KR20150039005A - Method for recoverying metal of solar cell - Google Patents
Method for recoverying metal of solar cell Download PDFInfo
- Publication number
- KR20150039005A KR20150039005A KR20130117477A KR20130117477A KR20150039005A KR 20150039005 A KR20150039005 A KR 20150039005A KR 20130117477 A KR20130117477 A KR 20130117477A KR 20130117477 A KR20130117477 A KR 20130117477A KR 20150039005 A KR20150039005 A KR 20150039005A
- Authority
- KR
- South Korea
- Prior art keywords
- solid solution
- solar cell
- constituent material
- electrode
- cathode
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 72
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 30
- 239000002184 metal Substances 0.000 title claims abstract description 30
- 239000000463 material Substances 0.000 claims abstract description 132
- 239000006104 solid solution Substances 0.000 claims abstract description 113
- 239000000470 constituent Substances 0.000 claims abstract description 80
- 238000002156 mixing Methods 0.000 claims abstract description 8
- 238000011084 recovery Methods 0.000 claims description 29
- 238000007670 refining Methods 0.000 claims description 27
- 239000003792 electrolyte Substances 0.000 claims description 23
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 19
- 229910052799 carbon Inorganic materials 0.000 claims description 19
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 18
- 229910052710 silicon Inorganic materials 0.000 claims description 18
- 239000010703 silicon Substances 0.000 claims description 18
- -1 oxygen ions Chemical class 0.000 claims description 12
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 claims description 12
- 230000008016 vaporization Effects 0.000 claims description 12
- 239000004020 conductor Substances 0.000 claims description 11
- 238000010438 heat treatment Methods 0.000 claims description 11
- 239000011343 solid material Substances 0.000 claims description 11
- 238000009834 vaporization Methods 0.000 claims description 10
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 9
- 238000005119 centrifugation Methods 0.000 claims description 8
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 8
- 239000001301 oxygen Substances 0.000 claims description 6
- 229910052760 oxygen Inorganic materials 0.000 claims description 6
- 229910001961 silver nitrate Inorganic materials 0.000 claims description 6
- 239000001257 hydrogen Substances 0.000 claims description 5
- 229910052739 hydrogen Inorganic materials 0.000 claims description 5
- 239000000126 substance Substances 0.000 claims description 5
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 4
- 229910052737 gold Inorganic materials 0.000 claims description 4
- 239000010931 gold Substances 0.000 claims description 4
- 229910052750 molybdenum Inorganic materials 0.000 claims description 4
- 239000011733 molybdenum Substances 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 229910052697 platinum Inorganic materials 0.000 claims description 4
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 4
- 229910052721 tungsten Inorganic materials 0.000 claims description 4
- 239000010937 tungsten Substances 0.000 claims description 4
- 238000001816 cooling Methods 0.000 claims description 3
- 239000000243 solution Substances 0.000 claims description 2
- 238000001914 filtration Methods 0.000 description 7
- 239000005341 toughened glass Substances 0.000 description 5
- 229910000497 Amalgam Inorganic materials 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 230000002378 acidificating effect Effects 0.000 description 4
- NDVLTYZPCACLMA-UHFFFAOYSA-N silver oxide Chemical compound [O-2].[Ag+].[Ag+] NDVLTYZPCACLMA-UHFFFAOYSA-N 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- 230000005611 electricity Effects 0.000 description 3
- 238000005868 electrolysis reaction Methods 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 229910052753 mercury Inorganic materials 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000003912 environmental pollution Methods 0.000 description 2
- 238000009616 inductively coupled plasma Methods 0.000 description 2
- 239000002440 industrial waste Substances 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 229910001923 silver oxide Inorganic materials 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 101710134784 Agnoprotein Proteins 0.000 description 1
- 229910004613 CdTe Inorganic materials 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 150000001721 carbon Chemical class 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000011863 silicon-based powder Substances 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002195 soluble material Substances 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C1/00—Electrolytic production, recovery or refining of metals by electrolysis of solutions
- C25C1/20—Electrolytic production, recovery or refining of metals by electrolysis of solutions of noble metals
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C7/00—Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C7/00—Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
- C25C7/02—Electrodes; Connections thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/042—PV modules or arrays of single PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Silicon Compounds (AREA)
Abstract
A method for recovering a metal in a solar cell according to an embodiment of the present invention relates to separating a first constituent material of the first electrode from a solar cell including a first electrode and a second electrode, Mixing; Generating a solid solution of the first constituent material and the solid solution material; And separating the first constituent material from the solid solution.
