KR20150024645A - Segmented-in-series solid oxide fuel cell ceramic interconnects and fabrication method of ceramic interconnects decalcomania paper - Google Patents
Segmented-in-series solid oxide fuel cell ceramic interconnects and fabrication method of ceramic interconnects decalcomania paper Download PDFInfo
- Publication number
- KR20150024645A KR20150024645A KR20130101829A KR20130101829A KR20150024645A KR 20150024645 A KR20150024645 A KR 20150024645A KR 20130101829 A KR20130101829 A KR 20130101829A KR 20130101829 A KR20130101829 A KR 20130101829A KR 20150024645 A KR20150024645 A KR 20150024645A
- Authority
- KR
- South Korea
- Prior art keywords
- ceramic
- fuel cell
- connection material
- solid oxide
- oxide fuel
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0204—Non-porous and characterised by the material
- H01M8/0215—Glass; Ceramic materials
- H01M8/0217—Complex oxides, optionally doped, of the type AMO3, A being an alkaline earth metal or rare earth metal and M being a metal, e.g. perovskites
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M2008/1293—Fuel cells with solid oxide electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/241—Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
- H01M8/2425—High-temperature cells with solid electrolytes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Ceramic Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
Description
본 발명은 다전지식 고체산화물연료전지용(Segmented-in-Series Solid Oxide Fuel Cell: SIS-SOFC) 세라믹연결재를 균일한 두께로 적층하여 높은 전기전도도를 가질 수 있게 저온에서 제조할 수 있는 방법에 관한 것으로, 더욱 자세하게는 세라믹연결재 분말을 전사지로 제작하여 균일한 두께로 제조한 후 셀에 적층하는 방법과 세라믹연결재가 1250℃이하의 저온에서 소결되도록 불화물(CaF2, MgF2 등)의 소결조제를 미량 치환하여 제조하고, 소결조제가 첨가되어 저온에서 제조한 세라믹연결재가 합성 후에도 미량 불화물을 함유하거나 원자가가 같은 자리에 환원성에 강한 원소가 미량 치환되어 750~850℃ 환원분위기에서 높은 전도성을 유지할 수 있는 성능향상 방법에 관한 것이다.[0001] The present invention relates to a method for producing a ceramic material for a solid oxide fuel cell (SIS-SOFC), which has a uniform thickness, at a low temperature so as to have high electrical conductivity (CaF 2 , MgF 2, and the like) are sintered at a low temperature of 1250 ° C. or less, and a method in which the ceramic connecting material is sintered at a low temperature of 1250 ° C. or less And the ceramic connecting material prepared at a low temperature by adding the sintering aid is added with trace amount of fluoride even after the synthesis and the element having a strong reducing property is substituted in the place where the valence is the same to maintain high conductivity in the reducing atmosphere of 750 to 850 ° C And a method for improving performance.
고체산화물 연료전지(Solid Oxide Fuel Cell: SOFC)는 고체상의 세라믹 전해질을 사용하여 600~1,000℃의 고온에서 연료와 공기의 전기화학반응에 의해 전기를 생산하는 연료전지로 현존하는 발전기술 중 발전효율이 가장 높고, 연료의 선택성이 자유롭고, 경제성이 우수한 장점이 있다.Solid Oxide Fuel Cell (SOFC) is a fuel cell that produces electricity by electrochemical reaction between fuel and air at a high temperature of 600 ~ 1,000 ℃ using solid ceramic electrolyte. Among the existing power generation technologies, Is the highest, is free of fuel selectivity, and is economically advantageous.
