharidosis I, Farberdisease, Gaucher disease, GM1-gangliosidosis, The present invention relates to a method of treating a disease selected from the group consisting of Tay-Sachs disease, Sandhoff disease, GM2 activator disease, Krabbe disease, metachromatic leukodystrophy, Niemann-Pick disease ), Schie disease, Hunter disease, Sanfilippo disease, Morquio disease, Maroteaux-Lamy disease, hyaluronidase, (Aspartylglucosaminuria), fucosidosis, mannosidosis, Schindler's disease, sialidosis type 1, hyaluronidase deficiency, aspartylglucosaminuria, Pompe disease, Pycnodys < RTI ID = 0.0 > osteopenia, osteosynthesis, ceroid lipofuscinosis, cholesterol ester storage disease, Wolman disease, multiple sulfatase deficiency, galactosialidosis, Mucolipidosis, cystinosis, sialic acid storage disorder, Marinische-Schleglen syndrome ("
Figure pat00001
Chylomicron retention disease, Hermansky-Pudlak syndrome, Chediak-Higashi syndrome, Danon disease, or gelo-lipid dysplasia, (Geleophysic dysplasia).

본 발명에서는 YlMpo1을 이용하여 만노스-6-인산-1-만노스을 부가하고 바깥 쪽 만노스를 캡핑 제거(uncapping)하여 제조된 만노스-6-인산을 화학적 또는 물리적인 방법으로 당단백질에 결합시키는 방법을 사용하였으나, 이에 한정되지 않고, 만노스-6-인산-1-만노스가 부가된 당사슬을 당단백질에 결합시킨 후, 바깥쪽 만노스를 캡핑 제거(uncapping)하여 만노스-6-인산이 부가된 당단백질을 제조할 수 있다.
In the present invention, mannose-6-phosphate produced by adding mannose-6-phosphate-1-mannose by using YlMpo1 and uncapping the outer mannose is chemically or physically bound to the glycoprotein However, the present invention is not limited to this, and a glycoprotein to which mannose-6-phosphate-1-mannose has been added is bound to a glycoprotein, followed by uncapping the outer mannose to prepare a mannose- can do.

본 발명은 또 다른 관점에서, 상기 당사슬에 만노스-6-인산을 부가시키는 방법에 의해 제조된 만노스-6-인산이 부가된 당사슬과 내포 탈출을 위한 펩타이드, 지질 또는 나노물질과 결합시켜 라이소좀이 아닌 세포질 또는 핵 내로 유용물질을 전달하는 수송체 제조방법에 관한 것이다. According to another aspect of the present invention, there is provided a method for producing a lysosomal salt by combining mannose-6-phosphate-added oligosaccharide prepared by adding mannose-6-phosphate to the oligosaccharide and a peptide, lipid or nano- To a method for preparing a transporter that transfers a useful substance into a non-cytoplasm or nucleus.

본 발명의 방법으로 제조된 만노스-6-인산이 부가된 당사슬은 만노스-6-인산 수용체가 내포 과정을 통해서 세포 내 라이소좀으로 이동하므로, 만노스-6-인산 당사슬을 내포 탈출을 위한 펩타이드, 지질 또는 나노물질들과 결합시켜서 라이소좀이 아닌 세포질 또는 핵 내로 유용물질을 전달하는데 활용할 수 있다. 이러한 방식으로 세포 제어를 위한 전사인자, 항체, 신호전달 단백질 등뿐만 아니라 microRNA, siRNA, 플라스미드 DNA 등을 세포 내로 전달하는 도구로서 유용하게 활용될 수 있다.
Since the mannose-6-phosphate-added oligosaccharide prepared by the method of the present invention is transferred to the intracellular lysosomes through the encapsulation process, the mannose-6-phosphate oligosaccharide is converted into the peptide for liposome escape, Or nanomaterials to transfer useful materials into the cytoplasm or nucleus rather than the lysosomes. In this way, it can be used as a tool for transferring not only transcription factors, antibodies, signal transduction proteins, etc. for cell control but also microRNA, siRNA, plasmid DNA and the like into cells.

본 발명의 방법으로 제조된 재조합 YlMpo1을 이용한 만노스-6-인산이 부가된 당사슬의 제조방법은 생체 외(in vitro)에서 효소 치료제로 사용되는 당단백질에 효과적으로 만노스 인산을 부가시킬 수 있으므로, 동물세포 또는 당사슬 생합성 경로가 재설계된 효모에서 만노스-6-인산 당사슬이 부착된 효소 치료제를 직접 생산하는 것보다 다양한 효소 치료제 제조에 응용될 수 있으며, 당단백질뿐만 아니라, 만노스-6-인산 당사슬을 내포 탈출을 위한 펩타이드, 지질 또는 나노물질과 결합시켜 라이소좀이 아닌 세포질 또는 핵 내로 유용물질을 전달하는데 활용할 수 있다.
The method for producing mannose-6-phosphate-added oligosaccharide using recombinant YlMpo1 prepared by the method of the present invention can effectively add mannose phosphate to a glycoprotein used as an enzyme therapeutic agent in vitro , Or a sugar chain biosynthetic pathway can be applied to the production of various enzyme treatments rather than directly producing an enzyme therapeutic agent having a mannose-6-phosphate oligosaccharide in a yeast that has been redesigned. In addition to the glycoprotein, Lipids or nanomaterials to transfer useful substances into the cytoplasm or nucleus rather than the lysosomes.

도 1은 만노스-6-인산 신호를 이용한 치료용 효소의 세포 내 라이소좀으로의 타겟팅 과정을 나타낸 모식도이다.
라이소좀으로 이동할 단백질들은 골지체에서 N-acetylglucosamine-1-phosphotransferase (GlcNAc-PT)에 의해서 GlcNAc-인산이 부가되고, 다음 단계로 uncovering 효소에 의해서 바깥쪽 GlcNAc이 제거되면서 만노스-6-인산이 만들어진다. 두 종류의 만노스-6-인산 수용체(MPR)가 존재하며 각각 cation-dependent (CD)-MPR과 cation-independent (CI)-MPR로 불린다. 외부에서 재조합 효소를 넣어주면 세포막에 존재하는 CI-MPR이 이를 인식하고 결합하여 내포 과정을 거쳐서 라이소좀으로 타겟팅한다. 도면에서 당사슬을 나타내는 기호는 미국 Consortium for Functional Glycomics (htpp://www.functionalglycomics.org/)의 양식을 따랐으며, 인산은 P로 표시하였다(파랑 네모: GlcNAc, 녹색 원: 만노스, 인산: P)
도 2는 만노스-6-인산이 형성되는 과정에 대한 모식도로, (A)는 동물세포에서 GlcNAc-PT와 uncovering 효소에 의해서 만노스-6-인산이 형성되는 과정을, (B)는 유전자 조작을 통해서 엔지니어링이 된 효모를 이용해서 만노스-6-인산을 형성하는 과정을 나타낸다.
도 3은 재조합 YlMpo1의 아미노산 서열을 나타낸 그림이다.
막투과 도메인으로 예측되는 부위는 밑줄 및 굵은 글씨체로 나타내었으며, 막투과 도메인을 제외하고 발현하는 dTM1과 dTM2의 시작 부위는 화살표로 표시하였다. 효모의 MNN4 homologue들에서 발견되는 LicD 도메인은 박스와 이탤릭체로 표시하였다.
도 4는 His-tagged YlMpo1을 발현하기 위해서 구축한 벡터 pET21-YlMpo1_dTM1(A) 및 pET21-YlMpo1-dTM2(B)의 모식도이다.
도 5는 His-tagged YlMpo1의 발현정도를 나타낸 데이터이다 (1: Induction 전 수용성 부분, 2: Induction 전 불용성 부분, 3: Induction 후 수용성 부분, 4: Induction 후 불용성 부분, 화살표: YlMpo1 band).
도 6은 His-tagged YlMpo1의 정제 과정 및 정제 후의 순도를 나타낸 데이터이다.
(A) YlMpo1 정제 단계에 따른 순도(1: 세포 Lysis 후 불용성 부분을 8 M urea 버퍼(100 mM NaH2PO4, pH 8.0, 10 mM Tris-Cl, 8 M urea)에 가용화한 것, 2: 상기 용액을 Ni-NTA 컬럼에 loading한 후의 flow through, 3: 세척용액(100 mM NaH2PO4, pH 6.3, 10 mM Tris-Cl, 8 M urea), Elution D: 버퍼 D (100 mM NaH2PO4, pH 5.9, 10 mM Tris-Cl, 8 M urea)를 사용하여 용출한 용액, Elution E: 버퍼 E (100 mM NaH2PO4, pH 4.5, 10 mM Tris-Cl, 8 M urea)를 사용하여 용출한 용액).
(B) 정제 후 SDS-PAGE를 이용한 YlMpo1의 순도 및 대략적인 농도 확인(4: BSA 2 ㎍, 5: BSA 4 ㎍, 6: BSA 8 ㎍, 7: 농축한 YlMpo1 2 ㎕, 8: 농축한 YlMpo1 4 ㎕, 9: 농축한 YlMpo1 8 ㎕).
도 7은 Halo-tagged YlMpo1 발현 벡터의 모식도(A)와 정제 과정 중에 수득된 분획을 SDS-PAGE로 분석한 결과(B)를 나타낸 데이터이다 (1: YlMpo1 발현을 유도 하기 전 세포 용해물, 2: 발현이 유도된 후 세포 용해물, 3: 컬럼에 배양 상층액을 흘려 용출된 용액 (flow through), 4: 컬럼에 세척 완충액을 흘려 얻은 용출액, 5: 컬럼에 세척 완충액을 흘려 얻은 용출액, 6: TEV protease에 의한 cleavage 후, 컬럼에 용출 완충액을 흘려 얻은 용출액, 화살표: YlMpo1 밴드(band)).
도 8은 M8-APTS를 기질로 이용하여 YlMpo1의 만노스 인산화 반응을 DNA sequencer로 분석한 데이터이다 (도면에서 당사슬을 나타내는 기호는 도 1과 동일).
도 9는 YlMpo1의 만노스 인산화 반응에 있어서 반응 시간과 YlMpo1 효소 농도 조건에 따른 활성 변화와 최적의 pH 조건을 나타낸 그래프이다 (A: 반응시간에 따른 YlMpo1 활성 분석, B: YlMpo1 효소의 농도에 따른 활성 분석, C: pH에 따른 YlMpo1 활성 분석).
도 10은 YlMpo1의 만노스 인산화 활성에 금속이온이 미치는 효과를 분석한 데이터이다 (A: 10 mM CaCl2, FeCl3, CuSo4, MgCl2, MnCl2, ZnSO4 이온 및 EDTA에 의한 효과, B: 칼슘이온의 농도(0.4, 2, 10 및 20 mM)에 따른 YlMpo1의 만노스 인산화 활성).
도 11은 YlMpo1의 만노스 인산화 활성에 계면활성제(surfactant)가 미치는 효과를 나타낸 데이터이다 (A; 0.5% NP-40, Triton-X100, Tween-20, Brij-35, CHAPS 처리에 따른 만노스 인산화 활성, B; Tween-20의 농도에 따른 만노스 인산화 활성, C: CHAPS의 농도에 따른 만노스 인산화 활성).
도 12는 가용화 시킨 His-tagged YlMpo1에 의한 만노스 인산화 활성을 DNA sequencer로 분석한 데이터이다.
도 13은 Halo-tagged uncapping 효소를 발현하는 벡터의 모식도(A)와 정제 과정 중에 수득된 분획을 SDS-PAGE로 분석한 결과(B)이다 (1: Uncapping 효소의 발현을 유도하기 전 세포 용해물, 2: 발현 유도 후 세포 용해물, 3: 발현 유도된 세포 용해물의 불용성 부분, 4: 발현 유도된 세포 용해물의 수용성 용액, 5-6: 컬럼에 세포 용해물 수용성 용액을 흘려 용출된 용액 (flow through), 7-8: 컬럼에 세척 완충액을 흘려 얻은 용출액, 9: TEV protease에 의한 cleavage 후, 컬럼에 용출 완충액을 흘려 얻은 용출액). 화살표는 uncapping 효소의 밴드(band)를 가리킨다.
도 14는 Uncapping 효소에 의해서 바깥쪽 캡핑된 만노스가 제거되는지를 확인한 데이타이다.
(A)는 덱스트란 래더(Dextran ladder)를 이용하여 확인한 글루코오스 유닛(glucose unit)을 나타내며, (B)는 M8 당사슬에 YlMpo1를 이용한 만노스인산화 반응을 통해서 생성된 만노스-6-인산-1-만노스가 부가된 당사슬들을 보여준다. 그리고 (C)는 uncapping 효소를 처리하여 바깥쪽 만노스를 제거하여 만노스-6-인산이 부가된 당사슬이 생성되는지를 확인한 결과이다.
도 15는 약산 가수분해에 의한 만노스 캠핑 제거 실험을 나타낸다. (A)는 Dextran ladder를 이용하여 확인한 glucose unit을 나타내며, (B)는 만노스-6-인산-1-만노스가 부가된 당사슬을 보여준다. (C)는 약산 가수분해를 통해서 캡핑된 만노스를 제거하여 만노스-6-인산이 부가된 당사슬을 형성한 것이며, (D)는 상기 당사슬에 calf intestinal alkaline phosphatase를 처리하여 인산이 제거되어 M8 당사슬로 변환되는 것을 보여준다.
FIG. 1 is a schematic diagram showing a process of targeting a therapeutic enzyme to intracellular lysosomes using a mannose-6-phosphate signal.
Proteins to be transferred to lysosomes are added to GlcNAc-phosphate by N-acetylglucosamine-1-phosphotransferase (GIcNAc-PT) in Golgi, and mannose-6-phosphate is produced in the next step by removing the outer GlcNAc by uncovering enzyme. There are two types of mannose-6-phosphate receptors (MPR), cation-dependent (CD) -MPR and cation-independent (CI) -MPR, respectively. When an external recombinant enzyme is added, CI-MPR present in the cell membrane recognizes it, binds it, and encapsulates it to target lysosomes. In the drawings, symbols representing oligosaccharides conform to the format of the United States Consortium for Functional Glycomics (htpp: //www.functionalglycomics.org/), and phosphoric acid is represented by P (blue square: GlcNAc, green circle: mannose, phosphoric acid: P )
FIG. 2 is a schematic diagram of the process of forming mannose-6-phosphate, wherein (A) shows the formation of mannose-6-phosphate by GlcNAc-PT and uncovering enzyme in animal cells, 6-phosphoric acid by using an engineered yeast.
3 is a diagram showing the amino acid sequence of the recombinant YlMpo1.
The sites predicted as transmembrane domains are indicated by underlined and bold letters, and the start regions of dTM1 and dTM2 expressing except membrane permeation domain are indicated by arrows. The LicD domains found in yeast MNN4 homologues are shown in box and italics.
Fig. 4 is a schematic diagram of vectors pET21-YlMpo1_dTM1 (A) and pET21-YlMpo1-dTM2 (B) constructed to express His-tagged YlMpo1.
FIG. 5 shows the degree of expression of His-tagged YlMpo1 (1: insoluble portion before induction, 2: insoluble portion before induction, 3: insoluble portion after induction, 4: insoluble portion after induction, arrow: YlMpo1 band).
Fig. 6 shows data showing the purification process and purification purity of His-tagged YlMpo1.
(A) Purity according to the YlMpo1 purification step (1: solubilization of the insoluble portion after cell lysis in 8 M urea buffer (100 mM NaH 2 PO 4 , pH 8.0, 10 mM Tris-Cl, 8 M urea) (100 mM NaH 2 PO 4 , pH 6.3, 10 mM Tris-Cl, 8 M urea), Elution D: Buffer D (100 mM NaH 2 PO 4, pH 5.9, 10 mM Tris-Cl, 8 M urea) eluting a solution, elution E using: buffer E (100 mM NaH 2 PO 4 , pH 4.5, 10 mM Tris-Cl, 8 M urea) to ≪ / RTI >
(B) Purification of YlMpo1 using SDS-PAGE after purification (4: BSA 2 ㎍, 5: BSA 4 ㎍, 6: BSA 8 ㎍, 7: Concentrated YlMpo1 2 ㎕, 8: Concentrated YlMpo1 4: 1, 9: concentrated YlMpo1 8 [mu] l).
FIG. 7 shows a schematic diagram (A) of a Halo-tagged YlMpo1 expression vector and a data (B) obtained by SDS-PAGE analysis of the fraction obtained during purification (1: cell lysate before induction of YlMpo1 expression, 2 : Cell lysate after induction of expression, 3: flow through of the culture supernatant to the column, 4: effluent obtained by flowing the washing buffer to the column, 5: effluent obtained by flowing the washing buffer to the column, 6 : Eluate obtained by cleavage with TEV protease, elution buffer eluting with column, arrow: YlMpo1 band).
Fig. 8 is data obtained by analyzing the mannose phosphorylation reaction of YlMpo1 using a DNA sequencer using M8-APTS as a substrate (the symbol representing oligosaccharide in the figure is the same as in Fig. 1).
FIG. 9 is a graph showing changes in activity and optimal pH conditions according to the reaction time and YlMpo1 enzyme concentration conditions in the mannose phosphorylation reaction of YlMpo1 (A: assay of YlMpo1 activity according to reaction time, and activity according to the concentration of YlMpo1 enzyme Analysis, C: analysis of YlMpo1 activity according to pH).
FIG. 10 is an analysis of the effect of metal ions on the mannose phosphorylation activity of YlMpo1 (A: effect of 10 mM CaCl 2 , FeCl 3 , CuSo 4 , MgCl 2 , MnCl 2 , ZnSO 4 ion and EDTA, B: Mannose phosphorylation activity of YlMpo1 according to the concentration of calcium ions (0.4, 2, 10 and 20 mM).
FIG. 11 shows the effect of surfactant on the mannose phosphorylation activity of YlMpo1 (A: 0.5% NP-40, Triton-X100, Tween-20, Brij-35, mannose phosphorylation activity by CHAPS treatment, B: Mannose phosphorylation activity depending on the concentration of Tween-20, and C: Mannose phosphorylation activity depending on CHAPS concentration).
FIG. 12 shows data obtained by analyzing the mannose phosphorylation activity by the solubilized His-tagged YlMpo1 with a DNA sequencer.
13 is a schematic diagram (A) of a vector expressing the Halo-tagged uncapping enzyme and a result (B) obtained by SDS-PAGE analysis of the fraction obtained in the purification process (1: cell lysate before induction of uncapping enzyme expression , 2: an insoluble part of the cell lysate induced by expression, 3: an insoluble part of the cell lysate induced by expression, 4: an aqueous solution of the cell lysate induced expression, 5-6: a cell lysate aqueous solution flow-through, 7-8: effluent obtained by flowing wash buffer through the column, 9: effluent obtained by cleavage by TEV protease, and elution buffer eluting from the column). The arrow indicates the band of the uncapping enzyme.
Fig. 14 is a data showing that the outer capped mannose is removed by Uncapping enzyme.
(A) represents a glucose unit confirmed by using a Dextran ladder, (B) represents a glucose unit produced by mannose phosphorylation using YlMpo1 in M8 oligosaccharide, and mannose-6-phosphate-1-mannose Shows the oligosaccharides added. (C) is the result of confirming whether or not the mannose-6-phosphate-added oligosaccharide is produced by treating the uncapping enzyme to remove the outer mannose.
Fig. 15 shows an experiment for removing mannose camping by weak acid hydrolysis. (A) shows the glucose unit determined using a Dextran ladder, and (B) shows the oligosaccharide added with mannose-6-phosphate-1-mannose. (C) is obtained by removing the capped mannose by weak acid hydrolysis to form a mannose-6-phosphate-added oligosaccharide, (D) treating the oligosaccharide with calf intestinal alkaline phosphatase to remove phosphoric acid, Conversion.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.
Hereinafter, the present invention will be described in more detail with reference to Examples. It is to be understood by those skilled in the art that these examples are for illustrative purposes only and that the scope of the present invention is not construed as being limited by these examples.