Description
The present invention relates to a metal recovery method for a solar cell.
Various alternative energy sources are being developed to prevent global warming caused by environmental pollution and carbon dioxide emissions. Among alternative energy sources, there is growing interest in solar cells that convert sunlight into electricity, and solar cells installed in each country are also increasing.
After the solar cell is installed, the photoelectric conversion efficiency is lowered after a certain period of time, so the installed solar cell should be removed. As mentioned above, the amount of solar cells installed is increasing, and the amount of solar cells to be removed will increase in the future.
Because expensive materials are used to increase the photoelectric conversion efficiency of a solar cell, when the solar cell is demolished without withdrawing these materials, the waste solar cell as well as waste of resources may cause serious environmental pollution.
Accordingly, studies are underway to recover the materials of the solar cell from the pulsed solar cells.
The metal recovery method of the solar cell according to the embodiment of the present invention is for recovering the material of the solar cell with high purity.
According to an aspect of the present invention, there is provided a metal recovery method of a solar cell for separating a first constituent material of the first electrode from a solar cell including a first electrode and a second electrode, ; Generating a solid solution of the first constituent material and the solid solution material; And separating the first constituent material from the solid solution.
The first electrode may be formed on one surface of the solar cell to which light is incident, and the second electrode may be formed on the other surface of the solar cell facing the one surface.
The solid solution can be separated from the solid solution by centrifugation.
After the solid solution is formed by mixing the solar cell and the solid solution, the solid solution and the solid solution may be separated into the solid solution and the solid solution by centrifugation.
The centrifuged solid solution may be heated above the vaporization temperature of the solid solution to remove the solid solution from the solid solution.
The first constituent material can be obtained by heating the solid solution above the vaporization temperature of the solid solution material to vaporize the solid solution material.
By the heating, the solid solution separated from the solid solution may be cooled to condense the solid solution.
The solar cell is crushed and mixed with the solid solution material, and the solid solution material can flow between the shattered solar cell particles.
The second constituent material of the second electrode and silicon remaining in the first constituent material separated from the solid solution may be removed through an aqueous electrolytic refining step.
The water-based electrolyte used in the aqueous electrolytic refining step may include a water-soluble material including the first constituent material.
The aqueous electrolyte used in the aqueous electrolytic refining step may be an aqueous silver nitrate solution.
In the aqueous electrolytic refining step, the anode may be the first constituent material separated from the solid solution, and the cathode may be made of a material that does not react with the aqueous electrolyte and is less ionized than the aqueous electrolyte.
The cathode may comprise at least one of tungsten, nickel, molybdenum, gold, and platinum.
A recovery container for collecting the first constituent material refined through the aqueous electrolytic refining process and falling from the cathode may be disposed below the cathode.
In the aqueous electrolytic refining step, the anode is the first constituent material separated from the solid solution, and the voltage of the anode and the voltage of the cathode with respect to the reference electrode may be set so that the oxygen ion and the hydrogen ion in the electrolyte are held.
In the aqueous electrolytic refining step, the anode may be separated from the carbon-based conductor and the solid-solution body in contact with the carbon-based conductor.
The carbon-based conductor is carbon felt, and the carbon felt may cover a part of the first constituent material.
The first constituent material may include Ag, and the solid solution material may include Hg.
The metal recovery method of a solar cell according to an embodiment of the present invention can selectively separate the first constituent material from a solar cell using a solid solution material.