SOFC는 셀 구성요소가 세라믹이기 때문에 평판형, 원통형 및 평관형 등 다양한 형태의 셀(cell)로 제작이 가능하다. 평판형 SOFC는 전력밀도가 높고 전해질의 박막화가 가능하지만, 밀봉영역이 넓기 때문에 누설이 발생할 수 있는 단점이 있고, 고온에서 금속 연결재를 사용하기 때문에 크롬 휘발로 인해 셀-스택의 성능이 저하되는 문제점이 있으며, 열 싸이클에 대한 저항성이 낮아 신뢰성이 부족한 단점이 있다. 원통형 SOFC의 경우 셀 내구성이 높아 열싸이클이 우수하고, 원통형 셀의 끝 부분만 밀봉하기 때문에 밀봉이 간단한 장점을 가지고 있다. 반면 고가의 원료와 코팅 공정을 사용하기 때문에 제조 비용이 비싸고, 전류 이동 경로가 길어 셀 내부저항이 높기 때문에 출력밀도가 평판형 SOFC에 비해 낮은 값을 가지고 있다.Since the cell component of the SOFC is ceramic, it can be fabricated into various types of cells such as a flat plate, a cylindrical plate and a flat plate. The flat-plate type SOFC has a high power density and can make the electrolyte thinner. However, since the sealing area is wide, there is a disadvantage that leakage may occur. Since the metal connecting material is used at high temperature, the performance of the cell- And there is a disadvantage that reliability is low due to low resistance to a thermal cycle. In the case of a cylindrical SOFC, the cell has a high durability and is excellent in heat cycle, and has a merit of simple sealing because it only seals the end portion of the cylindrical cell. On the other hand, because of the expensive raw materials and coating process, the manufacturing cost is high, and the output density is lower than that of the flat plate type SOFC because of the high internal current resistance due to the long current path.
평관형 SOFC는 기존 평판형과 원통형 SOFC 셀 형태의 장점을 보완하고 장점을 적용하여 설계되어 졌다. 평관형 SOFC는 평판형 SOFC에서와 동일하게 전해질을 얇게 형성할 수 있어 높은 출력 밀도를 나타낸다. 또한 평관형 지지체의 모서리 부분만 밀봉하기 때문에 밀봉이 용이하며, 높은 강도 값을 가져 열 싸이클 특성이 우수하다. The flat tubular SOFC has been designed to complement the advantages of conventional flat and cylindrical SOFC cells and to apply the advantages. The flat tubular SOFC can form an electrolyte thin like the flat type SOFC, and exhibits a high power density. In addition, since only the corner portion of the flat tubular support is sealed, it is easy to seal, has a high strength value, and is excellent in heat cycle characteristics.
평판형, 원통형 및 평관형 셀의 경우 하나의 단전지에서 얻을 수 있는 전위차는 1.1V이기 때문에 높은 전압을 얻기 위해서는 여러 개의 셀을 직렬로 연결한 스택 구조가 필요하다. 하지만 여러 개의 셀을 적층하여 스택을 제작할 경우 부피가 증가하는 문제점을 가지고 있다.In the case of flat-plate, cylindrical, and flat-tube cells, the potential difference obtained from a single cell is 1.1 V, so a stack structure in which several cells are connected in series is required to obtain a high voltage. However, there is a problem that the volume increases when stacks are formed by stacking several cells.
이러한 문제점을 해결하기 위해 하나의 지지체 위에 여러 개의 셀을 분리 배열하여 높은 전압을 얻을 수 있는 다전지식 고체산화물 연료전지(SIS-SOFC)가 제안되어 졌다. SIS-SOFC는 전극의 선폭 및 단위 셀 간격이 기존 평판형과 원통형 디자인에 비해 현저하게 짧아져 전압과 전류밀도를 증가시킬 수 있다. 하지만 셀과 셀을 연결하기 위해 연결재가 필요하다.In order to solve these problems, a multi-component solid oxide fuel cell (SIS-SOFC) has been proposed in which a plurality of cells are separated and arranged on one support to obtain a high voltage. In the SIS-SOFC, the line width and the unit cell spacing of the electrodes are significantly shortened compared to the conventional plate-type and cylindrical-type designs, thereby increasing the voltage and current density. However, a link is needed to connect the cell and the cell.