재조합 Recombination YlMpo1YlMpo1 발현 벡터 제작 Production of expression vector

본 발명에서는 야로위아 리포리티카(Yarrowia lipolytica) 유래 YlMpo1을 사용하였다. YlMpo1은 N-말단 부분에 막투과 영역으로 예측되는 아미노산 서열을 가지고 있어서 이 부분을 제외한 부위를 Y. lipolytica SMS397A 효모의 유전체 DNA로부터 중합효소연쇄반응(polymerase chain reaction, PCR)으로 증폭하였다(도 3). N-말단의 막투과 부위를 제거한 YlMpo1_dTM1(서열번호 5 염기서열, 서열번호 6 아미노산 서열)과 그 뒤에 이어서 나오는 소수성 부위까지 함께 제거한 YlMpo1_dTM2(서열번호 7 염기서열, 서열번호 8 아미노산 서열)의 두 종류의 단백질을 발현하였으며, 다음의 특정 프라이머들을 사용하였다.
In the present invention, YlMpo1 derived from Yarrowia lipolytica was used. YlMpo1 has an amino acid sequence predicted as a transmembrane region at the N-terminal region, and the region except for this region was amplified by polymerase chain reaction (PCR) from the genomic DNA of Y. lipolytica SMS397A yeast ). Two types of YlMpo1_dTM1 (SEQ ID NO: 7 base sequence, SEQ ID NO: 8 amino acid sequence) in which the N-terminal membrane permeation site was removed and YlMpo1_dTM2 (amino acid sequence of SEQ ID NO: 5) and the hydrophobic region following the amino acid sequence of YlMpo1_dTM1 , And the following specific primers were used.

1-1: 1-1: HisHis -- taggedtagged YlMpo1YlMpo1 발현 벡터 제작 Production of expression vector

His-tagged YlMpo1-dTM1은 다음의 서열번호 9와 11을 사용하고, His-tagged YlMpo1-dTM2는 서열번호 10과 11을 사용하여 통상의 PCR 방법으로 증폭하였다. 증폭한 DNA들은 각각 HindⅢ와 XhoⅠ제한효소로 절단하고, 통상의 유전자 재조합 방법을 이용하여 pET21a (Life Technologies, USA) 벡터에 클로닝하여, pET21-YlMpo1-dTM1와 pET21-YlMpo1-dTM2 벡터를 제작하였다(도 2)
His-tagged YlMpo1-dTM1 used the following SEQ ID NOS: 9 and 11 and His-tagged YlMpo1-dTM2 was amplified by the conventional PCR method using SEQ ID NOS: 10 and 11. The amplified DNAs were digested with Hind III and Xho I restriction enzymes and cloned into pET21a (Life Technologies, USA) vector using conventional recombinant DNA technology to construct pET21-YlMpo1-dTM1 and pET21-YlMpo1-dTM2 vectors (Fig. 2)

YlMPO1_HindⅢ_1F:YlMPO1_ Hind III_1F:

[서열번호 9] 5'- CCCAAGCTTCGATGACCGACGTGGGCTTAGT-3'[SEQ ID NO: 9] 5'-CCCAAGCTTCGATGACCGACGTGGGCTTAGT-3 '

YlMPO1_HindⅢ_2F:YlMPO1_ Hind III_2F:

[서열번호 10] 5'- CCCAAGCTTCGAAAGCCATGGCCGGCAACTC-3'[SEQ ID NO: 10] 5'-CCCAAGCTTCGAAAGCCATGGCCGGCAACTC-3 '

YlMPO1_XhoⅠ_R: YlMPO1_ Xho I R:

[서열번호 11] 5'-CCGCTCGAGCTCAAACTCCTCGCGAATCCA-3'
[SEQ ID NO: 11] 5'-CCGCTCGAGCTCAAACTCCTCGCGAATCCA-3 '

1-2: 1-2: HaloHalo -- taggedtagged YlMpo1YlMpo1 발현 벡터를 제작 Production of expression vector

Halo-tagged YlMpo1은 N-말단의 막투과 부위를 제거한 YlMpo1_dTM1에 해당하는 부위를 다음의 서열번호 12와 13을 이용하여 통상의 PCR 방법으로 증폭하였다. 증폭한 DNA는 SgfI과 BamHI 제한효소로 절단하고, 통상의 유전자 재조합 방법을 이용하여 pFN18A (Promega, USA)에 클로닝하여 pFN18A-YlMpo1 벡터를 제작하였다.
Halo-tagged YlMpo1 was amplified by a conventional PCR method using the following SEQ ID NOs: 12 and 13 for the region corresponding to YlMpo1_dTM1 from which the N-terminal transmembrane region was removed. The amplified DNA was digested with SgfI and Bam HI restriction enzymes and cloned into pFN18A (Promega, USA) using a conventional recombinant method to prepare pFN18A-YlMpo1 vector.

YlMPO1_SgfI_F:YlMPO1_SgfI_F:

[서열번호 12] 5'- ACGGCGATCGCCATGACCGACGT-3' [SEQ ID NO: 12] 5'-ACGGCGATCGCCATGACCGACGT-3 '

YlMPO1_BamHI_R: YlMPO1_ Bam HI_R:

[서열번호 13] 5'- AGCGGATCCCTACTCAAACTCCTCG-3'
[SEQ ID NO: 13] 5'-AGCGGATCCCTACTCAAACTCCTCG-3 '

HisHis -- taggedtagged YlMpo1YlMpo1 의 발현, 정제 및 항체 제작Expression, purification and antibody production

2-1 : 2-1: HisHis -- taggedtagged YlMpo1YlMpo1 의 발현Manifestation of

상기 실시예 1-1에서 제작된 pET21-YlMpo1-dTM1와 pET21-YlMpo1-dTM2 벡터를 이용하여 His-tagged YlMpo1 단백질들을 발현시키고 정제하였다.His-tagged YlMpo1 proteins were expressed and purified using pET21-YlMpo1-dTM1 and pET21-YlMpo1-dTM2 vectors prepared in Example 1-1 above.

pET21-YlMPO1-dTM1와 pET21-YlMPO1-dTM2 벡터를 대장균 BL21(DE3) 균주에 형질전환 하여 His-tagged YlMpo1 단백질을 발현시켰다. 형질전환체는 암피실린이 포함된 Luria-Bertani (LB) 배지로 37℃에서 배양 후, 흡광도가 600 nm (OD600)에서 0.4에 도달하면 1mM IPTG를 첨가하고 37℃에서 4시간 배양하여 단백질 발현을 유도하였다. The pET21-YlMPO1-dTM1 and pET21-YlMPO1-dTM2 vectors were transformed into Escherichia coli BL21 (DE3) to express the His-tagged YlMpo1 protein. The transformant was cultured in Luria-Bertani (LB) medium containing ampicillin at 37 ° C. When the absorbance reached 0.4 at 600 nm (OD600), 1 mM IPTG was added and incubated at 37 ° C for 4 hours to induce protein expression Respectively.

상기 배양된 세포에서 초음파 분해 방법으로 세포를 용해(lysis)시킨 후, 원심분리를 통해서 수용성 부분과 불용성 부분의 단백질을 추출하였으며, 추출한 단백질의 발현 양상을 SDS-PAGE 후에 쿠마시 브릴리언트 블루(coomassie brilliant blue)로 염색하여 분석하였다.After the cells were lysed by ultrasonication in the cultured cells, the soluble and insoluble portions of the proteins were extracted by centrifugation. The expression patterns of the extracted proteins were analyzed by SDS-PAGE, followed by coomassie brilliant blue).

그 결과, 막투과 영역 단백질(transmembrane regions)을 제거하였음에도 His-tagged YlMpo1_dTM1과 His-tagged YlMpo1_dTM2 모두 불용성 부분에서 대부분이 관찰되는 것을 확인하였으며(도 5), 이 후 His-tagged YlMpo1_dTM2를 발현시켜 정제하였다.
As a result, it was confirmed that most of the His-tagged YlMpo1_dTM1 and His-tagged YlMpo1_dTM2 were observed in the insoluble portion even though the transmembrane regions were removed (FIG. 5), and then the His-tagged YlMpo1_dTM2 was expressed and purified .

2-2 : 2-2: HisHis -- taggedtagged YlMpo1YlMpo1 의 정제 및 항체 제작Purification and Antibody Production

상기 실시예 2-1 방법으로 YlMpo1_dTM2를 발현시키고 초음파 분해 방법으로 세포를 용해하여 단백질을 추출한 다음, Ni-NTA 컬럼 제조사(Qiagen, USA)에서 제공하는 8 M 요소(urea)를 이용한 변성(denaturing) 방법을 사용하여 정제하였다.YlMpo1_dTM2 was expressed by the method of Example 2-1, and the cells were dissolved by ultrasonication to extract the proteins. Denaturation using an 8 M element (urea) provided by a Ni-NTA column manufacturer (Qiagen, USA) ≪ / RTI > method.

pH가 다른 두 종류의 용출 버퍼 D (100 mM NaH2PO4, pH 5.9, 10 mM Tris-Cl, 8 M urea)와 E (100 mM NaH2PO4, pH 4.5, 10 mM Tris-Cl, 8 M urea)를 사용하여 2 단계로 용출하였으며, SDS-PAGE 후에 쿠마시 브릴리언트 블루(coomassie brilliant blue)로 염색하여 분석하였다 (도 6A).(100 mM NaH 2 PO 4 , pH 5.9, 10 mM Tris-Cl, 8 M urea) and E (100 mM NaH 2 PO 4 , pH 4.5, 10 mM Tris-Cl, M urea), and analyzed by staining with coomassie brilliant blue after SDS-PAGE (FIG. 6A).

또한, Ni-NTA 컬럼을 이용한 크로마토그래피를 통해서 정제된 YlMpo1_dTM2를 농축하고, 순도를 확인하기 위해서 SDS-PAGE를 수행하였으며, 정제한 YlMpo1_dTM2의 양을 측정하기 위해, 2, 4, 8 ㎍의 BSA를 같이 로딩(loading)하여 수행하였다 (도 6B).The purified YlMpo1_dTM2 was concentrated by chromatography on Ni-NTA column, and SDS-PAGE was performed to confirm the purity. To measure the amount of purified YlMpo1_dTM2, 2, 4 and 8 μg of BSA (Fig. 6B).

그 결과, 용출 버퍼 E를 사용하여 정제를 수행하는 경우 YlMpo1_dTM2의 회수율이 높은 것을 확인하였다.As a result, it was confirmed that the recovery rate of YlMpo1_dTM2 was high when the purification was carried out using the elution buffer E.

상기의 방법으로 정제한 YlMpo1_dTM2를 항원으로 이용하여 통상의 방법으로 토끼로부터 polyclonal 항-YlMpo1 항체를 얻었으며, 이 과정은 AbFrontier (Seoul, Korea)사에 의뢰하여 진행하였다.
YlMpo1_dTM2 purified by the above method was used as an antigen to obtain polyclonal anti-YlMpo1 antibody from rabbits in a conventional manner. This procedure was performed by AbFrontier (Seoul, Korea).

HaloHalo -- taggedtagged YlMpo1YlMpo1 의 발현 및 정제≪ / RTI >

3-1 : Halo-tagged YlMpo1의 발현3-1: Expression of Halo-tagged YlMpo1

상기 실시예 1-2에서 제작된 pFN18A-YlMpo1 벡터를 이용하여 Halo-tagged YlMpo1 단백질들을 발현시키고 정제하였다.Halo-tagged YlMpo1 proteins were expressed and purified using the pFN18A-YlMpo1 vector prepared in Example 1-2.

pFN18A-YlMpo1 벡터를 대장균 KRX 균주(Promega, USA)에 형질전환하여 Halo-tagged YlMpo1 단백질을 발현시켰다. 형질전환체는 암피실린(100 ㎎/㎖)이 포함된 LB 배지로 37℃에서 하룻밤 배양하고, 다음날 이를 seed로 하여 Terrific Broth (TB)배지에 접종하여 37℃에서 본 배양을 수행하였다. 600 nm에서 흡광도가 0.8에 도달했을 때, 람노오스(rhamnose)를 최종 농도가 0.1%가 되도록 첨가하여 YlMPO1 유전자 발현을 유도하였다. 발현 유도 후 15℃에서 24시간을 더 배양하고, 6,000 X g, 4℃ 조건으로 20분 동안 원심분리하여 세포를 수확하였다.The pFN18A-YlMpo1 vector was transformed into Escherichia coli KRX strain (Promega, USA) to express the Halo-tagged YlMpo1 protein. The transformants were cultured overnight at 37 ° C in LB medium containing ampicillin (100 mg / ml) and the next day, seeded in Terrific Broth (TB) medium and cultured at 37 ° C. When the absorbance at 600 nm reached 0.8, rhamnose was added to a final concentration of 0.1% to yield YlMPOl Gene expression was induced. After induction of expression, cells were further cultured at 15 ° C for 24 hours and centrifuged at 6,000 × g, 4 ° C for 20 minutes to harvest the cells.

His-tagged YlMpo1 단백질을 과발현 했을 때 대부분 불용성 부분에서 관찰된 것과는 달리 Halo-tagged YlMpo1의 과발현 시에는 수용성 부분에서 많이 관찰되었다.Over-expression of the His-tagged YlMpo1 protein was observed in the soluble portion of the over-expressed Halo-tagged YlMpo1, unlike most of the insoluble portion.

상기 pFN18A-YlMpo1 벡터가 삽입된 형질전환체는 KRX/pFN18A-YlMpo1으로 명명하고, 이를 특허 절차상 미생물 기탁의 국제적 승인에 관한 부다페스트 조약 규정에 따라, 2013년 9월 25일자로 한국생명공학연구원(Korea Research Institute of Bioscience and Biotechnology, KRIBB) 내 유전자은행(Korea Collection for Type Cultures, KCTC)에 기탁번호 제KCTC12493BP로 기탁하였다.
The transformant into which the pFN18A-YlMpo1 vector was inserted was named KRX / pFN18A-YlMpo1 and was named as KRX / pFN18A-YlMpo1 in accordance with the Budapest Treaty on the International Approval of Microorganism Deposit for Patent Procedures, (KCTC12493BP) deposited in the Korea Collection for Type Cultures (KCTC) of the Korea Research Institute of Bioscience and Biotechnology (KRIBB).

3-2 : 3-2: HaloHalo -- taggedtagged YlMpo1YlMpo1 의 정제Purification of

Halo-tagged YlMpo1 단백질의 정제는 HaloTag Protein Purification System 제조사(Promega)에서 제공하는 정제 방법을 따라서 정제하였다. Purification of the Halo-tagged YlMpo1 protein was performed according to the purification method provided by the manufacturer of HaloTag Protein Purification System (Promega).

상기 과정을 간략히 기술하면, 세포 침전물을 정제 완충액 (50 mM HEPES, pH7.5, 150 mM NaCl, 1 mM DTT, 0.5 M EDTA, 0.005% IGEPAL)에 재현탁 시키고 초음파 분해로 세포를 용해시킨 다음, 세포 용해물을 6,000 X g, 4℃ 조건으로 20분 동안 원심분리한 후, 세포 용해물을 정제 완충액으로 미리 평형화 해 둔 HaloLink resin과 섞어서 4 ℃에서 24시간 동안 반응시켰다. The above process is briefly described. The cell precipitate is resuspended in a purification buffer (50 mM HEPES, pH 7.5, 150 mM NaCl, 1 mM DTT, 0.5 M EDTA, 0.005% IGEPAL), the cells are lysed by sonication, The cell lysate was centrifuged at 6,000 × g at 4 ° C. for 20 minutes. The cell lysate was mixed with HaloLink resin previously equilibrated with the purification buffer, and reacted at 4 ° C. for 24 hours.

Halo-tag의 경우에는 HaloLink resion에 공유결합으로 연결되며, Halo-tagged YlMpo1 단백질이 결합한 resin을 컬럼에 채운 다음, resin 부피의 20배에 해당하는 양의 정제 완충액으로 세척하였다. 절단 완충액 (50 mM HEPES, pH 7.5, 150 mM NaCl, 1 mM DTT, 0.5 mM EDTA)을 컬럼 볼륨과 동일하게 넣어주고 TEV protease (Promega)를 처리하여 1시간 동안 반응시킨 다음, 컬럼 부피의 2배의 정제 완충액을 흘려주어, TEV protease에 의해서 Halo-tag으로부터 잘려져 나온 YlMpo1 단백질을 용출하였다. In the case of the Halo-tag, the resin bound to the HaloLink resion was covalently bound, and the resin bound to the Halo-tagged YlMpo1 protein was loaded into the column, and then washed with a buffer solution of 20 times the volume of the resin. The cleavage buffer (50 mM HEPES, pH 7.5, 150 mM NaCl, 1 mM DTT, 0.5 mM EDTA) was added in the same volume as the column volume, treated with TEV protease (Promega) for 1 hour, Of the purification buffer, and the YlMpo1 protein, which was cleaved from the Halo-tag by TEV protease, was eluted.

그 후, 용출된 용액에 섞여있는 His-tag이 부가되어 있는 TEV protease를 제거하기 위해서 His-link resin을 넣고 상온에서 20분 반응하였다. 1000 x g에서 1분간 원심분리 하여 resin을 침전시키고 상층액만 회수한 다음, 상기 각 단계에서 용출된 분획을 SDS-PAGE로 분석하였다. Then, to remove the TEV protease with His-tag attached to the eluted solution, the His-link resin was added and reacted at room temperature for 20 minutes. The resin was centrifuged at 1000 x g for 1 min to precipitate the resin, and only the supernatant was recovered. The fractions eluted at each step were analyzed by SDS-PAGE.

그 결과 도 7에 나타난 바와 같이, 예상했던 약 74 kDa의 YlMpo1 단백질이 분리, 정제되었음을 확인하였다. 용출된 분획을 최종적으로 20 mM 인산나트륨 완충액(sodium phosphate buffer, pH 7.4)에서 투석한 후 30 kDa 원심분리 필터장치 (Amicon Ultra centrifugal filter device, Millipore)를 이용해 6000 g에서 원심분리하여 농축한 후 -80℃에서 보관하였다.
As a result, as shown in Fig. 7, it was confirmed that the expected YlMpo1 protein of about 74 kDa was isolated and purified. The eluted fractions were finally dialyzed in 20 mM sodium phosphate buffer (pH 7.4) and centrifuged at 6000 g using a 30 kDa centrifugal filter device (Amicon Ultra centrifugal filter device, Millipore) And stored at 80 ° C.

YlMpo1YlMpo1 에 의한 On by 만노스Mannos 인산화 반응 확인 Identification of phosphorylation

상기 실시예 3을 통하여 분리 정제된 YlMpo1이 in vitro에서 Man8GlcNAc2 (M8) 당사슬을 기질로하여 만노스 인산화 반응을 수행하는지 확인하였다. It was confirmed whether YlMpo1 isolated and purified through Example 3 performed the mannose phosphorylation reaction in vitro using the Man 8 GlcNAc 2 (M8) oligosaccharide as a substrate.

먼저, M8 당사슬을 기존에 보고된 방법을 따라서 8-Aminopyrene-1,3,6-trisulfonic acid (APTS)로 형광 표지하여 M8-APTS를 얻었다 (Laroy et al, Nature Protocols 1: 397-405, 2006). 이를 간략히 기술하면, 20 mM APTS가 녹여진 1.2 M의 구연산 (citric acid) 용액과 1 M 시아노브롬하이드리드 (cyanoborohydride)가 녹여진 다이메틸 설폭사이드를 1:1 비율로 섞어 준비한 다음, 58 mM M8를 5 ㎕ 취해 건조시킨 후, 상기에서 준비한 APTS 용액 5 ㎕를 건조된 M8에 넣고 37 ℃에서 16시간 이상 반응하였다. 그리고 반응 용액으로부터 반응 안 한 APTS와 염 등을 제거하고, M8-APTS만을 얻기 위해서 Sephadex G10 컬럼을 사용하여 탈염하였다. 이렇게 정제된 M8-APTS 용액을 모두 취해 건조한 후 50 ㎕ 정제수로 녹여 시료를 준비하였다. First, M8 oligosaccharides were fluorescently labeled with 8-aminopyrene-1,3,6-trisulfonic acid (APTS) according to the previously reported method to obtain M8-APTS (Laroy et al, Nature Protocols 1: 397-405, 2006). To briefly describe this, a 1.2 M citric acid solution in which 20 mM APTS is dissolved and a dimethyl sulfoxide in which 1 M cyanoborohydride is dissolved are mixed at a ratio of 1: 1, and then 58 mM 5 μl of M8 was dried and then 5 μl of the APTS solution prepared above was added to the dried M8 and reacted at 37 ° C. for 16 hours or longer. Unreacted APTS and salts were removed from the reaction solution and desalted using a Sephadex G10 column to obtain only M8-APTS. All the purified M8-APTS solutions were taken, dried and dissolved in 50 μl of purified water to prepare samples.

