KR20150016925A - A method to produce drinking water using deep sea water - Google Patents

A method to produce drinking water using deep sea water Download PDF

Info

Publication number
KR20150016925A
KR20150016925A KR1020140191688A KR20140191688A KR20150016925A KR 20150016925 A KR20150016925 A KR 20150016925A KR 1020140191688 A KR1020140191688 A KR 1020140191688A KR 20140191688 A KR20140191688 A KR 20140191688A KR 20150016925 A KR20150016925 A KR 20150016925A
Authority
KR
South Korea
Prior art keywords
water
deep sea
deep
sea water
filtration
Prior art date
Application number
KR1020140191688A
Other languages
Korean (ko)
Inventor
서희동
Original Assignee
서희동
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서희동 filed Critical 서희동
Priority to KR1020140191688A priority Critical patent/KR20150016925A/en
Publication of KR20150016925A publication Critical patent/KR20150016925A/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • A23L2/38Other non-alcoholic beverages
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • A23L2/70Clarifying or fining of non-alcoholic beverages; Removing unwanted matter
    • A23L2/72Clarifying or fining of non-alcoholic beverages; Removing unwanted matter by filtration
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • A23L2/70Clarifying or fining of non-alcoholic beverages; Removing unwanted matter
    • A23L2/72Clarifying or fining of non-alcoholic beverages; Removing unwanted matter by filtration
    • A23L2/74Clarifying or fining of non-alcoholic beverages; Removing unwanted matter by filtration using membranes, e.g. osmosis, ultrafiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

The present invention relates to a method for manufacturing drinking water by using deep sea water. More specifically, the present invention relates to a method for manufacturing hygienically safe drinking water by using desalinated water obtained by desalinating deep sea water in a deep sea layer deeper than 200 m in depth below the surface of the sea. According to the present invention, in regards to the manufacture of drinking water using deep sea water, a method for manufacturing drinking water from deep sea water comprises: a deep sea water pretreatment step of taking deep sea water, heating the deep sea water at 20-30°C, and performing a mixed filtration process of at least one process among sand filtration, microfiltration, ultrafltration and nanofiltration; a desalination step of desalinating the deep sea water which has been pretreated via a desalination process by an electroextraction process to produce desalinated water; a boron compound removal step of treating the desalinated water with an alkaline agent to adjust the pH of the desalinated water in the range of 9-11 and sending the desalinated water to a reverse osmosis filtration process to produce filtered water in which a boron compound has been removed; and a hardness adjustment step of supplying a mineral adjuster to the filtered water in which the boron compound has been removed to adjust the hardness of the filtered water in the range of 30-500 mg/L, thereby manufacturing the filtered water into drinking water.

Description

해양 심층수를 이용하여 음료수를 제조하는 방법{A method to produce drinking water using deep sea water}BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing drinking water using deep sea water,

본 발명은 본 발명은 해양 심층수를 이용하여 음료수를 제조하는 방법에 관한 것으로, 더욱 상세하게는 해수면에서 수심 200m보다 깊은 해저심층의 해양 심층수를 탈염처리한 탈염수를 경도의 조정과 물 분자를 개질 처리한 주류제조용수를 이용하여 음료수의 제조방법에 관한 것이다.The present invention relates to a method for producing beverage using deep sea water. More particularly, the present invention relates to a method for producing a beverage using deep sea water, The present invention relates to a method for producing beverage using a mainstream manufacturing water.

일반적으로 음료수제조는 지하광천수 또는 하천수를 정수처리하여 사용하는데, 산업의 발전과 인구의 집중으로 인하여 지하광천수 또는 하천수는 환경오염물질이 오염되어 있어 위생적으로 안전하지 못한 문제점이 있으면서, 이와 같은 환경오염물질을 제거하는데 처리비용이 높은 문제점이 있다.Generally, beverage production is used by treating underground mineral water or river water. However, due to the development of industry and concentration of population, underground mineral water or river water is contaminated with environmental pollutants, which is not hygienically unsafe. There is a problem that the treatment cost is high in removing the substance.

본 발명은 해수면에서 수심 200m보다 깊은 해저심층의 해양 심층수를 탈염처리한 탈염수를 이용하여 위생적으로 안전한 음료수를 제조하는 방법을 제공하는데 그 목적이 있는 것이다.It is an object of the present invention to provide a method for producing hygienically safe beverage using demineralized water obtained by desalination of deep ocean water of deep sea depth of 200m or more from sea level.

본 발명은 해양 심층수를 이용하여 음료수의 제조에 있어서, 해양 심층수를 취수하여 20∼30℃로 가온 처리한 다음, 모래여과, 정밀여과, 한외여과 또는 나노여과를 한가지 이상의 공정을 조합한 여과를 하여 해양 심층수의 전처리단계와, 상기 처리된 해양 심층수는 전기추출공정에 의한 탈염처리공정에 의해서 탈염처리하여 탈염수를 생산하는 탈염단계와, 상기 탈염수를 알칼리제로 처리하여 pH를 9∼11 범위로 조정한 다음, 역삼투여과공정으로 보내어 붕소화합물이 제거된 여과수를 생산하는 붕소화합물제거단계와, 상기 붕소화합물을 제거한 여과수인 탈염수에 미네랄조정제를 공급하여 경도를 30∼500㎎/ℓ범위로 조정하여 음료수를 제조하는 단계로 이루어진 것을 특징이 있다.In the present invention, in the production of beverage using deep sea water, the deep seawater is taken in a warm water at 20 to 30 DEG C, and then subjected to sand filtration, microfiltration, ultrafiltration or nanofiltration in combination with one or more processes A desalting step of producing desalted water by desalting the treated deep seawater by a desalting treatment process by an electric extraction process and a desalting step of treating the desalted water with an alkaline agent to adjust the pH to 9 to 11 Next, a boron compound removing step for removing the boron compound from the boron compound is carried out by a reverse osmosis treatment and a mineral regulator is supplied to the deionized water, which is the filtered water from which the boron compound is removed, to adjust the hardness to 30 to 500 mg / And the like.