현재 대표적으로 알려져 있는 세라믹연결재인 LaCrO3의 경우 낮은 소결성 때문에 1550℃이상의 고온에서 소결해야 하는 공정상의 문제점을 가지고 있고, 또한 고온 작동 시 휘발성의 Cr이 공기극에서 환원하여 산화크롬(Cr2O3)을 형성하여 성능을 감소시키는 문제점을 가지고 있다. 또한 연결재 코팅 시 액상슬러리를 제조하여 플라즈마 용사, 딥 코팅, 브러쉬 코팅 등을 다양한 공정이 있으나 셀과 셀 사이에서 균일한 두께를 형성하지 못하는 문제점이 있다.LaCrO 3 , which is a typical ceramic connecting material, has a problem in that it has to be sintered at a high temperature of 1550 ° C or more due to its low sintering property. When operating at high temperature, volatile Cr is reduced at the air electrode to form chromium oxide (Cr 2 O 3) And has a problem of reducing performance. In addition, there is a problem that a liquid slurry is prepared during the coating of a linking material, and plasma spraying, dip coating, brush coating and the like are performed, but a uniform thickness can not be formed between the cell and the cell.
그래서 본 발명에서는 본 발명의 선행기술(특허 10-1241284호인 "고체산화물 연료전지용 세라믹 연결재의 환원분위기 전기전도도 성능향상방법 및 저온제작방법")인 붕화물(LaB6, MgB6) 및 불화물(CaF2, SrF2)중 1가지를 소결조제로 첨가하여 세라믹 연결재를 제조하는 특허의 특성을 향상시킬 수 있는 발명으로 A-site에 CaF2와 B-site에 MgF2를 동시치환하여 산화, 환원분위기에서 성능을 향상시킬 수 있는 세라믹 연결재를 제조하는 방법과 제조된 분말을 사용하여 전사대지 위에 세라믹 연결재 페이스트를 인쇄하여 고체상태의 연결재 전사지를 제작하였다. 제작된 연결재 전사지는 물 속에서 전사대지와 구성소재 층을 분리하여 고체상태의 연결재 층을 셀과 셀 사이에 적층하여 SIS-SOFC를 제작하였다. 고체상태의 연결재 층을 적층한 경우 다공성 연료극과 공기극 기공속으로 연결재 침투 없이 균일한 두께로 형성할 수 있는 간단한 제작 방법에 관한 기술 분야이다.
Therefore, in the present invention, borides (LaB 6 , MgB 6 ) and fluorides (CaF (MgF 6 )), which are the prior arts of the present invention (Patent No. 10-1241284 entitled "Method for improving the electric conductivity of the ceramic material for a solid oxide fuel cell, 2 , SrF 2 ) as a sintering additive to improve the characteristics of a patent for manufacturing a ceramic connecting material, it is an invention that simultaneously substitutes CaF 2 and B-site for MgF 2 in A-site, A method of manufacturing a ceramic connecting material capable of improving performance and a ceramic connecting paste paste were printed on a transfer paper using the powder to prepare a solid transfer material transfer paper. The SIS-SOFC was fabricated by separating the transfer material and the constituent material layer in the water and laminating the solid-state connecting material layer between the cell and the cell. The present invention relates to a simple manufacturing method which can form a uniform thickness without penetrating into a porous fuel electrode and air electrode pores when a solid state connecting material layer is laminated.
본 발명에서는 종래의 세라믹연결재의 문제점을 해결하기 위해 페로브스카이트(ABO3)구조 산화물에 CaF2와 MgF2를 치환함으로써 미량 불화물을 함유하여 내식성을 향상시켰다. 이는 환원분위기에서 Cr의 휘발에 의한 반응을 억제함에 따라 높은 전도성을 유지할 수 있게 된다. 또한 불화물의 경우 녹는점이 낮아 소결 시 액상이 형성되어 1250℃이하의 낮은 온도에서 치밀한 소결체를 제조할 수 있다.In the present invention, in order to solve the problems of the conventional ceramic connecting material, substitution of CaF 2 and MgF 2 for the perovskite (ABO 3 ) structure oxide contained trace fluoride to improve the corrosion resistance. This can maintain the high conductivity by suppressing the reaction by the volatilization of Cr in the reducing atmosphere. In addition, the fluoride has a low melting point, so that a liquid phase is formed during sintering, and a dense sintered body can be produced at a low temperature of 1250 ° C or less.