상기의 방법을 통해서 준비된 M8-APTS를 기질로 하여, YlMpo1에 의한 in vitro 만노스 인산화 반응을 수행하였다. In vitro mannose phosphorylation by YlMpo1 was performed using M8-APTS prepared as described above as a substrate.

전체 반응액 100 ㎕에 50 mM Tris-HCl (pH 7.5), 10 mM MnCl2, 2 mM GDP-mannose, M8-APTS, YlMpo1 (1 ㎎/㎖)를 넣어 30 ℃에서 2시간 반응시킨 다음, 100 ℃에서 5분간 끓여주어 반응을 멈추고 기존에 보고된 방법을 따라서 DNA sequencer를 이용하여 분석하였다(Laroy et al, Nature Protocols 1: 397-405, 2006). 반응액 10 ㎕를 DNA sequencer plate에 옮겨 담고, POP7-polyacrylamide linear polymer로 채워진 36 cm capillary array가 장착된 ABI 3130 DNA sequencer를 이용하여 분석하였다. DNA sequencer 분석 조건은 표 1에 기재된 바와 같으며, 데이터 분석은 GeneMapper 소프트웨어를 사용하였다.
The reaction was carried out at 30 ° C for 2 hours with 100 mM Tris-HCl (pH 7.5), 10 mM MnCl 2 , 2 mM GDP-mannose, M8-APTS and YlMpo1 (1 mg / The reaction was stopped by boiling at 5 ° C for 5 minutes and analyzed using a DNA sequencer according to the previously reported method (Laroy et al., Nature Protocols 1: 397-405, 2006). 10 μl of the reaction mixture was transferred to a DNA sequencer plate and analyzed using an ABI 3130 DNA sequencer equipped with a 36 cm capillary array filled with POP7-polyacrylamide linear polymer. DNA sequencer analysis conditions are as shown in Table 1, and data analysis was performed using GeneMapper software.

DNA sequencer 분석 조건DNA sequencer analysis conditions ParameterParameter Oven temperature오빈 온도 60℃60 ° C Prerun voltagePrerun voltage 15kV15 kV Prerun timePrerun time 180s180s Infection voltageInfection voltage 1.2V1.2V Injection timeInjection time 16s16s Run voltageRun voltage 5kV5 kV Run timeRun time 1,000s1,000s

덱스트란 래더(Dextran ladder)를 이용한 글루코오스 유닛(glucose unit; GU)을 통해서 APTS로 표지된 당사슬들을 비교 분석한 결과, M8 당사슬 피크는 GU 9 위치에서 검출되었고, YlMpo1에 의한 만노스 인산화 반응 후에는 만노스 인산이 하나 부가된 당사슬 피크는 GU 6 위치에서 검출되었으며, 두 개의 만노스 인산이 부가된 당사슬 피크는 GU 4 위치에서 검출되었다 (도 8). 즉, YlMpo1은 in vitro에서M8 당사슬에 만노스 인산을 부가하여 만노스-6-인산-1-만노스 구조를 생성하는 것을 확인하였다.
As a result of comparing oligosaccharides labeled with APTS through a glucose unit (GU) using a Dextran ladder, the M8 oligosaccharide peak was detected at the GU 9 position, and after the mannose phosphorylation reaction with YlMpo1, The oligosaccharide peak added with one phosphate was detected at the GU 6 position, and the two oligosaccharide added oligosaccharide was detected at the GU 4 position (FIG. 8). That is, it was confirmed that YlMpo1 produced mannose-6-phosphate-1-mannose structure by adding mannose phosphate to M8 oligosaccharide in vitro.

YlMpo1YlMpo1 의 최적 반응조건 탐색Optimal reaction conditions

상기 실시예 3을 통하여 분리 정제된 YlMpo1의 최적 반응조건을 분석하기 위한 실험을 수행하였다.
Experiments were conducted to analyze the optimal reaction conditions of YlMpo1 isolated and purified through Example 3 above.

5-1 : 반응시간에 따른 YlMpo1의 만노스 인산화 활성5-1: Mannose phosphorylation activity of YlMpo1 according to reaction time

반응 시간에 따른 YlMpo1에 의한 만노스 인산화 반응의 차이를 알아보기 위하여 반응 시간을 제외한 조건은 상기 실시예 4에서 기재한 바와 동일하게 수행하였다. 반응 시간은 각각 30분, 60분, 120분, 240분으로 진행하였으며, YlMpo1에 의한 만노스 인산화 반응 결과물을 DNA sequencer를 이용하여 분석하였다. In order to examine the difference in mannose phosphorylation reaction by YlMpo1 according to the reaction time, the conditions except for the reaction time were the same as those described in Example 4 above. The reaction time was 30 min, 60 min, 120 min and 240 min, respectively. The result of Mannos phosphorylation by YlMpo1 was analyzed using a DNA sequencer.

그 결과, 반응 시간이 240분 일 때 나머지 반응 시간과 비교하여 만노스 인산화가 증가 하였으나, 120분의 반응 시간을 주었을 때 가장 효율적인 것을 확인하고, 하기의 실험들에서 반응시간은 2시간으로 진행하였다 (도 9A).
As a result, when the reaction time was 240 minutes, mannose phosphorylation was increased compared to the rest of the reaction time, but it was confirmed that the reaction was most efficient when the reaction time was 120 minutes. In the following experiments, the reaction time was 2 hours 9A).

5-2 : 5-2: YlMpo1YlMpo1 농도에 따른  Depending on concentration 만노스Mannos 인산화 활성 Phosphorylation activity

YlMpo1 농도에 따른 반응조건을 분석하였다. 최종농도 0.25, 0.5, 0.75, 1 ㎎/㎖ 이 되도록 YlMpo1 농도를 달리하여 반응을 수행하였으며, 반응조건은 상기 실시예 4 및 5-1과 동일하게 수행하였다. The reaction conditions according to YlMpo1 concentration were analyzed. The reaction was carried out at different concentrations of YlMpo1 to final concentrations of 0.25, 0.5, 0.75, and 1 mg / ml, and the reaction conditions were the same as in Examples 4 and 5-1.

그 결과, YlMpo1 농도가 증가할수록 만노스 인산이 부가된 당사슬의 비율이 증가하는 것을 확인하였으나, 농도에 따라 크게 증가하지 않는 것을 확인하였다 (도 9B).
As a result, it was confirmed that as the concentration of YlMpo1 increased, the proportion of glucose-added oligosaccharides increased, but it was not significantly increased according to the concentration (Fig. 9B).

5-3 : 5-3: pHpH 에 따른 In accordance YlMpo1YlMpo1 of 만노스Mannos 인산화 활성 Phosphorylation activity

최적의 pH을 확인하기 위해서 pH가 상이한 다양한 완충액을 사용하여 실험을 수행하였다. Experiments were carried out using various buffers with different pHs to confirm the optimum pH.

pH 5.0와 5.5의 완충액으로는 아세트산 나트륨 (sodium acetate)를 사용하였고, pH 5.0, 6.0, 6.5, 7.0, 7.5와 8.0에 대한 완충액은 인산나트륨 (sodium phosphate)을 사용했으며, pH 7.0, 7.5, 8.0에 대한 완충액은 트리스 (Tris-HCl)를 사용하였다. 반응 조건은 전체 반응액 100 ㎕에 상기의 50 mM 완충액 (sodium acetate, sodium phosphate 또는 Tris-HCl), 2 mM GDP-mannose, M8-APTS, YlMpo1 (1 ㎎/㎖)을 넣어 30 ℃에서 2시간 반응시켰다. Sodium acetate was used as the buffer solution at pH 5.0 and 5.5 and sodium phosphate was used as the buffer solution at pH 5.0, 6.0, 6.5, 7.0, 7.5 and 8.0. pH 7.0, 7.5, 8.0 (Tris-HCl). The reaction was carried out by adding the above 50 mM buffer (sodium acetate, sodium phosphate or Tris-HCl), 2 mM GDP-mannose, M8-APTS and YlMpo1 (1 mg / Lt; / RTI >

그 결과, 인산 나트륨 (sodium phosphate) 완충액을 사용하였을 때 대체적으로 활성이 높게 나타났고, 특히 pH 6.0, 6.5, 7.0일 때 가장 높게 나타났다. 반면에 아세트산 나트륨 (sodium acetate)이나 트리스 (Tris-HCl) 완충액을 사용하였을 때는 인산 나트륨 (sodium phosphate) 완충액을 사용했을 때보다 활성이 낮은 것을 확인하였다 (도 9C).
As a result, when sodium phosphate buffer solution was used, the activity was generally high, especially at pH 6.0, 6.5, 7.0. On the other hand, when sodium acetate or Tris-HCl buffer was used, the activity was lower than that when sodium phosphate buffer was used (FIG. 9C).

5-4 : 금속이온에 따른 5-4: Depending on the metal ion YlMpo1YlMpo1 of 만노스Mannos 인산화 활성 Phosphorylation activity

금속 이온이 YlMpo1의 만노스 인산화 반응에 미치는 영향을 분석하기 위해, 실시예 3을 통하여 정제된 YlMpo1에 10 mM EDTA를 4 ℃에서 16시간 이상 처리한 후, 다시 정제수로 투석하여 얻은 YlMpo1 용액을 이용하여 하기의 실험을 수행하였다.In order to analyze the effect of metal ions on the mannose phosphorylation of YlMpo1, 10 mM EDTA was treated at 4 DEG C for 16 hours or more in YlMpo1 purified through Example 3, and then dialyzed with purified water to obtain YlMpo1 solution The following experiment was conducted.

실시예 5-3과 동일하게 전체 반응액 100 ㎕에 50 mM 인산나트륨 (sodium phosphate, pH 6.5) 완충액, 2 mM GDP-mannose, M8-APTS, YlMpo1 (1 ㎎/㎖)에 각기 다른 10 mM 이온 (CaCl2, FeCl3, CuSo4, MgCl2, MnCl2 또는 ZnSO4) 또는 EDTA를 넣어 30 ℃에서 2시간 반응시킨 다음, 100 ℃에서 5분간 끓여주어 반응을 멈추고 DNA sequencer를 통해 분석하였다. In the same manner as in Example 5-3, 100 μl of each reaction solution was added to 100 μl of a reaction mixture containing 50 mM sodium phosphate (pH 6.5) buffer, 2 mM GDP-mannose, M8-APTS and YlMpo1 (1 mg / (CaCl 2 , FeCl 3 , CuSo 4 , MgCl 2 , MnCl 2 or ZnSO 4 ) or EDTA at 30 ° C for 2 hours, and the reaction was stopped by boiling at 100 ° C for 5 minutes and analyzed by DNA sequencer.

그 결과, 이온을 포함하지 않았을 때보다 10 mM 칼슘이온(CaCl2)을 넣고 반응할 때 가장 높은 활성을 보였으며, 망간이온 (MnCl2)를 넣었을 때 다음으로 높은 활성을 보였다 (도 10A). 반면에 다른 이온들 또는 EDTA를 넣고 반응 할 때는 활성이 크게 감소하였다.As a result, the highest activity was shown when 10 mM calcium ion (CaCl 2 ) was added and the activity was the highest when manganese ion (MnCl 2 ) was added (FIG. 10A). On the other hand, activity was greatly reduced when other ions or EDTA were added and reacted.

가장 크게 활성을 증가시키는 칼슘이온 (CaCl2)을 농도 별로 처리하여 반응 시 활성에 차이를 보이는지 확인하기 위한 실험을 수행하였다. 0.4 mM, 2 mM, 10 mM과 20 mM 칼슘이온을 첨가하여 상기의 실험과 동일하게 수행하였다. Experiments were conducted to determine the difference in activity during the reaction by treating the calcium ion (CaCl 2 ), which has the highest activity, by concentration. 0.4 mM, 2 mM, 10 mM and 20 mM calcium ions were added, and the same procedure as described above was carried out.

그 결과 도 4B에 나타난 바와 같이 2 mM의 칼슘이온에서 가장 높은 활성을 보이는 것을 확인하였다.
As a result, it was confirmed that the highest activity was observed at 2 mM calcium ion as shown in FIG. 4B.

5-5 : 계면활성제(5-5: Surfactant ( surfactantsurfactant )에 따른 )In accordance YlMpo1YlMpo1 of 만노스Mannos 인산화 활성 Phosphorylation activity

계면활성제(surfactant)가 YlMpo1의 만노스 인산화 활성에 미치는 영향을 알아보기 위해, NP-40, Triton-X100, Tween-20, Brij-35, CHAPS를 사용하여 실험을 수행하였다.Experiments were carried out using NP-40, Triton-X100, Tween-20, Brij-35 and CHAPS to investigate the effect of surfactant on mannosylation activity of YlMpo1.

전체 반응액 100 ㎕에 50 mM 완충액 인산나트륨 (sodium phosphate, pH 6.5), 0.5 % 계면활성제 (NP-40, Triton-X100, Tween-20, Brij-35 또는 CHAPS), 2 mM CaCl2, 2 mM GDP-mannose, M8-APTS, YlMpo1 (1 ㎎/㎖) 를 넣어 30 ℃에서 2시간 반응시킨 다음, DNA sequencer를 통해 분석하였다.Sodium phosphate (pH 6.5), 0.5% surfactant (NP-40, Triton-X100, Tween-20, Brij-35 or CHAPS), 2 mM CaCl 2 , 2 mM GDP-mannose, M8-APTS, and YlMpo1 (1 ㎎ / ㎖) were added and reacted at 30 ° C for 2 hours and analyzed using a DNA sequencer.

그 결과, 계면활성제(surfactant)를 넣어 주었을 때, 전반적으로 활성이 조금 증가하는 것을 관찰하였으며, 특히 Tween-20과 CHAPS가 있을 때 활성이 가장 높은 것을 확인하였다 (도 11A).As a result, when the surfactant was added, the activity was slightly increased overall, and it was confirmed that the activity was the highest when Tween-20 and CHAPS were present (FIG. 11A).

또한, Tween-20과 CHAPS의 농도에 따른 활성변화를 알아보기 위해서 두 종류의 계면활성제를 0.05%, 0.1%, 0.5%, 2% 농도별 처리하여 YlMpo1의 만노스 인산화 활성이 어떻게 변화하는 지를 확인하였다.In order to investigate the changes in the activities of Tween-20 and CHAPS, we investigated the changes in the mannosylation activity of YlMpo1 by treatment with 0.05%, 0.1%, 0.5%, and 2% concentrations of two kinds of surfactants .

그 결과, Tween-20의 경우 도 11B에서 보여주는 바와 같이 0.5% 일 때 가장 높은 활성을 보였으며, 2%일 때 활성이 크게 감소하였으며, CHAPS의 경우에는 2% CHAPS을 처리하였을 때 활성이 높게 나타났다 (도 5C).
As a result, the activity of Tween-20 was the highest at 0.5% as shown in FIG. 11B, and the activity was greatly decreased at 2%, and the activity of CHAPS was increased when 2% CHAPS was applied (Fig. 5C).

HisHis -- taggedtagged YlMpo1YlMpo1 가용화Solubilization 정제 및 활성 확인 Identify Tablets and Active

6-1 : 6-1: HisHis -- taggedtagged YlMpo1YlMpo1 가용화Solubilization 정제 refine

실시예 2에서 불용성으로 발현된 His-tagged YlMpo1_dTM2를 가용화시켜서 정제하고, 이를 이용하여 만노스 인산화 반응을 수행할 수 있는지를 확인하였다. In Example 2, the insoluble expressed His-tagged YlMpo1_dTM2 was solubilized and purified, and it was confirmed whether the mannose phosphorylation reaction could be performed using this.

우선 실시예 2에서 기술한 방법과 동일하게 YlMpo1을 발현시킨 다음, 수확된 세포 침전물을 용해 완충액 (50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1 mM EDTA, 1 mM PMSF)에 재현탁 시킨 후, 초음파분해로 세포를 용해시켰다. 세포 용해물을 6,000 X g, 4℃ 조건으로 20분 동안 원심분리 하였으며, 원심분리 후 수득된 침전물에 완충액(100 mM NaH2PO4, pH 8.0, 20 % glycerol, 0.4 M NaCl, 1 % CHAPS)을 첨가하여 4℃에서 3시간 동안 가용화 시킨 후에 100,000 X g, 4℃ 조건으로 1시간 동안 원심분리 하였다.YlMpo1 was expressed in the same manner as described in Example 2. The harvested cell pellet was resuspended in a lysis buffer (50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1 mM EDTA, 1 mM PMSF) The cells were then lysed by sonication. The cell lysate was centrifuged at 6,000 × g at 4 ° C. for 20 minutes. To the precipitate obtained after centrifugation was added a buffer (100 mM NaH 2 PO 4 , pH 8.0, 20% glycerol, 0.4 M NaCl, 1% CHAPS) Followed by solubilization at 4 ° C. for 3 hours, followed by centrifugation at 100,000 × g, 4 ° C. for 1 hour.

그 후 계면활성제(surfactant)인 CHAPS(3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate)를 첨가하여 가용화된 용액으로부터 Ni-NTA 컬럼(Qiagen, USA)을 사용하여 YlMpo1을 정제하였다. His-tagged YlMpo1을 Ni-NTA 컬럼에 부착시킨 후 완충액 (50 mM NaH2PO4, pH 8.0, 300 mM NaCl, 20 mM imidazole) 으로 세척한 다음, 250 mM imidazole이 포함된 완충액을 처리하여 흡착되어 있던 His-tagged YlMpo1을 용출하였다.
Then, YlMpo1 was purified from the solubilized solution by adding CHAPS (3 - [(3-cholamidopropyl) dimethylammonio] -1-propanesulfonate as a surfactant using a Ni-NTA column (Qiagen, USA). His-tagged the YlMpo1 was washed with a buffer solution (50 mM NaH 2 PO 4, pH 8.0, 300 mM NaCl, 20 mM imidazole) was attached to the Ni-NTA column, and then adsorbed to process a buffer solution containing the 250 mM imidazole The His-tagged YlMpo1 was eluted.

6-2 : His - tagged YlMpo1 에 의한 만노스 인산화 반응 확인 6 -2: His - tagged Confirmation of mannose phosphorylation by YlMpo1

실시예 4의 방법을 통해서 준비된 M8-APTS를 기질로 하여, 가용화 시켜서 정제한 His-tagged YlMpo1이 in vitro에서 Man8GlcNAc2 (M8) 당사슬을 기질로하여 만노스 인산화 반응을 수행하는지 확인하였다. It was confirmed that His-tagged YlMpo1 purified by solubilization using M8-APTS prepared by the method of Example 4 performs mannose phosphorylation reaction in vitro using Man 8 GlcNAc 2 (M8) oligosaccharide as a substrate.

실시예 5에서 기술된 바와 같이 전체 반응액 100 ㎕에 50 mM 완충액 인산나트륨 (sodium phosphate, pH 6.5), 0.5 % Tween-20, 2 mM CaCl2, 2 mM GDP-mannose, M8-APTS, His-tagged YlMpo1 (1 ㎎/㎖)을 넣어 30 ℃에서 2시간 반응시킨 다음, 100 ℃에서 5분간 끓여주어 반응을 멈추고 실시예 4의 방법으로 DNA sequencer를 이용하여 분석하였다.To 100 μl of the whole reaction solution was added 50 mM sodium phosphate (pH 6.5), 0.5% Tween-20, 2 mM CaCl 2, 2 mM GDP-mannose, M8-APTS, His-tagged The reaction was stopped by adding YlMpo1 (1 mg / ml) at 30 DEG C for 2 hours, boiled at 100 DEG C for 5 minutes, and analyzed using a DNA sequencer according to the method of Example 4.

