KR20150015988A - 수지 혼합물 - Google Patents

수지 혼합물 Download PDF

Info

Publication number
KR20150015988A
KR20150015988A KR1020130092134A KR20130092134A KR20150015988A KR 20150015988 A KR20150015988 A KR 20150015988A KR 1020130092134 A KR1020130092134 A KR 1020130092134A KR 20130092134 A KR20130092134 A KR 20130092134A KR 20150015988 A KR20150015988 A KR 20150015988A
Authority
KR
South Korea
Prior art keywords
resin
weight
carbon atoms
parts
mixture
Prior art date
Application number
KR1020130092134A
Other languages
English (en)
Other versions
KR101651316B1 (ko
Inventor
이종원
류진영
유흥식
최은주
최현
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to KR1020130092134A priority Critical patent/KR101651316B1/ko
Publication of KR20150015988A publication Critical patent/KR20150015988A/ko
Application granted granted Critical
Publication of KR101651316B1 publication Critical patent/KR101651316B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes

Abstract

본 출원은 수지 혼합물, 펠렛, 이를 이용한 수지 성형품의 제조 방법 및 수지 성형품에 관한 것이다. 본 출원의 예시적인 수지 혼합물은 표면이 향상된 기계적 특성 및 표면 경도를 가지는 수지 성형품을 제공할 수 있다. 또한, 상기 수지 혼합물을 이용하는 경우 수지 성형품의 표면에 추가적인 표면 코팅 단계를 생략할 수 있고도 상술한 효과를 발휘할 수 있어 생산 시간 및 비용을 절감할 수 있고, 생산성을 증가시킬 수 있다.