본 발명은 해양 심층수의 탈염수를 이용하여 제조된 음료수는 위생적으로 안전하기 때문에 음료수제조에 널리 이용되는 효과가 있을 것으로 기대된다.The present invention is expected to have an effect widely used in the production of beverages since the beverage manufactured using deep sea water is hygienically safe.

도 1은 해양 심층수로부터 음료수를 제조하는 공정도1 shows a process for producing beverage from deeper ocean water

먼저, 해양 심층수(海洋深層水)의 특성을 검토하면, 해양 심층수는 통상 해수면에서 수심 200m보다 깊은 해저심층(海底深層)의 해수를 해양 심층수라고 부르며, 표층 해수와는 달리 햇빛이 닿지 않아 플랑크톤(Plankton) 및 생명체가 증식하지 못하기 때문에 영양염류의 농도가 높으면서 수온에 따른 밀도차이로 표층해수와 혼합되지 않아 표층해수에 존재하는 오염물질이 없으며, 표층의 해수와 비교하였을 때 저온안정성(低溫安定性), 오염물질, 유해세균이나 유기물이 매우 적은 청정성(淸淨性), 식물의 성장에 매우 중요한 무기영양염류가 풍부한 부영양성(富營養性)과 다양한 미네랄성분이 균형 있게 존재하는 미네랄밸런스(Mineral balance)특성과 고압 저온상태에서 긴 세월동안 물 분자의 집단(Cluster)이 소집단화(小集團化)되어 표면장력이 적어 침투성(浸透性)이 좋은 물로 숙성된 숙성성(熟成性) 등의 특성이 있다.First, the characteristics of ocean deep water (deep sea water) are considered to be deep sea water, which is deeper than 200m in sea level. The deep sea water is called deep seawater. Unlike the surface seawater, Plankton and life forms are not proliferated. Therefore, the concentration of nutrients is high and the density is not mixed with the surface sea water due to the difference in water temperature. Therefore, there is no contaminant present in the surface sea water, and low temperature stability (Mineral fertilizer) rich in minerals nutrients that are very important for the growth of plants, minerals balance (mineral fertilizers) that are rich in various minerals Mineral balance) and high pressure and low temperature, the cluster of water molecules has been subdivided for long time, Permeability), and aging (ripeness).

해양 심층수란 햇빛이 닿지 않고, 또한, 표층의 해수와 섞이지 않는 깊이에 있는 해수로, 통상 해수면에서 수심 200m보다 깊은 해저심층의 해수를 해양 심층수라고 부르고 있으며, 해양 심층수는 표층해수에 비해서 오염물질 및 유해세균이 전혀 함유되어 있지 않으면서 표1의 "해양 심층수와 표층해수의 성분 분석치"에서 보는 바와 같이 발효미생물의 생육에 필요한 칼슘(Ca), 마그네슘(Mg), 철(Fe), 아연(Zn), 나트륨(Na) 등 주요원소가 70종류를 넘는 다종다양한 미네랄성분(Mineral components)이 포함되어 있으면서 영양염류, 생균수, 수온은 상당한 차이가 있는 특성이 있다.Deep sea water is deep sea water which is not exposed to sunlight and is not mixed with seawater in the surface layer. Sea water deep sea water, which is deeper than 200m in depth is usually called deep sea water. Deep sea water is more pollutant than surface sea water. (Ca), magnesium (Mg), iron (Fe), zinc (Zn), and zinc (Zn) required for the growth of the fermenting microorganisms, as shown in Table 1 "Analysis values of deep ocean water and surface sea water" ), And sodium (Na), which contain more than 70 different kinds of minerals. The nutrients, living cells, and water temperature are significantly different.

해양 심층수와 표층해수의 성분 분석치 Analysis of composition of deep sea water and surface sea water 구분division 울릉도 현포 Ulleungdo Hyeonpo 일본 고지현 무로도(高知縣 室戶)Japan High-Miyako Murodo 650m 해양 심층수650m deep sea water 표층해수Surface seawater 374m 해양 심층수374m deep sea water 표층해수Surface seawater


Work
half
term
neck
수온(℃)Water temperature (℃) 0.50.5 2323 11.511.5 20.320.3
pHpH 7.987.98 8.158.15 DO 용존산소(㎎/ℓ)DO dissolved oxygen (mg / l) 66 88 7.807.80 8.918.91 TOC 유기탄소(㎎/ℓ)TOC organic carbon (mg / l) - - - - 0.9620.962 1.7801.780 CODMn(㎎/ℓ)COD Mn (mg / l) 0.20.2 0.60.6 - - - - 용해성 증발잔류물(㎎/ℓ)Solubility Evaporation residue (mg / l) 47,75047,750 37,59037,590 M-알칼리도(㎎/ℓ)M-alkalinity (mg / l) 114.7114.7 110.5110.5


week
Yo
won
small
Cl 염화물이온(wt%)Cl chloride ion (wt%) NaCl로 3.41 3.41 with NaCl NaCl로 3.45 3.45 with NaCl 2.2372.237 2.1922.192
Na 나트륨(wt%)Na sodium (wt%) 1.0801.080 1.0301.030 Mg 마그네슘(㎎/ℓ)Mg magnesium (mg / l) 1,3201,320 1,2801,280 1,3001,300 1,3101,310 Ca 칼슘(㎎/ℓ)Ca calcium (mg / l) 393393 403403 456456 441441 K 칼륨(㎎/ℓ)K potassium (mg / l) 380380 414414 399399 Br 취소(㎎/ℓ)Br Cancel (㎎ / ℓ) 68.868.8 68.168.1 Sr 스트론튬(㎎/ℓ)Sr strontium (mg / l) 7.777.77 7.617.61 B 붕소(㎎/ℓ)B Boron (mg / l) 4.444.44 4.484.48 Ba 바륨(㎎/ℓ)Ba barium (mg / l) 0.0440.044 0.0250.025 F 불소(㎎/ℓ)F fluorine (mg / l) 0.530.53 0.560.56 SO4 2 -(㎎/ℓ)SO 4 2 - (mg / l) 2,8332,833 2,6272,627