덱스트란 래더(Dextran ladder)를 이용한 글루코오스 유닛(glucose unit; GU)을 통해서 APTS로 표지된 당사슬들을 비교 분석한 결과, 가용화 시킨 His-tagged YlMpo1에 의해서 M8 당사슬에 만노스 인산을 부가하여 만노스-6-인산-1-만노스 구조가 생성되는 것을 확인하였다 (도 12).
As a result of comparing and analyzing oligosaccharides labeled with APTS through a glucose unit (GU) using Dextran ladder, mannosylphosphate was added to M8 oligosaccharide by solubilized His-tagged YlMpo1 to obtain mannose-6- Phosphate-1-mannose structure was generated (Fig. 12).

캠핑된Camped 만노스Mannos 제거를 통한  Through removal 만노스Mannos -6-인산이 부가된 -6-phosphoric acid-added 당사슬Sugar chain 제조 Produce

7-1: Uncapping 효소의 발현 및 정제7-1: Expression and purification of Uncapping enzyme

최근 공지된 셀룰로시마이크로비움 셀루란스(Cellulosimicrobium cellulans)유래 uncapping 효소인 CcGH92_5의 효소 활성 도메인(1-774)을 발현하는 벡터를 제작하였다 (Tiels et al , Nature Biotech , 30:1225, 2012). 해당 아미노산 서열을 코딩하는 DNA는 DNA 2.0 (Menro Park, CA, USA)에 의뢰하여 합성하였고, 이를 EZ-cloning 키트(Enzynomics, 대전, 한국)를 이용하여 pFN18A 벡터(Promega)에 클로닝하여 pFN18A-uncapping 벡터를 제작하였다 (도 13A). 이렇게 제작된 pFN18A-uncapping 벡터는 N-말단에 Halo-tag이 융합된 CcGH92_5의 uncapping 효소 활성 도메인(1-774)을 발현한다.A vector expressing the enzyme activity domain (1-774) of the recently known cellulosic microbium cellulans- derived uncapping enzyme CcGH92_5 (Tiels et al , Nature Biotech , 30: 1225, 2012). The DNA encoding the amino acid sequence was synthesized with DNA 2.0 (Menro Park, CA, USA) and cloned into pFN18A vector (Promega) using an EZ-cloning kit (Enzynomics, Taejon, Korea) Vector (Fig. 13A). The pFN18A-uncapping vector thus constructed expresses the uncapping enzyme activity domain (1-774) of CcGH92_5 fused with a Halo-tag at the N-terminus.

상기의 pFN18A-uncapping 벡터를 대장균 KRX 균주(Promega)에 형질전환하여 Halo-tagged uncapping 단백질을 발현하였다. 형질전환체는 암피실린(100 ㎎/㎖)이 포함된 LB 배지로 37℃에서 하룻밤 배양하고, 다음날 이를 종균(seed)으로 하여 Terrific Broth (TB)배지에 접종하여 37℃에서 본 배양을 수행하였다. 600 nm에서 흡광도가 0.8에 도달했을 때, 람노오스(rhamnose)를 최종 농도가 0.1%가 되도록 첨가하여 uncapping 효소 유전자의 발현을 유도하였다. 발현 유도 후 15℃에서 24시간을 더 배양하고, 6,000 X g, 4℃ 조건으로 20분 동안 원심분리하여 세포를 수확하였다.The above pFN18A-uncapping vector was transformed into Escherichia coli KRX strain (Promega) to express Halo-tagged uncapping protein. The transformant was cultured overnight at 37 ° C in LB medium containing ampicillin (100 mg / ml) and the next day, inoculated into Terrific Broth (TB) medium and cultured at 37 ° C. When the absorbance reached 0.8 at 600 nm, the expression of the uncapping enzyme gene was induced by adding rhamnose to a final concentration of 0.1%. After induction of expression, cells were further cultured at 15 ° C for 24 hours and centrifuged at 6,000 × g, 4 ° C for 20 minutes to harvest the cells.

Halo-tagged uncapping 단백질의 정제는 HaloTag Protein Purification System 제조사(Promega)에서 제공하는 정제 방법을 따라서 정제하였다. 상기 과정을 간략히 기술하면, 세포 침전물을 정제 완충액 (50 mM HEPES, pH7.5, 150 mM NaCl, 1 mM DTT, 0.5 M EDTA, 0.005% IGEPAL)에 재현탁 시키고 초음파 분해로 세포를 용해시킨 다음, 세포 용해물을 6,000 X g, 4℃ 조건으로 20분 동안 원심분리한 후, 세포 용해물을 정제 완충액으로 미리 평형화 해 둔 HaloLink resin과 섞어서 4 ℃에서 24시간 동안 반응시켰다. Halo-tag의 경우에는 HaloLink resion에 공유결합으로 연결되며, Halo-tagged uncapping 단백질이 결합한 resin을 컬럼에 채운 다음, resin 부피의 20배에 해당하는 양의 정제 완충액으로 세척하였다. 절단 완충액 (50 mM HEPES, pH 7.5, 150 mM NaCl, 1 mM DTT, 0.5 mM EDTA)을 컬럼 볼륨과 동일하게 넣어주고 TEV protease (Promega)를 처리하여 1시간 동안 반응시킨 다음, 컬럼 부피의 2배의 정제 완충액을 흘려주어, TEV protease에 의해서 Halo-tag으로부터 잘려져 나온 uncapping 단백질을 용출하였다. 그 후, 용출된 용액에 섞여있는 His-tag이 부가되어 있는 TEV protease를 제거하기 위해서 His-link resin 을 넣고 상온에서 20분 반응하였다. 1000 x g에서 1분간 원심분리 하여 resin을 침전시키고 상층액만 회수한 다음, 상기 각 단계에서 용출된 분획을 SDS-PAGE로 분석하였다. 그 결과 도 13B에 나타난 바와 같이, uncapping 단백질이 분리, 정제되었음을 확인하였다. 용출된 분획을 최종적으로 20 mM 인산나트륨 완충액(sodium phosphate buffer, pH 7.4)에서 투석한 후 30 kDa 원심분리 필터장치 (Amicon Ultra centrifugal filter device, Millipore)를 이용해 6000 g에서 원심분리하여 농축한 후 -80℃에서 보관하였다.
Purification of Halo-tagged uncapping protein was performed according to the purification method provided by the manufacturer of HaloTag Protein Purification System (Promega). The above process is briefly described. The cell precipitate is resuspended in a purification buffer (50 mM HEPES, pH 7.5, 150 mM NaCl, 1 mM DTT, 0.5 M EDTA, 0.005% IGEPAL), the cells are lysed by sonication, The cell lysate was centrifuged at 6,000 × g at 4 ° C. for 20 minutes. The cell lysate was mixed with HaloLink resin previously equilibrated with the purification buffer, and reacted at 4 ° C. for 24 hours. In the case of the Halo-tag, the resin bound to the HaloLink resion was covalently bound, and the resin bound to the Halo-tagged uncapping protein was loaded into the column, and then washed with a buffer solution of 20 times the volume of the resin. The cleavage buffer (50 mM HEPES, pH 7.5, 150 mM NaCl, 1 mM DTT, 0.5 mM EDTA) was added in the same volume as the column volume, treated with TEV protease (Promega) for 1 hour, Of the purified buffer, and the uncapping protein cleaved from the Halo-tag by TEV protease was eluted. Then, to remove the TEV protease with His-tag attached to the eluted solution, the His-link resin was added and reacted at room temperature for 20 minutes. The resin was centrifuged at 1000 xg for 1 minute to precipitate the resin, and only the supernatant was recovered. The fractions eluted at each step were analyzed by SDS-PAGE. As a result, as shown in Fig. 13B, it was confirmed that the uncapping protein was isolated and purified. The eluted fractions were finally dialyzed in 20 mM sodium phosphate buffer (pH 7.4) and centrifuged at 6000 g using a 30 kDa centrifugal filter device (Amicon Ultra centrifugal filter device, Millipore) And stored at 80 ° C.

7-2: 7-2: UncappingUncapping 효소에 의한  By enzyme 만노스Mannos -6-인산이 부가된 당사슬의 제조-6-phosphoric acid-added oligosaccharide

상기 실시예 7-1 방법을 통하여 분리 정제된 uncapping 효소를 이용하여 만노스-6-인산-1-만노스가 부가된 당사슬에서 바깥쪽 만노스의 캡핑이 제거되어 만노스-6-인산이 부가된 당사슬이 형성되는 지를 확인하였다. 이를 위해서 먼저 M8 당사슬에 실시예 5에서 확립한 최적의 조건에서 YlMpo1을 처리하여 만노스-6-인산-1만노스 당사슬 구조를 형성하였다 (도 14B). 그리고 전체 반응액 50 ㎕에 실시예 7-1에서 분리 정제된 uncapping 효소 20 ㎍를 100 mM HEPES (pH 7.0), 2 mM CaCl2에 첨가하여 30 ℃에서 16시간 동안 반응시킨 다음, DNA sequencer를 이용하여 분석하였다 (도 14C).Using the uncapping enzyme isolated and purified through the method of Example 7-1, the capping of the outer mannose was removed from the sugar chain to which mannose-6-phosphate-1-mannose was added to form an oligosaccharide to which mannose-6- Respectively. To this end, YlMpo1 was treated with Ml oligosaccharide at the optimal conditions established in Example 5 to form a mannose-6-phosphate-1 mannose sugar chain structure (FIG. 14B). Then, 20 μg of the uncapping enzyme isolated and purified in Example 7-1 was added to 100 μl of HEPES (pH 7.0) and 2 mM CaCl 2 , and reacted at 30 ° C. for 16 hours, followed by DNA sequencer (Fig. 14C).

그 결과 바깥쪽 만노스가 제거되어 형성된 만노스-6-인산이 부가된 당사슬 피크(peak)가 검출되는 것을 확인하였다.
As a result, it was confirmed that a glycopeptide added with mannose-6-phosphate formed by removing the outer mannose was detected.

7-3: 약산 가수분해를 이용한 7-3: Using weak acid hydrolysis 만노스Mannos 캠핑 제거 Removing camping

만노스-6-인산-1-만노스가 부가된 당사슬에서 바깥쪽 만노스 캡핑을 제거하기 위해서 다양한 조건에서 약산 가수 분해를 진행하였다. The weak acid hydrolysis was carried out under various conditions to remove the outer mannose capping from the mannos-6-phosphate-1-mannose-added oligosaccharide.

이를 위해서 먼저 M8 당사슬에 실시예 5에서 확립한 최적의 조건에서 YlMpo1을 처리하여 만노스-6-인산-1만노스 당사슬 구조를 형성하였다 (도 15B). 그리고 전체반응액에 0.5 M 포름산(formic acid)을 처리하여 80 ℃에서 1시간 동안 반응시킨 다음, DNA sequencer를 이용하여 분석하였다 (도 15C). For this purpose, YlMpo1 was treated with Ml oligosaccharide at the optimal conditions established in Example 5 to form a mannose-6-phosphate-1 mannose sugar chain structure (FIG. 15B). The whole reaction solution was treated with 0.5 M formic acid, reacted at 80 ° C for 1 hour, and analyzed using a DNA sequencer (FIG. 15C).

그 결과, 약산 가수분해에 의해 바깥쪽 만노스가 제거되어 형성된 만노스-6-인산이 부가된 당사슬 피크(peak)가 검출되는 것을 확인하였다.As a result, it was confirmed that a sugar chain peak added with mannose-6-phosphate formed by removing the outer mannose by weakly acidic hydrolysis was detected.

또한, 상기 당사슬에 칼프 인텐스티날 알칼라인 포스파테이즈(calf intestinal alkaline phosphatase; CIP)처리하면, 인산이 완전히 제거되어 M8 당사슬로 변환되는 것을 확인하였다 (도 15D).
Further, it was confirmed that when the oligosaccharide was treated with calf intestinal alkaline phosphatase (CIP), phosphoric acid was completely removed and converted to M8 oligosaccharide (FIG. 15D).

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.
While the present invention has been particularly shown and described with reference to specific embodiments thereof, those skilled in the art will appreciate that such specific embodiments are merely preferred embodiments and that the scope of the present invention is not limited thereby. something to do. It is therefore intended that the scope of the invention be defined by the claims appended hereto and their equivalents.

한국생명공학연구원Korea Biotechnology Research Institute KCTC12493BPKCTC12493BP 2013092520130925