Description

수지 혼합물{RESIN BLEND}
본 출원은 수지 혼합물, 펠렛, 이를 이용한 수지 성형품의 제조 방법 및 수지 성형품에 관한 것이다.
플라스틱 수지는 가공이 용이하고 인장강도, 탄성률 및 내열성 등 우수한 성질을 가지고 있어서, 자동차부품, 헬멧, 전기기기 부품, 방적기계 부품, 완구류 또는 파이프 등의 다양한 용도로 사용되고 있다.
특히, 가전제품, 자동차 부품 및 완구류 등에 사용되는 수지의 경우에는 우수한 표면 경도를 가져야 한다.
본 출원은 수지 혼합물 및 펠렛을 제공한다.
본 출원의 하나의 구현예는 제 1 수지; 및 상기 제 1 수지와 표면 에너지, 용융 점도 또는 용해도 파라미터의 차이를 가지고, 실록산 단위를 가지는 아크릴 중합체인 제 2 수지를 포함하는 수지 혼합물을 제공한다.
본 출원의 다른 구현예는 제 1 수지로 형성되는 코어; 및 제 1 수지와 표면 에너지, 용융 점도 또는 용해도 파라미터의 차이가 있는 실록산 단위를 가지는 아크릴 중합체인 제 2 수지로 형성되는 셀을 포함하는 펠렛을 제공한다.
본 출원의 또 다른 구현예는
하기 화학식 1의 단량체 0.1 내지 50 중량부;
R3 이 수소인 하기 화학식 3의 단량체 5 내지 99 중량부;
R3 은 탄소수 1 내지 4의 알킬기인 하기 화학식 3의 단량체 0.5 내지 90 중량부; 및
가교성 단량체 0.01 내지 5 중량부를 포함하는 단량체 혼합물의 중합체이다.
[화학식 1]
Figure pat00001
상기 식에서, R1 은 수소 또는 탄소수 1 내지 4의 알킬기를 나타내고,
R2 는 하기 화학식 2의 치환기를 나타내며,
[화학식 2]
Figure pat00002
여기서 R5 는 탄소수 1 내지 8의 알킬렌기를 나타내고,
R6 및 R7 은 각각 독립적으로 탄소수 1 내지 8의 알킬기를 나타내며,
n은 1 내지 100의 정수이고,
[화학식 3]
Figure pat00003
상기 식에서 R3 은 수소 또는 탄소수 1 내지 4의 알킬기를 나타내며,
R4 는 탄소수 1 내지 20의 알킬기, 탄소수 6 내지 40의 아릴기, 또는 탄소수 5 내지 40의 지환족 고리기를 나타낸다.
본 출원의 또 다른 구현예는 상기 수지 혼합물을 용융시켜 용융 혼합물을 형성하는 단계; 및 상기 용융 혼합물을 가공하여 층분리 구조를 형성하는 단계를 포함하는 수지 성형품의 제조 방법을 제공한다.
본 출원의 또 다른 구현예는 상기 펠렛을 용융시켜 용융 혼합물을 형성하는 단계; 및 상기 용융 혼합물을 가공하여 층분리 구조를 형성하는 단계를 포함하는 수지 성형품의 제조 방법을 제공한다.
본 출원의 또 다른 구현예는 제 1 수지층; 상기 제 1 수지층 상에 형성되어 있는 제 2 수지층; 및 제 1 수지 및 제 2 수지를 포함하며, 상기 제 1 수지층과 제 2 수지층 사이에 형성되어 있는 계면층을 포함하고, 상기 제 2 수지는 실록산 단위를 가지는 아크릴 중합체인 수지 성형품을 제공한다.
이하 구체적인 구현예에 따른 수지 혼합물, 펠렛, 이를 이용한 수지 성형품의 제조 방법 및 수지 성형품에 관하여 상세하게 설명하기로 한다.
본 명세서에서, "혼합물"은 2 종 이상의 서로 다른 수지의 혼합물일 수 있다. 혼합물의 유형은, 특별히 제한되지 않으나, 하나의 매트릭스 내에 2 종 이상의 수지가 혼합된 경우, 또는 2 종 이상의 펠렛들이 혼합된 경우를 포함할 수 있다. 상기 수지들은 각각 서로 다른 물성을 가질 수 있으며, 예를 들면, 상기 물성은 표면 에너지, 용융 점도 또는 용해도 파라미터일 수 있다.
"용융 가공"은 용융 혼합물(melt blend)을 형성하기 위해 용융온도(Tm) 이상의 온도로 수지 혼합물을 용융시키고, 상기 용융 혼합물을 사용하여 원하는 성형품을 형성하는 공정을 의미하며, 예를 들면, 사출 성형, 압출 성형, 중공 성형, 이송 성형, 필름 블로잉, 섬유 방사, 카렌더링 열 성형 또는 발포 성형 등이 있다.
"수지 성형품"은 수지 혼합물로부터 형성된 펠렛 또는 생성물(product)을 의미하고, 상기 수지 성형품은 특별히 제한되지 않으나, 예를 들면, 자동차 부품, 전자기기 부품, 기계 부품, 기능성 필름, 장난감 또는 파이프일 수 있다.
"층 분리"는 실질적으로 하나의 수지에 의해 형성된 층이 실질적으로 다른 수지에 의해 형성된 층 상에 위치하거나 배열되는 것을 의미할 수 있다. 실질적으로 하나의 수지에 의해 형성된 층은 한 종류의 수지가 해-도(sea-island) 구조를 형성하지 않고, 하나의 층 전체에 연속적으로 존재하는 것을 의미할 수 있다. 상기 해-도 구조는 상 분리된 수지가 전체 수지 혼합물 내에 부분적으로 분포되어 있는 것을 의미한다. 또한, "실질적으로 형성된"은 하나의 층에 하나의 수지만 존재하거나, 하나의 수지가 풍부한(rich) 것을 의미할 수 있다.
하나의 예시에서, 수지 혼합물은 용융 가공에 의해 층분리 될 수 있다. 이에 따라, 코팅 및 도금과 같은 별도의 공정 없이도 표면이 특정 기능, 예를 들면, 고경도 기능을 가지는 수지 성형품을 제조할 수 있다. 따라서, 수지 성형품은 향상된 기계적 특성 및 표면 특성을 가질 수 있고, 상기 수지 혼합물을 이용하는 경우 수지 성형품의 생산 비용 및 시간이 감소시킬 수 있다.
상기 수지 혼합물의 층분리는 제 1 수지 및 제 2 수지 사이의 물성 차이 및/또는 제 2 수지의 분자량 분포 등에 의해 일어날 수 있다. 여기서, 상기 물성은, 예를 들면, 표면 에너지, 용융 점도 또는 용해도 파라미터일 수 있다. 본 명세서에서는 2 종의 수지를 포함하는 수지의 혼합물에 대해서 설명하나, 물성이 상이한 3 종 이상의 수지를 혼합하여 용융 가공에 의해 층분리 시킬 수 있음은 당업자에게 자명할 것이다.
하나의 구현예에 의하면, 수지 혼합물은 제 1 수지 및 25℃에서 상기 제 1 수지와 표면 에너지 차이가 0.1 내지 35 mN/m 인 제 2 수지를 포함할 수 있다.
상기 제 1 수지와 제 2 수지의 표면 에너지 차이는 25℃에서 0.1 내지 35 mN/m, 0.1 내지 30 mN/m, 0.1 내지 20 mN/m, 0.1 내지 15 mN/m, 0.1 내지 7 mN/m, 1 내지 35 mN/m, 1 내지 30 mN/m, 2 내지 20 mN/m, 3 내지 15 mN/m일 수 있다. 이러한 범위의 표면 에너지 차이를 가지는 제 1 및 제 2 수지를 사용하는 경우, 제 1 및 제 2 수지가 박리되지 않으면서, 제 2 수지가 표면으로 쉽게 이동하여 층분리 현상이 용이하게 발생할 수 있다.
25℃에서 0.1 내지 35 mN/m의 표면 에너지 차이를 갖는 제 1 수지 및 제 2 수지의 수지 혼합물은 용융 가공에 의해 층 분리될 수 있다. 하나의 예시로서, 제 1 수지 및 제 2 수지의 수지 혼합물이 용융 가공되고, 공기 중에 노출되는 경우, 상기 제 1 수지 및 제 2 수지는 소수성 차이에 의해 분리될 수 있다. 특히, 제 1 수지 보다 낮은 표면 에너지를 갖는 제 2 수지는 높은 소수성을 가지므로, 공기와 접촉하도록 이동하여, 공기 쪽에 위치하는 제 2 수지층을 형성할 수 있다. 또한, 상기 제 1 수지는 제 2 수지와 접하면서, 공기와 반대편 쪽에 놓일 수 있다. 따라서, 상기 수지 혼합물의 제 1 수지 및 제 2 수지 사이에 층 분리가 일어나게 된다.
상기 수지 혼합물은 2 개 이상의 층으로 분리될 수 있다. 하나의 예시로서, 제 1 수지 및 제 2 수지를 포함하는 상기 수지 혼합물은, 용융 가공된 수지 혼합물의 서로 마주보는 두 면이 공기에 노출되는 경우, 3개 층, 예를 들면, 제 2 수지층/제 1 수지층/제 2 수지층으로 층분리될 수 있다. 한편, 용융 가공된 수지 혼합물의 오직 한 면만이 공기에 노출되는 경우, 상기 수지 혼합물은 2개의 층, 예를 들면, 제 2 수지층/제 1 수지층으로 층 분리될 수 있다. 또한, 표면 에너지 차이를 갖는 제 1 수지, 제 2 수지 및 제 3 수지를 포함하는 수지 혼합물이 용융 가공될 때, 상기 용융 가공된 수지 혼합물은 5개의 층, 예를 들면, 제 3 수지층/제 2 수지층/제 1 수지층/제 2 수지층/제 3 수지층으로 층 분리 될 수 있다. 또한, 상기 용융 가공된 수지 혼합물의 모든 면이 공기 중에 노출되는 경우, 상기 수지 혼합물은 모든 방향으로 층분리되어, 코어-셀(core-shell)구조를 형성할 수 있다.
다른 하나의 구현예에 의하면, 수지 혼합물은 제 1 수지; 및 100 내지 1000 s-1의 전단속도 및 상기 수지 혼합물의 가공온도에서 상기 제 1 수지와 용융 점도(melt viscosity) 차이가 0.1 내지 3000 pa*s인 제 2 수지를 포함할 수 있다.
상기 제 1 수지와 제 2 수지의 용융 점도의 차이는 100 내지 1000 s-1의 전단속도 및 상기 수지 혼합물의 가공 온도에서 0.1 내지 3000 pa*s, 1 내지 2000 pa*s, 1 내지 1000 pa*s, 1 내지 500 pa*s, 50 내지 500 pa*s, 100 내지 500 pa*s, 200 내지 500 pa*s 또는 250 내지 500 pa*s일 수 있다. 이러한 범위의 용융 점도 차이를 가지는 제 1 및 제 2 수지를 사용하는 경우, 제 1 및 2 수지가 박리되지 않으면서, 제 2 수지가 표면으로 쉽게 이동하여 층분리 현상이 용이하게 발생할 수 있다.
100 내지 1000 s-1의 전단속도 및 수지 혼합물의 가공온도에서 0.1 내지 3000 pa*s의 용융 점도 차이를 갖는 제 1 수지 및 제 2 수지의 수지 혼합물은 용융 가공된 후에 용융 점도의 차이로 인하여 층 분리될 수 있다. 하나의 예시로서, 제 1 수지 및 제 2 수지의 수지 혼합물이 용융 가공되고, 공기 중에 노출되는 경우, 상기 제 1 수지 및 제 2 수지는 유동성 차이에 의해 분리될 수 있다. 특히, 제 1 수지 보다 낮은 용융 점도를 갖는 제 2 수지는 높은 유동성을 가지므로, 공기와 접촉하도록 이동하여, 공기 쪽에 위치하는 제 2 수지층을 형성할 수 있다. 또한, 상기 제 1 수지는 제 2 수지와 접하면서, 공기와 반대편 쪽에 놓일 수 있다. 따라서, 상기 수지 혼합물의 제 1 수지 및 제 2 수지 사이에 층 분리가 일어나게 된다.
상기 용융 점도는 모세관 유동(Capillary Flow)으로 측정될 수 있는데, 이는 특정 가공 온도 및 전단속도(shear rate)(/s)에 따른 전단 점도(shear viscosity)(pa*s)를 의미한다.
상기 '전단 속도'란 상기 수지 혼합물이 가공될 때 적용되는 전단 속도를 의미하고, 전단속도는 가공 방법에 따라 100 내지 1000 s-1 사이에서 조절할 수 있다. 가공 방법에 따른 전단 속도의 조절은 당업자에게 자명할 것이다.
상기 '가공 온도'란 상기 수지 혼합물을 가공하는 온도를 의미한다. 예컨대, 상기 수지 혼합물을 압출 또는 사출 등의 용융 가공에 이용하는 경우 상기 용융 가공 공정에 적용되는 온도를 의미한다. 상기 가공온도는 압출 또는 사출 등의 용융 가공에 적용되는 수지에 따라서 조절할 수 있다. 예를 들어, ABS수지의 제 1 수지 및 아크릴 단량체로부터 얻어진 제 2 수지를 포함하는 수지 혼합물의 경우, 가공 온도가 210 내지 270℃일 수 있다.
본 발명의 또 다른 구현예에 의하면, 제 1 수지; 및 25℃에서 상기 제 1 수지와 용해도 파라미터(Solubility Parameter) 차이가 0.001 내지 10.0 (J/cm3)1/2인 제 2 수지를 포함하는 층분리 구조 형성용 수지 혼합물을 제공할 수 있다.
상기 제 1 수지와 제 2 수지의 용해도 파라미터(Solubility Parameter) 차이는 25℃에서 0.001 내지 10.0 (J/cm3)1/2, 0.01 내지 5.0 (J/cm3)1/2, 0.01 내지 3.0 (J/cm3)1/2, 0.01 내지 2.0 (J/cm3)1/2, 0.1 내지 1.0 (J/cm3)1/2, 0.1 내지 10.0 (J/cm3)1/2, 3.0 내지 10.0 (J/cm3)1/2, 5.0 내지 10.0 (J/cm3)1/2 또는 3.0 내지 8.0 (J/cm3)1/2일 수 있다. 이러한 용해도 파라미터는 각 수지 분자의 극성에 따른 용해 가능성을 나타낸 수지의 고유의 특성으로서, 각각의 수지에 대한 용해도 파라미터는 일반적으로 알려져 있다. 상기 용해도 파라미터 차이가 0.001 (J/cm3)1/2 보다 작은 경우에는 상기 제 1 수지와 제 2 수지가 쉽게 혼화되어 버려 층 분리 현상이 용이하게 발생하기 어려우며, 상기 용해도 파라미터 차이가 10.0 (J/cm3)1/2 보다 큰 경우에는 상기 제 1 수지와 제 2 수지가 결합되지 못하고 박리될 수 있다.
상기 용해도 파라미터 차이의 상한 및/또는 하한은 0.001 내지 10.0 (J/cm3)1/2의 범위 내에서 임의의 값일 수 있으며, 제 1 수지의 물성에 의존될 수 있다. 특히 제 1 수지가 베이스 수지로서 사용되고, 제 2 수지가 제 1 수지의 표면특성을 향상시키기 위한 기능성 수지로서 사용되는 경우, 상기 제 2 수지는 제 1 수지와 제 2 수지의 용해도 파라미터 차이가 25℃에서 0.001 내지 10.0 (J/cm3)1/2이 되도록 선택될 수 있다. 하나의 예시로서 상기 용해도 파라미터의 차이는 제 1 수지 및 제 2 수지의 용융 혼합물 내에서 제 2 수지의 혼화성(miscibility)을 고려하여 선택될 수 있다.
25℃에서, 0.001 내지 10.0 (J/cm3)1/2의 용해도 파라미터 차이를 갖는 제 1 수지 및 제 2 수지의 수지 혼합물은 용융 가공된 후에 용해도 파라미터의 차이로 인하여 층 분리될 수 있다. 하나의 예시로서, 제 1 수지 및 제 2 수지의 수지 혼합물이 용융 가공되고, 공기 중에 노출되는 경우, 상기 제 1 수지 및 제 2 수지는 혼화성의 정도에 의해 분리될 수 있다. 특히, 제 1 수지 대비 25℃에서의 0.001 내지 10 (J/cm3)1/2의 용해도 파라미터의 차이를 갖는 제 2 수지는 제 1 수지와 혼화되지 않을 수 있다. 그러므로, 제 2 수지가 추가적으로 제 1 수지 보다 더 낮은 표면 장력 또는 낮은 용융 점도는 가지면, 제 2 수지는 공기와 접촉하도록 이동하여, 공기 쪽에 위치하는 제 2 수지층을 형성할 수 있다. 또한, 상기 제 1 수지는 제 2 수지와 접하면서, 공기와 반대편 쪽에 놓일 수 있다. 따라서, 상기 수지 혼합물의 제 1 수지 및 제 2 수지 사이에 층 분리가 일어나게 된다.
상기 수지 혼합물에서, 제 1 수지로는 목적하는 성형품의 물성을 주로 결정하는 수지로서, 목적하는 성형품의 종류 및 이용되는 공정조건에 따라 선택될 수 있다. 이러한 제 1 수지로는 일반적인 합성 수지를 특별한 제한 없이 사용할 수 있다.
제 1 수지로는, 예를 들면, ABS(acrylonitrile butadiene styrene)계 수지, 폴리스티렌계 수지, ASA(acrylonitrile styrene acrylate)계 수지 또는 스티렌-부타디엔-스티렌 블록공중합체와 같은 스티렌계 수지; 고밀도폴리에틸렌계 수지, 저밀도폴리에틸렌계 수지 또는 폴리프로필렌계 수지와 같은 폴리올레핀계 수지; 에스터계 열가소성 엘라스토머 또는 올레핀계 열가소성 엘라스토머와 같은 열가소성 엘라스토머; 폴리옥시메틸렌계 수지 또는 폴리옥시에틸렌계 수지와 같은 폴리옥시알킬렌계 수지; 폴리에틸렌 테레프탈레이트계 수지 또는 폴리부틸렌 테레프탈레이트계 수지와 같은 폴리에스테르계 수지; 폴리염화비닐계 수지; 폴리카보네이트계 수지; 폴리페닐렌설파이드계 수지; 비닐알콜계 수지; 폴리아미드계 수지; 아크릴레이트계 수지; 엔지니어링 플라스틱; 이들의 공중합체 또는 이들의 혼합물을 들 수 있다. 상기 엔지니어링 플라스틱으로는 우수한 기계적 및 열적 성질을 나타내는 플라스틱을 사용할 수 있다. 예를 들면, 폴리에테르케톤, 폴리설폰 및 폴리이미드 등이 엔지니어링 플라스틱으로 사용될 수 있다. 하나의 예시에서 제 1 수지로는 아크릴로니트릴, 부타디엔, 스티렌 및 아크릴 단량체 등을 중합하여 얻은 공중합체를 사용할 수 있다.
상기 수지 혼합물에서 제 2 수지는 실록산 단위를 가지는 아크릴 중합체를 사용할 수 있다.
본 명세서에서 사용된 용어 실록산 단위는 하기 화학식 4를 나타낸다.
[화학식 4]
Figure pat00004
상기 식에서 R은 탄소수 1 내지 24의 알킬, 탄소수 2 내지 24의 알케닐, 탄소수 1 내지 24의 알콕시, 또는 탄소수 6 내지 40의 아릴을 나타내고,
구체적으로 R은 탄소수 1 내지 12의 알킬, 탄소수 2 내지 12의 알케닐, 탄소수 1 내지 12의 알콕시, 또는 탄소수 6 내지 24의 아릴을 나타낸다.
하나의 예시에서 아크릴 중합체는 하기 화학식 1의 단량체 및 하기 화학식 3의 단량체를 포함하는 단량체 혼합물의 중합체이다.
[화학식 1]
Figure pat00005
상기 식에서, R1 은 수소 또는 탄소수 1 내지 4의 알킬기를 나타내고,
R2 는 하기 화학식 2의 치환기를 나타내며,
[화학식 2]
Figure pat00006
여기서 R5 는 탄소수 1 내지 8의 알킬렌기를 나타내고,
R6 및 R7 은 각각 독립적으로 탄소수 1 내지 8의 알킬기를 나타내며,
n은 1 내지 100의 정수이고,
[화학식 3]
Figure pat00007
상기 식에서 R3 은 수소 또는 탄소수 1 내지 4의 알킬기를 나타내며,
R4 는 탄소수 1 내지 20의 알킬기, 탄소수 6 내지 40의 아릴기, 또는 탄소수 5 내지 40의 지환족 고리기를 나타낸다.
일 구체 예에서 상기 단량체 혼합물은 전체 단량체 100 중량부에 대하여 0.1 내지 50 중량부, 예를 들어 1 내지 30 중량부, 2 내지 45 중량부, 5 내지 15 중량부의 화학식 1의 단량체를 포함할 수 있다.
화학식 1의 단량체는 제 2 수지의 표면에너지를 낮추는 기능을 부여하는 것으로서 0.1 내지 50 중량부, 1 내지 40 중량부, 2 내지 30중량부, 3 내지 20 중량부의 양으로 포함될 수 있다.
화학식 1의 단량체가 0.1 중량부 미만이면 층분리 효율이 감소하는 문제가 있고, 50 중량부를 초과하면 제 1 수지와 제 2 수지 사이의 박리가 발생하는 문제가 있다.
구체 예에서 화학식 1의 단량체는 하기 화학식 5의 화합물이다.
[화학식 5]
Figure pat00008