또한 기존 세라믹 연결재를 코팅 시 액상슬러리를 사용하여 두께가 일정하지 않은 문제점을 해결코자 고체상태의 연결재 전사지를 제작하여 셀과 셀 사이에 연결재를 균일한 두께로 간단하게 제작하는 것을 특징으로 한다.
Also, in order to solve the problem that the thickness is not constant by using the liquid slurry when coating the existing ceramic connection material, a solid state connection material transfer paper is manufactured, and the connection material between the cell and the cell is easily manufactured with a uniform thickness.
본 발명의 고체산화물연료전지의 세라믹연결재 제조방법의 경우 페로브스카이트(Perovskite) ABO3구조 산화물에 CaF2와 MgF2를 치환함으로써 미량 불화물을 함유하여 내식성을 향상시키고, 환원분위기에서 Cr의 휘발에 의한 반응을 억제하여 높은 전도성을 유지할 수 있게 하였다. 또한 불화물의 경우 녹는점이 낮아 소결 시 액상이 형성되어 1250℃이하의 낮은 온도에서 치밀한 소결체를 제조할 수 있다. 이때 사용한 소결조제로는 불화물(CaF2, MgF2)를 0.01~0.3몰 퍼센트 치환하여 세라믹연결재를 제조하고, 이를 이용하여 페이스트를 제조하여 전사대지 위에 인쇄하여 연결재 전사지를 제작하고, 다전지식 고체산화물 연료전지 셀과 셀 사이에 적층하여 열처리 한 것을 특징으로 한다.
In the method for producing a ceramic connecting material of the solid oxide fuel cell of the present invention, the corrosion resistance is improved by substituting CaF 2 and MgF 2 for the perovskite ABO 3 structural oxide by adding trace fluoride, And thus the high conductivity can be maintained. In addition, the fluoride has a low melting point, so that a liquid phase is formed during sintering, and a dense sintered body can be produced at a low temperature of 1250 ° C or less. As a sintering aid used herein, 0.01 to 0.3 mole percent of fluoride (CaF 2 , MgF 2 ) was substituted for 0.01 to 0.3 mole percent of a ceramic binder to prepare a paste, and the paste was printed on a transfer paper to prepare a transfer material transfer paper. And is laminated between the fuel cell and the cell and heat-treated.
본 발명의 다전지식 고체산화물 연료전지용 세라믹 연결재 및 세라믹 연결재 전사지 제작 방법이 경우 페로브스카이트(Perovskite) ABO3구조 산화물에 CaF2와 MgF2를 0.01~0.3 몰퍼센트 동시 치환하여 미량 불화물을 함유하여 내식성의 증대와 고온 특성을 증가시켜 환원분위기에서 높은 전도성을 나타낼 수 있고, 녹는점이 낮은 불화물의 첨가로 인해 액상의 생성온도가 낮아져 1250℃ 이하의 저온에서 소결이 가능하게 하였다. 이는 Cr의 휘발로 인해 단위 셀이나 스택구성소재와의 반응 및 산화크롬(Cr2O3)의 형성을 억제시킬 수 있고 합성 후 미량 불화물을 함유하거나 원자가가 같은 자리에 환원성에 강한 원소가 미량 치환되어 환원분위기에서 고 전도성을 나타낼 수 있다. 또한, 세라믹 연결재 전사지를 사용하여 적층할 경우 균일한 두께로 적층이 가능하고, 고체상태의 연결재 전사지 적층을 통해 다공성 연료극과 공기극 기공으로 연결재 소재 침투를 방지하여 다전지식 고체산화물 연료전지 셀-스택의 성능을 향상시킬 수 있다.