The metal recovery method of a solar cell according to an embodiment of the present invention can selectively recover the first constituent material at room temperature by using a solid solution material.
The metal recovery method of a solar cell according to an embodiment of the present invention recovers constituent materials without using an acidic material or a mechanical device, thereby making it possible to increase the recovery rate of constituent materials without generating secondary industrial waste.
1 is a flowchart illustrating a method of recovering a metal in a solar cell according to an embodiment of the present invention.
2 shows an electrolytic apparatus usable in a metal recovery method of a solar cell according to an embodiment of the present invention.
3 shows the potential for ionization of each component.
4 shows the state of the first constituent material before and after the solar cell is mixed with the solid solution and the alkaline aqueous solution.
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention in which the object of the present invention can be specifically realized will be described with reference to the accompanying drawings. In describing the present embodiment, the same designations and the same reference numerals are used for the same components, and further description thereof will be omitted.
The solar cell includes a first electrode and a second electrode for supplying electricity generated according to incidence of light to an external circuit. In the manufacturing process of the solar cell, the first electrode and the second electrode, A second electrode is formed.
1 is a flowchart illustrating a method of recovering a metal in a solar cell according to an embodiment of the present invention. As shown in FIG. 1, a metal recovery method for a solar cell according to an embodiment of the present invention includes a step (S110) of mixing a solar cell with a solid solution material, S120), and separating the first constituent material from the solid solution (S130).
In embodiments of the present invention, the solar cell may be in a state in which the tempered glass is removed and the first electrode and the second electrode are exposed.
The solar cell to which the metal recovery method according to an embodiment of the present invention can be applied may be a single crystal silicon solar cell, a polycrystalline silicon solar cell, or an amorphous silicon solar cell. However, the present invention is not limited thereto, and various types of solar cells such as CIGS solar cells and CdTe solar cells It can be applied to solar cells.
In the embodiment of the present invention, the solid solution may be in the form of an atom of a solid material interposed between the atoms of the first constituent material or may be a form in which some atoms of the first constituent material are pushed out and the atoms of the solid material are substituted there.
For example, when the first constituent material is Ag and the solid material is Hg, solid solution of Ag and Hg can be easily formed at room temperature because Hg is liquid at room temperature.
As described above, the metal recovery method of the solar cell according to the embodiment of the present invention can recover the first constituent material from the solar cell without using the acidic material. Accordingly, there is no need for a subsequent process for treating by-products (for example, silver nitrate or aluminum chloride) due to the use of acidic substances such as nitric acid or hydrochloric acid, and a facility for treating nitric acid gas or hydrochloric acid gas is not required.
At this time, the first electrode may be formed on one side of the solar cell to which the light is incident, and the second electrode may be formed on the other side of the solar cell located on the opposite side of the one side.
When the area of the first electrode formed on one surface of the solar cell into which the light is incident is large, the efficiency of the solar cell can be reduced by blocking the incidence of light by the first electrode. In order to reduce the area of the first electrode and smooth the current flow, the first electrode may be made of a first material having a small electrical resistance such as Ag.
On the other hand, since light is not directed toward the other surface of the solar cell where the second electrode is formed, the second electrode may be made of a second constituent material such as Al having a lower electrical conductivity than that of the first constituent.
On the other hand, the solar cell is crushed and mixed with the solidified material, and the solidified material can flow between the broken pieces of the solar cell. As mentioned above, the solar cell may be in a state where the tempered glass has been removed, and the solar cell may be broken in the process of removing the tempered glass. Or after the tempered glass has been removed, it can be shredded by an operator or process machinery.
Since the first electrode and the second electrode of the solar cell debris can be shielded by other debris when the solar cell is broken, the recovering materials for recovering the first electrode and the second electrode are in contact with the first electrode and the second electrode The area can be reduced.
In order to prevent this, the metal recovery method according to the embodiment of the present invention can expand the contact area between the solid solution material and the first electrode by using a solid solution material that can flow into the debris of the solar cell.