상기 식에서 R은 수소, 메틸기, 또는 에틸기이고, n은 1 내지 100의 정수이다.
상기 화학식 3의 단량체는 아크릴 중합체의 주된 중합 단위를 형성하는 단량체일 수 있다. 상기 화학식 3의 단량체는 치환기 R3 및 치환기 R4가 각각 상이한 2 이상의 단량체를 조합하여 사용할 수 있다.
일 구체 예에서, 상기 화학식 3에서 치환기 R4가 알킬기인 알킬 (메타)아크릴레이트로는, 예를 들면, 탄소수 1 내지 40의 알킬, 탄소수 1 내지 30의 알킬, 탄소수 1 내지 20의 알킬, 탄소수 1 내지 10의 알킬, 탄소수 1 내지 5의 알킬, 탄소수 1 내지 3의 알킬 또는 탄소수 1 내지 2의 알킬 (메타)아크릴레이트를 사용할 수 있다. 예를 들면, 상기 알킬 (메타)아크릴레이트의 함량은 단량체 혼합물에 포함되는 전체 단량체 100 중량부 기준 50 내지 97 중량부, 60 내지 95 중량부, 65 내지 90 중량부, 50 내지 80 중량부, 50 내지 75 중량부, 50 내지 70 중량부, 55 내지 80 중량부, 60 내지 80 중량부, 55 내지 75 중량부 또는 60 내지 70 중량부일 수 있다.
하나의 예시에서 아크릴 중합체를 중합하기 위한 단량체 혼합물은 벌키한 작용기를 가지는 단량체를 추가로 포함할 수 있다. 벌키한 작용기를 가지는 단량체가 포함된 단량체 혼합물로부터 형성되는 선형 중합체는 유체역학적 부피(hydrodynamic volume)를 증가시켜, 보다 낮은 용융 점도를 가지는 제 2 수지를 제공할 수 있다.
하나의 예시에서 벌키한 작용기를 가지는 단량체는 알킬 (메타)아크릴레이트일 수 있다. 이에 따라 단량체 혼합물은, 예를 들면, 전술한 아크릴 중합체의 주된 중합 단위를 형성하는 알킬 (메타)아크릴레이트; 및 벌키한 알킬기를 가지는 (메타)아크릴레이트를 포함하는 2종 이상의 알킬 (메타)아크릴레이트를 포함할 수 있다. 벌키한 알킬기를 가지는 (메타)아크릴레이트로는, 예를 들면, 탄소수 3 내지 20, 탄소수 3 내지 12, 탄소수 3 내지 6, 탄소수 5 내지 20, 탄소수 7 내지 20, 탄소수 10 내지 20 또는 탄소수 12 내지 20의 알킬 (메타)아크릴레이트; 또는 탄소수 5 내지 40, 탄소수 5 내지 25, 탄소수 5 내지 16, 탄소수 6 내지 40, 탄소수 10 내지 40, 탄소수 12 내지 40 또는 탄소수 16 내지 40 의 지환족 (메타)아크릴레이트(alicyclic (meth)acrylate) 등을 들 수 있다. 구체적으로, 상기 탄소수 3 내지 20의 알킬 (메타)아크릴레이트로는, 예를 들면, 아이소프로필 (메타)아크릴레이트, 아이소부틸 (메타)아크릴레이트, 터셔리부틸 (메타)아크릴레이트 또는 2-에틸헥실 (메타)아크릴레이트 등을 들 수 있고, 상기 탄소수 5 내지 40의 지환족 (메타)아크릴레이트로는, 예를 들면, 사이클로헥실 (메타)아크릴레이트 또는 아이소보닐(isobornyl) (메타)아크릴레이트 등을 들 수 있다.
이러한 벌키한 알킬기를 가지는 (메타)아크릴레이트의 함량은 제2 수지의 용융 점도 및 사용 목적에 따라 적절히 제어할 수 있다. 예를 들어, 벌키한 알킬기를 가지는 (메타)아크릴레이트의 함량은, 단량체 혼합물에 포함되는 전체 단량체 100 중량부 기준 10 내지 40 중량부, 15 내지 40 중량부, 20 내지 40 중량부, 10 내지 35 중량부 10 내지 30 중량부, 15 내지 35 중량부 또는 20 내지 30 중량부로 조절될 수 있다.
다른 예시에서 벌키한 작용기를 가지는 단량체로는 방향족 (메타)아크릴레이트(aromatic (meth)acrylate)를 사용할 수 있다. 방향족 (메타)아크릴레이트로는, 예를 들면, 탄소수 6 내지 40, 탄소수 6 내지 25 또는 탄소수 6 내지 16의 방향족 (메타)아크릴레이트 등을 들 수 있다. 구체적으로, 탄소수 6 내지 40의 방향족 (메타)아크릴레이트로는, 예를 들면, 나프틸(naphthyl) (메타)아크릴레이트, 페닐(phenyl) (메타)아크릴레이트, 안트라세닐(anthracenyl) (메타)아크릴레이트 또는 벤질(benzyl) (메타)아크릴레이트 등을 사용할 수 있다.
이러한 방향족 (메타)아크릴레이트의 함량도 전술한 벌키한 알킬기를 가지는 (메타)아크릴레이트와 같이 제 2 수지의 사용 목적에 따라 적절히 제어할 수 있다. 예를 들어, 방향족 (메타)아크릴레이트의 함량은, 단량체 혼합물에 포함되는 전체 단량체 100 중량부 기준 10 내지 40 중량부, 15 내지 40 중량부, 20 내지 40 중량부, 10 내지 35 중량부 10 내지 30 중량부, 15 내지 35 중량부 또는 20 내지 30 중량부로 조절될 수 있다.
상기 가교성 단량체는, 예를 들면, 카복실기를 가지는 아크릴 단량체, 히드록시기를 가지는 아크릴 단량체, 아미노기를 가지는 아크릴 단량체 또는 무수물기를 가지는 아크릴 단량체 등을 들 수 있다.
구체적으로, 반응성 관능기를 가지는 아크릴 단량체로는, (메타)아크릴산, 2-(메타)아크릴로일옥시 아세트산, 3-(메타)아크릴로일옥시 프로필산, 4-(메타)아크릴로일옥시 부틸산, (메타)아크릴산 이중체, 이타콘산 또는 말레산 등과 같은 카복실기를 가지는 아크릴 단량체; (메타)아크릴아미드 또는 N-치환 (메타)아크릴아미드 등과 같은 아미노기를 가지는 아크릴 단량체; 히드록시C1 - 14알킬 (메타)아크릴레이트와 같은 히드록시기를 가지는 아크릴 단량체; 또는 말레산 무수물과 같은 무수물기를 가지는 아크릴 단량체 등을 사용할 수 있다.
가교성 단량체의 함량은 수지에 도입될 반응성 폴리올레핀의 함량에 따라 제어될 수 있다. 예를 들어, 폴리올레핀 수지를 수지 성형품의 표면층에 적용하여 우수한 내스크래치성을 나타내도록 하기 위하여는 반응성 관능기를 가지는 아크릴 단량체를 단량체 혼합물에 포함되는 전체 단량체 100 중량부 기준 3 내지 50 중량부, 5 내지 40 중량부, 10 내지 35 중량부로 포함할 수 있다.
구체 예에서 단량체 혼합물은
상기 화학식 1의 단량체 0.1 내지 50 중량부;
R3 이 수소인 상기 화학식 3의 단량체 5 내지 99 중량부;
R3 은 탄소수 1 내지 4의 알킬기인 상기 화학식 3의 단량체 0.5 내지 90 중량부; 및
가교성 단량체 0.01 내지 5 중량부를 포함할 수 있다.
R3 이 수소인 상기 화학식 3의 단량체는 제 2 수지의 표면 에너지를 낮추는 기능을 부여하는 것으로서 0.1 내지 50 중량부, 1 내지 40 중량부, 2 내지 30중량부, 3 내지 20 중량부의 양으로 포함될 수 있다.
화학식 1의 단량체가 0.1 중량부 미만이면 층분리 효율이 감소하는 문제가 있고, 50 중량부를 초과하면 제 1 수지와 제 2 수지 사이에 박리가 발생하는 문제가 있다.
R3 이 탄소수 1 내지 4의 알킬기인 상기 화학식 3의 단량체는 제 2 수지의 표면 에너지를 낮추는 기능을 부여하는 것으로서 0.1 내지 50 중량부, 1 내지 40 중량부, 2 내지 30중량부, 3 내지 20 중량부의 양으로 포함될 수 있다.
화학식 1의 단량체가 0.1 중량부 미만이면 층분리 효율이 감소하는 문제가 있고, 50 중량부를 초과하면 제 1 수지와 제 2 수지 사이에 박리가 발생하는 문제가 있다.
상술한 단량체를 포함하는 단량체 혼합물은 일반적으로 단량체의 중합을 통해 수지를 제조하는 방식으로 아크릴 중합체를 제공할 수 있다. 예를 들면, 벌크 중합, 용액 중합, 현탁 중합 또는 유화 중합 등의 방법으로 단량체 혼합물을 중합하여 선형 중합체를 제공할 수 있다.
하나의 예시에서 아크릴 중합체를 제조하는 방법은, 분산제를 용매에 분산시키는 단계; 상술한 단량체 혼합물을 상기 용매에 분산시키는 단계; 사슬이동제 및/또는 개시제 등의 첨가제를 상기 용매에 첨가하여 혼합하는 단계; 및 40℃ 이상의 온도에서 반응시키는 중합 단계를 포함할 수 있다. 여기서, 각 단계의 순서는 임의적 변경이 가능하며, 2 이상의 단계는 하나의 단계로 진행하는 것도 가능하다.
상기 용매는 중합체를 제조하는데 통상적으로 사용될 수 있는 것으로 알려진 매질이면 제한 없이 사용 가능하다. 이러한 용매로는, 예를 들면, 메틸에틸케톤, 에탄올, 메틸이소부틸케톤 또는 증류수 등을 사용할 수 있으며, 2종 이상을 혼합하여 사용할 수도 있다.
상기 용매에 첨가될 수 있는 분산제로는, 예를 들면, 폴리비닐알콜, 폴리올리핀-말레인산 또는 셀룰로오스 등의 유기 분산제; 또는 트리칼슘포스페이트 등의 무기 분산제 등을 들 수 있다.