spirit
amount
salt
Flow
NH4 +암모니아태질소(㎎/ℓ)NH 4 + ammonia nitrogen (mg / l) 0.050.05 0.030.03
NO3 -질산태질소(㎎/ℓ)NO 3 - nitrate nitrogen (mg / l) 0.280.28 0.0400.040 1.1581.158 0.0810.081 PO4 3 -인산태인(㎎/ℓ)PO 4 3 - phosphoric acid (㎎ / ℓ) 0.060.06 0.0120.012 0.1770.177 0.0280.028 Si 규소(㎎/ℓ)Si silicon (mg / l) 2.802.80 0.4400.440 1.8901.890 0.3200.320


beauty
Amount
won
small
Pb 납(㎍/ℓ)Pb lead (/ / l) 0.110.11 0.1020.102 0.0870.087
Cd 카드뮴(㎍/ℓ)Cd Cadmium (/ / l) 0.050.05 0.0280.028 0.0080.008 Cu 구리(㎍/ℓ)Cu copper ([mu] g / l) 0.260.26 0.1530.153 0.2720.272 Fe 철(㎍/ℓ)Fe iron (/ / l) 0.220.22 0.2170.217 0.3550.355 Mn 망간(㎍/ℓ)Mn manganese (/ / l) 0.270.27 0.2650.265 0.3130.313 Ni 니켈(㎍/ℓ)Ni Ni (/ / l) 0.360.36 0.3870.387 0.4960.496 Zn 아연(㎍/ℓ)Zn Zn (/ / l) 0.450.45 0.6240.624 0.4520.452 As 비소(㎍/ℓ)As arsenic (/ / l) 0.040.04 1.0511.051 0.4400.440 Mo 몰리브덴(㎍/ℓ)Mo molybdenum (占 퐂 / l) -- 5.0955.095 5.5655.565 Cr 크롬(㎍/ℓ)Cr Cr (/ / l) 0.020.02
Germ
Number
생균수(개/㎖)Number of live cells (pieces / ml) 00 520520 00 540540
대장균수(개/㎖)Number of E. coli (pieces / ml) 음성voice 음성voice 음성voice 음성voice

해양 심층수 이용의 역사는 짧고, 지금까지 수산분야를 시작으로 식품이나 의료, 건강산업, 음료수, 화장품 등의 비수산분야에 있어도, 다양한 연구를 하고 있으며, 해양 심층수는 다음과 같은 특성이 있다.The history of using deep seawater has been short, and so far, we have been doing various researches in the non-fisheries fields such as food, medicine, health industry, beverage, cosmetics, etc. starting from fisheries field. Deep sea water has the following characteristics.

1. 저온 안전성(低溫 安全性)1. Low temperature safety (low temperature safety)

표층해수의 수온은 계절에 의해서 큰 폭으로 변동하는데 비해서, 해양 심층수는 계절에 따라서 수온의 변화가 없으면서 저온으로 안정되어 있다.As the surface water temperature varies greatly by season, deep seawater is stable at low temperature with no change of water temperature according to the season.

특히 한국 동해의 해양 심층수는 오호츠크해(Sea of Okhotsk)의 유빙(流氷)이 녹은 찬 해수가 밀도차로 침강(沈降)하여 사할린섬(Ostrov Sakhalin)과 홋카이도(北海道) 사이의 블라디보스토크(Vladivostok) 앞바다로 유입된 심층수로 일본열도가 가로 막혀 흐름이 느려 해수면에서 수심 300m보다 깊은 해저심층에서는 연간을 통해서 수온이 1∼2℃로 하와이나 일본 태평양 연안의 코우치현(高知縣)의 무로토(室戶) 앞바다의 해양 심층수 등에 비해서 8∼11℃ 정도 낮은 특성이 있다. In particular, the deep sea water of the East Sea of Korea is the sea water of the Sea of Okhotsk where the cold seawater with dissolved ice is settled by the dense sediments and flows off the coast of Vladivostok between Ostrov Sakhalin and Hokkaido The depth of the deep sea below the depth of 300m from the sea surface is slow due to the slow flow of the Japanese islands due to the inflow of deep seawater. The temperature is 1 to 2 ℃ during the year, and it is off the coast of Muroto in Kochi prefecture in Hawaii and Pacific coast of Japan Of deep seawater.

2. 청정성(淸淨性)2. Cleanliness (cleanliness)

심층에 있으므로 육상의 하천수, 대기로부터의 오염을 받기 어렵고, 화학물질, 오염물질과 세균수가 적다.Because it is in the deep layer, it is difficult to get pollution from river water and air from the land, and there are few chemicals, pollutants and bacteria.

① 물리적 청정성① Physical cleanliness

물리적 청정성은 부유물, 현탁물이 적다고 하는 것으로 해양 심층수는 표층해수에 비해서 부유고형물질의 함량이 적다.Physical cleanliness means that suspended solids and suspended solids are less, and deep seawater has lower content of suspended solids than surface seawater.