In the above-described solid solution generation step, the shattered solar cell is mixed with a solid solution in a predetermined vessel (not shown), and mixing can be performed by stirring using a stirring device such as a magnetic bar or a ball mill, The bar can be operated according to the set number of revolutions and the stirring time.
On the other hand, when the solar cell and the solid material are mixed, some of the solid material may be used to form a solid solution and the remaining solid material may remain. In order to separate the solid solution and the solid solution from the solid solution, the solid solution and the solid solution are mixed with the solid solution and solid solution, so that the solid solution and solid solution can be separated from each other. In an embodiment of the present invention, the filter may include low-cost porous fibers such as a thin cloth.
The solid solution remaining in the filter can then be separated from the solid solution by centrifugation. By centrifuging after filtering, more solid solubilized material can be separated from the solid solution.
In the above, centrifugal separation is performed after filtering, but a centrifugal separation process for a solid solution may be performed without a filtering process.
The solid solution thus centrifuged can be heated to a temperature above the vaporization temperature of the solid solution to remove the solid solution from the solid solution. That is, even if centrifugation is performed on the solid solution, the solid solution may remain in the solid solution, so that the solid solution can be removed by vaporizing the solid solution.
When the first constituent material is Ag and the solid material is Hg, the solid solution is Ag-Hg amalgam, which is an alloy of Ag and Hg, and the Ag-Hg amalgam subjected to filtering and centrifugation has a vaporization temperature of Hg of at least 357 degrees Celsius And Hg is vaporized so that Ag can be obtained.
For example, the Hg removal rate for Ag-Hg amalgam differs with temperature and time, and when Hg is maintained at 600 ° C for more than one hour, all Hg can be removed.
In the above description, the process of obtaining the first constituent material from solid solution by filtering, centrifugation and heating has been described. Alternatively, the metal recovery method of the solar cell according to the embodiment of the present invention can obtain the first constituent material through heating of the solid solution.
That is, the first constituent material can be obtained by heating the solid solution before and after the filtering to a temperature above the vaporization temperature of the solid solution material to vaporize the solid solution material. For example, Ag-Hg amalgam before and after filtering may be heated by heating to a vaporization temperature of Hg of 357 degrees Celsius or more to vaporize Hg to obtain Ag.
The metal recovery method of a solar cell according to an embodiment of the present invention may further include a step of cooling the solidified material separated from the solid solution by heating. The first constituent material can be obtained by heating the solid solution and vaporizing the solid solution as described above. At this time, the vaporized solid material can be recovered by cooling the solidified vapor material to condense the solid material.
For example, when the solid material is Hg, the specific gravity of vaporized Hg is very large, so that it is not easily dispersed in the air, and thus Hg can be easily collected and Hg can be easily reused. That is, when the pipe through which the vaporized Hg flows is cooled to be lower than the room temperature and lower than 100 deg. C, Hg can be condensed on the inner surface of the pipe, and if it is lower than room temperature, the condensation efficiency can be further increased. Thus, when Hg is condensed, the recovery of Hg can be easily performed.
Meanwhile, the metal recovery method of the solar cell according to the embodiment of the present invention can remove the second constituent material of the second electrode and the silicon remaining in the first constituent material separated from the solid solution through the aqueous electrolytic refining process.
Various materials constituting the solar cell may remain in the first constituent material in the process of recovering the first constituent material. For example, in the case of a silicon solar cell, a silicon wafer may be pulverized to a size of several nanometers to several millimeters (mm) in the process of removing the solar cell-protecting tempered glass.
The fine silicon powder may be contained in a small amount on the surface of the solid solution material in the process of separating the first constitutional material using the solid solution material and may remain in the first constituent material even if the solid solution is heated to vaporize the solid solution material.
In addition, since the second electrode is formed by sintering the second constituent material in the form of paste having a size of several micrometers (占 퐉), it can be contained in the surface of the solid solution material and remain in the first constituent material.