In the case of the ceramic connecting material for a multi-component solid oxide fuel cell of the present invention and the method for manufacturing a ceramic connecting material transfer paper, 0.01 to 0.3 mole percent of CaF 2 and MgF 2 are simultaneously substituted in the perovskite ABO 3 structural oxide to contain a trace amount of fluoride The increase of the corrosion resistance and the high temperature property can show the high conductivity in the reducing atmosphere and the low temperature of the liquid phase due to the addition of fluoride with low melting point enables the sintering at the low temperature of 1250 ° C or less. This is because the volatilization of Cr can inhibit the reaction with the unit cell or the constituent material of the stack and the formation of chromium oxide (Cr 2 O 3 ), and it is possible to suppress the formation of chromium oxide And can exhibit high conductivity in a reducing atmosphere. In addition, when using ceramic transfer material transfer laminates, it is possible to laminate with uniform thickness and to prevent penetration of the connecting material material through the porous fuel electrode and the air electrode pores through solid state transfer material lamination, Performance can be improved.
도 1은 불화물 치환첨가 전, 후 소결온도에 따른 미세구조를 나타낸 사진이다.
도 2는 불화물 치환첨가 후 산화, 환원분위기 전기전도도를 나타낸 그래프 이다.
도 3은 본 발명의 실험예 1에서 다전지식 고체산화물 연료전지에 세라믹 연결재를 적용 후 개방 회로 전압 및 전지 성능을 측정한 결과를 나타낸 그래프이다.Fig. 1 is a photograph showing the microstructure according to sintering temperature before and after addition of fluoride substitution.
2 is a graph showing the electrical conductivity of an oxidizing and reducing atmosphere after the addition of fluoride substitution.
FIG. 3 is a graph showing the results of measurement of open circuit voltage and cell performance after application of a ceramic connecting material to a multi-component solid oxide fuel cell in Experimental Example 1 of the present invention.
(실시 예 1)(Example 1)
본 발명은 기존 1550℃ 이상에서 소결이 가능한 세라믹연결재를 1250℃ 이하의 낮은 온도에서 소결이 가능하며 소결 후 미량 불화물을 함유하거나 원자가가 같은 자리에 환원성에 강한 원소가 미량 치환되어 750~850℃의 환원분위기에서 높은 전도성을 가질 수 있는 세라믹연결재를 제조하기 위해 소결조제로 불화물(CaF2, MgF2)을 치환하여 세라믹 연결재를 제조하였다.The present invention is capable of sintering a ceramic connecting material capable of sintering at a temperature of 1550 ° C. or higher at a low temperature of 1250 ° C. or lower and containing a trace amount of fluoride after sintering, Ceramic connectors were prepared by replacing fluorides (CaF 2 , MgF 2 ) with sintering aids to produce ceramic interconnects with high conductivity in a reducing atmosphere.
이와 같은 목적을 달성하기 위해 본 발명의 고체산화물연료전지의 세라믹연결재의 제조방법의 경우 페로브스카이트(Perovskite) ABO3구조 산화물에 CaF2, MgF2를 0.01~0.31 몰퍼센트 치환하여 고체산화물연료전지용 세라믹 연결재 소재를 합성하였다.In order to achieve the above object, the present invention provides a process for producing a ceramic connecting material of a solid oxide fuel cell, which comprises substituting 0.01 to 0.31 mole percent of CaF 2 and MgF 2 in a perovskite ABO 3 structural oxide, The battery ceramic material was synthesized.
각 시료는 정량 칭량 후 혼합/분쇄를 진행한 후, 0.1-1㎛정도의 입자크기가 되도록 조절하였고, 건조된 분말은 바인더와 혼합하여 연결재 페이스트를 제작하였다. 제작된 연결재 페이스트를 사용하여 연결재 전사지를 제작하기 위해 전사대지 위에 연결재 페이스트를 스크린 인쇄하였다. 이때 스크린 인쇄 및 건조 단계를 반복하여 구성소재 층의 두께를 조절하였고, 인쇄 횟수에 따라 1도, 2도 연결재 동시전사지를 제작하였다.Each sample was quantitatively weighed, mixed and pulverized, adjusted to a particle size of about 0.1-1 μm, and the dried powder was mixed with a binder to prepare a binder paste. The connecting paste was screen-printed on the transfer paper to make the transfer paper using the prepared connecting paste. At this time, the thickness of the constituent material layer was adjusted by repeating the screen printing and the drying step, and the simultaneous transfer paper of 1 degree and 2 degree connection material was produced according to the number of printing.
(실시 예 2)(Example 2)
"실시 예 1" 제작되어진 전사지는 물에 담그어 구성소재층과 전사대지를 분리한 후, 다전지 셀-스택의 연료극과 공기극 사이에 적층한 후, 1250℃에서 열처리하여 세라믹 연결재를 제작하였다. 본 발명에서 제작된 세라믹 연결재 전사지는 도1에 나타낸 바와 같이 1250℃에서 치밀한 미세구조를 나타내기 때문에 가스 밀봉 효과를 나타낼 수 있었고, 도2에 나타낸 바와 같이 산화분위기에서 19~47 S/cm, 환원분위기에서 4.3~5.3 S/cm의 높은 전기전도도를 나타내었다.Example 1 The produced transfer paper was immersed in water to separate the constituent material layer and the transfer paper and then laminated between the fuel electrode and the air electrode of the multi-cell cell stack, followed by heat treatment at 1250 ° C to prepare a ceramic connector. As shown in FIG. 1, the ceramic transfer material transfer sheet produced in the present invention exhibits a dense microstructure at 1250 ° C., and thus can exhibit a gas sealing effect. As shown in FIG. 2, the transfer material has a density of 19 to 47 S / Showed a high electrical conductivity of 4.3 to 5.3 S / cm in the atmosphere.
(실험 예 1)(Experimental Example 1)
다전지식 고체산화물 연료전지는 여러 개의 셀을 세라믹연결재로 연결하여 제작되었다. Pt-wire를 사용하여 집전을 실시하였고, 유리밀봉재를 사용하여 제작된 셀-스택과 측정치구를 밀봉하였다. 연료로 3% 가습된 수소를 사용하고 산화제로 공기를 사용하여 800 및 750℃에서 전류밀도에 따른 전압 및 출력 측정을 실시하였다. 세라믹연결재를 사용하여 제작된 다전지식 셀-스택에서 개방회로전압은 각각 1.76 및 1.85V를 나타내었고, 최대출력은 162 및 147mW를 나타내었고, 이를 도 3에 나타내었다.A multi-component solid oxide fuel cell was fabricated by connecting several cells with ceramic connectors. Pt-wire was used for current collection, and the cell-stack and the measuring jig fabricated using the glass sealing material were sealed. Voltage and power measurements were performed at 800 and 750 ℃ with current density using 3% humidified hydrogen as fuel and air as oxidant. Open circuit voltages of 1.76 and 1.85 V respectively and maximum outputs of 162 and 147 mW are shown in FIG. 3 in a multi-field cell stack fabricated using a ceramic connecting material.
Claims (3)
Characterized in that 0.01 to 0.31 molar percent of fluoride (CaF 2 , MgF 2 ) is substituted in the perovskite ABO 3 structural oxide by a sintering aid and sintered at 1250 ° C or lower. How to make ceramic binding material transfer paper.
Wherein a small amount of fluoride is remained in a low temperature sintered ceramic connecting material to partially replace the metal fluoride and the oxide which are resistant to the reducing atmosphere to have electrical conductivity in a reducing atmosphere.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20130101829A KR20150024645A (en) | 2013-08-27 | 2013-08-27 | Segmented-in-series solid oxide fuel cell ceramic interconnects and fabrication method of ceramic interconnects decalcomania paper |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20130101829A KR20150024645A (en) | 2013-08-27 | 2013-08-27 | Segmented-in-series solid oxide fuel cell ceramic interconnects and fabrication method of ceramic interconnects decalcomania paper |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20150024645A true KR20150024645A (en) | 2015-03-09 |
Family
ID=53021184
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR20130101829A KR20150024645A (en) | 2013-08-27 | 2013-08-27 | Segmented-in-series solid oxide fuel cell ceramic interconnects and fabrication method of ceramic interconnects decalcomania paper |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20150024645A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107611267A (en) * | 2017-09-07 | 2018-01-19 | 济南大学 | A kind of construction method of flexible wearable paper substrate perovskite solar cell |
KR20200021318A (en) * | 2018-08-20 | 2020-02-28 | 주식회사 엘지화학 | Composition for solid oxide fuel cell contact layer, unit cell for solid oxide fuel cell, manufacturing method for the same and solid oxide fuel cell |
-
2013
- 2013-08-27 KR KR20130101829A patent/KR20150024645A/en not_active Application Discontinuation
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107611267A (en) * | 2017-09-07 | 2018-01-19 | 济南大学 | A kind of construction method of flexible wearable paper substrate perovskite solar cell |
KR20200021318A (en) * | 2018-08-20 | 2020-02-28 | 주식회사 엘지화학 | Composition for solid oxide fuel cell contact layer, unit cell for solid oxide fuel cell, manufacturing method for the same and solid oxide fuel cell |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9941524B2 (en) | Interconnector material, intercellular separation structure, and solid electrolyte fuel cell | |
CN111699582B (en) | All-solid battery | |
JP2008270203A (en) | Solid oxide fuel cell and water electrolysis cell | |
US20190157724A1 (en) | Process for producing an electrochemical cell, and electrochemical cell produced by the process | |
US11133521B2 (en) | Binder and slurry compositions and solid state batteries made therewith | |
Lei et al. | Ni-based anode-supported Al2O3-doped-Y2O3-stabilized ZrO2 thin electrolyte solid oxide fuel cells with Y2O3-stabilized ZrO2 buffer layer | |
JP5748584B2 (en) | Conductor and solid oxide fuel cell, cell stack, fuel cell | |
US20130101922A1 (en) | Solid oxide fuel cell | |
JP5368139B2 (en) | Solid oxide fuel cell | |
JP5598920B2 (en) | Method for producing electrolyte dense material for solid oxide fuel cell | |
CN110637387B (en) | Laminated structure of ion/electron mixed conductive electrolyte and electrode, and method for producing same | |
JP2013157254A (en) | Solid oxide fuel cell stack | |
KR101260856B1 (en) | Dual layer interconnect for solid oxide fuel cell, solid oxide fuel cell therewith and preparation method thereof | |
KR20150024645A (en) | Segmented-in-series solid oxide fuel cell ceramic interconnects and fabrication method of ceramic interconnects decalcomania paper | |
KR20120037175A (en) | A fuel cell and a manufacturing metheod thereof | |
JP4828104B2 (en) | Fuel cell | |
Xiao et al. | Improved overall properties in La 1–x Ca x Fe 0.8 Cr 0.2 O 3–δ as cathode for intermediate temperature solid oxide fuel cells | |
JP2003288919A (en) | Electric conductive ceramic and its manufacturing method, and inter connector for solid oxide fuel cell using the same | |
JP4913257B1 (en) | Solid oxide fuel cell | |
KR101241284B1 (en) | Method for improving electrical conduction of ceramic interconnector of sofc under the reduced environment and low temperature manufacturing method | |
CN110088952A (en) | Method for the anode of electrochemical cell and for manufacturing the electrochemical cell comprising such anode | |
JP5412534B2 (en) | Method for producing composite substrate and method for producing solid oxide fuel cell | |
KR101341963B1 (en) | Segment-in-series type sofc sub-module, preparation method thereof and segment-in-series type sofc module using the same | |
EP2804845A1 (en) | Lithium-ion-conducting materials | |
JP2005259489A (en) | Solid oxide fuel cell, air electrode collector and film forming method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
AMND | Amendment | ||
E601 | Decision to refuse application | ||
AMND | Amendment | ||
E90F | Notification of reason for final refusal |