② 생물학적 청정성② Biological cleanliness

해수의 취수에서 제일문제가 되는 것은 부착생물의 번식인데, 일반적으로, 표층해수의 취수장치에서는 취수 관 내에 부착생물이 번식하는 것으로, 관의 저항이 늘어나 취수불능이 되는 것이 많은데, 해양 심층수는 플랑크톤, (병원성) 미생물, 클로렐라 등의 총생균수는 표층수의 10분의 1에서 100분의 1로 적은 특성이 있다.The most problematic problem of seawater is the propagation of adherent organisms. Generally, in surface water seepage systems, propagating organisms grow in the water intake pipe, and the resistance of the pipe increases, making it impossible to withdraw water. , (Pathogenic) microbes, chlorella, etc., have a characteristic of less than one tenth to one hundredth of the surface water.

③ 화학적 청정성③ Chemical cleanliness

해양 심층수는 오염된 표층해수와 혼합이 일어나지 않기 때문에 다이옥신이나 PCB, 유기 염소화합물, 유기주석 등 이른바 환경오염물질에 오염되어 있지 않은 특성이 있다.Deep sea water does not mix with contaminated surface waters, so it is not polluted by so-called environmental pollutants such as dioxins, PCBs, organic chlorine compounds, and organic tin.

3. 부영양성(富營養性)3. Eutrophication

해양 심층수는 표층해수에 비해서 바다생물의 근원이 되는 식물플랑크톤(주로, 엽록소를 가지는 미소의 단세포 식물인 규조)의 영양원이 되는 질소, 인, 규산 등이 표층해수의 약 5∼10배의 무기영양염류가 풍부하게 포함되어 있는 특성이 있다. Deep sea water is composed of nitrogen, phosphorus and silicic acid, which are nutrient sources of phytoplankton (diatomaceous plant which is a single cell plant with a chlorophyll), which is the source of marine organisms, compared with surface sea water. There is a characteristic that salt is abundantly contained.

해수면에서 수심 150m보다 깊은 해저심층에서 광량은 1% 이하로, 더 이상의 깊이에서는 식물성 플랑크톤은 광합성을 할 수 없기 때문에, 영양소는 식물성 플랑크톤에 의해서 소비되지 않고 아래의 깊은 층으로 가라앉아 축적되어 무기영양염의 농도가 높다. Because the phytoplankton can not photosynthate at depths of less than 1% at depths below 150m depth at depths below sea level, nutrients are not consumed by phytoplankton and accumulate and accumulate in the deep layers below, .

4. 미네랄의 특성4. Characteristics of minerals

해수는 70종류를 넘는 원소를 포함하고 있으며, 해양 심층수도 이와 같이 다종 다양한 원소를 포함하고 있는 특성이 있다. Seawater contains more than 70 kinds of elements, and deep seawater has many characteristics such as various kinds of elements.

동·식물의 생육에 필요한 주요원소가 많으면서 필요하기는 하지만 다량으로 섭취하면 해가 되는 필수 미량원소인 동, 아연과 같이 사람의 건강에 깊은 관계가 있는 것은 극히 소량 포함되어 있다고 하는 특성이 있다.Although there are many essential elements required for the growth of plants and plants, there is a very small amount of those that are deeply related to human health, such as copper and zinc, which are essential trace elements that are harmful if consumed in large amounts .

5. 숙성성(熟成性)5. Aging properties

해양 심층수는 표층해수에 비해 pH가 낮으며(pH 7.8 전후), 유기물 함량이 적으면서, 해양 심층수는 표층해수로부터 분리되어 저온 고압 하에서 긴 세월동안 물 분자의 집단(Cluster)이 적은 소집단화(小集團化)된 소집단수(小集團水, Micro-clustered water)로 수질이 안정되어 있다.Deep ocean water has a lower pH (around pH 7.8) than that of surface sea water, and the deep ocean water is separated from the surface seawater while the organic matter content is low. The deep ocean water is subdivided into small groups The water quality is stable with a small population (micro-clustered water).

그리고 해양 심층수에는 붕소화합물이 4∼5㎎/ℓ 범위로 함유되어 있는데, 단순한 나노여과와 역삼투여과방법 또는 이온교환막법인 전기투석처리에 의해서는 음료수 허용기준치 0.3㎎/ℓ 이하로 처리가 어렵다.In deep seawater, boron compounds are contained in the range of 4 ~ 5mg / ℓ. However, it is difficult to treat it by the simple nano filtration, reverse osmosis treatment method or electrodialysis treatment which is an ion exchange membrane method.

해양 심층수에 함유되어 있는 붕소화합물은 붕산(H3BO3)의 형태로 존재하며, 이온반경이 0.23Å 정도로 입자의 크기가 적기 때문에 단순한 나노여과 및 역삼투여과에 의해서는 음료수 기준치 0.3㎎/ℓ이하로 처리가 어려우며, 또한, 해리정수(解離定數) pKa의 값이 9 정도로 해양 심층수 중에서는 거의 비해리(非解離) 상태로 존재하면서 이온상태로는 거의 존재하지 않기 때문에 전기투석법에 의해서도 음료수 처리기준치 0.3㎎/ℓ이하로 처리가 어려운 문제점이 있기 때문에 알칼리제로 처리하여 pH를 9∼11 범위로 처리하여 붕산을 겔(Gel) 상태의 폴리(Poly) 붕산으로 전환한 다음, 역삼투여과를 하여야 붕소화합물을 제거할 수 있다.The boron compound contained in the deep sea water exists in the form of boric acid (H 3 BO 3 ). Since the particle size is small with an ion radius of about 0.23 Å, simple nanofiltration and reverse osmosis treatment can lower the drinking water standard value to 0.3 mg / And the dissociation constants pKa is about 9 in the deep sea water and is almost nonexistent in the ionic state. Therefore, even in the case of drinking water by the electrodialysis method, Since it is difficult to treat with less than 0.3 mg / ℓ of the treatment standard value, it is converted to poly (poly) boric acid in the gel state by treatment with an alkali agent to adjust pH to 9 to 11, The boron compound can be removed.