<110> korea research institute of bioscience and biotechnology <120> Mannosylphosphorylation Reaction Using YlMpo1 Protein <130> P13-B197 <160> 13 <170> KopatentIn 2.0 <210> 1 <211> 1935 <212> DNA <213> Yarrowia lipolytica YlMPO1 gene <400> 1 atggtgctgc acccgtttcg cctgctgcgc acatctcttg tgagcaagct cgtcgtcatt 60 ctcataacct gtctgatttt cggcagctta ctcaacttga ccgacaagct gcccgacgga 120 gtcaagtcac gggtcgccta catgaccgac gtgggcttag tcagcggcgg tgcccgctcg 180 aaagccatgg ccggcaactc gtctgtgcgc atcagtcacg tgccactgac gaaaatcaag 240 tttgccgaaa acgaaaagga attcaacccc aagtgggccc agaagaaggc tctggactcg 300 tcgtcggatt actcattcga gtggaaagac tgggtcgact tgaccgaggt cacgggtcta 360 ttcagagcca tcgaggtcgg ctcgtgtggc aaaaacaaac aatgccttag taagctccag 420 gtcaccggac ccccgactca ggtggagccc caggcgtttt tcaaccgggt cggaaaggtg 480 tttttggacc agaccatgcc caagccgaaa cagttgattt atctgaccga gaaagagtca 540 cgtggcaagc gggaggagcc cgtcgagata gagtcacatg ttccggtggt tcgggagcct 600 gagttgggcg actttagccg atcgcgtgac gccaagtcaa tccaaaatgc taagcgggag 660 gcgactgagg aggcgactgg tgagtcagcc aacgagggcc agtcacgtga ctccgcacga 720 gcctccgcgc gtgacattgc cttttccgag gctgaccccg tgcacgaaga ctcgtatgac 780 gacgacgaaa acggaaccat tctcgtgccg acggctgagt cagaggagga gctccaggaa 840 tacgcagaca aggacgcggc cgccaagtcg tacctgcgaa gcggctggtc acgtggccag 900 aaatatgtcg agctgccgcg cgagctgttc acttgggaca ttcacgaaga gattgacaag 960 ggactgacta agaagagcgt tgactcagac gacccgtcac gtgagcaggt tgcgcactcg 1020 cagtttctta gtcagcattg gaaacacatc aaaaagtccg gcaagcattt ctccgaagcg 1080 tgggttgtgg gcgacaccaa agcagccgga gtccattacg actggcgatt tttcagcgag 1140 ttaaacacca ttgacgagaa acgagtcatc ttgcgtaaat tggtgcgtgc gtggctcgac 1200 ttcacgtcac gtgagggcat tatcacgtgg ctggcgcatg gcacgttgct gggctggtac 1260 tggaacggcc agtctctgcc gtgggatttc gacggtgatg tccagatgcc gatccgcgaa 1320 ttcgaccggt ttgcccgcct ctataatcag tcgttggtaa ttgatgagtc agccggcggc 1380 cggtattatg tcgatgtggg tccctcctac gtcgagcgcc tccgaggcaa cggcaagaat 1440 gtcattgatg ctcggtttat cgacgttgat agtggcatgt acattgacat taccgccttg 1500 gcgtatgccg agcagcagga aaagttccac tgcaaaaact ggcatcggta tgagttggag 1560 agcgtttctc cgctgcgtcg gacgctgttt gagggcaagg aggcttacat tccaaacaat 1620 ttcgagtcca ttttgaacca ggagtacaag aaggcgccgc tggtgaacac ccggttcgag 1680 ggccacttct ggaacaagtt tatcaaaatg tgggttcagc aggaccagtg tgaaatgtta 1740 cagattgagg agaatgtgga ccagcgggca gtgagggaaa acggtgaacc cacaactttt 1800 ggcgcttgtt atcgaccgga gtatctcaag aggtatcacg agacccacaa gatgagtaag 1860 gctcatgagg gggagatgga ggcaatcagg caaaaggccg atgtttggga atggattcgc 1920 gaggagtttg agtag 1935 <210> 2 <211> 644 <212> PRT <213> Yarrowia lipolytica YlMpo1 <400> 2 Met Val Leu His Pro Phe Arg Leu Leu Arg Thr Ser Leu Val Ser Lys 1 5 10 15 Leu Val Val Ile Leu Ile Thr Cys Leu Ile Phe Gly Ser Leu Leu Asn 20 25 30 Leu Thr Asp Lys Leu Pro Asp Gly Val Lys Ser Arg Val Ala Tyr Met 35 40 45 Thr Asp Val Gly Leu Val Ser Gly Gly Ala Arg Ser Lys Ala Met Ala 50 55 60 Gly Asn Ser Ser Val Arg Ile Ser His Val Pro Leu Thr Lys Ile Lys 65 70 75 80 Phe Ala Glu Asn Glu Lys Glu Phe Asn Pro Lys Trp Ala Gln Lys Lys 85 90 95 Ala Leu Asp Ser Ser Ser Asp Tyr Ser Phe Glu Trp Lys Asp Trp Val 100 105 110 Asp Leu Thr Glu Val Thr Gly Leu Phe Arg Ala Ile Glu Val Gly Ser 115 120 125 Cys Gly Lys Asn Lys Gln Cys Leu Ser Lys Leu Gln Val Thr Gly Pro 130 135 140 Pro Thr Gln Val Glu Pro Gln Ala Phe Phe Asn Arg Val Gly Lys Val 145 150 155 160 Phe Leu Asp Gln Thr Met Pro Lys Pro Lys Gln Leu Ile Tyr Leu Thr 165 170 175 Glu Lys Glu Ser Arg Gly Lys Arg Glu Glu Pro Val Glu Ile Glu Ser 180 185 190 His Val Pro Val Val Arg Glu Pro Glu Leu Gly Asp Phe Ser Arg Ser 195 200 205 Arg Asp Ala Lys Ser Ile Gln Asn Ala Lys Arg Glu Ala Thr Glu Glu 210 215 220 Ala Thr Gly Glu Ser Ala Asn Glu Gly Gln Ser Arg Asp Ser Ala Arg 225 230 235 240 Ala Ser Ala Arg Asp Ile Ala Phe Ser Glu Ala Asp Pro Val His Glu 245 250 255 Asp Ser Tyr Asp Asp Asp Glu Asn Gly Thr Ile Leu Val Pro Thr Ala 260 265 270 Glu Ser Glu Glu Glu Leu Gln Glu Tyr Ala Asp Lys Asp Ala Ala Ala 275 280 285 Lys Ser Tyr Leu Arg Ser Gly Trp Ser Arg Gly Gln Lys Tyr Val Glu 290 295 300 Leu Pro Arg Glu Leu Phe Thr Trp Asp Ile His Glu Glu Ile Asp Lys 305 310 315 320 Gly Leu Thr Lys Lys Ser Val Asp Ser Asp Asp Pro Ser Arg Glu Gln 325 330 335 Val Ala His Ser Gln Phe Leu Ser Gln His Trp Lys His Ile Lys Lys 340 345 350 Ser Gly Lys His Phe Ser Glu Ala Trp Val Val Gly Asp Thr Lys Ala 355 360 365 Ala Gly Val His Tyr Asp Trp Arg Phe Phe Ser Glu Leu Asn Thr Ile 370 375 380 Asp Glu Lys Arg Val Ile Leu Arg Lys Leu Val Arg Ala Trp Leu Asp 385 390 395 400 Phe Thr Ser Arg Glu Gly Ile Ile Thr Trp Leu Ala His Gly Thr Leu 405 410 415 Leu Gly Trp Tyr Trp Asn Gly Gln Ser Leu Pro Trp Asp Phe Asp Gly 420 425 430 Asp Val Gln Met Pro Ile Arg Glu Phe Asp Arg Phe Ala Arg Leu Tyr 435 440 445 Asn Gln Ser Leu Val Ile Asp Glu Ser Ala Gly Gly Arg Tyr Tyr Val 450 455 460 Asp Val Gly Pro Ser Tyr Val Glu Arg Leu Arg Gly Asn Gly Lys Asn 465 470 475 480 Val Ile Asp Ala Arg Phe Ile Asp Val Asp Ser Gly Met Tyr Ile Asp 485 490 495 Ile Thr Ala Leu Ala Tyr Ala Glu Gln Gln Glu Lys Phe His Cys Lys 500 505 510 Asn Trp His Arg Tyr Glu Leu Glu Ser Val Ser Pro Leu Arg Arg Thr 515 520 525 Leu Phe Glu Gly Lys Glu Ala Tyr Ile Pro Asn Asn Phe Glu Ser Ile 530 535 540 Leu Asn Gln Glu Tyr Lys Lys Ala Pro Leu Val Asn Thr Arg Phe Glu 545 550 555 560 Gly His Phe Trp Asn Lys Phe Ile Lys Met Trp Val Gln Gln Asp Gln 565 570 575 Cys Glu Met Leu Gln Ile Glu Glu Asn Val Asp Gln Arg Ala Val Arg 580 585 590 Glu Asn Gly Glu Pro Thr Thr Phe Gly Ala Cys Tyr Arg Pro Glu Tyr 595 600 605 Leu Lys Arg Tyr His Glu Thr His Lys Met Ser Lys Ala His Glu Gly 610 615 620 Glu Met Glu Ala Ile Arg Gln Lys Ala Asp Val Trp Glu Trp Ile Arg 625 630 635 640 Glu Glu Phe Glu <210> 3 <211> 1935 <212> DNA <213> Yarrowia lipolytica YlMPO1 gene <400> 3 atggtgctgc acccgtttcg cctgctgcgc acatctcttg tgagcaagct cgtcgtcatt 60 ctcataacct gtctgatttt cggcagctta ctcaacttga ccgacaagct gcccgacgga 120 gtcaagtcac gggtcgccta catgaccgac gtgggcttag tcagcggcgg tgcccgctcg 180 aaagccatgg ccggcaactc gtctgtgcgc atcagtcacg tgccactgac gaaaatcaag 240 tttgccgaaa acgaaaagga attcaacccc aagtgggccc agaagaaggc tctggactcg 300 tcgtcggatt actcattcga gtggaaagac tgggtcgact tgaccgaggt cacgggtcta 360 ttcagagcca tcgaggtcgg ctcgtgtggc aaaaacaaac aatgccttag taagctccag 420 gtcaccggac ccccgactca ggtggagccc caggcgtttt tcaaccgggt cggaaaggtg 480 tttttggacc agaccatgcc caagccgaaa cagttgattt atctgaccga gaaagagtca 540 cgtggcaagc gggaggagcc cgtcgagata gagtcacatg ttccggtggt tcgggagcct 600 gagttgggcg actttagccg atcgcgtgac gccaagtcaa tccaacatgc taagagggag 660 gcgactgagg aggcgactgg tgagtcagcc aacgagggcc agtcacgtga ctccgcacga 720 gcctccgcgc gtgacattgc cttttccgag gctgaccccg tgcacgaaga ctcgtatgac 780 gacgacgaaa acggaaccat tctcgtgccg acggctgagt cagaggagga gctccaggaa 840 tacgcagaca aggacgcggc cgccaagtcg tacctgcgaa gcggctggtc acgtggccag 900 aaatatgtcg agctgccgcg cgagctgttc acttgggaca ttcacgaaga gattgacaag 960 ggactgacta agaagagcgt tgactcagac gacccgtcac gtgagcaggt tgcgcactcg 1020 cagtttctta gtcagcattg gaaacacatc aaaaagtccg gcaagcattt ctccgaagcg 1080 tgggttgtgg gcgacaccaa agcagccgga gtccattacg actggcgatt tttcagcgag 1140 ttaaacacca ttgacgagaa acgagtcatc ttgcgtaaat tggtgcgtgc gtggctcgac 1200 ttcacgtcac gtgagggcat tatcacgtgg ctggcgcatg gcacgttgct gggctggtac 1260 tggaacggcc agtctctgcc gtgggatttc gacggtgatg tccagatgcc gatccgcgaa 1320 ttcgaccggt ttgcccgcct ctataatcag tcgttggtaa ttgatgagtc agccggcggc 1380 cggtattatg tcgatgtggg tccctcctac gtcgagcgcc tccgaggcaa cggcaagaat 1440 gtcattgatg ctcggtttat cgacgttgat agtggcatgt acattgacat taccgccttg 1500 gcgtatgccg agcagcagga aaagttccac tgcaaaaact ggcatcggta tgagttggag 1560 agcgtttctc cgctgcgtcg gacgctgttt gagggcaagg aggcttacat tccaaacaat 1620 ttcgagtcca ttttgaacca ggagtacaag aaggcgccgc tggtgaacac ccggttcgag 1680 ggccacttct ggaacaagtt tatcaaaatg tgggttcagc aggaccagtg tgaaatgtta 1740 cagattgagg agaatgtgga ccagcgggca gtgagggaaa acggtgaacc cacaactttt 1800 ggcgcttgtt atcgaccgga gtatctcaag aggtatcacg agacccacaa gatgagtaag 1860 gctcatgagg gggagatgga ggcaatcagg caaaaggccg atgtttggga atggattcgc 1920 gaggagtttg agtag 1935 <210> 4 <211> 644 <212> PRT <213> Yarrowia lipolytica YlMpo1 <400> 4 Met Val Leu His Pro Phe Arg Leu Leu Arg Thr Ser Leu Val Ser Lys 1 5 10 15 Leu Val Val Ile Leu Ile Thr Cys Leu Ile Phe Gly Ser Leu Leu Asn 20 25 30 Leu Thr Asp Lys Leu Pro Asp Gly Val Lys Ser Arg Val Ala Tyr Met 35 40 45 Thr Asp Val Gly Leu Val Ser Gly Gly Ala Arg Ser Lys Ala Met Ala 50 55 60 Gly Asn Ser Ser Val Arg Ile Ser His Val Pro Leu Thr Lys Ile Lys 65 70 75 80 Phe Ala Glu Asn Glu Lys Glu Phe Asn Pro Lys Trp Ala Gln Lys Lys 85 90 95 Ala Leu Asp Ser Ser Ser Asp Tyr Ser Phe Glu Trp Lys Asp Trp Val 100 105 110 Asp Leu Thr Glu Val Thr Gly Leu Phe Arg Ala Ile Glu Val Gly Ser 115 120 125 Cys Gly Lys Asn Lys Gln Cys Leu Ser Lys Leu Gln Val Thr Gly Pro 130 135 140 Pro Thr Gln Val Glu Pro Gln Ala Phe Phe Asn Arg Val Gly Lys Val 145 150 155 160 Phe Leu Asp Gln Thr Met Pro Lys Pro Lys Gln Leu Ile Tyr Leu Thr 165 170 175 Glu Lys Glu Ser Arg Gly Lys Arg Glu Glu Pro Val Glu Ile Glu Ser 180 185 190 His Val Pro Val Val Arg Glu Pro Glu Leu Gly Asp Phe Ser Arg Ser 195 200 205 Arg Asp Ala Lys Ser Ile Gln His Ala Lys Arg Glu Ala Thr Glu Glu 210 215 220 Ala Thr Gly Glu Ser Ala Asn Glu Gly Gln Ser Arg Asp Ser Ala Arg 225 230 235 240 Ala Ser Ala Arg Asp Ile Ala Phe Ser Glu Ala Asp Pro Val His Glu 245 250 255 Asp Ser Tyr Asp Asp Asp Glu Asn Gly Thr Ile Leu Val Pro Thr Ala 260 265 270 Glu Ser Glu Glu Glu Leu Gln Glu Tyr Ala Asp Lys Asp Ala Ala Ala 275 280 285 Lys Ser Tyr Leu Arg Ser Gly Trp Ser Arg Gly Gln Lys Tyr Val Glu 290 295 300 Leu Pro Arg Glu Leu Phe Thr Trp Asp Ile His Glu Glu Ile Asp Lys 305 310 315 320 Gly Leu Thr Lys Lys Ser Val Asp Ser Asp Asp Pro Ser Arg Glu Gln 325 330 335 Val Ala His Ser Gln Phe Leu Ser Gln His Trp Lys His Ile Lys Lys 340 345 350 Ser Gly Lys His Phe Ser Glu Ala Trp Val Val Gly Asp Thr Lys Ala 355 360 365 Ala Gly Val His Tyr Asp Trp Arg Phe Phe Ser Glu Leu Asn Thr Ile 370 375 380 Asp Glu Lys Arg Val Ile Leu Arg Lys Leu Val Arg Ala Trp Leu Asp 385 390 395 400 Phe Thr Ser Arg Glu Gly Ile Ile Thr Trp Leu Ala His Gly Thr Leu 405 410 415 Leu Gly Trp Tyr Trp Asn Gly Gln Ser Leu Pro Trp Asp Phe Asp Gly 420 425 430 Asp Val Gln Met Pro Ile Arg Glu Phe Asp Arg Phe Ala Arg Leu Tyr 435 440 445 Asn Gln Ser Leu Val Ile Asp Glu Ser Ala Gly Gly Arg Tyr Tyr Val 450 455 460 Asp Val Gly Pro Ser Tyr Val Glu Arg Leu Arg Gly Asn Gly Lys Asn 465 470 475 480 Val Ile Asp Ala Arg Phe Ile Asp Val Asp Ser Gly Met Tyr Ile Asp 485 490 495 Ile Thr Ala Leu Ala Tyr Ala Glu Gln Gln Glu Lys Phe His Cys Lys 500 505 510 Asn Trp His Arg Tyr Glu Leu Glu Ser Val Ser Pro Leu Arg Arg Thr 515 520 525 Leu Phe Glu Gly Lys Glu Ala Tyr Ile Pro Asn Asn Phe Glu Ser Ile 530 535 540 Leu Asn Gln Glu Tyr Lys Lys Ala Pro Leu Val Asn Thr Arg Phe Glu 545 550 555 560 Gly His Phe Trp Asn Lys Phe Ile Lys Met Trp Val Gln Gln Asp Gln 565 570 575 Cys Glu Met Leu Gln Ile Glu Glu Asn Val Asp Gln Arg Ala Val Arg 580 585 590 Glu Asn Gly Glu Pro Thr Thr Phe Gly Ala Cys Tyr Arg Pro Glu Tyr 595 600 605 Leu Lys Arg Tyr His Glu Thr His Lys Met Ser Lys Ala His Glu Gly 610 615 620 Glu Met Glu Ala Ile Arg Gln Lys Ala Asp Val Trp Glu Trp Ile Arg 625 630 635 640 Glu Glu Phe Glu <210> 5 <211> 1794 <212> DNA <213> Yarrowia lipolytica YlMPO1 gene <400> 5 atgaccgacg tgggcttagt cagcggcggt gcccgctcga aagccatggc cggcaactcg 60 tctgtgcgca tcagtcacgt gccactgacg aaaatcaagt ttgccgaaaa cgaaaaggaa 120 ttcaacccca agtgggccca gaagaaggct ctggactcgt cgtcggatta ctcattcgag 180 tggaaagact gggtcgactt gaccgaggtc acgggtctat tcagagccat cgaggtcggc 240 tcgtgtggca aaaacaaaca atgccttagt aagctccagg tcaccggacc cccgactcag 300 gtggagcccc aggcgttttt caaccgggtc ggaaaggtgt ttttggacca gaccatgccc 360 aagccgaaac agttgattta tctgaccgag aaagagtcac gtggcaagcg ggaggagccc 420 gtcgagatag agtcacatgt tccggtggtt cgggagcctg agttgggcga ctttagccga 480 tcgcgtgacg ccaagtcaat ccaacatgct aagagggagg cgactgagga ggcgactggt 540 gagtcagcca acgagggcca gtcacgtgac tccgcacgag cctccgcgcg tgacattgcc 600 ttttccgagg ctgaccccgt gcacgaagac tcgtatgacg acgacgaaaa cggaaccatt 660 ctcgtgccga cggctgagtc agaggaggag ctccaggaat acgcagacaa ggacgcggcc 720 gccaagtcgt acctgcgaag cggctggtca cgtggccaga aatatgtcga gctgccgcgc 780 gagctgttca cttgggacat tcacgaagag attgacaagg gactgactaa gaagagcgtt 840 gactcagacg acccgtcacg tgagcaggtt gcgcactcgc agtttcttag tcagcattgg 900 aaacacatca aaaagtccgg caagcatttc tccgaagcgt gggttgtggg cgacaccaaa 960 gcagccggag tccattacga ctggcgattt ttcagcgagt taaacaccat tgacgagaaa 1020 cgagtcatct tgcgtaaatt ggtgcgtgcg tggctcgact tcacgtcacg tgagggcatt 1080 atcacgtggc tggcgcatgg cacgttgctg ggctggtact ggaacggcca gtctctgccg 1140 tgggatttcg acggtgatgt ccagatgccg atccgcgaat tcgaccggtt tgcccgcctc 1200 tataatcagt cgttggtaat tgatgagtca gccggcggcc ggtattatgt cgatgtgggt 1260 ccctcctacg tcgagcgcct ccgaggcaac ggcaagaatg tcattgatgc tcggtttatc 1320 gacgttgata gtggcatgta cattgacatt accgccttgg cgtatgccga gcagcaggaa 1380 aagttccact gcaaaaactg gcatcggtat gagttggaga gcgtttctcc gctgcgtcgg 1440 acgctgtttg agggcaagga ggcttacatt ccaaacaatt tcgagtccat tttgaaccag 1500 gagtacaaga aggcgccgct ggtgaacacc cggttcgagg gccacttctg gaacaagttt 1560 atcaaaatgt gggttcagca ggaccagtgt gaaatgttac agattgagga gaatgtggac 1620 cagcgggcag tgagggaaaa cggtgaaccc acaacttttg gcgcttgtta tcgaccggag 1680 tatctcaaga ggtatcacga gacccacaag atgagtaagg ctcatgaggg ggagatggag 1740 gcaatcaggc aaaaggccga tgtttgggaa tggattcgcg aggagtttga gtag 1794 <210> 6 <211> 597 <212> PRT <213> Yarrowia lipolytica YlMpo1 <400> 6 Met Thr Asp Val Gly Leu Val Ser Gly Gly Ala Arg Ser Lys Ala Met 1 5 10 15 Ala Gly Asn Ser Ser Val Arg Ile Ser His Val Pro Leu Thr Lys Ile 20 25 30 Lys Phe Ala Glu Asn Glu Lys Glu Phe Asn Pro Lys Trp Ala Gln Lys 35 40 45 Lys Ala Leu Asp Ser Ser Ser Asp Tyr Ser Phe Glu Trp Lys Asp Trp 50 55 60 Val Asp Leu Thr Glu Val Thr Gly Leu Phe Arg Ala Ile Glu Val Gly 65 70 75 80 Ser Cys Gly Lys Asn Lys Gln Cys Leu Ser Lys Leu Gln Val Thr Gly 85 90 95 Pro Pro Thr Gln Val Glu Pro Gln Ala Phe Phe Asn Arg Val Gly Lys 100 105 110 Val Phe Leu Asp Gln Thr Met Pro Lys Pro Lys Gln Leu Ile Tyr Leu 115 120 125 Thr Glu Lys Glu Ser Arg Gly Lys Arg Glu Glu Pro Val Glu Ile Glu 130 135 140 Ser His Val Pro Val Val Arg Glu Pro Glu Leu Gly Asp Phe Ser Arg 145 150 155 160 Ser Arg Asp Ala Lys Ser Ile Gln His Ala Lys Arg Glu Ala Thr Glu 165 170 175 Glu Ala Thr Gly Glu Ser Ala Asn Glu Gly Gln Ser Arg Asp Ser Ala 180 185 190 Arg Ala Ser Ala Arg Asp Ile Ala Phe Ser Glu Ala Asp Pro Val His 195 200 205 Glu Asp Ser Tyr Asp Asp Asp Glu Asn Gly Thr Ile Leu Val Pro Thr 210 215 220 Ala Glu Ser Glu Glu Glu Leu Gln Glu Tyr Ala Asp Lys Asp Ala Ala 225 230 235 240 Ala Lys Ser Tyr Leu Arg Ser Gly Trp Ser Arg Gly Gln Lys Tyr Val 245 250 255 Glu Leu Pro Arg Glu Leu Phe Thr Trp Asp Ile His Glu Glu Ile Asp 260 265 270 Lys Gly Leu Thr Lys Lys Ser Val Asp Ser Asp Asp Pro Ser Arg Glu 275 280 285 Gln Val Ala His Ser Gln Phe Leu Ser Gln His Trp Lys His Ile Lys 290 295 300 Lys Ser Gly Lys His Phe Ser Glu Ala Trp Val Val Gly Asp Thr Lys 305 310 315 320 Ala Ala Gly Val His Tyr Asp Trp Arg Phe Phe Ser Glu Leu Asn Thr 325 330 335 Ile Asp Glu Lys Arg Val Ile Leu Arg Lys Leu Val Arg Ala Trp Leu 340 345 350 Asp Phe Thr Ser Arg Glu Gly Ile Ile Thr Trp Leu Ala His Gly Thr 355 360 365 Leu Leu Gly Trp Tyr Trp Asn Gly Gln Ser Leu Pro Trp Asp Phe Asp 370 375 380 Gly Asp Val Gln Met Pro Ile Arg Glu Phe Asp Arg Phe Ala Arg Leu 385 390 395 400 Tyr Asn Gln Ser Leu Val Ile Asp Glu Ser Ala Gly Gly Arg Tyr Tyr 405 410 415 Val Asp Val Gly Pro Ser Tyr Val Glu Arg Leu Arg Gly Asn Gly Lys 420 425 430 Asn Val Ile Asp Ala Arg Phe Ile Asp Val Asp Ser Gly Met Tyr Ile 435 440 445 Asp Ile Thr Ala Leu Ala Tyr Ala Glu Gln Gln Glu Lys Phe His Cys 450 455 460 Lys Asn Trp His Arg Tyr Glu Leu Glu Ser Val Ser Pro Leu Arg Arg 465 470 475 480 Thr Leu Phe Glu Gly Lys Glu Ala Tyr Ile Pro Asn Asn Phe Glu Ser 485 490 495 Ile Leu Asn Gln Glu Tyr Lys Lys Ala Pro Leu Val Asn Thr Arg Phe 500 505 510 Glu Gly His Phe Trp Asn Lys Phe Ile Lys Met Trp Val Gln Gln Asp 515 520 525 Gln Cys Glu Met Leu Gln Ile Glu Glu Asn Val Asp Gln Arg Ala Val 530 535 540 Arg Glu Asn Gly Glu Pro Thr Thr Phe Gly Ala Cys Tyr Arg Pro Glu 545 550 555 560 Tyr Leu Lys Arg Tyr His Glu Thr His Lys Met Ser Lys Ala His Glu 565 570 575 Gly Glu Met Glu Ala Ile Arg Gln Lys Ala Asp Val Trp Glu Trp Ile 580 585 590 Arg Glu Glu Phe Glu 595 <210> 7 <211> 1755 <212> DNA <213> Yarrowia lipolytica YlMPO1 gene <400> 7 aaagccatgg ccggcaactc gtctgtgcgc atcagtcacg tgccactgac gaaaatcaag 60 tttgccgaaa acgaaaagga attcaacccc aagtgggccc agaagaaggc tctggactcg 120 tcgtcggatt actcattcga gtggaaagac tgggtcgact tgaccgaggt cacgggtcta 180 ttcagagcca tcgaggtcgg ctcgtgtggc aaaaacaaac aatgccttag taagctccag 240 gtcaccggac ccccgactca ggtggagccc caggcgtttt tcaaccgggt cggaaaggtg 300 tttttggacc agaccatgcc caagccgaaa cagttgattt atctgaccga gaaagagtca 360 cgtggcaagc gggaggagcc cgtcgagata gagtcacatg ttccggtggt tcgggagcct 420 gagttgggcg actttagccg atcgcgtgac gccaagtcaa tccaacatgc taagagggag 480 gcgactgagg aggcgactgg tgagtcagcc aacgagggcc agtcacgtga ctccgcacga 540 gcctccgcgc gtgacattgc cttttccgag gctgaccccg tgcacgaaga ctcgtatgac 600 gacgacgaaa acggaaccat tctcgtgccg acggctgagt cagaggagga gctccaggaa 660 tacgcagaca aggacgcggc cgccaagtcg tacctgcgaa gcggctggtc acgtggccag 720 aaatatgtcg agctgccgcg cgagctgttc acttgggaca ttcacgaaga gattgacaag 780 ggactgacta agaagagcgt tgactcagac gacccgtcac gtgagcaggt tgcgcactcg 840 cagtttctta gtcagcattg gaaacacatc aaaaagtccg gcaagcattt ctccgaagcg 900 tgggttgtgg gcgacaccaa agcagccgga gtccattacg actggcgatt tttcagcgag 960 ttaaacacca ttgacgagaa acgagtcatc ttgcgtaaat tggtgcgtgc gtggctcgac 1020 ttcacgtcac gtgagggcat tatcacgtgg ctggcgcatg gcacgttgct gggctggtac 1080 tggaacggcc agtctctgcc gtgggatttc gacggtgatg tccagatgcc gatccgcgaa 1140 ttcgaccggt ttgcccgcct ctataatcag tcgttggtaa ttgatgagtc agccggcggc 1200 cggtattatg tcgatgtggg tccctcctac gtcgagcgcc tccgaggcaa cggcaagaat 1260 gtcattgatg ctcggtttat cgacgttgat agtggcatgt acattgacat taccgccttg 1320 gcgtatgccg agcagcagga aaagttccac tgcaaaaact ggcatcggta tgagttggag 1380 agcgtttctc cgctgcgtcg gacgctgttt gagggcaagg aggcttacat tccaaacaat 1440 ttcgagtcca ttttgaacca ggagtacaag aaggcgccgc tggtgaacac ccggttcgag 1500 ggccacttct ggaacaagtt tatcaaaatg tgggttcagc aggaccagtg tgaaatgtta 1560 cagattgagg agaatgtgga ccagcgggca gtgagggaaa acggtgaacc cacaactttt 1620 ggcgcttgtt atcgaccgga gtatctcaag aggtatcacg agacccacaa gatgagtaag 1680 gctcatgagg gggagatgga ggcaatcagg caaaaggccg atgtttggga atggattcgc 1740 gaggagtttg agtag 1755 <210> 8 <211> 584 <212> PRT <213> Yarrowia lipolytica YlMpo1 <400> 8 Lys Ala Met Ala Gly Asn Ser Ser Val Arg Ile Ser His Val Pro Leu 1 5 10 15 Thr Lys Ile Lys Phe Ala Glu Asn Glu Lys Glu Phe Asn Pro Lys Trp 20 25 30 Ala Gln Lys Lys Ala Leu Asp Ser Ser Ser Asp Tyr Ser Phe Glu Trp 35 40 45 Lys Asp Trp Val Asp Leu Thr Glu Val Thr Gly Leu Phe Arg Ala Ile 50 55 60 Glu Val Gly Ser Cys Gly Lys Asn Lys Gln Cys Leu Ser Lys Leu Gln 65 70 75 80 Val Thr Gly Pro Pro Thr Gln Val Glu Pro Gln Ala Phe Phe Asn Arg 85 90 95 Val Gly Lys Val Phe Leu Asp Gln Thr Met Pro Lys Pro Lys Gln Leu 100 105 110 Ile Tyr Leu Thr Glu Lys Glu Ser Arg Gly Lys Arg Glu Glu Pro Val 115 120 125 Glu Ile Glu Ser His Val Pro Val Val Arg Glu Pro Glu Leu Gly Asp 130 135 140 Phe Ser Arg Ser Arg Asp Ala Lys Ser Ile Gln His Ala Lys Arg Glu 145 150 155 160 Ala Thr Glu Glu Ala Thr Gly Glu Ser Ala Asn Glu Gly Gln Ser Arg 165 170 175 Asp Ser Ala Arg Ala Ser Ala Arg Asp Ile Ala Phe Ser Glu Ala Asp 180 185 190 Pro Val His Glu Asp Ser Tyr Asp Asp Asp Glu Asn Gly Thr Ile Leu 195 200 205 Val Pro Thr Ala Glu Ser Glu Glu Glu Leu Gln Glu Tyr Ala Asp Lys 210 215 220 Asp Ala Ala Ala Lys Ser Tyr Leu Arg Ser Gly Trp Ser Arg Gly Gln 225 230 235 240 Lys Tyr Val Glu Leu Pro Arg Glu Leu Phe Thr Trp Asp Ile His Glu 245 250 255 Glu Ile Asp Lys Gly Leu Thr Lys Lys Ser Val Asp Ser Asp Asp Pro 260 265 270 Ser Arg Glu Gln Val Ala His Ser Gln Phe Leu Ser Gln His Trp Lys 275 280 285 His Ile Lys Lys Ser Gly Lys His Phe Ser Glu Ala Trp Val Val Gly 290 295 300 Asp Thr Lys Ala Ala Gly Val His Tyr Asp Trp Arg Phe Phe Ser Glu 305 310 315 320 Leu Asn Thr Ile Asp Glu Lys Arg Val Ile Leu Arg Lys Leu Val Arg 325 330 335 Ala Trp Leu Asp Phe Thr Ser Arg Glu Gly Ile Ile Thr Trp Leu Ala 340 345 350 His Gly Thr Leu Leu Gly Trp Tyr Trp Asn Gly Gln Ser Leu Pro Trp 355 360 365 Asp Phe Asp Gly Asp Val Gln Met Pro Ile Arg Glu Phe Asp Arg Phe 370 375 380 Ala Arg Leu Tyr Asn Gln Ser Leu Val Ile Asp Glu Ser Ala Gly Gly 385 390 395 400 Arg Tyr Tyr Val Asp Val Gly Pro Ser Tyr Val Glu Arg Leu Arg Gly 405 410 415 Asn Gly Lys Asn Val Ile Asp Ala Arg Phe Ile Asp Val Asp Ser Gly 420 425 430 Met Tyr Ile Asp Ile Thr Ala Leu Ala Tyr Ala Glu Gln Gln Glu Lys 435 440 445 Phe His Cys Lys Asn Trp His Arg Tyr Glu Leu Glu Ser Val Ser Pro 450 455 460 Leu Arg Arg Thr Leu Phe Glu Gly Lys Glu Ala Tyr Ile Pro Asn Asn 465 470 475 480 Phe Glu Ser Ile Leu Asn Gln Glu Tyr Lys Lys Ala Pro Leu Val Asn 485 490 495 Thr Arg Phe Glu Gly His Phe Trp Asn Lys Phe Ile Lys Met Trp Val 500 505 510 Gln Gln Asp Gln Cys Glu Met Leu Gln Ile Glu Glu Asn Val Asp Gln 515 520 525 Arg Ala Val Arg Glu Asn Gly Glu Pro Thr Thr Phe Gly Ala Cys Tyr 530 535 540 Arg Pro Glu Tyr Leu Lys Arg Tyr His Glu Thr His Lys Met Ser Lys 545 550 555 560 Ala His Glu Gly Glu Met Glu Ala Ile Arg Gln Lys Ala Asp Val Trp 565 570 575 Glu Trp Ile Arg Glu Glu Phe Glu 580 <210> 9 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> YlMPO1 HindIII 1F <400> 9 cccaagcttc gatgaccgac gtgggcttag t 31 <210> 10 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> YlMPO1 HindIII 2F <400> 10 cccaagcttc gaaagccatg gccggcaact c 31 <210> 11 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> YlMPO1 XhoI R <400> 11 ccgctcgagc tcaaactcct cgcgaatcca 30 <210> 12 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> YlMPO1 SgfI F <400> 12 acggcgatcg ccatgaccga cgt 23 <210> 13 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> YlMPO1 BamHI R <400> 13 agcggatccc tactcaaact cctcg 25 <110> korea research institute of bioscience and biotechnology <120> Mannosylphosphorylation Reaction Using YlMpo1 Protein <130> P13-B197 <160> 13 <170> Kopatentin 2.0 <210> 1 <211> 1935 <212> DNA <213> Yarrowia lipolytica YlMPO1 gene <400> 1 atggtgctgc acccgtttcg cctgctgcgc acatctcttg tgagcaagct cgtcgtcatt 60 ctcataacct gtctgatttt cggcagctta ctcaacttga ccgacaagct gcccgacgga 120 gtcaagtcac gggtcgccta catgaccgac gtgggcttag tcagcggcgg tgcccgctcg 180 aaagccatgg ccggcaactc gtctgtgcgc atcagtcacg tgccactgac gaaaatcaag 240 tttgccgaaa acgaaaagga attcaacccc aagtgggccc agaagaaggc tctggactcg 300 tcgtcggatt actcattcga gtggaaagac