The first constituent material obtained through the vaporization process of the solid solution material may contain a small amount of the second constituent material and silicon, and the first constituent material of high purity can be obtained through the aqueous electrolytic refining process.
The aqueous electrolytic refining process is an electrolytic refining process using an aqueous electrolyte. The water-based electrolyte is an electrolyte containing water. Since the electrolytic refining process can be performed at a low temperature and the electrolyte is cheap and the process is performed at room temperature, a heating apparatus is not necessary and the processing apparatus is simple.
2 shows an electrolytic apparatus usable in a metal recovery method of a solar cell according to an embodiment of the present invention. 2, an aqueous electrolyte is filled in the
Although not shown in FIG. 2, Ni may be used as a reference electrode of the
The aqueous electrolyte used in the aqueous electrolytic refining process may be an aqueous solution of silver nitrate (AgNO 3 ).
The aqueous electrolytes should contain water-soluble substances. In order to deposit the first constituent material on the
Accordingly, when the first constituent material is Ag, the aqueous electrolyte should contain an Ag component including a substance soluble in water, and silver nitrate satisfies these conditions.
When the power source E is supplied to the
Meanwhile, in the aqueous electrolytic refining process, the
As shown in FIG. 2, a
3 shows the potential for ionization of each component. Even if a voltage is applied to the
In FIG. 3, since the right region of H / H + is a region where hydrogen ions are held and the left region of O -2 / O is a region where oxygen ions are held, the dotted line region of FIG. Area.
Therefore, in the aqueous electrolytic refining process, the
In the aqueous electrolytic refining process, the
At this time, the carbon-based
Instead of carbon felt, metal can be used, but metal oxide is formed on the metal surface over time, and the metal oxide interferes with the flow of electric current, so that the efficiency of electrolysis can be reduced. On the other hand, carbon felts do not affect the electrolysis efficiency because carbon dioxide is generated even if they are oxidized.
When the first electrode material is Ag, it is possible to recover Ag of high purity by using the aqueous electrolytic refining method described above. In this case, the maximum cathode efficiency, that is, the theoretical precipitation amount of the amount of metal deposited in the
As described above, when the first constituent material includes Ag, the solid solution material may include Hg. For example, when the first constituent material includes Ag, Hg can solidify Ag at room temperature.
That is, the solid solution can be formed at room temperature. Since the solid solution can be formed at room temperature, the energy consumption and equipment used in the metal recovery method of the solar cell according to the embodiment of the present invention can be reduced.
4 shows the state of the first constituent material before and after the solar cell is mixed with the solid solution material, and shows a state before and after the silicon solar cell is mixed with Hg.
A first electrode made of Ag is formed on a textured silicon wafer surface on the left side of FIG. The right side of FIG. 4 shows the state after the silicon solar cell is mixed with Hg.
Since the first electrode is formed on the textured silicon wafer surface before the mixing, silicon irregularities due to texturing are not seen in the silicon wafer region where the first electrode is formed due to the first electrode.
It can be seen that after the mixing, the Ag was dissolved by Hg through the exposed unevenness in the silicon wafer region corresponding to the first electrode region, and Ag was separated from the silicon wafer surface.
As described above, the first component material of high purity can be recovered through the metal recovery method of the solar cell according to the embodiment of the present invention. Also, since the first constituent material of high purity can be recovered, economical efficiency for selling or reusing the recovered first constituent material can be secured.
In addition, according to the metal recovery method of the solar cell according to the embodiment of the present invention, since the first constituent material of high purity is recovered from the solar cell in the case of the silicon solar cell, the first constituent material remaining in the silicon, So that high purity silicon can be recovered.
As described above, the metal recovery method of the solar cell according to the embodiment of the present invention recovers the first constituent material and the second constituent material from the solar cell without using an acidic substance, thereby preventing the generation of secondary industrial waste . In addition, since the metal recovery method of the solar cell according to the embodiment of the present invention does not use a mechanical device such as a cutting device, the recovery rate of silicon can be increased.