경도조정공정에서 미네랄조정제는, 해양 심층수를 1가 양이온선택교환막과 1가 음이온선택교환막을 사용한 전기투석장치 또는 전기추출장치에서 NaCl과 KCl과 같은 1가 염을 선택적으로 제거한 다음, Ca/Mg의 중량비가 2∼6의 범위로 미네랄밸런스를 조정한 시판되는 제품을 사용한다.
In the hardness adjustment process, the mineral conditioning agent is prepared by selectively removing a monovalent salt such as NaCl and KCl in an electrodialysis apparatus or an electric extraction apparatus using a monovalent cation selective exchange membrane and a monovalent anion selective exchange membrane, A commercially available product whose mineral balance is adjusted to a weight ratio of 2 to 6 is used.

본 발명을 첨부된 도면을 참조하여 상세히 설명하면 다음과 같다.The present invention will now be described in detail with reference to the accompanying drawings.

Ⅰ. 해양 심층수의 전처리단계Ⅰ. Pretreatment step of deep sea water

1. 취수 및 가온 처리공정1. Water intake and heating process

해양 심층수는 해수면에서 수심 200m보다 깊은 해저심층에서 취수하여 후속처리를 원만하게 처리될 수 있도록 20∼30℃로 가온 처리를 한다.Deep seawater is taken from the deep sea bed at depths of 200m below sea level in the sea surface and warmed to 20 ~ 30 ℃ so that subsequent treatment can be smoothly processed.

해양 심층수의 취수방법은 선상(船上)에서 해저 200m보다 깊은 곳까지 배관을 내려 취수하던가, 해수면에서 수심 200m보다 깊은 해저심층까지 배관을 설치하여 펌프(Pump)로 취수하던가, 해수면에서 수심 200m보다 깊은 해저심층까지 배관을 설치하고 취수정을 해수면 이하로 설치하여 사이펀(Siphon) 원리에 의해서 취수를 한다.The deep sea water intake method is to take down the pipeline from the ship to a depth of 200m below the sea floor, or to install the pipe from the sea surface to the depth of the sea below 200m and to take it by a pump, Install the piping up to the depth of the seabed and install the water intake below sea level and take the water by the Siphon principle.

집수조에 취수된 해양 심층수는 온도가 낮으면서 점도가 높아 처리효율이 떨어지기 때문에 보일러(Boiler)에서 열을 공급받아(여름철에는 표층해수의 수온을 이용할 수도 있음) 20∼30℃로 가온하여 전처리 여과공정으로 보낸다.
Since deep sea water taken in the catchment tank is low in temperature and low in processing efficiency due to its low viscosity, it is supplied with heat from a boiler (water temperature of surface seawater can be used in summer) Process.

2. 전처리 여과공정2. Pretreatment filtration process

전처리 여과공정은 모래여과, 정밀여과(Microfiltration), 한외여과(Ultrafiltration) 또는 나노여과(Nanofiltration) 중에서 한가지 이상의 공정을 조합한 여과를 하여 수중의 부유고형물질(SS: Suspended solid)을 제거한 여과된 해양 심층수는 탈염단계로 보낸다.The pretreatment filtration process is a filtration process in which suspended solids (SS) are removed from the filtrate by performing filtration in combination with at least one of sand filtration, microfiltration, ultrafiltration or nanofiltration. Deep water is sent to the desalination stage.

이때 여과압력은 운전조건에 따른 여과기의 압력손실과 배관의 압력손실을 고려하여 결정하며, 모래여과의 경우 여과속도는 6∼10m/시간으로 하고, 여과사(濾過砂)의 유효경(有效徑)은 0.3∼0.45㎜, 균등계수(均等係數)는 2.0 이하로 하며, 여층(濾層)의 두께는 0.5∼1.0m로 한다.In this case, the filtration pressure is determined in consideration of the pressure loss of the filter and the pressure loss of the pipe depending on the operating conditions. In the case of the sand filtration, the filtration speed is set to 6 to 10 m / hour, and the effective diameter of the filtration sand (filtration sand) Is 0.3 to 0.45 mm, the uniformity coefficient is 2.0 or less, and the thickness of the filtration layer is 0.5 to 1.0 m.

이때 취수된 해양 심층수의 탁도(濁度)가 2㎎/ℓ 이하인 경우는 모래여과는 할 필요가 없다.If the turbidity of the deep sea water taken at this time is less than 2 mg / ℓ, sand filtration is not necessary.

그리고 정밀여과와 한외여과(限外濾過)는 여과막의 종류에는 구애받지 않으며, 벤더(Vendor)의 사양에 따라서 여과속도와 압력손실을 고려하여 펌프(Pump)의 공급압력을 결정한다.Microfiltration and ultrafiltration are independent of the type of filtration membrane and determine the supply pressure of the pump considering the filtration speed and pressure loss according to the specifications of the vendor.

정밀여과 또는 한외여과에서 여과는 물의 FI(Fouling index)값을 2∼4 범위로 처리한다.Filtration in microfiltration or ultrafiltration treats the FI (fouling index) value of water in the range of 2 to 4.

FI값은 대상 수중의 미세한 탁질 농도를 나타내는 수치로 다음 ①식으로 표현된다.The FI value is a numerical value representing the fine contamination concentration in the target water.

FI = (1-T0/T15)×100/15 ……………………………………………………① FI = (1-T 0 / T 15) × 100/15 ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ①

여기서 T0는 0.45㎛의 정밀여과막을 이용하여 시료수를 0.2㎫로 가압 여과했을 때에 최초의 500㎖의 시료수의 여과에 필요로 한 시간이며, T15는 T0와 동일한 상태에서 15분간 여과한 후에 500㎖의 시료수의 여과에 필요로 하는 시간이다.T 0 is the time required for filtration of the first 500 ml of sample water under pressure filtration at 0.2 MPa using a 0.45 μm microfiltration membrane and T 15 is filtration for 15 minutes in the same state as T 0 And then filtration of 500 ml of the sample water.