상기 사슬이동제로는, 예를 들면, n-부틸 머캡탄, n-도데실 머캡탄, 터셔리 도데실머캡탄 또는 이소프로필 머캡탄 등의 알킬 머캡탄; 페닐 머캡탄, 나프틸 머캡탄 또는 벤질 머캡탄 등의 아릴 머캡탄; 카본 테트라 클로라이드 등의 할로겐 화합물; 알파-메틸스티렌 다이머, 알파-에틸스티렌 다이머 등의 방향족 화합물 등을 사용할 수 있다.
또한, 개시제로는 예를 들면 옥타노일 퍼옥사이드, 데칸오일 퍼옥사이드, 라우로일 퍼옥사이드 등의 과산화물 또는 아조비스이소부티로니트릴, 아조비스-(2,4-디메틸)-발레로니트릴 등의 아조계 화합물 등을 들 수 있다.
이외에도 아크릴 중합체를 제조함에 있어 고분자 업계에 통상적으로 사용되는 첨가제를 사용할 수 있고, 통상적으로 수행되는 공정이 추가로 수행될 수도 있다.
본 출원은 또한 하기 화학식 1의 단량체 0.1 내지 50 중량부;
R3 이 수소인 하기 화학식 3의 단량체 5 내지 99 중량부;
R3 은 탄소수 1 내지 4의 알킬기인 하기 화학식 3의 단량체 0.5 내지 90 중량부; 및
가교성 단량체 0.01 내지 5 중량부를 포함하는 단량체 혼합물의 중합체인 아크릴 중합체에 관한 것이다.
[화학식 1]
Figure pat00009
상기 식에서, R1 은 수소 또는 탄소수 1 내지 4의 알킬기를 나타내고,
R2 는 하기 화학식 2의 치환기를 나타내며,
[화학식 2]
Figure pat00010
여기서 R5 는 탄소수 1 내지 8의 알킬렌기를 나타내고,
R6 및 R7 은 각각 독립적으로 탄소수 1 내지 8의 알킬기를 나타내며,
n은 1 내지 100의 정수이고,
[화학식 3]
Figure pat00011
상기 식에서 R3 은 수소 또는 탄소수 1 내지 4의 알킬기를 나타내며,
R4 는 탄소수 1 내지 20의 알킬기, 탄소수 6 내지 40의 아릴기, 또는 탄소수 5 내지 40의 지환족 고리기를 나타낸다.
하나의 예시에서, 제 2 수지의 중량평균분자량(Mw)은 5,000 내지 20만 정도일 수 있다. 또한, 다른 예시에서 무기입자 함유 수지의 중량평균분자량은 1만 내지 20만, 1.5만 내지 20만, 2만 내지 20만, 0.5만 내지 18만, 0.5만 내지 15만, 0.5만 내지 12만, 1만 내지 18만, 1.5만 내지 15만 또는 2만 내지 12만 정도로 제어될 수 있다. 이러한 범위의 중량평균분자량을 가지는 제 2 수지를, 예를 들면, 용융 가공용 수지 혼합물에 적용하는 경우 제 2 수지가 적절한 유동성을 가져 층분리가 쉽게 발생할 수 있다.
또한, 하나의 예시에서 상기 제 2 수지의 분자량 분포(PDI)는 1 내지 2.5, 1 내지 2.2, 1.5 내지 2.5 또는 1.5 내지 2.2의 범위로 제어될 수 있다. 이러한 범위의 분자량 분포를 가지는 제 2 수지를, 예를 들어, 용융 가공용 수지 혼합물에 적용하는 경우 제 2 수지 중 층분리 발생을 방해하는 저분자량체 및/또는 고분자량체의 함량이 줄어들어 층분리가 보다 쉽게 일어날 수 있다.
하나의 예시에서 수지 혼합물은 제 1 수지 100 중량부 기준 0.1 내지 50 중량부의 제 2 수지를 포함할 수 있다. 또한, 다른 예시에서 수지 혼합물은 제 1 수지 100 중량부 기준 1 내지 30 중량부, 1 내지 20 중량부 또는 1 내지 15 중량부를 포함할 수 있다. 이러한 함량으로 제 1 수지 및 제 2 수지를 포함하는 경우, 층분리 현상을 유도할 수 있으며, 제 1 수지 대비 비교적 고가인 제 2 수지의 함량을 적절히 제어하여 경제적인 수지 혼합물을 제공할 수 있다.
상술한 수지 혼합물은 압출에 의하여 펠렛으로 제조될 수 있다. 상기 수지 혼합물을 이용하여 제조된 펠렛은 제 1 수지가 중심부(core)를 형성하고, 제 2 수지가 제 1 수지와 층 분리되어 셀(shell)을 형성할 수 있다.
하나의 구현예에 의하면, 펠렛은 제 1 수지로 형성되는 코어; 및 제 1 수지와 표면 에너지, 용융 점도 또는 용해도 파라미터의 차이가 있는 실록산 단위를 가지는 아크릴 중합체인 제 2 수지로 형성되는 셀을 포함하는 펠렛을 제공한다.
또한, 상술한 바와 같이 상기 제 1 수지와 제 2 수지는 서로 다른 표면 에너지, 융융 점도 또는 용해도 파라미터를 가질 수 있다. 예를 들면, 상기 제 1 수지와 제 2 수지는 25℃에서 0.1 내지 35 mN/m의 표면 에너지 차이; 또는 100 내지 1000 s-1의 전단속도 및 상기 펠렛의 가공 온도에서 0.1 내지 3000 pa*s의 용융 점도 차이를 가질 수 있다.
상기 제 1 수지 및 제 2 수지의 종류 및 물성에 관한 내용은 이미 구체적으로 상술하였는 바, 구체적인 내용은 생략하기로 한다.
한편, 상술한 수지 혼합물 또는 펠렛은 용융 가공되어 층분리 구조를 가지는 수지 성형품을 제공할 수 있다.
하나의 구현예에 의하면, 수지 혼합물을 용융 시켜 용융 혼합물(melt blend)을 형성하는 단계; 및 상기 용융 혼합물을 가공하여 층분리 구조를 형성하는 단계를 포함하는 수지 성형품의 제조 방법을 제공한다.
상술한 바와 같이, 상기 제 1 수지와 제 2 수지와의 물성 차이에 의해, 상기 수지 혼합물을 용융 가공하는 과정에서 층 분리 현상이 발생할 수 있고, 이러한 층 분리 현상으로 인하여 별도의 추가 공정 없이도 펠렛 또는 성형품의 표면을 선택적으로 코팅하는 효과를 낼 수 있다.
특히, 제 2 수지로 실록산 단위를 가지는 아크릴 중합체를 사용하는 경우, 용융 가공 공정 중 상대적으로 낮은 표면 에너지 또는 용융 점도를 가지는 실록산 단위를 가지는 아크릴 중합체가 수지 성형품의 표면에 위치하여 기계적 특성 및 표면 특성이 향상된 수지 성형품을 제공할 수 있다.
수지 혼합물을 용융 가공하는 단계는 전단 응력 하에서 수행될 수 있다. 예를 들면 용융 가공하는 단계는 압출 및/또는 사출 가공 방법에 의하여 수행될 수 있다.
또한, 수지 혼합물을 용융 가공하는 단계에서는 사용되는 제 1 수지 및 제 2 수지의 종류에 따라 적용되는 온도를 달리할 수 있다. 예를 들어, 제 1 수지로 스티렌계 수지를 사용하고, 제 2 수지로 아크릴계 수지를 사용하는 경우 용융 가공 온도는 약 210 내지 270℃ 정도로 제어될 수 있다.
수지 성형품의 제조 방법에서 상기 수지 혼합물을 용융 가공하여 얻어지는 결과물, 즉 상기 수지 혼합물의 용융 가공물을 경화하는 단계를 더 포함할 수 있다. 상기 경화는 예를 들면, 열경화 또는 UV 경화일 수 있다. 또한, 상기 수지 성형품에는 화학적 또는 물리적 처리를 추가로 수행할 수 있다.
하나의 예시에서 수지 성형품의 제조 방법은 상기 수지 혼합물을 용융시켜 용융 혼합물을 형성하는 단계 이전에 제 2 수지를 제조하는 단계를 더 포함할 수 있다. 제 2 수지는 수지 성형품의 표면층에 특정 기능, 예를 들면, 고경도성을 부여할 수 있다. 제 2 수지의 제조와 관련한 내용은 이미 기술하였는바 구체적인 내용은 생략한다.
다른 구현예에 의하면, 수지 성형품의 제조 방법은 펠렛을 용융 시켜 용융 혼합물을 형성하는 단계; 및 상기 용융 혼합물을 가공하여 층분리 구조를 형성하는 단계를 포함할 수 있다.
하나의 예시에서 펠렛은 상술한 수지 혼합물을 압출 등의 용융 가공을 통하여 제조한 것일 수 있다. 예를 들면, 제 1 수지 및 제 2 수지를 포함하는 수지 혼합물을 압출 하는 경우, 제 1 수지에 비해 소수성이 큰 제 2 수지가 공기와 접하도록 이동하여 펠렛의 표면층(shell)을 형성하고, 제 1 수지는 펠렛의 중심부에 위치하여 코어(core)를 형성할 수 있다. 이렇게 제조된 펠렛은 사출 등의 용융 가공에 의해 수지 성형품으로 제조될 수 있다. 그러나, 이에 한정되지 않고, 다른 예시에서 상기 수지 혼합물은 직접, 사출 등과 같은 용융 가공에 의하여 수지 성형품으로 제조될 수도 있다.
한편, 다른 하나의 구현예에 의하면, 수지 성형품은 제 1 수지층, 상기 제 1 수지층 상에 형성되어 있는 제 2 수지층 및 상기 제 1 수지층과 제 2 수지층 사이에 형성되어 있는 계면층을 포함할 수 있다. 상기 계면층은 제 1 및 제 2 수지를 포함할 수 있고, 상기 제 2 수지는 실록산 단위를 가지는 아크릴 중합체를 포함할 수 있다.
특정의 제 1 수지와 상기 제 1 수지와 물성 차이를 가지는 상기 제 2 수지를 포함하는 수지 혼합물로부터 제조되는 수지 성형품은, 예를 들면, 제 1 수지층이 내부에 위치하고, 제 2 수지층이 수지 성형품의 표면에 형성된 층 분리 구조일 수 있다.
특히, 제 2 수지로 전술한 아실록산 단위를 가지는 아크릴 중합체를 사용하는 경우, 성형품이 표면 경도를 추가적으로 향상시킬 수 있다.