It will be apparent to those skilled in the art that the present invention may be embodied in other specific forms without departing from the spirit or scope of the invention as defined in the appended claims. . Therefore, the above-described embodiments are to be considered as illustrative rather than restrictive, and the present invention is not limited to the above description, but may be modified within the scope of the appended claims and equivalents thereof.
Tank: 110
Anode: 120
Cathode: 130
Collection container: 135
Carbon series conductor: 140
Claims (19)
Mixing the solar cell with a solidified material;
Generating a solid solution of the first constituent material and the solid solution material;
Separating the first constituent material from the solid solution
And a metal recovery method for a solar cell.
Wherein the first electrode is formed on one surface of the solar cell through which light is incident,
Wherein the second electrode is formed on the other surface of the solar cell located opposite to the one surface.
And the solid solution is separated from the solid solution by centrifugation.
Wherein the solid solution is formed by mixing the solar cell and the solidified material, and then the solidified material and the solid solution are put into a filter before the centrifugation to isolate the solidified material from the solidified material. .
Wherein the solid solution is centrifuged at a temperature higher than the vaporization temperature of the solid solution to remove the solid solution from the solid solution.
And heating the solid solution above the vaporization temperature of the solid solution to vaporize the solid solution to obtain the first solid material.
And cooling the solidified material separated from the solid solution by the heating to condense the solidified material.
Wherein the solar cell is crushed and mixed with the solid solution material, and the solid solution material flows between the shavings of the solar cell.
Wherein the second constituent material of the second electrode and silicon remaining in the first constituent material separated from the solid solution are removed through an aqueous electrolytic refining step.
Wherein the water-based electrolyte used in the aqueous electrolytic refining step comprises a substance capable of dissolving in water, including the first constituent material.
Wherein the aqueous electrolyte used in the aqueous electrolytic refining step is an aqueous silver nitrate solution.
Wherein the anode is the first constituent material separated from the solid solution in the aqueous electrolytic refining step and the cathode is made of a material which is not reacted with the aqueous electrolyte and is lower in ionization degree than the aqueous electrolyte.
Wherein the cathode comprises at least one of tungsten, nickel, molybdenum, gold, and platinum.
Wherein a recovery vessel for collecting the first constituent material refined through the aqueous electrolytic refining step and falling from the cathode is disposed below the cathode.
In the aqueous electrolytic refining step, the anode is the first constituent material separated from the solid solution,
Wherein the voltage of the anode and the voltage of the cathode with respect to the reference electrode are set so as to hold oxygen ions and hydrogen ions in the electrolyte.
In the aqueous electrolytic refining step,
A method for recovering a metal of a solar cell, comprising: a carbon-based conductor; and the first constituent material separated from the solid solution in contact with the carbon-based conductor.
The carbon-based conductor is carbon felt,
Wherein the carbon felt surrounds a part of the first constituent material.
Wherein the first constituent material comprises Ag and the solid solution material comprises Hg.