나노여과에서는, 후속 탈염처리를 역삼투여과장치, 전기투석장치 또는 전기추출장치에 의해서 수행하는 경우는 막 막힘의 원인이 되는 황산 이온(SO4 2 -)을 제거한 해양 심층수는 붕소제거단계로 보낸다.In the case of nano filtration, when the subsequent desalination treatment is carried out by reverse osmosis treatment, apparatus, electrodialysis apparatus or electric extraction apparatus, the deep ocean water from which the sulfate ion (SO 4 2 - ), which causes clogging, is removed is sent to the boron removal step.

나노여과막 모듈(Module) 형태는 관형(管形: Tubular), 중공사형(中空絲形: Hollow fiber), 나선형(螺旋形: Spiral wound), 평판형(平板形: Plate and frame) 등 어떠한 형태를 사용하여도 상관이 없으며, 그리고 막(膜)의 재질(材質)도 특별히 제한하지는 않는다.The nanofiltration membrane modules can be of any shape, such as tubular, hollow fiber, spiral wound, and plate and frame. And the material of the film is not particularly limited either.

그리고 나노여과막의 소재는, 폴리아미드(Polyamide)계, 폴리피페라진아미드(Polypiperazineamide)계, 폴리에스텔아미드(Polyesteramide)계 또는 수용성의 비닐폴리머(Vinylpolymer)를 가교(架橋)한 것을 사용할 수 있으며, 막구조는 막의 한 면에 치밀층(緻密層)으로 되어 있으며, 치밀층으로부터 막 내부 혹은 한 면의 막을 향해서 서서히 큰 구멍에서 미세구멍으로 구성되어 있는 비대칭막(非對稱膜)이나, 이러한 비대칭막의 치밀층 위에 다른 소재로 형성된 매우 얇은 분리기능층(分離機能層)을 가지는 복합막(複合膜) 등을 사용할 수 있으며, 피페라진 폴리아미드계 복합막이 바람직하지만 본 발명에서는 막의 재질과 구조에는 특별히 제한하지는 않는다.The material of the nanofiltration membrane may be a polyamide-based material, a polypiperazineamide-based material, a polyesteramide-based material, or a water-soluble vinyl polymer (cross-linked) The structure consists of a dense layer on one side of the membrane, and an asymmetric membrane (unacknowledged membrane) consisting of fine holes in a large hole and gradually from the dense layer toward the inside of the membrane or on one membrane, (Composite membrane) having a very thin separating functional layer (separating functional layer) formed of a different material on a layer, and a piperazine polyamide composite membrane is preferable. However, in the present invention, the material and structure of the membrane are not particularly limited Do not.

나노여과에서는 후처리의 1차 탈염처리공정에서 스케일(Scale)생성의 원인이 되는 황산 이온(SO4 2 -)을 제거하는 것이 주목적으로, 전처리여과에서 수중의 부유고형물질을 제거한 해양 심층수는 나노여과장치로 보내어 여과되지 않은 황산 이온 함유수는 방류(放流)하고, 여과수는 1차 탈염처리공정으로 보낸다.In the nano filtration, the main purpose of removing sulfate ion (SO 4 2 - ) which causes scale formation in the primary desalting treatment process of the post-treatment is to remove the floating solid matter in the water in the pretreatment filtration, The filtered water is sent to the filtration unit and the unfiltered sulfate-containing water is discharged, and the filtered water is sent to the primary desalination process.

나노여과막에서 이온의 투과순서는, 양이온의 경우는 Ca2 +>Mg2 +>Li+>Na+>K+>NH4 + 이고, 음이온의 경우는 SO4 2 -≫HCO3 ->F->Cl->Br->NO3 ->SiO2 이며, 황산 이온(SO4 2 -)의 경우는 Mg2 +와 Ca2 +보다도 투과하기 어렵다.Transmission sequence of the ion in the nanofiltration membrane, if the cation is Ca 2 +> Mg 2 +> Li +> Na +> K +> NH 4 + and, in the case of the anion is SO 4 2 - »HCO 3 -> F - > Cl - > Br - > NO 3 - > SiO 2 , and the sulfate ion (SO 4 2 - ) is less permeable than Mg 2 + and Ca 2 + .

나노여과장치에서 공급압력은 염 농도가 3.5wt%인 해양 심층수의 삼투압 25㎏/㎠보다 낮은 15∼20㎏/㎠으로 하며, 나선형의 경우 막투과수량(膜透過水量)은 0.7∼1.4㎥/㎡·일로 하면 이때 막투과수량은 유입수량의 70∼80%가 된다.
In the nano filtration device, the supply pressure is 15 to 20 kg / cm 2, which is lower than the osmotic pressure 25 kg / cm 2 of the deep sea water having a salt concentration of 3.5 wt%. In case of the spiral type, the membrane permeation amount (membrane permeated water amount) is 0.7 to 1.4 m 3 / ㎡ · day, the permeation rate of the membrane becomes 70 ~ 80% of the flow rate.