tgggtcgact tgaccgaggt cacgggtcta 360 ttcagagcca tcgaggtcgg ctcgtgtggc aaaaacaaac aatgccttag taagctccag 420 gtcaccggac ccccgactca ggtggagccc caggcgtttt tcaaccgggt cggaaaggtg 480 tttttggacc agaccatgcc caagccgaaa cagttgattt atctgaccga gaaagagtca 540 cgtggcaagc gggaggagcc cgtcgagata gagtcacatg ttccggtggt tcgggagcct 600 gagttgggcg actttagccg atcgcgtgac gccaagtcaa tccaaaatgc taagcgggag 660 gcgactgagg aggcgactgg tgagtcagcc aacgagggcc agtcacgtga ctccgcacga 720 gcctccgcgc gtgacattgc cttttccgag gctgaccccg tgcacgaaga ctcgtatgac 780 gacgacgaaa acggaaccat tctcgtgccg acggctgagt cagaggagga gctccaggaa 840 tacgcagaca aggacgcggc cgccaagtcg tacctgcgaa gcggctggtc acgtggccag 900 aaatatgtcg agctgccgcg cgagctgttc acttgggaca ttcacgaaga gattgacaag 960 ggactgacta agaagagcgt tgactcagac gacccgtcac gtgagcaggt tgcgcactcg 1020 cagtttctta gtcagcattg gaaacacatc aaaaagtccg gcaagcattt ctccgaagcg 1080 tgggttgtgg gcgacaccaa agcagccgga gtccattacg actggcgatt tttcagcgag 1140 ttaaacacca ttgacgagaa acgagtcatc ttgcgtaaat tggtgcgtgc gtggctcgac 1200 ttcacgtcac gtgagggcat tatcacgtgg ctggcgcatg gcacgttgct gggctggtac 1260 tggaacggcc agtctctgcc gtgggatttc gacggtgatg tccagatgcc gatccgcgaa 1320 ttcgaccggt ttgcccgcct ctataatcag tcgttggtaa ttgatgagtc agccggcggc 1380 cggtattatg tcgatgtggg tccctcctac gtcgagcgcc tccgaggcaa cggcaagaat 1440 gtcattgatg ctcggtttat cgacgttgat agtggcatgt acattgacat taccgccttg 1500 gcgtatgccg agcagcagga aaagttccac tgcaaaaact ggcatcggta tgagttggag 1560 agcgtttctc cgctgcgtcg gacgctgttt gagggcaagg aggcttacat tccaaacaat 1620 ttcgagtcca ttttgaacca ggagtacaag aaggcgccgc tggtgaacac ccggttcgag 1680 ggccacttct ggaacaagtt tatcaaaatg tgggttcagc aggaccagtg tgaaatgtta 1740 cagattgagg agaatgtgga ccagcgggca gtgagggaaa acggtgaacc cacaactttt 1800 ggcgcttgtt atcgaccgga gtatctcaag aggtatcacg agacccacaa gatgagtaag 1860 gctcatgagg gggagatgga ggcaatcagg caaaaggccg atgtttggga atggattcgc 1920 gaggagtttg agtag 1935 <210> 2 <211> 644 <212> PRT <213> Yarrowia lipolytica YlMpo1 <400> 2 Met Val Leu His Pro Phe Arg Leu Leu Arg Thr Ser Leu Val Ser Lys   1 5 10 15 Leu Val Val Ile Leu Ile Thr Cys Leu Ile Phe Gly Ser Leu Leu Asn              20 25 30 Leu Thr Asp Lys Leu Pro Asp Gly Val Lys Ser Arg Val Ala Tyr Met          35 40 45 Thr Asp Val Gly Leu Val Ser Gly Gly Ala Arg Ser Lys Ala Met Ala      50 55 60 Gly Asn Ser Ser Val Arg Ile Ser His Val Pro Leu Thr Lys Ile Lys  65 70 75 80 Phe Ala Glu Asn Glu Lys Glu Phe Asn Pro Lys Trp Ala Gln Lys Lys                  85 90 95 Ala Leu Asp Ser Ser Ser Asp Tyr Ser Phe Glu Trp Lys Asp Trp Val             100 105 110 Asp Leu Thr Glu Val Thr Gly Leu Phe Arg Ala Ile Glu Val Gly Ser         115 120 125 Cys Gly Lys Asn Lys Gln Cys Leu Ser Lys Leu Gln Val Thr Gly Pro     130 135 140 Pro Thr Gln Val Glu Pro Gln Ala Phe Phe Asn Arg Val Gly Lys Val 145 150 155 160 Phe Leu Asp Gln Thr Met Pro Lys Pro Lys Gln Leu Ile Tyr Leu Thr                 165 170 175 Glu Lys Glu Ser Arg Gly Lys Arg Glu Glu Pro Val Glu Ile Glu Ser             180 185 190 His Val Pro Val Val Arg Glu Pro Glu Leu Gly Asp Phe Ser Arg Ser         195 200 205 Arg Asp Ala Lys Ser Ile Gln Asn Ala Lys Arg Glu Ala Thr Glu Glu     210 215 220 Ala Thr Gly Glu Ser Ala Asn Glu Gly Gln Ser Arg Asp Ser Ala Arg 225 230 235 240 Ala Ser Ala Arg Asp Ile Ala Phe Ser Glu Ala Asp Pro Val His Glu                 245 250 255 Asp Ser Tyr Asp Asp Asp Glu Asn Gly Thr Ile Leu Val Pro Thr Ala             260 265 270 Glu Ser Glu Glu Glu Leu Gln Glu Tyr Ala Asp Lys Asp Ala Ala Ala         275 280 285 Lys Ser Tyr Leu Arg Ser Gly Trp Ser Arg Gly Gln Lys Tyr Val Glu     290 295 300 Leu Pro Arg Glu Leu Phe Thr Trp Asp Ile His Glu Glu Ile Asp Lys 305 310 315 320 Gly Leu Thr Lys Lys Ser Val Asp Ser Asp Asp Pro Ser Arg Glu Gln                 325 330 335 Val Ala His Ser Gln Phe Leu Ser Gln His Trp Lys His Ile Lys Lys             340 345 350 Ser Gly Lys His Phe Ser Glu Ala Trp Val Val Gly Asp Thr Lys Ala         355 360 365 Ala Gly Val His Tyr Asp Trp Arg Phe Phe Ser Glu Leu Asn Thr Ile     370 375 380 Asp Glu Lys Arg Val Ile Leu Arg Lys Leu Val Arg Ala Trp Leu Asp 385 390 395 400 Phe Thr Ser Arg Glu Gly Ile Ile Thr Trp Leu Ala His Gly Thr Leu                 405 410 415 Leu Gly Trp Tyr Trp Asn Gly Gln Ser Leu Pro Trp Asp Phe Asp Gly             420 425 430 Asp Val Gln Met Pro Ile Arg Glu Phe Asp Arg Phe Ala Arg Leu Tyr         435 440 445 Asn Gln Ser Leu Val Ile Asp Glu Ser Ala Gly Gly Arg Tyr Tyr Val     450 455 460 Asp Val Gly Pro Ser Tyr Val Glu Arg Leu Arg Gly Asn Gly Lys Asn 465 470 475 480 Val Ile Asp Ala Arg Phe Ile Asp Val Asp Ser Gly Met Tyr Ile Asp                 485 490 495 Ile Thr Ala Leu Ala Tyr Ala Glu Gln Gln Glu Lys Phe His Cys Lys             500 505 510 Asn Trp His Arg Tyr Glu Leu Glu Ser Val Ser Pro Leu Arg Arg Thr         515 520 525 Leu Phe Glu Gly Lys Glu Ala Tyr Ile Pro Asn Asn Phe Glu Ser Ile     530 535 540 Leu Asn Gln Glu Tyr Lys Lys Ala Pro Leu Val Asn Thr Arg Phe Glu 545 550 555 560 Gly His Phe Trp Asn Lys Phe Ile Lys Met Trp Val Gln Gln Asp Gln                 565 570 575 Cys Glu Met Leu Gln Ile Glu Glu Asn Val Asp Gln Arg Ala Val Arg             580 585 590 Glu Asn Gly Glu Pro Thr Thr Phe Gly Ala Cys Tyr Arg Pro Glu Tyr         595 600 605 Leu Lys Arg Tyr His Glu Thr His Lys Met Ser Lys Ala His Glu Gly     610 615 620 Glu Met Glu Ala Ile Arg Gln Lys Ala Asp Val Trp Glu Trp Ile Arg 625 630 635 640 Glu Glu Phe Glu                 <210> 3 <211> 1935 <212> DNA <213> Yarrowia lipolytica YlMPO1 gene <400> 3 atggtgctgc acccgtttcg cctgctgcgc acatctcttg tgagcaagct cgtcgtcatt 60 ctcataacct gtctgatttt cggcagctta ctcaacttga ccgacaagct gcccgacgga 120 gtcaagtcac gggtcgccta catgaccgac gtgggcttag tcagcggcgg tgcccgctcg 180 aaagccatgg ccggcaactc gtctgtgcgc atcagtcacg tgccactgac gaaaatcaag 240 tttgccgaaa acgaaaagga attcaacccc aagtgggccc agaagaaggc tctggactcg 300 tcgtcggatt actcattcga gtggaaagac tgggtcgact tgaccgaggt cacgggtcta 360 ttcagagcca tcgaggtcgg ctcgtgtggc aaaaacaaac aatgccttag taagctccag 420 gtcaccggac ccccgactca ggtggagccc caggcgtttt tcaaccgggt cggaaaggtg 480 tttttggacc agaccatgcc caagccgaaa cagttgattt atctgaccga gaaagagtca 540 cgtggcaagc gggaggagcc cgtcgagata gagtcacatg ttccggtggt tcgggagcct 600 gagttgggcg actttagccg atcgcgtgac gccaagtcaa tccaacatgc taagagggag 660 gcgactgagg aggcgactgg tgagtcagcc aacgagggcc agtcacgtga ctccgcacga 720 gcctccgcgc gtgacattgc cttttccgag gctgaccccg tgcacgaaga ctcgtatgac 780 gacgacgaaa acggaaccat tctcgtgccg acggctgagt cagaggagga gctccaggaa 840 tacgcagaca aggacgcggc cgccaagtcg tacctgcgaa gcggctggtc acgtggccag 900 aaatatgtcg agctgccgcg cgagctgttc acttgggaca ttcacgaaga gattgacaag 960 ggactgacta agaagagcgt tgactcagac gacccgtcac gtgagcaggt tgcgcactcg 1020 cagtttctta gtcagcattg gaaacacatc aaaaagtccg gcaagcattt ctccgaagcg 1080 tgggttgtgg gcgacaccaa agcagccgga gtccattacg actggcgatt tttcagcgag 1140 ttaaacacca ttgacgagaa acgagtcatc ttgcgtaaat tggtgcgtgc gtggctcgac 1200 ttcacgtcac gtgagggcat tatcacgtgg ctggcgcatg gcacgttgct gggctggtac 1260 tggaacggcc agtctctgcc gtgggatttc gacggtgatg tccagatgcc gatccgcgaa 1320 ttcgaccggt ttgcccgcct ctataatcag tcgttggtaa ttgatgagtc agccggcggc 1380 cggtattatg tcgatgtggg tccctcctac gtcgagcgcc tccgaggcaa cggcaagaat 1440 gtcattgatg ctcggtttat cgacgttgat agtggcatgt acattgacat taccgccttg 1500 gcgtatgccg agcagcagga aaagttccac tgcaaaaact ggcatcggta tgagttggag 1560 agcgtttctc cgctgcgtcg gacgctgttt gagggcaagg aggcttacat tccaaacaat 1620 ttcgagtcca ttttgaacca ggagtacaag aaggcgccgc tggtgaacac ccggttcgag 1680 ggccacttct ggaacaagtt tatcaaaatg tgggttcagc aggaccagtg tgaaatgtta 1740 cagattgagg agaatgtgga ccagcgggca gtgagggaaa acggtgaacc cacaactttt 1800 ggcgcttgtt atcgaccgga gtatctcaag aggtatcacg agacccacaa gatgagtaag 1860 gctcatgagg gggagatgga ggcaatcagg caaaaggccg atgtttggga atggattcgc 1920 gaggagtttg agtag 1935 <210> 4 <211> 644 <212> PRT <213> Yarrowia lipolytica YlMpo1 <400> 4 Met Val Leu His Pro Phe Arg Leu Leu Arg Thr Ser Leu Val Ser Lys   1 5 10 15 Leu Val Val Ile Leu Ile Thr Cys Leu Ile Phe Gly Ser Leu Leu Asn              20 25 30 Leu Thr Asp Lys Leu Pro Asp Gly Val Lys Ser Arg Val Ala Tyr Met          35 40 45 Thr Asp Val Gly Leu Val Ser Gly Gly Ala Arg Ser Lys Ala Met Ala      50 55 60 Gly Asn Ser Ser Val Arg Ile Ser His Val Pro Leu Thr Lys Ile Lys  65 70 75 80 Phe Ala Glu Asn Glu Lys Glu Phe Asn Pro Lys Trp Ala Gln Lys Lys                  85 90 95 Ala Leu Asp Ser Ser Ser Asp Tyr Ser Phe Glu Trp Lys Asp Trp Val             100 105 110 Asp Leu Thr Glu Val Thr Gly Leu Phe Arg Ala Ile Glu Val Gly Ser         115 120 125 Cys Gly Lys Asn Lys Gln Cys Leu Ser Lys Leu Gln Val Thr Gly Pro     130 135 140 Pro Thr Gln Val Glu Pro Gln Ala Phe Phe Asn Arg Val Gly Lys Val 145 150 155 160 Phe Leu Asp Gln Thr Met Pro Lys Pro Lys Gln Leu Ile Tyr Leu Thr                 165 170 175 Glu Lys Glu Ser Arg Gly Lys Arg Glu Glu Pro Val Glu Ile Glu Ser             180 185 190 His Val Pro Val Val Arg Glu Pro Glu Leu Gly Asp Phe Ser Arg Ser         195 200 205 Arg Asp Ala Lys Ser Ile Gln His Ala Lys Arg Glu Ala Thr Glu Glu     210 215 220 Ala Thr Gly Glu Ser Ala Asn Glu Gly Gln Ser Arg Asp Ser Ala Arg 225 230 235 240 Ala Ser Ala Arg Asp Ile Ala Phe Ser Glu Ala Asp Pro Val His Glu                 245 250 255 Asp Ser Tyr Asp Asp Asp Glu Asn Gly Thr Ile Leu Val Pro Thr Ala             260 265 270 Glu Ser Glu Glu Glu Leu Gln Glu Tyr Ala Asp Lys Asp Ala Ala Ala         275 280 285 Lys Ser Tyr Leu Arg Ser Gly Trp Ser Arg Gly Gln Lys Tyr Val Glu     290 295 300 Leu Pro Arg Glu Leu Phe Thr Trp Asp Ile His Glu Glu Ile Asp Lys 305 310 315 320 Gly Leu Thr Lys Lys Ser Val Asp Ser Asp Asp Pro Ser Arg Glu Gln                 325 330 335 Val Ala His Ser Gln Phe Leu Ser Gln His Trp Lys His Ile Lys Lys             340 345 350 Ser Gly Lys His Phe Ser Glu Ala Trp Val Val Gly Asp Thr Lys Ala         355 360 365 Ala Gly Val His Tyr Asp Trp Arg Phe Phe Ser Glu Leu Asn Thr Ile     370 375 380 Asp Glu Lys Arg Val Ile Leu Arg Lys Leu Val Arg Ala Trp Leu Asp 385 390 395 400 Phe Thr Ser Arg Glu Gly Ile Ile Thr Trp Leu Ala His Gly Thr Leu                 405 410 415 Leu Gly Trp Tyr Trp Asn Gly Gln Ser Leu Pro Trp Asp Phe Asp Gly             420 425 430 Asp Val Gln Met Pro Ile Arg Glu Phe Asp Arg Phe Ala Arg Leu Tyr         435 440 445 Asn Gln Ser Leu Val Ile Asp Glu Ser Ala Gly Gly Arg Tyr Tyr Val     450 455 460 Asp Val Gly Pro Ser Tyr Val Glu Arg Leu Arg Gly Asn Gly Lys Asn 465 470 475 480 Val Ile Asp Ala Arg Phe Ile Asp Val Asp Ser Gly Met Tyr Ile Asp                 485 490 495 Ile Thr Ala Leu Ala Tyr Ala Glu Gln Gln Glu Lys Phe His Cys Lys             500 505 510 Asn Trp His Arg Tyr Glu Leu Glu Ser Val Ser Pro Leu Arg Arg Thr         515 520 525 Leu Phe Glu Gly Lys Glu Ala Tyr Ile Pro Asn Asn Phe Glu Ser Ile     530 535 540 Leu Asn Gln Glu Tyr Lys Lys Ala Pro Leu Val Asn Thr Arg Phe Glu 545 550 555 560 Gly His Phe Trp Asn Lys Phe Ile Lys Met Trp Val Gln Gln Asp Gln                 565 570 575 Cys Glu Met Leu Gln Ile Glu Glu Asn Val Asp Gln Arg Ala Val Arg             580 585 590 Glu Asn Gly Glu Pro Thr Thr Phe Gly Ala Cys Tyr Arg Pro Glu Tyr         595 600 605 Leu Lys Arg Tyr His Glu Thr His Lys Met Ser Lys Ala His Glu Gly     610 615 620 Glu Met Glu Ala Ile Arg Gln Lys Ala Asp Val Trp Glu Trp Ile Arg 625 630 635 640 Glu Glu Phe Glu                 <210> 5 <211> 1794 <212> DNA <213> Yarrowia lipolytica YlMPO1 gene <400> 5 atgaccgacg tgggcttagt cagcggcggt gcccgctcga aagccatggc cggcaactcg 60 tctgtgcgca tcagtcacgt gccactgacg aaaatcaagt ttgccgaaaa cgaaaaggaa 120 ttcaacccca agtgggccca gaagaaggct ctggactcgt cgtcggatta ctcattcgag 180 tggaaagact gggtcgactt gaccgaggtc acgggtctat tcagagccat cgaggtcggc 240 tcgtgtggca aaaacaaaca atgccttagt aagctccagg tcaccggacc cccgactcag 300 gtggagcccc aggcgttttt caaccgggtc ggaaaggtgt ttttggacca gaccatgccc 360 aagccgaaac agttgattta tctgaccgag aaagagtcac gtggcaagcg ggaggagccc 420 gtcgagatag agtcacatgt tccggtggtt cgggagcctg agttgggcga ctttagccga 480 tcgcgtgacg ccaagtcaat ccaacatgct aagagggagg cgactgagga ggcgactggt 540 gagtcagcca acgagggcca gtcacgtgac tccgcacgag cctccgcgcg tgacattgcc 600 ttttccgagg ctgaccccgt gcacgaagac tcgtatgacg acgacgaaaa cggaaccatt 660 ctcgtgccga cggctgagtc agaggaggag ctccaggaat acgcagacaa ggacgcggcc 720 gccaagtcgt acctgcgaag cggctggtca cgtggccaga aatatgtcga gctgccgcgc 780 gagctgttca cttgggacat tcacgaagag attgacaagg gactgactaa gaagagcgtt 840 gactcagacg acccgtcacg tgagcaggtt gcgcactcgc agtttcttag tcagcattgg 900 aaacacatca aaaagtccgg caagcatttc tccgaagcgt gggttgtggg cgacaccaaa 960 gcagccggag tccattacga ctggcgattt ttcagcgagt taaacaccat tgacgagaaa 1020 cgagtcatct tgcgtaaatt ggtgcgtgcg tggctcgact tcacgtcacg tgagggcatt 1080 atcacgtggc tggcgcatgg cacgttgctg ggctggtact ggaacggcca gtctctgccg 1140 tgggatttcg acggtgatgt ccagatgccg atccgcgaat tcgaccggtt tgcccgcctc 1200 tataatcagt cgttggtaat tgatgagtca gccggcggcc ggtattatgt cgatgtgggt 1260 ccctcctacg tcgagcgcct ccgaggcaac ggcaagaatg tcattgatgc tcggtttatc 1320 gacgttgata gtggcatgta cattgacatt accgccttgg cgtatgccga gcagcaggaa 1380 aagttccact gcaaaaactg gcatcggtat gagttggaga gcgtttctcc gctgcgtcgg 1440 acgctgtttg agggcaagga ggcttacatt ccaaacaatt tcgagtccat tttgaaccag 1500 gagtacaaga aggcgccgct ggtgaacacc cggttcgagg gccacttctg gaacaagttt 1560 atcaaaatgt gggttcagca ggaccagtgt gaaatgttac agattgagga gaatgtggac 1620 cagcgggcag tgagggaaaa cggtgaaccc acaacttttg gcgcttgtta tcgaccggag 1680 tatctcaaga ggtatcacga gacccacaag atgagtaagg ctcatgaggg ggagatggag 1740 gcaatcaggc aaaaggccga tgtttgggaa tggattcgcg aggagtttga gtag 1794 <210> 6 <211> 597 <212> PRT <213> Yarrowia lipolytica YlMpo1 <400> 6 Met Thr Asp Val Gly Leu Val Ser Gly Gly Ala Arg Ser Ser Ays Met   1 5 10 15 Ala Gly Asn Ser Ser Val Arg Ile Ser His Val Pro Leu Thr Lys Ile              20 25 30 Lys Phe Ala Glu Asn Glu Lys Glu Phe Asn Pro Lys Trp Ala Gln Lys          35 40 45 Lys Ala Leu Asp Ser Ser Ser Asp Tyr Ser Phe Glu Trp Lys Asp Trp      50 55 60 Val Asp Leu Thr Glu Val Thr Gly Leu Phe Arg Ala Ile Glu Val Gly  65 70 75 80 Ser Cys Gly Lys Asn Lys Gln Cys Leu Ser Lys Leu Gln Val Thr Gly                  85 90 95 Pro Pro Thr Gln Val Glu Pro Gln Ala Phe Phe Asn Arg Val Gly Lys             100 105 110 Val Phe Leu Asp Gln Thr Met Pro Lys Pro Lys Gln Leu Ile Tyr Leu         115 120 125 Thr Glu Lys Glu Ser Arg Gly Lys Arg Glu Glu Pro Val Glu Ile Glu     130 135 140 Ser His Val Val Val Val Arg Glu Pro Glu Leu Gly Asp Phe Ser Arg 145 150 155 160 Ser Arg Asp Ala Lys Ser Ile Gln His Ala Lys Arg Glu Ala Thr Glu                 165 170 175 Glu Ala Thr Gly Glu Ser Ala Asn Glu Gly Gln Ser Arg Asp Ser Ala             180 185 190 Arg Ala Ser Ala Arg Asp Ile Ala Phe Ser Glu Ala Asp Pro Val His         195 200 205 Glu Asp Ser Tyr Asp Asp Asp Glu Asn Gly Thr Ile Leu Val Pro Thr     210 215 220 Ala Glu Ser Glu Glu Glu Leu Gln Glu Tyr Ala Asp Lys Asp Ala Ala 225 230 235 240 Ala Lys Ser Tyr Leu Arg Ser Gly Trp Ser Arg Gly Gln Lys Tyr Val                 245 250 255 Glu Leu Pro Arg Glu Leu Phe Thr Trp Asp Ile His Glu Glu Ile Asp             260 265 270 Lys Gly Leu Thr Lys Lys Ser Val Asp Ser Asp Asp Pro Ser Arg Glu         275 280 285 Gln Val Ala His Ser Gln Phe Leu Ser Gln His Trp Lys His Ile Lys     290 295 300 Lys Ser Gly Lys His Phe Ser Glu Ala Trp Val Val Gly Asp Thr Lys 305 310 315 320 Ala Ala Gly Val His Tyr Asp Trp Arg Phe Phe Ser Glu Leu Asn Thr                 325 330 335 Ile Asp Glu Lys Arg Val Ile Leu Arg Lys Leu Val Arg Ala Trp Leu             340 345 350 Asp Phe Thr Ser Arg Glu Gly Ile Ile Thr Trp Leu Ala His Gly Thr         355 360 365 Leu Leu Gly Trp Tyr Trp Asn Gly Gln Ser Leu Pro Trp Asp Phe Asp     370 375 380 Gly Asp Val Gln Met Pro Ile Arg Glu Phe Asp Arg Phe Ala Arg Leu 385 390 395 400 Tyr Asn Gln Ser Leu Val Ile Asp Glu Ser Ala Gly Gly Arg Tyr Tyr                 405 410 415 Val Asp Val Gly Pro Ser Tyr Val Glu Arg Leu Arg Gly Asn Gly Lys             420 425 430 Asn Val Ile Asp Ala Arg Phe Ile Asp Val Asp Ser Gly Met Tyr Ile         435 440 445 Asp Ile Thr Ala Leu Ala Tyr Ala Glu Gln Gln Glu Lys Phe His Cys     450 455 460 Lys Asn Trp His Arg Tyr Glu Leu Glu Ser Val Ser Pro Leu Arg Arg 465 470 475 480 Thr Leu Phe Glu Gly Lys Glu Ala Tyr Ile Pro Asn Asn Phe Glu Ser                 485 490 495 Ile Leu Asn Gln Glu Tyr Lys Lys Ala Pro Leu Val Asn Thr Arg Phe             500 505 510 Glu Gly His Phe Trp Asn Lys Phe Ile Lys Met Trp Val Gln Gln Asp         515 520 525 Gln Cys Glu Met Leu Gln Ile Glu Glu Asn Val Asp Gln Arg Ala Val     530 535 540 Arg Glu Asn Gly Glu Pro Thr Thr Phe Gly Ala Cys Tyr Arg Pro Glu 545 550 555 560 Tyr Leu Lys Arg Tyr His Glu Thr His Lys Met Ser Lys Ala His Glu                 565 570 575 Gly Glu Met Glu Ala Ile Arg Gln Lys Ala Asp Val Trp Glu Trp Ile             580 585 590 Arg Glu Glu Phe Glu         595 <210> 7 <211> 1755 <212> DNA <213> Yarrowia lipolytica YlMPO1 gene <400> 7 aaagccatgg ccggcaactc gtctgtgcgc atcagtcacg tgccactgac gaaaatcaag 60 tttgccgaaa acgaaaagga attcaacccc aagtgggccc agaagaaggc tctggactcg 120 tcgtcggatt actcattcga gtggaaagac tgggtcgact tgaccgaggt cacgggtcta 180 ttcagagcca tcgaggtcgg ctcgtgtggc aaaaacaaac aatgccttag taagctccag 240 gtcaccggac ccccgactca ggtggagccc caggcgtttt tcaaccgggt cggaaaggtg 300 tttttggacc agaccatgcc caagccgaaa cagttgattt atctgaccga gaaagagtca 360 cgtggcaagc gggaggagcc cgtcgagata gagtcacatg ttccggtggt tcgggagcct 420 gagttgggcg actttagccg atcgcgtgac gccaagtcaa tccaacatgc taagagggag 480 gcgactgagg aggcgactgg tgagtcagcc aacgagggcc agtcacgtga ctccgcacga 540 gcctccgcgc gtgacattgc cttttccgag gctgaccccg tgcacgaaga ctcgtatgac 600 gacgacgaaa acggaaccat tctcgtgccg acggctgagt cagaggagga gctccaggaa 660 tacgcagaca aggacgcggc cgccaagtcg tacctgcgaa gcggctggtc acgtggccag 720 aaatatgtcg agctgccgcg cgagctgttc acttgggaca ttcacgaaga gattgacaag 780 ggactgacta agaagagcgt tgactcagac gacccgtcac gtgagcaggt tgcgcactcg 840 cagtttctta gtcagcattg gaaacacatc aaaaagtccg gcaagcattt ctccgaagcg 900 tgggttgtgg gcgacaccaa agcagccgga gtccattacg actggcgatt tttcagcgag 960 ttaaacacca ttgacgagaa acgagtcatc ttgcgtaaat tggtgcgtgc gtggctcgac 1020 ttcacgtcac gtgagggcat tatcacgtgg ctggcgcatg gcacgttgct gggctggtac 1080 tggaacggcc agtctctgcc gtgggatttc gacggtgatg tccagatgcc gatccgcgaa 1140 ttcgaccggt ttgcccgcct ctataatcag tcgttggtaa ttgatgagtc agccggcggc 1200 cggtattatg tcgatgtggg tccctcctac gtcgagcgcc tccgaggcaa cggcaagaat 1260 gtcattgatg ctcggtttat cgacgttgat agtggcatgt acattgacat taccgccttg 1320 gcgtatgccg agcagcagga aaagttccac tgcaaaaact ggcatcggta tgagttggag 1380 agcgtttctc cgctgcgtcg gacgctgttt gagggcaagg aggcttacat tccaaacaat 1440 ttcgagtcca ttttgaacca ggagtacaag aaggcgccgc tggtgaacac ccggttcgag 1500 ggccacttct ggaacaagtt tatcaaaatg tgggttcagc aggaccagtg tgaaatgtta 1560 cagattgagg agaatgtgga ccagcgggca gtgagggaaa acggtgaacc cacaactttt 1620 ggcgcttgtt atcgaccgga gtatctcaag aggtatcacg agacccacaa gatgagtaag 1680 gctcatgagg gggagatgga ggcaatcagg caaaaggccg atgtttggga atggattcgc 1740 gaggagtttg agtag 1755 <210> 8 <211> 584 <212> PRT <213> Yarrowia lipolytica YlMpo1 <400> 8 Lys Ala Met Ala Gly Asn Ser Ser Val Arg Ile Ser His Val Leu   1 5 10 15 Thr Lys Ile Lys Phe Ala Glu Asn Glu Lys Glu Phe Asn Pro Lys Trp              20 25 30 Ala Gln Lys Lys Ala Leu Asp Ser Ser Ser Asp Tyr Ser Phe Glu Trp          35 40 45 Lys Asp Trp Val Asp Leu Thr Glu Val Thr Gly Leu Phe Arg Ala Ile      50 55 60 Glu Val Gly Ser Cys Gly Lys Asn Lys Gln Cys Leu Ser Lys Leu Gln  65 70 75 80 Val Thr Gly Pro Pro Thr Gln Val Glu Pro Gln Ala Phe Phe Asn Arg                  85 90 95 Val Gly Lys Val Phe Leu Asp Gln Thr Met Pro Lys Pro Lys Gln Leu             100 105 110 Ile Tyr Leu Thr Glu Lys Glu Ser Arg Gly Lys Arg Glu Glu Pro Val         115 120 125 Glu Ile Glu Ser His Val Val Val Val Arg Glu Pro Glu Leu Gly Asp     130 135 140 Phe Ser Arg Ser Ser Asp Ala Lys Ser Ile Gln His Ala Lys Arg Glu 145 150 155 160 Ala Thr Glu Glu Ala Thr Gly Glu Ser Ala Asn Glu Gly Gln Ser Arg                 165 170 175 Asp Ser Ala Arg Ala Ser Ala Arg Asp Ile Ala Phe Ser Glu Ala Asp             180 185 190 Pro Val His Glu Asp Ser Tyr Asp Asp Asp Glu Asn Gly Thr Ile Leu         195 200 205 Val Pro Thr Ala Glu Ser Glu Glu Glu Leu Gln Glu Tyr Ala Asp Lys     210 215 220 Asp Ala Ala Lys Ser Tyr Leu Arg Ser Gly Trp Ser Arg Gly Gln 225 230 235 240 Lys Tyr Val Glu Leu Pro Arg Glu Leu Phe Thr Trp Asp Ile His Glu                 245 250 255 Glu Ile Asp Lys Gly Leu Thr Lys Lys Ser Val Asp Ser Asp Asp Pro             260 265 270 Ser Arg Glu Gln Val Ala His Ser Gln Phe Leu Ser Gln His Trp Lys         275 280 285 His Ile Lys Lys Ser Gly Lys His Phe Ser Glu Ala Trp Val Val Gly     290 295 300 Asp Thr Lys Ala Ala Gly Val His Tyr Asp Trp Arg Phe Phe Ser Glu 305 310 315 320 Leu Asn Thr Ile Asp Glu Lys Arg Val Ile Leu Arg Lys Leu Val Arg                 325 330 335 Ala Trp Leu Asp Phe Thr Ser Arg Glu Gly Ile Ile Thr Trp Leu Ala             340 345 350 His Gly Thr Leu Leu Gly Trp Tyr Trp Asn Gly Gln Ser Leu Pro Trp         355 360 365 Asp Phe Asp Gly Asp Val Gln Met Pro Ile Arg Glu Phe Asp Arg Phe     370 375 380 Ala Arg Leu Tyr Asn Gln Ser Leu Val Ile Asp Glu Ser Ala Gly Gly 385 390 395 400 Arg Tyr Tyr Val Asp Val Gly Pro Ser Tyr Val Glu Arg Leu Arg Gly                 405 410 415 Asn Gly Lys Asn Val Ile Asp Ala Arg Phe Ile Asp Val Asp Ser Gly             420 425 430 Met Tyr Ile Asp Ile Thr Ala Leu Ala Tyr Ala Glu Gln Gln Glu Lys         435 440 445 Phe His Cys Lys Asn Trp His Arg Tyr Glu Leu Glu Ser Val Ser Pro     450 455 460 Leu Arg Arg Thr Leu Phe Glu Gly Lys Glu Ala Tyr Ile Pro Asn Asn 465 470 475 480 Phe Glu Ser Ile Leu Asn Gln Glu Tyr Lys Lys Ala Pro Leu Val Asn                 485 490 495 Thr Arg Phe Glu Gly His Phe Trp Asn Lys Phe Ile Lys Met Trp Val             500 505 510 Gln Gln Asp Gln Cys Glu Met Leu Gln Ile Glu Glu Asn Val Asp Gln         515 520 525 Arg Ala Val Arg Glu Asn Gly Glu Pro Thr Thr Phe Gly Ala Cys Tyr     530 535 540 Arg Pro Glu Tyr Leu Lys Arg Tyr His Glu Thr His Lys Met Ser Lys 545 550 555 560 Ala His Glu Gly Glu Glu Ala Ile Arg Gln Lys Ala Asp Val Trp                 565 570 575 Glu Trp Ile Arg Glu Glu Phe Glu             580 <210> 9 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> YlMPO1 HindIII 1F <400> 9 cccaagcttc gatgaccgac gtgggcttag t 31 <210> 10 <211> 31 <212> DNA <213> Artificial Sequence <220> &Lt; 223 > YlMPO1 HindIII 2F <400> 10 cccaagcttc gaaagccatg gccggcaact c 31 <210> 11 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> YlMPO1 XhoI R <400> 11 ccgctcgagc tcaaactcct cgcgaatcca 30 <210> 12 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> YlMPO1 SgfI F <400> 12 acggcgatcg ccatgaccga cgt 23 <210> 13 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> YlMPO1 BamHI R <400> 13 agcggatccc tactcaaact cctcg 25