Wherein the solid solution is formed at room temperature.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020130117477A KR101584172B1 (en) | 2013-10-01 | 2013-10-01 | Method for recoverying metal of solar cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020130117477A KR101584172B1 (en) | 2013-10-01 | 2013-10-01 | Method for recoverying metal of solar cell |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20150039005A true KR20150039005A (en) | 2015-04-09 |
KR101584172B1 KR101584172B1 (en) | 2016-02-19 |
Family
ID=53029448
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020130117477A KR101584172B1 (en) | 2013-10-01 | 2013-10-01 | Method for recoverying metal of solar cell |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101584172B1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100644902B1 (en) * | 2004-05-25 | 2006-11-10 | (주)지케이엠 | High-rate recovery of valuable metals such as cobalt and lithium from waste lithium secondary batteries |
KR20100106551A (en) * | 2008-01-10 | 2010-10-01 | 각코호진 시바우라고교다이가쿠 | Method of recycling useful metal |
JP2011006317A (en) * | 2009-05-26 | 2011-01-13 | Sumitomo Chemical Co Ltd | Method for producing refined metal or metalloid |
KR20110069962A (en) | 2009-12-18 | 2011-06-24 | 한국화학연구원 | Methode for recycling silicon from waste solar cell |
CN103199148A (en) * | 2012-01-09 | 2013-07-10 | 深圳市格林美高新技术股份有限公司 | Method for recycling gallium, indium and germanium from wasted thin-film solar cells |
-
2013
- 2013-10-01 KR KR1020130117477A patent/KR101584172B1/en active IP Right Grant
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100644902B1 (en) * | 2004-05-25 | 2006-11-10 | (주)지케이엠 | High-rate recovery of valuable metals such as cobalt and lithium from waste lithium secondary batteries |
KR20100106551A (en) * | 2008-01-10 | 2010-10-01 | 각코호진 시바우라고교다이가쿠 | Method of recycling useful metal |
JP2011006317A (en) * | 2009-05-26 | 2011-01-13 | Sumitomo Chemical Co Ltd | Method for producing refined metal or metalloid |
KR20110069962A (en) | 2009-12-18 | 2011-06-24 | 한국화학연구원 | Methode for recycling silicon from waste solar cell |
CN103199148A (en) * | 2012-01-09 | 2013-07-10 | 深圳市格林美高新技术股份有限公司 | Method for recycling gallium, indium and germanium from wasted thin-film solar cells |
Also Published As
Publication number | Publication date |
---|---|
KR101584172B1 (en) | 2016-02-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Bae et al. | Technologies of lithium recycling from waste lithium ion batteries: a review | |
Huang et al. | Strategy and technology to recycle wafer-silicon solar modules | |
JP6314814B2 (en) | Method for recovering valuable metals from waste lithium-ion batteries | |
JP2024100996A (en) | Method and system for scalable direct recycling of batteries | |
JP2016149330A (en) | Processing method of used lithium ion battery | |
JP2019501301A (en) | Recovery method for copper, indium, gallium, and selenium materials | |
CN108987677A (en) | The method that silicon wafer cut by diamond wire waste recovery is used for lithium ion battery negative material preparation | |
KR101383280B1 (en) | Method of collecting gallium from igzo target | |
CN103084369B (en) | A kind of harmless treatment of circuit board and the method for resource comprehensive utilization | |
CN109904545A (en) | The method of diaphragm, copper foil and anode is recycled from applying waste lithium ionic power battery | |
JPWO2014112198A1 (en) | Method for producing indium oxide-tin oxide powder, method for producing ITO target, and method for producing indium hydroxide-metastannic acid mixture | |
JP2004186547A (en) | Method for recovering component of cis thin-film solar cell module | |
JP2003272720A (en) | Recovery method for lithium cobaltate | |
Tao et al. | Recent progress and future prospects of silicon solar module recycling | |
Boon Tay et al. | Upcycling end of life solar panels to lithium‐ion batteries via a low temperature approach | |
KR101509086B1 (en) | Method for recoverying metal of solar cell | |
KR101584172B1 (en) | Method for recoverying metal of solar cell | |
Zhou et al. | Status quo on recycling of waste crystalline silicon for photovoltaic modules and its implications for China’s photovoltaic industry | |
CN105714333A (en) | Method for recovering soldering tin from waste circuit board | |
CN108360025A (en) | A kind of method that aqueous solution electrolysis solid metallic sulfide prepares metal | |
CN102357504A (en) | Recovery method of lead in waste circuit board | |
KR20180018528A (en) | Carbonaceous material for electronic materials | |
Espinosa et al. | Recycling Technologies–Hydrometallurgy | |
JP6167359B2 (en) | Method for recovering valuable materials from CIS thin film solar cells | |
CN115498302A (en) | Fine recovery method and recovery device for leftover materials of lithium/sodium ion battery pole piece |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20181211 Year of fee payment: 4 |