Ⅱ. 탈염단계Ⅱ. Desalination step

1. 전기추출공정1. Electric extraction process

상기 전처리 여과공정에서 여과된 해양 심층수를 염추출실 내부에 양극과 음극 사이에 양이온교환격막과 음이온교환격막으로 격리된 탈염실을 다단으로 설치한 전기추출장치의 탈염실과 염추출실로 공급하면서 정류기로부터 직류전기를 인가하면 탈염실 내의 해양 심층수에 함유된 염분은 염추출실로 이동하여 농축된 염수는 소금제조공정으로 보내고, 탈염실에서 염분이 탈염처리된 탈염수는 붕소제거단계의 pH조정공정으로 보낸다.
The deep seawater filtered in the pretreatment filtration step was supplied to the desalting and salt extracting chambers of the electric extracting apparatus provided with the cation exchange diaphragm between the anode and the cathode and the desalting chamber separated by the anion exchange diaphragm, When DC electricity is applied, the salt contained in the deep sea water in the desalting chamber moves to the salt extraction chamber, the concentrated brine is sent to the salt production process, and the desalted desalted salt in the desalination chamber is sent to the pH adjustment process of the boron removal step.

Ⅲ. 붕소제거단계Ⅲ. Boron removal step

1. pH조정공정1. pH adjustment process

해양 심층수에 붕소는 4∼5㎎/ℓ범위로 함유되어 있으면서 붕산(H3BO3)의 형태로 존재하며, 이온반경이 0.23Å 정도로 입자의 크기가 적기 때문에 단순한 나노여과 및 역삼투여과에 의해서는 음료수 기준치 0.3㎎/ℓ이하로 처리가 어려우며, 해리정수(解離定數) pKa의 값이 9 정도로, 해수 중에서는 거의 비해리(非解離) 상태로 존재하며, 이온상태로는 거의 존재하지 않기 때문에 전기투석과 전기추출에 의해서도 음료수 처리기준치 0.3㎎/ℓ이하로 처리가 어려운 문제점이 있기 때문에 알칼리제로 처리하여 pH를 9∼11 범위로 처리를 하여 붕산을 겔(Gel) 상태의 폴리(Poly) 붕산으로 전환한 다음, 역삼투여과공정으로 보내어 붕소화합물을 제거한다.Boron in the deep sea water is contained in the range of 4 ~ 5mg / ℓ and exists in the form of boric acid (H 3 BO 3 ). Since the particle size is small with an ion radius of about 0.23 Å, simple nanofiltration and reverse osmosis It is difficult to treat it with a drinking water standard value of 0.3 mg / L or less, and the value of the dissociation constant pKa is about 9, which is almost non-dissolved in seawater, Since electrodialysis and electric extraction also have difficulties in treatment at a drinking water treatment standard value of 0.3 mg / ℓ or less, treatment with an alkaline agent is carried out in a pH range of 9 to 11 to convert the boric acid into a poly (boric acid) And then sent to reverse osmosis and process to remove the boron compound.

수중의 붕산은 알칼리처리를 하면 다음과 같은 ②의 반응에 의해서 겔 상태의 폴리 붕산으로 전환된다.Boric acid in water is converted to gel polybasic acid by the following reaction (2) when alkali treatment is carried out.

B(OH)3 + OH_ → [B(OH)4]- → [B3O3(OH)4]- → [B4O5(OH)4]2-→ [B5O6(OH)4]- …②
B (OH) 3 + OH _ → [B (OH) 4] - → [B 3 O 3 (OH) 4] - → [B 4 O 5 (OH) 4] 2- → [B 5 O 6 (OH ) 4 ] - ... ②

2. 역삼투여과공정2. Reverse osmosis treatment

상기 pH조정공정에서 알칼리제를 주입하여 pH를 9∼11 범위로 조정한 다음, 붕소화합물을 폴리 붕소화합물로 전환한 것을 역삼투여과공정의 여과막에 운전압력을 5∼25㎏/㎠으로 공급하여 여과되지 않은 붕소화합물 함유수는 중화처리 후 방류하고, 붕소화합물이 음료수 기준치인 0.3㎎/ℓ이하로 여과된 탈붕소수인 여과수는 경도조정공정으로 보낸다.In the pH adjusting step, an alkaline agent is injected to adjust the pH to 9 to 11, and then the boron compound is converted into a polyborno compound. The reverse osmosis treatment is performed by supplying an operating pressure of 5 to 25 kg / The non-borated compound-containing water is discharged after the neutralization treatment, and the filtered water, which is debranched water filtered with a boron compound of 0.3 mg / liter or less, is sent to the hardness adjustment process.

본 역삼투여과공정에 유입되는 유입수는 염분이 거의 함유되어 있지 않기 때문에 운전압력을 5∼25㎏/㎠범위의 낮은 압력으로 운전을 한다. 나선형 여과막의 경우 막투과수량은 0.6∼1.2㎥/㎡·일로 운전이 되며, 이때 여과수 중에 붕소화합물은 음료수 기준치 0.3㎎/ℓ이하로 여과된다. Since the influent flowing into this reverse osmosis treatment process contains little salinity, the operation pressure should be operated at a low pressure in the range of 5 ~ 25㎏ / ㎠. In case of spiral filtration membrane, the membrane permeation rate is 0.6 ~ 1.2m3 / ㎡ · day, and the boron compound in the filtration water is filtered to be below the drinking water standard value 0.3mg / ℓ.

역삼투여과공정에서는 pH가 9∼11의 알칼리상태로 공급되어도 스케일(Scale)을 생성하는 CaCO3, CaSO4와 같은 물질은 상기의 나노여과공정 및 역삼투여과공정에서 제거되었기 때문에 스케일의 생성은 문제되지 않는다.
In the reverse osmosis treatment process, even when the pH is supplied in the alkaline state of 9 to 11 , the formation of scales is not a problem because the materials such as CaCO 3 and CaSO 4 , which generate a scale, are removed from the nanofiltration process and the reverse osmosis process Do not.

Ⅳ. 음료수를 제조하는 단계IV. Steps to make beverage

1. 경도조정공정1. Hardness adjustment process

상기 탈붕소수인 여과수에 미네랄조정제를 공급하여 경도를 30∼500㎎/ℓ범위로 조정하여 처리된 처리수를 음료수로 이용한다.A mineral regulator is supplied to the filtered water as the deboron water to adjust the hardness to a range of 30 to 500 mg / L, and the treated water treated as the drinking water is used.