상기 '제 1 수지층'은 상기 제 1 수지가 주로 포함되고, 성형품의 물성을 결정하며, 수지 성형품 내부에 위치할 수 있다. 그리고, 상기 '제 2 수지층'은 상기 제 2 수지가 주로 포함되고, 수지 성형품 외곽에 위치하여 성형품의 표면에 일정한 기능을 부여할 수 있다.
상기 제 1 수지 및 제 2 수지에 관한 구체적인 내용은 이미 상술하였는 바, 관련 내용의 설명은 생략하기로 한다.
상기 수지 성형품은 상기 제 1 수지층과 제 2 수지층 사이에 형성되어 있으며 제 1 수지 및 제 2 수지의 혼화물을 포함하는 계면층을 포함할 수 있다. 상기 계면층은 층 분리된 제 1 수지층과 제 2 수지층 사이에 형성되어 경계면 역할을 할 수 있으며, 제 1 수지 및 제 2 수지의 혼화물을 포함할 수 있다. 상기 혼화물은 상기 제 1 수지 및 제 2 수지가 물리적 또는 화학적으로 결합된 상태일 수 있으며, 이러한 혼화물을 통하여 상기 제 1 수지층과 제 2 수지층이 결합될 수 있다.
수지 성형품은 제 1 수지층과 제 2 수지층이 이러한 계면층에 의하여 구분되고, 상기 제 2 수지층이 외부에 노출되는 구조로 형성될 수 있다. 예를 들어, 상기 성형품은 상기 제 1 수지층; 계면층; 및 제 2 수지층이 순차적으로 적층된 구조를 포함할 수 있고, 제 1 수지의 상하단으로 계면 및 제 2 수지가 적층된 구조일 수 있다. 또한, 상기 수지 성형품은 다양한 입체 형태, 예를 들어 구형, 원형, 다면체, 시트형 등의 형태를 갖는 제 1 수지층을 상기 계면 및 제 2 수지층이 순차적으로 둘러싸고 있는 구조를 포함할 수 있다.
상기 수지 성형품에서 나타나는 층 분리 현상은 상이한 물성을 갖는 특정의 제 1 수지 및 제 2 수지를 적용하여 수지 성형품을 제조함에 따른 것으로 보인다. 이러한 상이한 물성의 예로는 표면 에너지 또는 용융 점도를 들 수 있다. 이러한 물성의 차이에 관한 구체적인 내용은 상술한 바와 같다.
하나의 예시에서 제 1 수지층, 계면층 및 제 2 수지층은, 시편을 저온 충격 시험 후, 파단면을 THF vapor를 이용하여 에칭(etching)하고 SEM을 이용하여 확인할 수 있다. 각 층의 두께 측정을 위하여, 시편을 microtoming 장비를 이용하여 다이아몬드 칼로 절단하여 매끄러운 단면으로 만든 후 제 1 수지에 비해 제 2 수지를 선택적으로 더 잘 녹일 수 있는 용액을 사용하여 매끄러운 단면을 에칭한다. 에칭된 단면 부분은 제 1 수지 및 제 2 수지의 함량에 따라 녹아나간 정도가 다르게 되고 이를 SEM을 이용하여 단면을 표면으로부터 45도 위에서 보면 음영의 차이에 의해 제 1 수지층, 제 2 수지층, 계면층 및 표면을 관찰할 수 있으며, 각 층의 두께를 측정할 수 있다. 하나의 예시에서 상기 제 2 수지를 선택적으로 더 잘 녹이는 용액으로 1,2-dichloroethane 용액(10 부피%, in EtOH) 을 사용하였으나, 이는 예시적인 것으로 제 1 수지에 비해 제 2 수지의 용해도가 높은 용액이라면 특별히 제한되지 않으며, 당업자라면 제 2 수지의 종류 및 조성에 따라 용액을 적절히 선택하여 적용할 수 있다.
상기 계면층은 상기 제 2 수지층 및 계면층 총 두께의 1 내지 95%, 10 내지 95%, 20 내지 95%, 30 내지 95%, 40 내지 95%, 50 내지 95%, 60 내지 95% 또는 60 내지 90%의 두께를 가질 수 있다. 상기 계면층이 상기 제 2 수지층 및 계면층 총 두께의 0.01 내지 95%의 두께이면 제 1 수지층과 제 2 수지층의 계면 결합력이 우수하여 양 층의 박리 현상이 일어나지 않으며, 제 2 수지층으로 인한 표면 특성이 크게 향상될 수 있다. 이에 반해, 상기 계면층이 상기 제 2 수지층에 비하여 너무 얇으면 제 1 수지층과 제 2 수지층의 결합력이 낮아서 양 층의 박리 현상이 발생할 수 있으며, 너무 두꺼우면 제 2 수지층에 의한 표면 특성 향상의 효과가 미미해질 수 있다.
상기 제 2 수지층은 전체 수지 성형품 대비 0.01 내지 30%, 0.01 내지 20%, 0.01 내지 10%, 0.01 내지 5%, 0.01 내지 3%, 0.01 내지 1% 또는 0.01 내지 0.1%의 두께를 가질 수 있다. 상기 제 2 수지층이 일정 범위의 두께를 가짐에 따라 성형품의 표면에 향상된 표면 경도 또는 내스크래치성을 부여할 수 있게 되는데, 상기 제 2 수지층의 두께가 너무 얇으면 성형품의 표면 특성을 충분히 향상시키기 어려울 수 있고, 상기 제 2 수지층의 두께가 너무 두꺼우면 기능성 수지 자체의 기계적 물성이 수지 성형품에 반영되어 제 1 수지의 기계적 물성이 변화될 수 있다.
상술한 구조의 수지 성형품에서는 제 2 수지층의 표면에서 적외선 분광기(IR)에 의해 제 1 수지층의 성분이 검출될 수 있다.
상기에서 제 2 수지층 표면은 제 1 수지층 쪽이 아닌 외부(예를 들면, 공기)에 노출되는 면을 의미한다.
상기 제 1 수지, 제 2 수지 및 제 1 수지와 제 2 수지의 물성 차이에 관한 구체적인 내용은 이미 상술하였는바, 관련 내용의 설명은 생략하기로 한다. 또한, 본 명세서에서, 제 1 수지와 제 2 수지의 물성 차이는, 제 1 수지와 제 2 수지의 물성 차이 또는 제 1 수지층과 제 2 수지층의 물성 차이를 의미할 수 있다.
하나의 예시에서, 상기 수지 성형품은 자동차부품, 헬멧, 전기기기 부품, 방적기계 부품, 완구류, 파이프 등의 제공에 사용될 수 있다.
본 출원의 예시적인 수지 혼합물은 표면이 향상된 기계적 특성 및 표면 경도를 가지는 수지 성형품을 제공할 수 있다. 또한, 상기 수지 혼합물을 이용하는 경우 수지 성형품의 표면에 추가적인 표면 코팅 단계를 생략할 수 있고도 상술한 효과를 발휘할 수 있어 생산 시간 및 비용을 절감할 수 있고, 생산성을 증가시킬 수 있다.
도 1은 실시예 1에서 제조된 수지 성형품의 층분리된 단면 형상 SEM 사진을 나타낸 것이다.
도 2는 비교예 2에서 제조된 수지 성형품의 단면 형상 SEM 사진을 나타낸 것이다.
이하 실시예 및 비교예를 통하여 상기 수지 혼합물을 상세히 설명하나, 상기 수지 혼합물의 범위가 하기 제시된 실시예에 의해 제한되는 것은 아니다.
이하 실시예 및 비교예에서의 물성은 하기의 방식으로 평가하였다.
1. 분자량 분포( PDI ) 및 중량평균분자량( Mw )의 측정
분자량 분포는 GPC(Gel permeation chromatography)를 사용하여 측정하였으며, 조건은 하기와 같다.
- 기기: Agilent technologies 사의 1200 series
- 컬럼: Polymer laboratories 사의 PLgel mixed B 2개 사용
- 용매: THF
- 컬럼온도: 40도
- 샘플 농도: 1mg/mL, 100L 주입
- 표준: 폴리스티렌(Mp: 3900000, 723000, 316500, 52200, 31400, 7200, 3940, 485)
분석 프로그램은 Agilent technologies 사의 ChemStation을 사용하였으며, GPC에 의해 중량평균분자량(Mw), 수평균분자량(Mn)을 구한 후, 중량평균분자량/수평균분자량(Mw/Mn)으로부터 분자량분포(PDI)를 계산하였다.
2. 표면 에너지의 측정
Owens-Wendt-Rabel-Kaelble 방법에 의거하여, 물방울모양분석기(Drop Shape Analyzer, KRUSS사의 DSA100제품)를 사용하여 표면 에너지를 측정하였다.
구체적으로, 실시예 또는 비교예에서 얻어진 수지를 메틸 에틸 케톤(methyl ethyl ketone) 용매에 15중량%로 녹인 후, LCD 유리(glass)에 바코팅(bar coating)하였다. 그리고, 상기 코팅된 LCD 유리를 60℃의 오븐에서 2분간 예비 건조하고, 90℃의 오븐에서 1분간 건조하였다.
건조(또는 경화) 후, 상기 코팅 면에 탈이온화수 및 diiodomethane을 각각 10번씩 떨어뜨려서 접촉각의 평균값을 구하고, Owens-Wendt-Rabel-Kaelble 방법에 수치를 대입하여 표면에너지를 구하였다.
3. 용융 점도의 측정
모세관 레오미터(Capillary Rheometer 1501, Gottfert사)를 사용하여, 용융 점도를 측정하였다.
구체적으로, 모세관 다이(Capillary die)를 바렐(Barrel)에 부착한 후, 실시예 또는 비교예에서 얻어진 수지를 3차례 나누어 채워 넣었다. 그리고, 240℃의 가공 온도에서 100 내지 1000 s-1의 전단 속도(shear rate)에 따른 전단 점도(shear viscosity, pa*s)를 측정하였다.
4. 연필 경도 측정 실험