Claims (22)

YlMpo1을 코딩하는 유전자 또는 상기 유전자를 함유하는 재조합 벡터가 숙주세포에 도입되어 있는 것을 특징으로 하는 YlMpo1 생산능을 가지는 재조합 미생물.
A recombinant microorganism having the ability to produce YlMpo1, characterized in that a gene encoding YlMpo1 or a recombinant vector containing the gene is introduced into a host cell.
제1항에 있어서, 상기 YlMpo1은 야로위아 리포리티카(Yarrowia lipolytica) 유래인 것을 특징으로 하는 재조합 미생물.
2. The method of claim 1, wherein YlMpo1 is Yarrowia &lt; RTI ID = 0.0 &gt; lipolytica . &lt; / RTI &gt;
제1항에 있어서, 상기 YlMpo1는 서열번호 2, 서열번호 4, 서열번호 6 또는 서열번호 8의 아미노산 서열로 표시되는 YlMpo1인 것을 특징으로 하는 재조합 미생물.
2. The recombinant microorganism according to claim 1, wherein YlMpo1 is YlMpo1 represented by the amino acid sequence of SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6 or SEQ ID NO:
제3항에 있어서, 상기 서열번호 2, 서열번호 4, 서열번호 6 또는 서열번호 8의 아미노산 서열로 표시되는 YlMpo1은 각각 서열번호 1, 서열번호 3, 서열번호 5, 서열번호 7의 염기서열로 표시되는 유전자로 코딩되는 것을 특징으로 하는 재조합 미생물.
4. The method according to claim 3, wherein YlMpo1 represented by the amino acid sequence of SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6 or SEQ ID NO: 8 is a nucleotide sequence of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: Wherein the recombinant microorganism is encoded by a gene to be expressed.
제1항에 있어서, 상기 YlMpo1을 코딩하는 유전자를 함유하는 재조합 벡터는 pET21-YlMpo1-dTM1, pET21-YlMpo1-dTM2 또는 pFN18A-YlMpo1인 것을 특징으로 하는 재조합 미생물.
2. The recombinant microorganism according to claim 1, wherein the recombinant vector containing the gene encoding YlMpo1 is pET21-YlMpo1-dTM1, pET21-YlMpo1-dTM2 or pFN18A-YlMpo1.
제1항에 있어서, 상기 숙주세포는 대장균(Escherichia coli)인 것을 특징으로 하는 재조합 미생물.
The method of claim 1, wherein the host cell is Escherichia coli wherein the recombinant microorganism is E. coli .
제1항에 있어서, 상기 YlMpo1을 코딩하는 유전자를 함유하는 재조합 벡터 pFN18A-YlMpo1가 숙주세포에 도입되어 있는 재조합 미생물은 KCTC12493BP인 것을 특징으로 하는 재조합 미생물.
The recombinant microorganism according to claim 1, wherein the recombinant microorganism into which the recombinant vector pFN18A-YlMpo1 containing the gene encoding YlMpo1 is introduced into the host cell is KCTC12493BP.
다음의 단계를 포함하는 YlMpo1 단백질을 이용하여 당사슬에 만노스-6-인산을 부가시키는 방법:
(a) YlMpo1을 이용하여 당사슬에 만노스-6-인산-1-만노스를 부가시키는 단계; 및
(b) 상기 만노스-6-인산-1-만노스가 부가된 당사슬의 바깥쪽 만노스를 제거하여 만노스-6-인산이 부가된 당사슬을 생성시키는 단계.
A method for adding mannose-6-phosphate to an oligosaccharide using a YlMpo1 protein comprising the steps of:
(a) adding mannose-6-phosphate-1-mannose to the oligosaccharide using YlMpo1; And
(b) removing the outer mannoside of the mannose-6-phosphate-1-mannose-added oligosaccharide to produce a mannose-6-phosphate-added oligosaccharide.
제8항에 있어서, 상기 YlMpo1은 서열번호 2, 서열번호 4, 서열번호 6 또는 서열번호 8의 아미노산 서열로 표시되며, 야로위아 리포리티카(Yarrowia lipolytica) 유래인 것을 특징으로 하는 당사슬에 만노스-6-인산을 부가시키는 방법.
[Claim 9] The method according to claim 8, wherein the YlMpo1 is derived from Yarrowia lipolytica , which is represented by the amino acid sequence of SEQ ID NO: 2, SEQ ID NO: 4, SEQ ID NO: 6 or SEQ ID NO: 6-phosphoric acid is added.
제8항에 있어서, 상기 (a) 단계의 당사슬은 Man3 -9GlcNAc2 (M3-9)인 것을 특징으로 하는 당사슬에 만노스-6-인산을 부가시키는 방법.
The method according to claim 8, wherein the oligosaccharide of step (a) is Man 3 -9 GlcNAc 2 (M3-9).
제8항에 있어서, 상기 (a) 단계의 당사슬에 만노스-6-인산-1-만노스를 부가시키는 과정은 완충용액, 금속이온 및 GDP-만노스(mannose)가 추가로 첨가되는 것을 특징으로 하는 당사슬에 만노스-6-인산을 부가시키는 방법.
9. The method according to claim 8, wherein the step of adding mannose-6-phosphate-1-mannose to the sugar chain of step (a) further comprises adding a buffer solution, a metal ion and GDP- mannose. 6-phosphoric acid is added to mannose-6-phosphate.
제11항에 있어서, 상기 완충용액은 pH 5.0 내지 8.0의 인산나트륨 (sodium phosphate)인 것을 특징으로 하는 당사슬에 만노스-6-인산을 부가시키는 방법.
12. The method of claim 11, wherein the buffer solution is sodium phosphate at a pH of from 5.0 to 8.0.
제11항에 있어서, 상기 금속이온은 칼슘이온 또는 망간이온인 것을 특징으로 하는 당사슬에 만노스-6-인산을 부가시키는 방법.
12. The method according to claim 11, wherein the metal ion is calcium ion or manganese ion.
제11항에 있어서, 상기 (a) 단계의 당사슬에 만노스-6-인산-1-만노스를 부가시키는 과정은 계면활성제(surfactant)가 추가로 첨가되는 것을 특징으로 하는 당사슬에 만노스-6-인산을 부가시키는 방법.
12. The method according to claim 11, wherein the step of adding mannose-6-phosphate-1-mannose to the sugar chain of step (a) further comprises adding a surfactant. .
제14항에 있어서, 상기 계면활성제(surfactant)는 노닐 페녹시폴리에톡시에탄올(nonyl phenoxypolyethoxylethanol; NP-40), 폴리옥시에틸렌옥틸페닐에테르(polyoxyethylene octyl phenyl ether; Triton X-100), 폴리옥시에칠렌소르비톨모노라우레이트(Polyoxyethylene Sorbitan Monolaurate; Tween-20), 폴리옥시에틸렌 (23) 라우릴 에테르(Polyoxyethylene (23) lauryl ether; Brij-35) 및 3-[(3-콜아미도프로필)디메틸암모니오]-1-프로페인셀퍼네이트(3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate; CHAPS)로 구성된 군에서 선택되는 하나 이상인 것을 특징으로 하는 당사슬에 만노스-6-인산을 부가시키는 방법.
15. The method of claim 14, wherein the surfactant is selected from the group consisting of nonyl phenoxypolyethoxylethanol (NP-40), polyoxyethylene octyl phenyl ether (Triton X-100), polyoxyethylene Polyoxyethylene sorbitan monolaurate (Tween-20), polyoxyethylene (23) lauryl ether (Brij-35) and 3 - [(3-cholamidopropyl) (3 - [(3-cholamidopropyl) dimethylammonio] -1-propanesulfonate (CHAPS).
제8항에 있어서, 상기 (a) 단계의 만노스-6-인산-1-만노스가 부가된 당사슬의 바깥쪽 만노스를 제거하는 과정은 약산 가수분해 또는 캡핑 제거(uncapping) 효소를 이용하는 것을 특징으로 하는 당사슬에 만노스-6-인산을 부가시키는 방법.
[9] The method according to claim 8, wherein the step of removing the outer mannoside of the oligosaccharide to which mannose-6-phosphate-1-mannose is added is performed using a weak acid hydrolysis or uncapping enzyme And adding mannose-6-phosphate to the sugar chain.
제16항에 있어서, 상기 약산은 0.1 내지 5 M의 포름산(formic acid)인 것을 특징으로 하며, 캡핑 제거(uncapping) 효소는 α-만노시다제(α-mannosidase)인 것을 특징으로 하는 당사슬에 만노스-6-인산을 부가시키는 방법.
17. The method of claim 16, wherein the weak acid is a formic acid of 0.1 to 5 M, and the uncapping enzyme is a-mannosidase. -6-phosphoric acid.
제8항 내지 제17항 중 어느 한 항의 방법에 의해 만노스-6-인산을 부가하는 것을 특징으로 하는 당단백질의 제조방법.
17. A method for producing a glycoprotein, which comprises adding mannose-6-phosphate by the method according to any one of claims 8 to 17.
제8항 내지 제17항 중 어느 한 항의 방법에 의해 제조된 만노스-6-인산이 부가된 당사슬과 단백질을 화학적 또는 물리적인 결합시키는 것을 특징으로 하는 당단백질의 제조방법.
17. A method for producing a glycoprotein, which comprises chemically or physically bonding a mannose-6-phosphate-added oligosaccharide prepared by the method of any one of claims 8 to 17 to a protein.
제18항 또는 제19항에 있어서, 상기 단백질은 병원체 단백질(pathogen protein), 라이소좀 단백질(lysosomal protein), 성장 인자(growth factor), 사이토카인(cytokine), 케모카인(chemokine), 항체 또는 이의 항원-결합 단편(antigen-binding fragment), 또는 융합 단백질(fusion protein)인 것을 특징으로 하는 만노스-6-인산이 부가된 당단백질의 제조방법.
The method of claim 18 or 19, wherein the protein is selected from the group consisting of pathogen protein, lysosomal protein, growth factor, cytokine, chemokine, An antigen-binding fragment thereof, or a fusion protein. &Lt; Desc / Clms Page number 20 &gt;
제20항에 있어서, 상기 라이소좀 단백질(lysosomal protein)은 라이소좀 저장질환(lysosomal storage disease) 관련된 분해효소인 것을 특징으로 하는 만노스-6-인산이 부가된 당단백질의 제조방법.
The method according to claim 20, wherein the lysosomal protein is a lysosomal storage disease-related degradation enzyme.
제8항 내지 제17항 중 어느 한 항의 방법에 의해 제조된 만노스-6-인산이 부가된 당사슬과 내포 탈출을 위한 펩타이드, 지질 또는 나노물질과 결합시켜 라이소좀이 아닌 세포질 또는 핵 내로 유용물질을 전달하는 수송체 제조방법.17. A method for producing a mannose-6-phosphate-added oligosaccharide, which comprises combining a mannose-6-phosphate-added oligosaccharide prepared by the method of any one of claims 8 to 17 with a peptide, lipid or nanomaterial for encapsulation, Wherein the method comprises the steps of:
KR1020130121746A 2013-10-14 2013-10-14 Mannosylphosphorylation Reaction Using YlMpo1 Protein KR101638930B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020130121746A KR101638930B1 (en) 2013-10-14 2013-10-14 Mannosylphosphorylation Reaction Using YlMpo1 Protein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130121746A KR101638930B1 (en) 2013-10-14 2013-10-14 Mannosylphosphorylation Reaction Using YlMpo1 Protein