상기 경도조정에서 미네랄조정제는, 해양 심층수를 1가 양이온선택교환막과 1가 음이온선택교환막을 사용한 전기투석장치 또는 전기추출장치에서 NaCl과 KCl과 같은 1가 염을 선택적으로 제거한 다음, Ca/Mg의 중량비가 2∼6의 범위로 미네랄밸런스를 조정한 시판되는 제품을 사용한다.In the hardness adjustment, the mineral conditioning agent is prepared by selectively removing monovalent salts such as NaCl and KCl in an electrodialysis apparatus or an electric extraction apparatus using a mono-cation selective exchange membrane and a monovalent anion selective exchange membrane, A commercially available product whose mineral balance is adjusted to a weight ratio of 2 to 6 is used.

Claims (1)

해양 심층수를 이용하여 음료수의 제조에 있어서,
해양 심층수를 취수하여 20∼30℃로 가온 처리한 다음, 모래여과, 정밀여과, 한외여과 또는 나노여과를 한가지 이상의 공정을 조합한 여과를 하여 전 처리된 해양 심층수를 생산하는 해양 심층수의 전처리단계와,
상기 전처리 여과공정에서 처리된 해양 심층수는 전기추출공정에 의한 탈염처리공정에 의해서 탈염처리하여 탈염수를 생산하는 탈염단계와,
상기 탈염수를 알칼리제로 처리하여 pH를 9∼11 범위로 조정한 다음, 역삼투여과공정으로 보내어 붕소화합물이 제거된 여과수를 생산하는 붕소제거단계와,
상기 붕소화합물이 제거된 여과수에 미네랄조정제를 공급하여, 경도를 30∼500㎎/ℓ범위로 조정하여 음료수를 제조하는 단계로 이루어진 것을 특징으로 하는 해양 심층수로부터 음료수를 제조하는 방법.
In the production of beverage using deep sea water,
Deep ocean water is warmed to 20 ~ 30 ℃ and then treated with sand filtration, microfiltration, ultrafiltration or nanofiltration in combination with one or more processes to prepare pretreated deep seawater. ,
A desalination step of desalinizing the deep ocean water treated in the pretreatment step to desalinize the desalted water by a desalting process by an electric extraction process,
Treating the desalted water with an alkaline agent to adjust the pH to 9 to 11, and then sending it to a reverse osmosis treatment step to produce filtered water from which the boron compound has been removed;
And supplying a mineral regulator to the filtered water from which the boron compound has been removed to adjust the hardness to a range of 30 to 500 mg / l to prepare a beverage.
KR1020140191688A 2014-12-29 2014-12-29 A method to produce drinking water using deep sea water KR20150016925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140191688A KR20150016925A (en) 2014-12-29 2014-12-29 A method to produce drinking water using deep sea water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140191688A KR20150016925A (en) 2014-12-29 2014-12-29 A method to produce drinking water using deep sea water

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020080054229A Division KR20090128189A (en) 2008-06-10 2008-06-10 A method to produce drinking water using deep sea water

Publications (1)

Publication Number Publication Date
KR20150016925A true KR20150016925A (en) 2015-02-13

Family

ID=52573485

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140191688A KR20150016925A (en) 2014-12-29 2014-12-29 A method to produce drinking water using deep sea water

Country Status (1)

Country Link
KR (1) KR20150016925A (en)

Similar Documents

Publication Publication Date Title
KR101557096B1 (en) A method to produce tea beverages production water from deep-ocean water and a method to use this for tea beverages production
CN103608296B (en) Method and system for treating water used for industrial purposes
KR100819210B1 (en) The manufacture method of the mineral adjustment agent from deep sea water
Bodzek et al. Membrane techniques in the removal of inorganic anionic micropollutants from water environment–state of the art
US20200198995A1 (en) Water Treatment of Sodic, High Salinity, or High Sodium Waters for Agricultural Application
Wisniewski et al. Denitrification of drinking water by the association of an electrodialysis process and a membrane bioreactor: feasibility and application
Deemter et al. Advances in membrane separation of urban wastewater effluents for (pre) concentration of microcontaminants and nutrient recovery: a mini review
Pryor et al. A low pressure ultrafiltration membrane system for potable water supply to developing communities in South Africa
CN106110896A (en) A kind of reverse osmosis membrane antisludging agent
KR20070118055A (en) The manufacture method of the table salt from deep sea water
KR100902495B1 (en) A composting method of the organic wastes using bittern, the bittern which was produced by deep sea water
KR20090091260A (en) A method to produce function rice using mineral water produced by deep sea water
KR20150129630A (en) Method to make green tea drink extraction water from deep sea water
KR100969657B1 (en) A method to produce a spirulina algae using deep sea water
KR100945312B1 (en) Desalination method of deep sea water
KR20150016925A (en) A method to produce drinking water using deep sea water
KR20100119529A (en) A method to produce function rice using mineral water produced by deep sea water
KR20150067932A (en) Method for making a functional egg
KR100951538B1 (en) A manufacturing method of the bamboo charcoal that a mineral content is high using deep-ocean water, and a method using the same
KR20090128585A (en) A method to produce makgeolli using deep-ocean water
KR101058336B1 (en) How to Cultivate Bean Sprouts Using Ganja Produced from Deep Sea Water
KR20150016924A (en) Method to make green tea drink extraction water from deep sea water
KR20120108402A (en) The system of producing mineral rich water from sea water
Arevalo et al. Pretreatment systems in desalination plants to reduce extreme events impact in drinking water production
KR20090126360A (en) A method to produce beer using deep-ocean water

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application