연필경도계(충북테크)를 이용하여 일정하중 500g하에서 실시예 및 비교예에서 얻어진 시편의 표면 연필 경도를 측정하였다. 표준연필(미쓰비시 사)를 6B 내지 9H로 변화시키면서 45도의 각도를 유지하여 스크래치를 가하여 표면의 변화율을 관찰하였다(ASTM 3363-74). 측정 결과는 5회 반복 실험 결과의 평균값이다.
5. 강도 측정 실험
ASTM D256 에 의거하여 실시예 및 비교예에서 얻어진 시편의 강도를 측정하였다. 구체적으로, 진자 끝에 달려 있는 추를 들었다가 V자형 홈(Notch)를 판 시편을 파괴시키는데 필요한 에너지(kg*cm/cm)을 충격 시험기(Impact 104, Tinius Olsen사)를 이용하여 측정하였다. 1/8" 및 1/4" 시편에 대하여 각각 5회 측정하고 평균값을 구하였다.
6. 단면 형상 관찰
실시예 및 비교예의 시편을 저온 충격 시험 후, 파단면을 디클로로에탄 증기(또는 플라즈마)를 이용하여 에칭(etching)하고 SEM(제조사: Hitachi, 모델명: S-4800)을 이용하여 층분리된 단면 형상을 관찰하였다.
층분리된 제 1 수지층, 제 2 수지층 및 계면층의 두께를 측정하기 위해서는, 하기 실시예 및 비교예의 시편을 microtoming 장비(Leica EM FC6)를 이용하여 -120℃에서 다이아몬드 칼로 절단하여 매끄러운 단면을 만든다. microtoming된 매끄러운 단면을 포함하는 시편의 단면부를 1,2-dichloroethane 용액(10 부피%, in EtOH)에 담가 10초간 에칭(etching)한 후 증류수로 씻어낸다. 에칭된 단면 부분은 제 1 수지 및 제 2 수지의 함량에 따라 녹아나간 정도가 다르게 되고 이를 SEM을 이용하여 관측할 수 있다. 즉, 단면을 표면 기준으로 45도 위에서 보면 음영의 차이에 의해 제 1 수지층, 제 2 수지층 및 계면층을 관찰할 수 있으며, 각각의 두께를 측정할 수 있다.
7. 적외선 분광기( IR )에 의한 표면 분석
Varian FTS-7000 분광기(Varian, USA) 및 MCT(mercury cadmium telluride) 검출기를 장착한 UMA-600 적외선 현미경을 사용하였으며, 스펙트럼 측정 및 데이터 가공은 Win-IR PRO 3.4 소프트웨어(Varian, USA)를 사용하였으며, 조건은 하기와 같다.
- 굴절률이 4.0인 게르마늄(Ge) ATR 크리스탈
- ATR(attenuated total reflection) 법에 의해 중적외선 스펙트럼이 8cm-1의 분광해상도 및 16 스캔으로 4000cm-1부터 600cm-1까지 스캔
- 내부 레퍼런스 밴드(internal reference band): 아크릴레이트의 카보닐기(C=O str., ~1725 cm-1)
- 제 1 수지의 고유성분: 부타디엔 화합물[C=C str.(~1630 cm-1) 또는 =C-H out-of-plane vib.(~970 cm-1)]
피크 강도 비율[IBD(C=C) / IA(C=O)] 및 [IBD(out-of-plane) / IA(C=O)]을 계산하고, 스펙트럼 측정은 한 시편 내의 각각 다른 영역에서 5회 수행되어, 평균값 및 표준 편차가 계산되었다.
제조예 - 제 2 수지의 제조
제조예 1
교반기와 온도계, 질소 투입구, 순환 콘덴서를 장착한 4구 플라스크의 반응기를 준비하고 이온수(deionized water, DDI water) 1476g을 3L 용기에 투입하여 질소 분이기에서 상기 반응기 내부 온도를 80℃까지 가열한 후, 메틸메타크릴레이트 204g, 페닐메타크릴레이트 75g, 메타아크릴옥시프로필 말단 폴리디메틸실록산(PDMS, MW 420) 15g, 알릴메타크릴레이트 6g 및 3% 소디움라우릴설페이트 60g을 반응기에 투입하고 15분간 교반하였다. 그 후, 3% 칼륨퍼설페이트용액 200g을 투입하고 120분간 교반하였다. 반응 종류 후 평균입자경이 120 nm인 중합체의 에멀젼을 제조하였으며, 이 때 전환율은 99%로 측정되었다.
상기 에멀젼을 80℃로 예열된 1% 마그네슘설페이트용액에 적가하면서 교반하여 분말상태의 고체를 제조하였다. 상기 분말을 여과 후 70℃의 증류수로 3회 수세하고 80℃의 진공오븐에서 24시간 동안 건조하여 기능성 수지를 제조하였다.
제조예 2
교반기와 온도계, 질소 투입구, 순환 콘덴서를 장착한 4구 플라스크의 반응기를 준비하고 이온수(deionized water, DDI water) 1960g을 3L 용기에 투입하여 질소 분이기에서 상기 반응기 내부 온도를 80℃까지 가열한 후, 메틸메타크릴레이트 204g, 페닐메타크릴레이트 75g, 메타아크릴옥시프로필 말단 폴리디메틸실록산(PDMS, MW 420) 15g, 알릴메타크릴레이트 6g을 반응기에 투입하고 15분간 교반하였다. 그 후, 3% 칼륨퍼설페이트용액 300g을 투입하고 120분간 교반하였다. 반응 종류 후 평균입자경이 500 nm인 중합체의 에멀젼을 제조하였으며, 이 때 전환율은 99%로 측정되었다.
상기 에멀젼을 80℃로 예열된 1% 마그네슘설페이트용액에 적가하면서 교반하여 분말상태의 고체를 제조하였다. 상기 분말을 여과 후 70℃의 증류수로 3회 수세하고 80℃의 진공오븐에서 24시간 동안 건조하여 기능성 수지를 제조하였다.
실시예 1
제 1 수지(메틸메타아크릴레이트 60중량부, 아크릴로니트릴 7중량부, 부타디엔 10 중량부 및 스티렌 23중량부로 이루어진 열가소성 수지) 90 중량부와 상기 제조예 1에서 제조한 제 2 수지 10 중량부를 혼합한 후, 트윈 스크류 압출기(Leistritz사)에서 240℃의 온도로 압출하여 펠렛(pellet)을 얻었다. 그리고, 이러한 펠렛을 EC100Φ30사출기(ENGEL사)에서 240℃의 온도로 사출하여 두께 3200㎛의 수지 성형품 시편을 제작하였다.
상기 시편의 단면 형상 SEM 사진은 도 1에 나타내었다.
상기 성형품 시편에서는, 제 1 수지층, 제 2 수지층, 및 상기 제 1 수지층과 제 2 수지층 사이의 10㎛ 두께의 계면층으로 분리되는 층분리 현상이 발생하였다.
상기 제 2 수지층의 표면에너지는 31 mN/m로 측정되었으며, 상기 제 1 수지층과 제 2 수지층의 표면에너지 차이는 12 mN/m로 측정되었다.
또한, 1/8" 및 1/4" 시편에 대한 강도는 각각 9로 측정되었고, 상기 시편의 연필 경도는 2H로 측정되었다.
실시예 2
상기 제조예 2에서 얻어진 제 2 수지 10 중량부를, 실시예 1에서 사용된 것과 동일한 제 1 수지 90 중량부와 혼합한 것을 제외하고는, 실시예 1과 동일한 방법으로 시편을 제조하였다.
상기 성형품 시편에서는, 제 1 수지층, 제 2 수지층, 및 상기 제 1 수지층과 제 2 수지층 사이의 15㎛ 두께의 계면층으로 분리되는 층분리 현상이 발생하였다.
상기 제 2 수지층의 표면에너지는 29 mN/m로 측정되었으며, 상기 제 1 수지층과 제 2 수지층의 표면에너지 차이는 14 mN/m로 측정되었다.
또한, 1/8" 및 1/4" 시편에 대한 강도는 각각 6 및 4로 측정되었고, 상기 시편의 연필 경도는 2H로 측정되었다.
비교예 1
실시예 1에서 사용한 제 1 수지 100 중량부를 오븐에서 건조하고, EC100Φ30사출기(ENGEL사)에서 240℃의 온도로 사출하여 수지 성형품 시편을 제작하였다.
상기 시편에서는 층분리 현상이 관찰되지 않았다.
상기 제 1 수지층의 표면에너지는 43 mN/m로 측정되었다.
또한, 1/8" 및 1/4" 시편에 대한 강도는 각각 10로 측정되었고, 상기 시편의 연필 경도는 F로 측정되었다.
비교예 2
제 2 수지로서 PMMA(LGMMA IF870) 10 중량부를, 실시예 1에서 사용된 것과 동일한 제 1 수지 90 중량부와 혼합한 것을 제외하고는, 실시예 1과 동일한 방법으로 시편을 제조하였다.
상기 성형품 시편에서는, 층분리 현상이 발생하지 않았다.
상기 제 2 수지층의 표면에너지는 43 mN/m로 측정되었으며, 상기 제 1 수지층과 제 2 수지층의 표면에너지 차이는 없는 것으로 나타났다.
또한, 1/8" 및 1/4" 시편에 대한 강도는 각각 5로 측정되었고, 상기 시편의 연필 경도는 H로 측정되었다.
비교예 3
제 2 수지로서 PMMA(Sekisui XX-110BQ) 10 중량부를, 실시예 1에서 사용된 것과 동일한 제 1 수지 90 중량부와 혼합한 것을 제외하고는, 실시예 1과 동일한 방법으로 시편을 제조하였다.
상기 성형품 시편에서는, 층분리 현상이 발생하지 않았다.
또한, 1/8" 및 1/4" 시편에 대한 강도는 각각 8 및 4로 측정되었고, 상기 시편의 연필 경도는 HB로 측정되었다.

Claims (20)

  1. 제 1 수지; 및
    상기 제 1 수지와 표면 에너지, 용융 점도 또는 용해도 파라미터의 차이를 가지고, 실록산 단위를 가지는 아크릴 중합체인 제 2 수지를 포함하는 수지 혼합물.
  2. 제 1 항에 있어서, 제 2 수지는 25℃에서 제 1 수지와 표면 에너지 차이가 0.1 내지 35 mN/m인 수지 혼합물.
  3. 제 1 항에 있어서, 제 2 수지는 100 내지 1000s-1의 전단속도 및 수지 혼합물의 가공 온도에서 용융 점도의 차이가 0.1 내지 3000 pa*s인 수지 혼합물.
  4. 제 1 항에 있어서, 제 2 수지는 25℃에서 상기 제 1 수지와 용해도 파라미터(Solubility Parameter) 차이가 0.001 내지 10.0 (J/cm3)1/2인 수지 혼합물.
  5. 제 1 항에 있어서, 제 1 수지는 스티렌계 수지, 폴리올레핀계 수지, 열가소성 엘라스토머, 폴리옥시알킬렌계 수지, 폴리에스테르계 수지, 폴리염화비닐계 수지, 폴리카보네이트계 수지, 폴리페닐렌설파이드계 수지, 비닐알콜계 수지, 폴리아미드계 수지, 아크릴레이트계 수지, 엔지니어링 플라스틱, 이들의 공중합체 또는 이들의 혼합물인 수지 혼합물.
  6. 제 1 항에 있어서, 아크릴 중합체는 하기 화학식 1의 단량체 및 하기 화학식 3의 단량체를 포함하는 단량체 혼합물의 중합체인 수지혼합물:
    [화학식 1]
    Figure pat00012

    상기 식에서, R1 은 수소 또는 탄소수 1 내지 4의 알킬기를 나타내고,
    R2 는 하기 화학식 2의 치환기를 나타내며,
    [화학식 2]
    Figure pat00013

    여기서 R5 는 탄소수 1 내지 8의 알킬렌기를 나타내고,
    R6 및 R7 은 각각 독립적으로 탄소수 1 내지 8의 알킬기를 나타내며,
    n은 1 내지 100의 정수이고,
    [화학식 3]
    Figure pat00014

    상기 식에서 R3 은 수소 또는 탄소수 1 내지 4의 알킬기를 나타내며,
    R4 는 탄소수 1 내지 20의 알킬기, 탄소수 6 내지 40의 아릴기, 또는 탄소수 5 내지 40의 지환족 고리기를 나타낸다.
  7. 제 6 항에 있어서, 단량체 혼합물은 전체 단량체 100 중량부에 대하여 0.1 내지 50 중량부의 화학식 1의 단량체를 포함하는 수지혼합물.
  8. 제 6 항에 있어서, 단량체 혼합물은
    화학식 1의 단량체 0.1 내지 50 중량부;
    R3 이 수소인 화학식 3의 단량체 5 내지 99 중량부;
    R3 은 탄소수 1 내지 4의 알킬기인 화학식 3의 단량체 0.5 내지 90 중량부; 및
    가교성 단량체 0.01 내지 5 중량부를 포함하는 수지혼합물.
  9. 제 2 수지제 2 수지
    제 1 항에 있어서, 제 2 수지가 1 내지 2.5의 분자량분포를 가지는 수지 혼합물.
  10. 제 1 항에 있어서, 제 2 수지가 5,000 내지 20만의 중량평균분자량을 가지는 수지 혼합물.
  11. 제 1 항에 있어서, 제 1 수지 100 중량부 기준 0.1 내지 50 중량부의 제 2 수지를 포함하는 수지 혼합물.
  12. 하기 화학식 1의 단량체 0.1 내지 50 중량부;
    R3 이 수소인 하기 화학식 3의 단량체 5 내지 99 중량부;
    R3 은 탄소수 1 내지 4의 알킬기인 하기 화학식 3의 단량체 0.5 내지 90 중량부; 및
    가교성 단량체 0.01 내지 5 중량부를 포함하는 단량체 혼합물의 중합체인 아크릴 중합체:
    [화학식 1]
    Figure pat00015

    상기 식에서, R1 은 수소 또는 탄소수 1 내지 4의 알킬기를 나타내고,
    R2 는 하기 화학식 2의 치환기를 나타내며,
    [화학식 2]
    Figure pat00016

    여기서 R5 는 탄소수 1 내지 8의 알킬렌기를 나타내고,
    R6 및 R7 은 각각 독립적으로 탄소수 1 내지 8의 알킬기를 나타내며,
    n은 1 내지 100의 정수이고,
    [화학식 3]
    Figure pat00017

    상기 식에서 R3 은 수소 또는 탄소수 1 내지 4의 알킬기를 나타내며,
    R4 는 탄소수 1 내지 20의 알킬기, 탄소수 6 내지 40의 아릴기, 또는 탄소수 5 내지 40의 지환족 고리기를 나타낸다.
  13. 제 1 수지로 형성되는 코어; 및 제 1 수지와 표면 에너지, 용융 점도 또는 용해도 파라미터의 차이가 있는 실록산 단위를 가지는 아크릴 중합체인 제 2 수지로 형성되는 셀을 포함하는 펠렛.
  14. 제 1 항의 수지 혼합물을 용융시켜 용융 혼합물을 형성하는 단계; 및 상기 용융 혼합물을 가공하여 층분리 구조를 형성하는 단계를 포함하는 수지 성형품의 제조 방법.
  15. 제 14 항에 있어서, 용융 및 가공하는 단계는 전단 응력 하에서 수행되는 수지 성형품의 제조 방법.
  16. 제 14 항에 있어서, 상기 수지 혼합물의 층분리 구조를 경화하는 단계를 더 포함하는 수지 성형품의 제조 방법.
  17. 제 16 항에 있어서, 경화는 열 경화 또는 UV 경화인 수지 성형품의 제조 방법.
  18. 제 13 항의 펠렛을 용융시켜 용융 혼합물을 형성하는 단계; 및 상기 용융 혼합물을 가공하여 층분리 구조를 형성하는 단계를 포함하는 수지 성형품의 제조 방법.
  19. 제 1 수지층; 상기 제 1 수지층 상에 형성되어 있는 제 2 수지층; 및 제 1 수지 및 제 2 수지를 포함하며, 상기 제 1 수지층과 제 2 수지층 사이에 형성되어 있는 계면층을 포함하고, 상기 제 2 수지는 실록산 단위를 가지는 아크릴 중합체인 수지 성형품.
  20. 제 19 항에 있어서, 제 2 수지층의 표면에서 적외선 분광기에 의해 제 1 수지층 성분이 검출되는 수지 성형품.
KR1020130092134A 2013-08-02 2013-08-02 수지 혼합물 KR101651316B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020130092134A KR101651316B1 (ko) 2013-08-02 2013-08-02 수지 혼합물

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130092134A KR101651316B1 (ko) 2013-08-02 2013-08-02 수지 혼합물

Publications (2)

Publication Number Publication Date
KR20150015988A true KR20150015988A (ko) 2015-02-11
KR101651316B1 KR101651316B1 (ko) 2016-08-25

Family

ID=52573123

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130092134A KR101651316B1 (ko) 2013-08-02 2013-08-02 수지 혼합물

Country Status (1)

Country Link
KR (1) KR101651316B1 (ko)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005272506A (ja) * 2004-03-23 2005-10-06 Daikin Ind Ltd 含フッ素シルセスキオキサン重合体
KR20110024500A (ko) * 2009-09-02 2011-03-09 단국대학교 산학협력단 실록산-실라잔 변성 아크릴계 화합물, 이의 제조방법, 및 이의 용도
KR20120038911A (ko) * 2010-10-14 2012-04-24 주식회사 엘지화학 용융 가공용 수지 혼합물

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005272506A (ja) * 2004-03-23 2005-10-06 Daikin Ind Ltd 含フッ素シルセスキオキサン重合体
KR20110024500A (ko) * 2009-09-02 2011-03-09 단국대학교 산학협력단 실록산-실라잔 변성 아크릴계 화합물, 이의 제조방법, 및 이의 용도
KR20120038911A (ko) * 2010-10-14 2012-04-24 주식회사 엘지화학 용융 가공용 수지 혼합물

Also Published As

Publication number Publication date
KR101651316B1 (ko) 2016-08-25

Similar Documents

Publication Publication Date Title
KR101780092B1 (ko) 수지 혼합물
EP2578393B1 (en) Melt-processed molded resin article
KR101612223B1 (ko) 용융 가공용 수지 혼합물
KR101654400B1 (ko) 수지 혼합물
KR101560022B1 (ko) 용융 가공용 수지 혼합물, 펠렛 및 이를 이용한 수지 성형품의 제조 방법 및 수지 성형품
KR101560024B1 (ko) 용융 가공 수지 성형품
KR101659114B1 (ko) 수지 혼합물
KR101640630B1 (ko) 수지 혼합물
KR101651316B1 (ko) 수지 혼합물
KR101661013B1 (ko) 수지 혼합물
KR101659124B1 (ko) 복합 수지의 제조방법
KR101587304B1 (ko) 용융 가공용 수지 혼합물
KR101677791B1 (ko) 수지 혼합물
KR101618408B1 (ko) 수지 성형품

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190625

Year of fee payment: 4