Publications (2)

Publication Number Publication Date
KR20150042936A true KR20150042936A (en) 2015-04-22
KR101638930B1 KR101638930B1 (en) 2016-07-12

Family

ID=53035824

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130121746A KR101638930B1 (en) 2013-10-14 2013-10-14 Mannosylphosphorylation Reaction Using YlMpo1 Protein

Country Status (1)

Country Link
KR (1) KR101638930B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104297220A (en) * 2014-04-18 2015-01-21 中国热带农业科学院海口实验站 Detection method and detection device for mercury ions
WO2016195394A1 (en) * 2015-06-02 2016-12-08 한국생명공학연구원 Method for preparing mannose-6-phosphate glycan-added glycoprotein using glycan derived from yeast cell wall mannoprotein
KR20200121707A (en) 2019-04-16 2020-10-26 주식회사 파미니티 Composition antivirus comprising extract echinacea

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080098298A (en) * 2007-05-04 2008-11-07 한국생명공학연구원 A novel ylmpo1 gene derived from yarrowia lipolytica and a process for preparing a glycoprotein not being mannosylphosphorylated by using a mutated yarrowia lipolytica in which ylmpo1 gene is disrupted
KR20110044689A (en) * 2009-10-23 2011-04-29 건국대학교 산학협력단 Novel mannose 6-phosphate isomerase and mutant thereof and use of the same
KR20120053963A (en) * 2010-11-18 2012-05-29 한국생명공학연구원 Peptide-n-glycosidase derived from yarrowia lipolytica and use thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080098298A (en) * 2007-05-04 2008-11-07 한국생명공학연구원 A novel ylmpo1 gene derived from yarrowia lipolytica and a process for preparing a glycoprotein not being mannosylphosphorylated by using a mutated yarrowia lipolytica in which ylmpo1 gene is disrupted
KR20110044689A (en) * 2009-10-23 2011-04-29 건국대학교 산학협력단 Novel mannose 6-phosphate isomerase and mutant thereof and use of the same
KR20120053963A (en) * 2010-11-18 2012-05-29 한국생명공학연구원 Peptide-n-glycosidase derived from yarrowia lipolytica and use thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Appl. Environ. Microbiol., Vol.77, pp. 1187-1195(2011.02.)* *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104297220A (en) * 2014-04-18 2015-01-21 中国热带农业科学院海口实验站 Detection method and detection device for mercury ions
CN104297220B (en) * 2014-04-18 2016-08-31 中国热带农业科学院海口实验站 A kind of mercury ion detecting method and detection device
WO2016195394A1 (en) * 2015-06-02 2016-12-08 한국생명공학연구원 Method for preparing mannose-6-phosphate glycan-added glycoprotein using glycan derived from yeast cell wall mannoprotein
KR20200121707A (en) 2019-04-16 2020-10-26 주식회사 파미니티 Composition antivirus comprising extract echinacea

Also Published As

Publication number Publication date
KR101638930B1 (en) 2016-07-12

Similar Documents

Publication Publication Date Title
TWI232238B (en) Novel yeast mutant strains and method for preparing glycoprotein with mammalian-typed sugar chains
KR101824743B1 (en) Hydrolysis of mannose-1-phospho-6-mannose linkage to phospho-6-mannose
US7001994B2 (en) Methods for introducing mannose 6-phosphate and other oligosaccharides onto glycoproteins
CA2836318C (en) Methods for coupling targeting peptides onto recombinant lysosomal enzymes for improved treatments of lysosomal storage diseases
JP4742191B2 (en) Glycoprotein and method for producing the same
JP6194324B2 (en) Methods and materials for the treatment of Pompe disease
CN103328646B (en) Mannosidase capable of uncapping mannose-1-phosphate-6-mannose linkages and demannosylating phosphorylated N-glycans and a method of promoting mammalian cellular uptake of glycoproteins
Han et al. The role of N-glycosylation sites in the activity, stability, and expression of the recombinant elastase expressed by Pichia pastoris
JP6017439B2 (en) Fusion enzyme having N-acetylglucosaminyltransferase activity
Bakke et al. Identification, characterization, and molecular cloning of a novel hyaluronidase, a member of glycosyl hydrolase family 16, from Penicillium spp.
KR20140036124A (en) De-mannosylation of phosphorylated n-glycans
Itoh et al. Recent progress in development of transgenic silkworms overexpressing recombinant human proteins with therapeutic potential in silk glands
KR101638930B1 (en) Mannosylphosphorylation Reaction Using YlMpo1 Protein
KR101847536B1 (en) Method for producing glycoprotein attached with mannose-6-phosphate glycans using glycans derived from yeast cell wall mannoproteins
US20150031085A1 (en) Novel Leech Hyaluronidase and Its Application
KR101105718B1 (en) A novel Hansenula polymorpha gene coding for dolichyl-phosphate-mannose dependent ?-1,3-mannosyltransferase and process for the production of recombinant glycoproteins with Hansenula polymorpha mutant strain deficient in the same gene
WO2014082080A2 (en) Methods for coupling targeting peptides onto recombinant lysosomal enzymes for improved treatments of lysosomal storage diseases
KR20180055888A (en) Modified lysosomal proteins and methods for their preparation
JP2770010B2 (en) Gene for positively controlling mannose-1-phosphate transfer in yeast and method for producing high mannose-type neutral sugar chain using mutant mutant of this gene
KR101718908B1 (en) A novel Mannanase and its use
Dupoiron et al. The N-Glycan Cluster from Xanthomonas campestris pv. campestris
KR101750888B1 (en) Method for Increasing Mannosylphosphorylation by Overexpression of YlMpo1
KR101582194B1 (en) A novel salt-resistant -galactosidase gene from Hermetia illucens and uses thereof
WO2003099856A1 (en) Method of artificially synthesizing proteoglycan
Peng Overexpression of human processing alpha-glucosidase I and functional study of yeast processing alpha-glucosidase I

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant