KR20150010693A - 연료전지층의 형성방법 - Google Patents

연료전지층의 형성방법 Download PDF

Info

Publication number
KR20150010693A
KR20150010693A KR1020147016530A KR20147016530A KR20150010693A KR 20150010693 A KR20150010693 A KR 20150010693A KR 1020147016530 A KR1020147016530 A KR 1020147016530A KR 20147016530 A KR20147016530 A KR 20147016530A KR 20150010693 A KR20150010693 A KR 20150010693A
Authority
KR
South Korea
Prior art keywords
substrate
major surface
electrically conductive
volume
opening
Prior art date
Application number
KR1020147016530A
Other languages
English (en)
Inventor
제레미 쉬루텐
올렌 리처드 반더리덴
제러드 에프. 맥클렌
마틴 라그르와
장-루이스 이아코니스
안나 스투카스
Original Assignee
소시에떼 비아이씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 소시에떼 비아이씨 filed Critical 소시에떼 비아이씨
Publication of KR20150010693A publication Critical patent/KR20150010693A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0286Processes for forming seals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • H01M8/0256Vias, i.e. connectors passing through the separator material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0276Sealing means characterised by their form
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49155Manufacturing circuit on or in base
    • Y10T29/49165Manufacturing circuit on or in base by forming conductive walled aperture in base

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

본 발명은 평판형 기판에서의 전기전도성 통로에 관한 것이다. 다양한 구현예가 평판형 기판에 하나 이상의 전기전도성 통로를 형성하는 방법을 제공하며, 상기 통로를 형성하는 동안 상기 기판의 실질적으로 아무 것도 제거되지 않는다. 여러 구현예에서, 상기 전기전도성 통로의 형성 동안 기판의 제거를 회피함으로써 잔류하는 기판물질에 의해 야기되는 문제가 유리하게 회피될 수 있다. 여러 구현예에서, 상기 전기전도성 통로를 갖는 상기 평판형 기판은 평판형 연료전지 어레이를 제조하는데 사용될 수 있다.

Description

연료전지층의 형성방법 {METHODS OF FORMING FUEL CELL LAYERS}
본 발명은 평판형 연료전지어레이의 제조방법에 관한 것이다.
또한, 본원은 미국 가특허출원 제61/561,647호(2011. 11. 18 출원) "METHODS OF FORMING FUEL CELL LAYERS"을 우선권주장한 출원이다.
연료전지 등의 전기화학전지는 대전된 화학종(charged chemical species)의 이송통로를 포함한다. 전기화학반응으로 나온 이온들은 이온교환막(예로서, 양성자교환막)을 거쳐 이동하고 전자들은 인접한 연료전지들 간에 이동된다. 일부 타입의 전지들에 있어서, 양성자 전도성을 위한 통로가 연료전지 내에 통합되는 한편, 전자 전도성을 위한 통로는 인접한 연료전지들 간에 생성되어 연료전지장치의 양전기접속과 음전기접속으로부터의 전기회로를 제공하게 된다.
마이크로 연료전지응용을 위해 한 연료전지 구조가 등장하고 있으며, 이는 어레이에서 서로 인접하게 배열된 이웃한 연료전지들을 갖춘 박층 연료전지구조를 포함한다. 연료전지 어레이는 사이에 전기전도성 통로를 갖는 복수의 연료전지를 포함할 수 있다. 이러한 연료전지구조를 생산하기 위한 개선된 제조방법이 요구된다.
다양한 구현예가 평판형 기판에 전기전도성 통로를 형성하는 방법을 제공한다. 상기 방법은 제1주면(主面) 및 제2주면과 제1체적을 갖는 평판형 기판을 입수 및 공급 중의 적어도 하나를 하는 것을 포함한다. 상기 기판은 적어도 하나의 이온전도성 영역을 포함한다. 상기 방법은 상기 평판형 기판의 상기 적어도 하나의 이온전도성 영역에 적어도 하나의 개구를 형성하는 것을 포함한다. 상기 개구는 상기 제1주면과 제2주면 간에 연장한다. 상기 개구는 상기 제1체적과 실질적으로 동일한 제2체적을 갖는 천공된 평판형 기판을 이룬다. 상기 방법은 또한 상기 천공된 평판형 기판의 개구 내에 전기전도성 물질을 배치하여 상기 제1주면과 제2주면 간에 연장하는 전기전도성 통로를 부여하는 것을 포함한다. 상기 전기전도성 통로는 상기 기판이 상기 제1주면과 제2주면 간에 실질적으로 기밀하도록 상기 기판에 밀봉된다.
다양한 구현예가 평판형 기판에 전기전도성 통로를 형성하는 방법을 제공한다. 상기 방법은 제1주면(主面)과 제2주면을 갖는 평판형 기판을 입수 및 공급 중의 적어도 하나를 하는 것을 포함한다. 상기 기판은 적어도 하나의 이온전도성 영역을 포함한다. 상기 방법은 또한 상기 평판형 기판의 상기 적어도 하나의 이온전도성 영역에 적어도 하나의 개구를 만드는 것을 포함한다. 상기 개구는 상기 제1주면과 제2주면 간에 연장한다. 개구의 형성 동안 상기 평판형 기판의 실질적으로 아무 것도 제거되지 않는다. 상기 방법은 상기 개구 내에 전기전도성 물질을 배치하여 상기 전기전도성 물질을 포함하는 전기전도성 통로를 부여하는 것을 포함한다. 상기 전기전도성 통로는 상기 제1주면 및 제2주면 간에 연장한다. 상기 전기전도성 통로는 상기 기판이 상기 제1주면 및 제2주면 간에 실질적으로 기밀하도록 상기 기판에 밀봉된다.
다양한 구현예가 평판형 기판에 전기전도성 통로를 형성하는 방법을 제공한다. 상기 방법은 제1주면(主面) 및 제2주면과 제1체적을 갖는 평판형 이온전도성 기판을 입수 및 공급 중의 적어도 하나를 하는 것을 포함한다. 상기 기판은 적어도 하나의 이온전도성 영역을 포함한다. 상기 방법은 상기 평판형 기판의 상기 적어도 하나의 이온전도성 영역에 적어도 하나의 개구를 형성하는 것을 포함한다. 상기 개구는 상기 제1주면과 제2주면 간에 연장한다. 상기 개구는 상기 제1체적과 실질적으로 동일한 제2체적을 갖는 천공된 평판형 기판을 이룬다. 상기 방법은 상기 천공된 평판형 기판의 개구 내에 전기전도성 물질을 배치하여 상기 제1주면과 제2주면 간에 연장하는 전기전도성 통로를 부여하는 것을 포함한다. 상기 평판형 기판은 상기 제1주면을 포함하는 상부 제1체적과, 상기 제2주면을 포함하는 저부 제1체적을 포함한다. 상기 천공된 평판형 기판은 상기 제1주면을 포함하고 상기 상부 제1체적에 상응하는 상부 제2체적과, 상기 제2주면을 포함하고 상기 저부 제1체적에 상응하는 저부 제2체적을 포함한다. 상기 상부 제1체적은 상기 상부 제2체적과 실질적으로 동일하다. 상기 저부 제1체적은 상기 저부 제2체적과 실질적으로 동일하다. 상기 전기전도성 통로는 상기 기판이 상기 제1주면 및 제2주면 간에 실질적으로 기밀하도록 상기 기판에 밀봉된다.
기판을 통한 전도성 통로를 생성하는 종래 방법에 있어서, 오리피스를 형성하기 위해서는 기판물질이 제거될 수 있고 전도성 물질이 상기 오리피스 내로 배치될 수 있어, 문제로 될 수 있는 잔류 기판물질 조각들을 초래한다. 예를 들어, 상기 잔류 물질은 기판에 하나 이상의 지점에 계속 부착될 수 있어, 평평하지 않거나 왜곡된 표면을 야기할 수 있다. 다른 예로서, 상기 잔류 물질은 툴(tool)이나 장치를 막히게 하거나 아니면 장애를 줄 수 있다. 다른 예로서, 상기 잔류 물질은 기판이나 기계류에 다른 위치에서 축적되어 다양한 문제를 야기할 수 있다. 일 예로서, 기판 표면상의 잔류 물질은 프레싱 단계 이후 기판표면에 융해되어 기판특성에 부정적인 영향을 미칠 수 있다. 기판을 통한 전도성 통로를 생성하는 다른 종래 방법으로서, 기판 물질은 레이저 어블레이션(laser ablation) 등의 방법을 이용하여 제거될 수 있다. 그러나, 레이저 처리로 인한 큰 열이 기판의 국부적 특성(기계적 특성이나 전기적 특성 등)을 부정적으로 바꿀 수 있다.
본 발명의 다양한 구현예는 기판에 전도성 통로를 형성하는 다른 연료전지나 방법에 대해 이점들을 가질 수 있다. 예기치못하게 본 발명의 구현예들은 기판 물질의 제거 없이 기판 평면을 통한 전도성 통로의 형성을 달성한다. 따라서, 본 발명의 다양한 구현예는 기판을 통한 전도성 통로를 형성하기 위해 물질이 제거될 때 발생할 수 잇는 문제들을 회피할 수 있게 한다. 일부 예로서, 본 발명의 구현예는 툴이나 장치를 막히게 하는 잔류 물질(예로서, "채드(chad)")이나 다양한 위치에서의 잔류물질 축적을 회피할 수 있게 한다. 일부 예로서, 형성된 개구 부근영역에서 기판특성의 변화를 회피할 수 있게 한다. 기판물질의 제거에 기인하는 문제들을 회피함으로써, 본 구현예들은 다른 방법들보다 더 간단하고 효율적인 기판에서의 전도성 통로의 형성방법을 제공한다. 물질을 제거하지 않음으로써, 다양한 구현예들이 낭비하는 물질은 다른 방법보다 더 작다. 일부 구현예에서는 물질을 제거하지 않음으로써 전도성 통로를 갖고 액체누설이나 기체누설에 대해 밀봉된 기판을 달성하기가 더 쉽다. 일부 구현예에서, 전도성 물질 또는 상기 전도성 물질을 포함하는 클램프(clamp)나 예비형성 구조체(preformed structure)가 막 상에 압축력이나 밀봉력을 제공할 수 있다. 일부 구현예에서, 전도성 물질을 지지하는 예비형성 구조체는 매우 다양한 전도성 물질의 사용을 가능하게 한다.
일부 구현예에서, 일반적으로 연속하는 기판시트에 전도성 통로를 형성함으로써 다른 방법들에서 필요로 되는 바와 같이 비유사 물질들을 큰 결합계면들로 결합시키는 것을 회피할 수 있다. 예를 들어, 일부 종류의 전해질 물질은 다른 물질에 잘 결합하기가 어렵다(이는 연료전지들을 전해질 스트립들로부터 조립할 때 심각한 문제이다); 일부 실시예에서 본 발명의 구현예들을 사용하여 기판에 전도성 통로를 형성함으로써 이러한 어려움들을 회피할 수 있다.
본 도면들은 반드시 일정한 비례로 그려진 것이 아니며 유사 도면부호는 여러 도면에 걸쳐 실질적으로 유사한 요소들을 기술한다. 다른 접미부호를 갖는 유사 도면부호는 실질적으로 유사한 요소들의 다른 예들을 나타낸다. 본 도면들은 일반적으로 예시에 의하여, 그러나 제한하는 방식이 아니라 본 명세서에 기술된 다양한 구현예들을 도시한다.
도 1a~1d는 본 발명의 일 구현예를 순차적으로 도시한 도면.
도 2a~2c는 본 발명의 일 구현예를 순차적으로 도시한 도면.
도 3a는 본 발명의 일 구현예에 의해 형성된 전도성 라인을 도시한 도면.
도 3b는 본 발명의 일 구현예에 의해 형성된 직렬 전도성 통로를 도시한 도면.
도 4는 본 발명의 일 구현예에 의해 형성된 전도성 라인들을 갖는 이온전도성 층을 도시한 도면.
도 5a~5b는 본 발명의 일 구현예를 순차적으로 도시한 도면.
도 6a는 본 발명의 일 구현예를 도시한 도면.
도 6b는 성능향상층을 포함하는 이온전도성 막에 적용된 본 발명의 일 구현예를 도시한 도면.
도 6c는 본 발명의 일 구현예에 의해 형성된 예비형성 구조화 요소들을 포함하는 이온전도성 층을 도시한 도면.
도 7a~7b는 본 발명의 일 구현예를 순차적으로 도시한 도면.
도 8은 본 발명의 흐름도.
아래 기재에 걸쳐 본 발명에 대한 더욱 완전한 이해를 제공하기 위해 특정 세부들이 하술된다. 그러나, 본 발명은 이들 특정 사항들 없이도 실시될 수 있다. 다른 예로서, 잘 알려진 요소들은 본 발명을 불필요하게 모호하게 할 수 있으므로 개시되지 않거나 또는 상세히 기술되지 않았다. 도면들은 도시를 통해 본 발명이 실시될 수 있는 특정 구현예들을 도시한다. 이들 구현예들은 본 발명의 범위를 벗어남이 없이, 결합되거나, 다른 요소들이 사용되거나 또는 구조적이거나 논리적인 변경이 행해질 수 있다. 따라서, 본 명세서 및 도면은 제한적인 의미로서가 아니라 예시적인 의미로서 간주하여야 한다.
본 명세서에서 인용된 모든 공보, 특허 및 특허문서는 개별적으로 참조로 되듯이 그 전부가 참조로서 포함된다. 본 명세서와 상기 참조로 되는 문서 간에 불일치한 사용이 있는 경우에는 이들 참조문헌에서의 사용은 본 명세서에의 보충적인 것으로 고려되어야 한다; 즉, 양립할 수 없는 불일치에 대해서는 본 명세서의 사용에 따른다.
본 명세서에서, 용어 "한(a 또는 an)"은 "적어도 하나" 또는 "하나 이상"의 사용이나 기타 경우와 관계없이 하나 또는 그 이상을 포함하는데 사용된다. 본 명세서에서, 용어 "또는(or)"은 비배타적인 것을 가리키거나, 또는 달리 기술되지 않는 한 "A, B 또는 C"는 "A만", "B만", "C만", "A 및 B", "B 및 C", "A 및 C"와 "A, B 및 C"를 포함하도록 사용된다. 용어 "~상에(above)" 또는 "~하에(below)" 그리고 "아래에(below)" 또는 "저부에(bottom)"는 복합체의 중심에 대해 두 다른 방향을 기술하는데 사용되며, 용어 "상부(upper)" 및 "저부(lower)"는 복합체의 두 다른 면들을 기술하는데 사용된다. 그러나, 이들 용어는 단지 기술의 편이를 위해서만 사용되는 것이고 기술된 구현예들의 연료전지층의 배향을 확정하는 것으로 이해될 것은 아니다. 본 명세서나 특허청구범위에서, 용어 "제1(first)", "제2(second)" 및 "제3(third)" 등은 단지 표지로서만 사용되는 것이지 해당 대상물에 수치적 요건을 부가하려는 의도는 아니다. 본 명세서에 명백히 기술된 모든 수치범위는 마치 부분범위들 또한 명백히 개시된 것처럼 명백히 개시된 범위의 모든 부분범위들을 포함한다; 예로서, 개시된 범위 1~100, 또는 100 이하 및 1 이상은 범위 1~80, 2~76 또는 기타 1~100 간에 있는 모든 수치범위들을 또한 포함한다.
복합체층 구조체의 여러 예들은 본 발명의 방법에 대한 복합체층으로서 사용될 수 있는 연료전지층 등의 전기화학전지 어레이들을 포함하며, 이는 본 출원인의 미국특허출원공개 제2011/0003229호(2009. 2. 27 출원) 또는 PCT 국제특허출원 제 PCT/CA09/00253호 "ELECTROCHEMICAL CELL AND MEMBRANES RELATED THERETO"에 기술되어있다.
복수의 단위전지를 포함하는 연료전지층은 복합체 기판을 제공함으로써 구축될 수 있는데, 이러한 복합체 기판은 복수의 이온전도성요소와 복수의 전기전도성요소를 포함한다. 이러한 기판은 예를 들어 이온전도성막에서 물질을 확실히 제거하여 하나 이상의 개구를 형성함으로써 제공될 수 있는데, 이러한 개구는 이후 전도성물질로 채워져 시트를 통한 하나 이상의 이산형 전기통로를 생성한다. 이러한 방법의 예로는 본 출원인의 미국특허출원공개 제2011/0236785호(2010. 3. 25 출원) "FUEL CELL LAYER, FUEL CELL SYSTEM AND METHOD FOR FABRICATING THE FUEL CELL LAYER"에 기술되어있다. 마이크로 연료전지의 경우에는 개구는 일반적으로 작아야하는데, 이로써 상기 물질 충전은 넓은 구멍에 걸칠 필요가 없다. 전기전도성통로는 이웃하는 단위연료전지를 전기적으로 연결하도록 상호연결구로서 사용될 수 있다. 이러한 통로는 하나의 주면(主面: major surface)에서 대향 표면으로 기판을 관통하는데 필요할 수 있다.
본 발명에 의한 방법은 연속하는 시트물질에 상기 시트물질을 구멍내어 면관통(through-plane) 전도성통로를 형성할 수 있게 한다. 이는 기판에서 물질을 제거하여 뒤에 확실한 구멍을 남기는 종래기술과는 다르다. 상기 연속적 시트물질은 균일한 양자전도성 물질, 또는 양자전도성 물질 및 유전체물질의 복합체, 또는 양자전도성 물질 및 유전체물질의 복합체로서 이들 물질상에 또는 표면 근처에 배치된 전기전도영역을 갖는 것일 수 있다. 단위전지 상호연결구에 필요로 되는 영역을 최소화함으로써 연료전지의 전체 활성영역이 최대화될 수 있다.
본 발명의 방법은 물질 제거에 기계적인 펀칭을 사용하는 경우 툴(tool)을 막히게 하거나 평면왜곡을 생기게 할 수 있는 작은 차드(chad)의 생성을 피한다. 또한, 본 발명의 방법은 물질 제거에 어블레이션(ablation) 기술을 사용하는 경우 연속시트의 기계적 성질을 바꾸는 표면효과 및 영역효과의 생성을 피한다. 이러한 결과는 프레싱(pressing)과 같은 후속 공정단계들이 완성하기 어렵게 만든다. 따라서, 본 발명의 방법은 연속시트물질의 왜곡이나 이의 기계적 성질의 변경을 최소화한다.
정의
여기서 "촉매(catalyst)"는 자체가 개질되거나 소모됨이 없이 반응을 개시하거나 반응속도를 증가시키는 것을 돕는 재료 또는 물질을 가리킨다. 촉매층은 용이한 적용에 적합한 전기화학적 촉매라면 이를 모두 포함할 수 있다. 촉매 또는 촉매층은 순백금(pure platinum), 카본담지백금(carbon supported platinum), 백금흑(platinum black), 백금 루테늄(platinum ruthenium), 백금 코발트(platinum-cobalt), 팔라듐(palladium), 구리(copper), 산화주석(tin oxide), 실리콘 산화물(silicon oxide), 니켈(nickel), 금(gold), 그래파이트(graphite)와, 카본블랙(carbon black) 및 하나 이상의 바인더의 혼합물을 포함할 수 있다. 바인더는 이노머(ionomers), 폴리프로필렌(polypropylene), 폴리에틸렌(polyethylene), 폴리카보네이트(polycarbonate), 폴리이미드(polyimides), 폴리아미드(polyamides), 플루오로폴리머(fluoropolymers) 및 기타 폴리머 물질들을 포함할 수 있고, 막(film)이나 분말(powder) 또는 분산액(dispersion)으로 될 수 있다. 폴리이미드의 일 예로는 Kapton®을 포함한다. 플루오로폴리머의 일 예로는 PTFE(polytetrafluoroethylene) 또는 Teflon®이다. 기타 플루오로폴리머로는 PFSA(perfluorosulfonic acid), FEP(fluorinated ethylene propylene), PEEK(poly ethylene ether ketones) 및 PFA(perfluoroalkoxyethylene)를 포함한다. 상기 바인더는 또한 PVDF(polyvinylidene difluoride) 분말(예를 들어, Kynar®) 및 이산화규소(silicon dioxide) 분말을 포함할 수 있다. 상기 바인더는 폴리머들이나 이노머들의 모든 조합을 포함할 수 있다. 상기 카본블랙은 아세틸렌 블랙카본(acetylene black carbon), 카본입자, 카본 플레이크, 카본 섬유, 카본 니들, 카본 나노튜브 및 카본 나노입자 중의 하나 이상 등 모든 적합한 미분 카본물질을 포함할 수 있다.
여기서 "피막(coating)"은 복합체층의 표면상에 배치된 전도성 박층을 가리킨다. 예를 들어, 상기 피막은 촉매층이나 전극층(예로서, 애노드 및 캐소드)일 수 있다.
여기서 "복합체층(composite layer)" 또는 "복합체(composite)"는 소정 두께를 갖는 적어도 2개의 표면을 포함하는 층을 가리키며, 상기 표면들 간에는 하나 이상의 이온전도성 통로와 하나 이상의 전기전도성 통로가 형성된다. 복합체층의 이온전도특성 및 전기전도특성은 이온전도성 통로와 전기전도성 통로를 크기, 형상, 밀도 또는 배열을 변화시키며 형성함으로써 상기 복합체층의 여러 영역에서 변할 수 있다. 복합체층은 예를 들어 이온전도성 영역을 혀성하기 위한 비이온전도성 시트를 선택적으로 취급함으로써 형성될 수 있다(예컨대, 본 출원인의 미국특허 제7,378,176호(2005. 2. 2 출원) "MEMBRANES AND ELECTROCHEMICAL CELLS INCORPORATING SUCH MEMBRANES" 참조). 복합체층은 유체(예로서, 기체 또는 액체)에 대해 불투과성일 수 있거나 실질적 불투과성일 수 있다. 복합체층은 유전체 물질을 포함할 수 있다. 복합체층은 이의 전체 공간범위에 걸쳐, 또는 이의 여러 영역에서 정도를 가변하는 전체 공간범위에 걸쳐, 원하는 전기전도성, 이온전도성, 기체투과성, 기체 불투과성 및 기계적 강도 특성들을 제공할 수 있다. 복합체층은 기판으로서 사용될 수 있다. 본 발명의 방법이 적용될 수 있는 적합한 복합체층은 여기 기술하는 복합체층과, 본 명세서에서 참조하는 특허문서에 기술된 모든 복합체층과, 상기 복합체층의 주요 일면 또는 양면 상에 또는 이에 인접하게 배치된 피막층을 포함하거나 포함할 수 있다.
여기 사용되는 "유전체 물질(dielectric material)"은 무시가능한 전기전도성을 나타내는 물질을 가리킨다. 유전체 물질은 예를 들어 기판으로서 사용될 수 있다. 유전체 물질은 이온전도성 물질, 비 이온전도성 물질 또는 이의 조합을 포함하는 것으로 이해될 수 있다. 이온전도성 물질의 예로는 이온교환 폴리머(예로서, NafionTM), 알칼리성 용액, 산성용액, 인산, 알칼리 탄산염 및 산화물 이온전도성 세라믹 등과 같이, 주어진 용도에 적합한 모든 이오노머 또는 전해질을 포함한다. 비 이온전도성 물질은 폴리프로필렌(polypropylene), 폴리에틸렌(polyethylene), 폴리카보네이트(polycarbonate), 폴리에틸렌 에테르 케톤(poly ethylene ether ketones), 폴리이미드(polyimides), 폴리아미드(polyamides), 플루오로폴리머(fluoropolymers) 및 기타 폴리머 막 등의 폴리머를 포함한다. 폴리이미드의 일 예로는 Kapton™ 막을 포함한다. 플루오로폴리머의 일 예는 PTFE (polytetrafluoroethylene) 막 또는 Teflon™ 막이다. 기타 플루오로폴리머는 PFSA(perfluorosulfonic acid), FEP(fluorinated ethylene propylene) 및 PFA (perfluoroalkoxyethylene)를 포함한다. 또한, 유전체 물질은 유리섬유 등의 강화복합체 물질, 실리콘이나 유리 등의 모든 적합한 비 폴리머 물질과, 이들의 조합을 포함할 수도 있다. 유전체 물질은 전해질을 포함할 수 있다. 상기 전해질은 고체 전해질 막일 수 있다.
여기 사용되는 "전기화학반응층(electrochemical reaction layer)"은 전기화학반응이 일어나는 영역을 가리킨다. 전기화학반응층은 전기화학반응에서 애노드나 캐소드 아니면 둘 다로서 작용하는 물질이나 요소를 포함할 수 있다. 전기화학반응층은 전극물질, 촉매물질, 전기전도성 물질, 가스투과성 물질 및 수분활성 물질(예로서, 친수성 물질 및 소수성 물질)을 포함할 수 있고, 기계적 내구력을 제공하기 위해 구조적 첨가제를 포함할 수 있다. 전기화학반응층의 조성은 반응을 증진하도록 최적화될 수 있다.
여기 사용되는 "전극영역(electrode regions)", "전극물질(electrode materials)" 또는 "전극(electrodes)"은 전기화학반응에서 애노드나 캐소드 또는 둘 다로서 작용하는 물질이나 요소를 가리킨다. 전극영역은 촉매를 포함할 수 있다. 전극영역은 순백금(pure platinum), 백금흑(platinum black), 카본담지백금(carbon-supported platinum), 팔라듐(palladium), 구리(copper), 니켈(nickel), 금(gold), 직조 및 부직조 카본페이퍼(woven and non-woven carbon fiber paper), 카본페이퍼(carbon paper), 카본블랙(carbon black) 혼합물, 카본분말(carbon powder), 그래파이트 분말(graphite powder), 팽창흑연(expanded graphite), 그래파이트 충전 에폭시(graphite filled epoxy) 등의 전도성 접착제, 그래파이트 충전 Nafion™, Nafion™ 등의 전도성 프라이머(primer), 또는 이들의 조합을 포함할 수 있다. 전극영역은 또한 미세다공성 층을 포함할 수도 있다. 미세다공성 층은 전극 내에서 열전달, 수분전달 및 전기전달을 증진할 뿐만 아니라 전극 내에서 구조적 지지를 제공하는 기능을 하는 요소이다. 미세다공성 층은 그래파이트 분말, 카본 분말, 카본 니들(carbon needles), 카본 나노튜브(carbon nanotubes), 그래파이트 플레이크(graphite flakes), 그래파이트 니들(graphite needles), 산화주석(tin oxide), 실리콘 옥사이드 및 바인더를 포함할 수 있다. 바인더는 이노머(ionomers), 폴리프로필렌(polypropylene), 폴리에틸렌(polyethylene), 폴리카보네이트(polycarbonate), 폴리이미드(polyimides), 폴리아미드(polyamides), 플루오로폴리머(fluoropolymers) 및 기타 폴리머 물질들을 포함할 수 있고, 막이나 분말 또는 분산액으로 될 수 있다. 폴리이미드의 일 예로는 Kapton™을 포함한다. 플루오로폴리머의 일 예로는 PTFE(polytetrafluoroethylene) 또는 Teflon™이다. 기타 플루오로폴리머로는 PFSA(perfluoroalkoxyethylene)를 포함한다. 상기 바인더는 PVDF(polyvinylidene difluoride) 분말(예를 들어, Kynar™) 및 이산화규소(silicon dioxide) 분말을 포함할 수 있다. 상기 바인더는 폴리머들이나 이노머들의 모든 조합을 포함할 수 있다. 이러한 미세다공성 층의 예로는 코팅 카본페이퍼(coated carbon paper) 및 코팅 카본 파이버 페이퍼(coated carbon fiber paper)의 형태로서 상업적으로 구입가능한 것들을 포함한다. 전극영역은 본 출원인의 PCT 국제특허출원공개 제WO 2011/079378호(2010. 12. 23 출원) "PERFORMANCE ENHANCING LAYERS FOR FUEL CELLS"에 기술된 성능향상층(performance enhancing layers)을 포함할 수 있다. 전극영역은 피막의 형태로 복합체층의 표면상에 배치될 수 있다. 여기서는 "전극영역"과 "전극"을 같은 의미로 사용한다.
여기서 사용되는 "전자전도성요소(electron conducting component)" 또는 "전기전도성요소"는 전기전도성 통로를 제공하는 복합체층의 요소를 가리킨다. 전자전도성요소는 예를 들어 상기 복합체를 통해 복합체층의 일 표면으로부터 상기 복합체층의 대향 표면으로의 전기전도성 통로(들)을 제공할 수 있다. 전자전도요소는 전기전도성인 하나 이상의 물질을 포함하며, 이의 예로는 금속, 금속 폼, 탄소질 물질, 전기전도성 세라믹, 전기전도성 폴리머, 그래파이트, 그래파이트 충전 에폭시, 금속충전 에폭시, 팽창흑연, 카본, 카본충전 에폭시와, 이의 조합 등이다.
여기 사용되는 "전해질막(electrolyte membrane)"은 이온전도성 통로를 제공하는 복합체층의 요소이다. 이온전도성 통로는 플루오로폴리머 기재 이온전도성 물질(fluoropolymer-based ion conducting material) 또는 탄화수소 기재 이온전도성 물질(hydrocarbon-based ion conducting material) 등의 이온전도성 물질을 포함한다. 전해질막은 또한 여기서는 "전해질" 또는 "이온전도성요소"로 지칭할 수도 있다. 이온전도성 통로는 양자들이 이산형 이온전도성 통로들에서 유동영향을 가질 수 있도록 한 통로에서 다른 통로로 도약하는 것보다 각 통로를 따라 유동하도록 이격되어야만 한다.
여기서 "평면(plane)"은 확정된 연장 및 공간적 방향 또는 위치를 갖는 2차원 가상표면을 가리킨다. 예를 들어, 직사각형 블록은 서로 수직인 3개 평면을 가질 수 있다. 평면들은 예를 들어 서로에 대해 90도보다 크거나 미만인 각도들을 사용하여 정의될 수 있다.
여기 사용되는 "연료전지 어레이(fuel cell array)"는 복수의 개별 단위전지들을 가리킨다. 복수의 전지들은 이온교환막 물질의 시트 상이나 기타 기판상에 형성되거나 또는 특정한 방법으로 다수의 요소들을 조립하여 형성될 수 있다. 어레이는 모든 적합한 기하학적 구조로 형성될 수 있다. 연료전지 어레이에서의 각 단위전지들은 전도성 통로를 통하여 전기적으로 연결될 수 있다. 예를 들어, 전도성 통로는 단위전지의 애노드를 이웃하는 단위연료전지의 캐소드와 연결하여 직렬 전기연결을 만들 수 있다. 평판형 연료전지 어레이의 예로는 본 출원인의 미국특허출원공개 제2005/0250004호(2005. 2. 2 출원) "ELECTROCHEMICAL CELLS HAVING CURRENT CARRYING STRUCTURES UNDERLYING ELECTROCHEMICAL REACTION LAYERS"에 개시되어있다. 또한, 하나의 어레이에서의 연료전지들은 튜브와 같이 다른 평판 표면들을 뒤따를 수도 있다(원통상 연료전지에서 볼 수 있듯이). 이 대신에 또는 이에 부가하여, 어레이는 광범위한 기하학적 구조로 될 수 있는 가요성 물질들을 포함할 수 있다.
여기서 사용되는 "실질적으로(substantially)"는 적어도 약 50%, 60%, 70%, 80%, 90%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.9%, 99.99% 또는 적어도 약 99.999%의 대다수나 대부분을 가리킨다.
여기 사용되는 "이온적 전도성(ionically conductive)"은 이온전도성인 물질을 가리킨다.
여기 사용되는 "양자적 전도성(protonically conductive)"은 양자전도성인 물질을 가리킨다.
도 1a~1d는 본 발명의 방법에 의한 일 구현예를 순차적으로 도시하며 기판에 배치되는 전기전도성 물질의 단면도를 보인다. 상기 기판은 모든 적합한 기판으로 될 수 있다. 상기 기판은 연속성 시트일 수 있다. 상기 기판은 이온전도성 기판일 수 있다. 상기 기판은 이온전도성의 적어도 한 영역을 포함할 수 있다. 상기 기판의 이온전도성 영역은 일부 실시예에서 양자전도성일 수 있다. 일부 구현예에서, 상기 기판은 이온전도성층과 다른 층(들)의 혼합물을 포함하는 복합체층일 수 있다. 상기 이온전도성 기판 또는 기판의 상기 이온전도성 영역은 두께가 10㎛ 미만, 또는 약 10㎛, 20㎛, 30㎛, 40㎛, 50㎛, 60㎛, 70㎛, 80㎛, 90㎛, 100㎛, 110㎛, 120㎛, 130㎛, 140㎛, 또는 약 150㎛ 이상이다. 상기 이온전도성 기판 또는 기판의 상기 이온전도성 영역은 두께가 예를 들어 약 25~50㎛ 또는 약 10~100㎛일 수 있다.
상기 기판은 이온전도성의 적어도 한 영역을 포함할 수 있다. 상기 이온전도성의 영역은 양자 전도성의 영역일 수 있다. 상기 영역은 모든 적합한 영역일 수 있다. 상기 기판은 제1 및 제2 주면(主面: major face)을 가질 수 있다. 상기 기판은 제1체적을 가질 수 있다. 상기 기판은 평판형 기판일 수 있다. 평판형 기판은 1차원으로 얇은 기판이다. 평판형 기판은 가요성일 수 있거나 강체일 수 있고 평탄하거나 만곡질 수 있다. 평판형 기판은 평면의 변형을 가질 수 있어도 평판형 기판으로 고려될 수 있다.
도 1a는 제1측면(120)(주면)과 제2측면(122)(주면)을 포함하는 기판(102) 일 부분을 도시한다. 도 1b는 기계적 툴(110)에 의해 형성된 기판(102)의 인열된 영역 또는 개구(104)를 도시한다. 상기 개구는 모든 적합한 개구일 수 있다. 기계적 툴(110)은 기판(102) 표면에 상부에서 하부까지 대칭인 개구보다는 저부 근처에 작은 구멍을 갖는 덴트(dent) 유사형상 등의 불규칙한 개구를 만들 수 있다. 상기 개구를 형성하는데 모든 적합한 툴이 사용가능하다. 이러한 개구를 만드는데 사용되는 툴의 단면 직경은 예를 들어 약 50㎛, 100㎛, 200㎛, 300㎛, 400㎛, 500㎛, 600㎛, 700㎛, 800㎛, 900㎛, 1000㎛이거나 또는 약 1000㎛보다 더 크다. 일부 실시예에서, 상기 개구를 만드는 툴은 일정한 직경을 갖기보다는 오히려 테이퍼지거나 아니면 세로로 홈이 새겨진 표면이나 표면상에 나선형 양각을 갖는 패턴으로 된다. 여러 구현예에서, 상기 툴은 축 주위에 고정되거나 회전할 수 있다.
하나 이상의 개구가 상기 기판내에 형성될 수 있다. 상기 개구는 하나씩 형성될 수 있거나 또는 여러 개구들이 동시에 형성될 수 있다. 일부 구현예에서, 약 2, 5, 10, 20, 50, 100, 200, 300, 500개 또는 약 1000개 이상의 개구들이 동시에 형성될 수 있다. 다공판을 만들기 위해 시트 개조에 사용되는 것과 같은 다양한 기계적 툴이 상기 개구를 형성하는데 사용될 수 있다. 기타 실시예로는 스틸룰다이스(steel rule dies), 천공다이스(perforating dies) 및 핀다이스(pin dies)를 포함한다. 복수 핀을 갖는 다이스는 기판(102) 내에 복수의 불규칙 개구들을 만들어낼 수 있다. 전형적인 다이스는 인치당 최대 약 50개 핀의 핀 피치로 형성될 수 있다. 이러한 다이스는 단일의 열로 배열된 핀들을 갖도록 만들어지거나 또는 한번에 개구들의 일 조 이상을 만들도록 복수의 열로 배열된 핀들을 갖도록 만들어질 수 있다. 일 실시예에서, 도 4에 도시된 바와 같은 복수의 단위연료전지를 포함하는 연료전지 어레이는 약 1000개 내지 약 4000개 개구를 포함할 수 있다.
상기 기계적 툴은 하나의 주된 표면에서 대향 표면으로 기판을 천공할 수 있다. 상기 툴은 모든 적합한 두께로 상기 기판을 뚫을 수 있다. 일부 구현예에서, 첨단부 상에서 상기 툴의 직경은 증가하거나 일정한 값을 유지하거나 또는 이의 조합으로 될 수 있다; 즉, 상기 툴의 형상에 따라서 상기 기판내로의 인입깊이는 개구의 원하는 크기를 달성하도록 선택될 수 있다. 다른 구현예에서, 상기 툴은 또한 클램프나 하술하는 다른 구현예들 등과 같이 개구내로 삽입되는 전기전도성 물질로서의 기능을 겸한다. 다른 구현예에서, 상기 툴은 전도성 요소(예컨대, 전도성 실)를 운반하고, 이로써 상기 툴의 삽입깊이는 상기 툴의 제거 이전에 상기 전도성 요소가 상기 개구를 적합한 깊이로 운반되도록 선택될 수 있다.
여러 구현예에서, 상기 기판내에 형성된 개구는 이를 생성하기 위해 기판으로부터 실질적으로 물질을 제거함이 없이 형성된다. 개구형성 동안에 매우 작은 양의 물질 제거가 일어날 수는 있으나, 상기 개구는 이로부터 심(core)을 제거하여 형성되는 것이 아니며 따라서 상기 제거된 물질은 코어상 조각("채드(chad)")으로 된다. 일부 구현예에서, 홀 형성을 위한 콘(cone) 상 기구 또는 니들(needle) 상 기구를 사용하여 물질제거 회피가 달성될 수 있으며, 이때 상기 기구의 첨단부가 기판을 천공하고 상기 기구의 더 넓은 부분이 상기 첨단부를 뒤따라 상기 개구를 넓히게 된다. 상기 첨단부가 기판을 관통해감에 따라, 작은 양의 물질이 개구가 형성되면서 상기 개구의 내부측에서 해체될 수 있다; 그러나, 상기 작은 양의 물질 제거는 개구 생성에서 기판으로부터 제거되는 물질이 거의 없는 정도이다. 더구나, 평판형 기판은 천공력에 의해 변위되어 덴트상이 상기 개구 주위로 형성됨을 야기한다. 다른 구현예에서, 평판형 기판이 천공력에 의해 변위되는 것을 최소한으로 하여 덴트형상이 아예 또는 거의 형성되지 않게 한다.
개구형성 동안 물질제거 부족을 나타내는 한 방법에 있어서, 개구 형성 이전에 기판은 제2체적을 가지며, 상기 제2체적은 상기 제1체적과 대략 동일하다. 일부 구현예에서, 상기 제1체적은 이 체적이 개구가 만들어지는 기판 부분의 전부를 에워싸는 한, 기판의 전체 총체적의 어느 부분이라도 모두 에워싸며 모든 적합한 방법으로 정의될 수 있다. 마찬가지로, 상기 제2체적은 이것이 상기 제1체적에 상응하는 한 모든 적합한 방법으로 정의될 수 있다. 상기 제2체적은 대략 수직방향으로 볼 때 상기 제1체적과 동일한 기판 단면영역을 나타냄으로써 상기 제1체적에 상응할 수 있다. 일부 구현예에서, 상기 체적들은 상기 개구가 형성되는 영역 주위에 바짝 형성될 수 있다. 다른 구현예에서, 상기 체적은 상기 개구가 형성되는 영역 주위에 넓게 형성될 수 있다. 상기 개구의 형성이 기판 평면의 덴트나 기타 변형의 형성을 포함하는 경우, 상기 체적들은 상기 변형 전체를 포함할 수 있다. 일부 구현예에서, 상기 제2체적은 상기 제1체적의 약 90%, 95%, 96%, 97%, 98%, 99%, 99.9%, 99.99%, 99.999%, 99.9999%, 99.99999% 이상 또는 약 100%이다.
여러 구현예에서, 상기 개구의 형성에 의해 제거된 물질의 총량은 작거나 실질적으로 없을 수 있다; 그러나, 일부 실시예에서는 상기 개구가 형성되고 상기 제1체적과 제2체적이 실질적으로 동등해진 후, 기판특성의 변화가 이를 수축 또는 팽창하게 함으로써 총체적이 원래 체적보다 더 커지거나 작아지게 된다. 또한, 여러 구현예에서, 기판에 전기전도성 물질을 부가함으로써 원래의 체적(제1체적)이나 제2체적보다 더 큰 전체 총체적이 초래될 수가 있다. 상기 제1체적 및 제2체적 간의 비교는 개구형성으로 초래되는 체적변화를 묘사할 수 있는데, 제2체적은 개구형성 및 천공도구의 후퇴 직후에 측정될 수 있다; 기판 체적 또는 총체적에서의 추가 변화(즉, 체적의 증가)는 개구의 형성후에 발생할 수 있다.
본 발명의 다향한 구현예는 또한 "행잉채드(hanging chad)"(개구의 에지나 전기전도성 통로의 에지로부터 매달리는 기판물질의 잔존량)의 발생을 피한다. 행잉채드는 일반적으로 기판을 관통한 홀의 제거된 심(core)을 포함하는데, 상기 심은 형성된 홀 주변 부근에 기판의 일부분에 여전히 부착되어있게된다. 행잉채드는 기판내에 홀을 생성하는 심을 제거함에 의해 생성될 수 있다. 다양한 구현예가 전술하였듯이 심의 제거를 회피함으로써 행잉채드의 생성을 피한다. 오히려, 첨단부가 기판을 천공하는데 사용되며, 이는 심이 홀의 에지에 매달릴 수 있는 기판으로부터 심을 밀어내는 것을 피한다.
전술했듯이, 홀의 형성은 기판물질을 변위시킬 수 있어 평판형 기판에 덴트유사형상을 유발한다. 물질을 제거하거나 홀 외부로 이를 행잉채드로서 변위시킴이 없이 단지 기판을 변형시킴에 의해, 행잉채드에 의해 유발되는 문제는 회피될 수 있다. 개구형성 동안 물질의 있을 수 있는 변위, 그러나 심의 제거 및 변위의 부족을 묘사하는 한 방법에 있어서, 기판은 개구형성 이전 및 이후 모두 상부 및 하부 체적을 갖는 것으로 상정될 수 있으며, 이때 상기 상부 및 하부 체적은 홀 형성 이전 및 이후에 실질적으로 동일하다. 홀 형성 이전에 상기 기판의 상부 및 하부 체적은 홀 형성 이후의 상부 및 하부 체적에 상응한다. "상응"하기 위해서 상기 상부체적 및 하부체적 간의 분할이 기판전체(개구위치는 제외하고) 두께의 대략 동일한 비율로 일어날 수 있다; 개구형성에 의해 변형되는 평판형 기판에 대하여 개구 부근의 상부체적 및 하부체적 간의 분할은 만곡될 수 있다. 대조적으로, 개구형성에 의해 제거된 물질을 갖는 기판에 대해서는 없어진 물질로 인해 상부 및 하부 체적은 개구 형성 이후에 달라진다. 기판의 상부 및 하부 체적이 홀 형성 전후에 실질적으로 동일하려면, 홀 형성 이후의 상부 및 하부 체적은 홀 형성 이전의 상부 및 하부 체적의 90%, 95%, 96%, 97%, 98%, 99%, 99.9%, 99.99%, 99.999%, 99.9999%, 또는 약 99.99999% 이상, 또는 약 100%로 될 수 있다.
상기 기판은 모든 적합한 수단을 통하여 정위치로 지지될 수 있다. 일부 실시예에서, 기판(102)은 다이스가 이와 정렬되어있는 동안 고정구에 정위치로 지지될 수 있다. 상기 고정구는 예를 들어 기판이 천공됨에 따라 기판의 변위를 제한하거나 방지하는 결합특징을 포함할 수 있다. 도 1c는 기판(102)의 제1측면(120), 제2측면(122) 또는 두 측면 모두 상에 배치된 전기전도성 물질(106)(이는 촉매물질을 포함할 수 있다)을 도시한다. 상기 전도성 물질은 예를 들어 슬러리의 형태로 될 수 있다. 전도성 물질은 한번에 하나의 개구내에 배치되거나 동시에 복수 개구내에 배치될 수 있다.
물질은 개구 형성에 의해 변위되었으므로, 가공되는 시트를 프레싱하는 것은 상기 변위된 물질을 다시 원위치로 밀기 쉽다. 이로써 기판의 재밀봉이 더 쉽게 달성될 수 있게 된다. 프레싱은 모든 적합한 프레스(예컨대, 축프레스(axial press), 수압프레스(hydraulic press), 기계적 프레스(mechanical press), 토글 프레스(toggle press), 로터리 프레스(rotary press) 등)를 사용하여 달성될 수 있고, 모든 적합한 압력(예컨대, 약 50~200psi)으로 모든 적합한 시간 동안(예컨대, 1~10분간) 가압될 수 있다. 시트를 프레싱하는 동안 열을 가할 수 있고 그 온도는 기판의 용융점과 사용된 전도성 물질의 특성에 따른다. 예를 들어, 상기 열은 약 50~200℃ 또는 약 80~160℃ 또는 약 130~180℃ 또는 약 80~130℃로 될 수 있다.
도 1d는 조합물이 프레싱된 후의 기판(102)과 전도성 물질(106)을 도시한다. 기판과 전도성 물질을 프레싱하거나 또는 다르게 취급하는 것은 임의적 단계이다; 일부 구현예에서는 프레싱이나 다른 취급방법이 존재하고, 다른 구현에에서는 프레싱이나 다른 취급방법은 존재하지 않는다. 일부 구현예에서, 기판이 프레싱 단계 또는 기타 취급 없이도 실질적으로 기체불투과성이 되는데 충분하도록 전기전도성 요소가 기판에 밀봉된다. 다른 구현예에 있어서, 이온전도성 층이 프레스되거나 아니면 상기 이온전도성 층을 밀봉하도록 취급된다. 도 1a~1d에 도시되는 바와 같은 구현예들에서, 프레싱은 기판을 평탄하게 할 수 있고 개구가 평탄하고 밀봉되도록 전도성 물질을 개구내로 들어가도록 프레싱할 수 있으며, 이로써 그 결과 전도성 통로와 에워싼 막은 기밀된다. 프레싱 동안, 전도성 물질의 입자가 인열된 영역내로 밀려들어간다. 상기 인열(tearing)의 성질때문에, 결과물인 전기적 상호연결구에 요구되는 면관통 전도성(through-plane conductivity)을 증진하기에 충분히 큰 영역이 만들어질 수 있다. 이러한 복수의 상호연결구가 서로 밀접하게 형성되면, 전체적으로 낮은 저항의 전기적 상호연결구가 형성될 수 있다.
결과물인 전기적 전도성통로와 상기 전기적 전도성통로를 포위한 기판은 실질적으로 기밀된다. 상기 전기적 전도성통로를 갖는 기판의 기밀성은 다양한 적합한 압력들에서 기상 연료가 상기 기판을 포함하는 연료전지로 제공될 수 있게 한다. 상기 막이 실질적으로 기밀되기 위해 100% 기밀될 필요는 없다. 예를 들어, 일부 기체분자는 충분히 긴 기간에 걸쳐 충분히 높은 압력으로 상기 막을 지나쳐 누설될 수 있다. 그러나, 이러한 기체누설은 최소한일 것이며, 이로써 기판은 연료전지에 효과적으로 사용될 수 있다. 예를 들어, 약 15psig 압력에서 약 0.3sccm 미만의 기체가 기판의 일면에서 다른 면으로 누설된다. 예를 들어, 약 5psig에서는 10, 15, 20, 25, 30, 35, 40, 45, 50, 55 sccm의 기체가, 약 60psig 압력에서는 약 0.001sccm 미만, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 5, 10, 20, 50, 100, 500 또는 1000sccm 미만의 기체가 기판의 일면에서 다른 면으로 누설된다; 이때, 누설시험되는 표면영역은 약 0.001㎠, 0.005, 0.01, 0.05, 0.1, 1.0, 1.5, 2, 5, 10, 50, 100, 150, 200, 500 또는 약 1000 ㎠이다. 일부 구현예에서, 누설량은 약 0.0667sccm/㎠ 이하일 수 있다. 일부 구현예에서, 총 누설량은 약 0.0032g/h 이하일 수 있다. 일부 구현예에서, 어느 단일지점에서의 누설량은 약 3sccm 이하 또는 약 0.016g/h 이하일 수 있다.
다양한 구현예에서, 개구형성단계는 전극물질(미도시)이 기판(102) 상에 배치되기 이전 또는 이후에 수행될 수 있다. 일부 구현예에서, 전기적 상호연결구의 형성 이후에 부가의 전도층 또는 밀봉층이 개구(104) 근방의 전극물질층 표면상에 또는 그 상부에 부가될 수 있다. 모든 적합한 개수의 부가의 층이 모든 적합한 물질과 모든 적합한 두께 및 적합한 형상으로써 부가될 수 있다.
본 발명의 일부 구현예에 있어서, 전기전도성 요소가 기판을 관통하는데 사용될 수 있다; 즉, 상기 전기전도성 요소는 관통 툴로 된다. 일부 구현예에서, 전술했듯이 상기 관통 툴은 전기전도성 요소를 운반할 수 있다; 예를 들어, 상기 관통 툴은 니들상의 도구일 수 있고 상기 전도성 요소는 예를 들어 전도성 실의 형태일 수 있다. 도 2a~2d는 본 발명의 일 구현예에 의한 순차적 도면으로서 전도성 실이 내부에 배치된 이온전도성 층의 단면을 보인다.
도 2a에서, 일부 기판(202)은 도 1a의 일부 기판(102)과 유사하다. 여러 구현예에서, 기판(20) 등의 기판들은 이온전도성 층일 수 있다; 예를 들어, 다른 구현예에서, 기판(202)은 이온전도성 영역을 형성하기 위해 선택적으로 처리된 층일 수 있거나 소정 부분에서 상대적으로 더욱 이온전도성 상태로 선택적으로 변환된 층일 수 있다(예를 들어, Nafion® 전구체 수지를 선택적으로 가수분해함으로써). 이러한 변환은 공정에서 적절한 때라면(예컨대, 전기전도성 통로가 기판내에 매립된 전후에) 모두 행해질 수 있다. 일부 구현예에서, 기판은 덜한 이온전도성 형태에서나 비이온전도성 형태에서 더 형태적으로 안정할 수가 있으며, 이는 일부 구현예에서 소정의 제조방법을 사용할 때 이점을 제공할 수 있다. 기판은 모든 적합한 기술을 사용하여 비교적 이온전도성 상태로 변환됨으로써 이온전도성 통로를 형성할 수 있다. 비제한적인 예시로서, 이온전도성 통로는 선택적으로 기판의 영역을 화학물질, 방사선, 열 등에 노출시킴으로써 형성될 수 있다. 선택적으로 기판시트의 영역을 화학물질이나 방사선 또는 열 등에 노출하는데에는 마스크를 사용할 수 있다. 기타 리소그래피, 에칭 및/또는 인쇄회로기판(PCB) 제조기술 또한 사용될 수 있다. 일 특정한 구현예에서, 비 이온전도성 물질은 Nafion®에의 수지 전구체이고, 이온전도성 통로의 선택한 위치에서 비 이온전도성 물질을 이온전도성 물질로의 변환은 기판시트를 마스킹하고 선택적으로 기판시트의 영역을 물에 노출함으로써 가수분해하는 것을 포함할 수 있다. 기판물질의 선택적 변환에 의해 형성된 이온전도성 부재는 다른 이온전도도 및/또는 기계적 특성을 갖는 다양한 공간부재영역들이 특정 용도에 맞도록 조정될 수 있다.
도 2a에서, 일부 기판(202)은 도 1a의 일부 기판(102)와 유사하다. 이온전도성 층(202)은 제1측면(220)과 제2측면(222)를 가질 수 있다. 도 2b에 도시하듯이, 전기전도성 실(206)을 운반하는 툴(210)이 이온전도성 층(202)을 관통할 수 있다. 해당 분야에 통상의 지식을 가진 자라면 쉽게 알겠듯이, 개구내에 전기전도성 실을 배치하는데 종래의 소잉(sewing) 기술이 사용될 수 있다. 예를 들어 약 50~300㎛ 직경을 갖는 니들이 전도성 실을 삽입하는데 사용될 수 있다. 이온전도성 층(202)이 가수분해된 수지를 포함하는 일부 구현예에서 본 발명의 방법은 형태적으로 안정한 비가수분해 수지 전구체(이는 전술했듯이 나중에 가수분해된다) 상에 수행될 수 있다. 도 2c에서, 실(206)은 이온전도성 층(202)의 두 측면(220)(222) 상에 배치되어 전도성 통로를 형성한다. 상기 전도성 실은 모든 적합한 개수의 섬유들로 구성될 수 있고 이들 섬유는 모든 적합한 전도성 물질을 포함할 수 있다. 전도성 실(206)은 복수의 매우 얇은 섬유들로 구성되어 가압시 결과적으로 이의 단면형상을 바꿀 수 있다. 일부 구현예에서, 전기전도성 요소가 기판이 프레싱 단계나 기타 처치없이도 실질적으로 기체 불투과성이 될만큼 충분히 기판에 밀봉된다. 다른 구현예에서, 이온전도성 층은 프레싱되거나 아니면 이 층을 밀봉하도록 처리된다. 전도성 실의 특성 및 바늘땀의 피치는 전기성능과 기계적 내구성의 최선의 조합을 제공하도록 선택될 수 있다. 예를 들어, 전도성 실은 카본섬유 실, 귀금속 등의 금속을 포함하여 전도도를 개선한 실 등을 포함할 수 있다.
도 3a~3b는 도 2a~2c의 구현예로 구현된 전기전도성 라인의 단면도를 도시한다. 도시한 바와 같은 면관통 전도성 통로의 라인을 만듦으로써 면관통 연결의 전체 단면영역은 크게 증가되어 향상된 전기성능을 증진한다. 도 3a의 전도성 실 부분들은 기판(302)의 대향 측면상에 예를 들어 루프(306)(308)로서 노출될 수 있다. 이들 부분은 절단되어 도 3b와 가이 복수의 노출된 섬유종단(316)을 갖는 이산형 전기전도성 통로를 만들 수 있고, 상기 섬유종단들은 적합한 롤링, 결합 및 프레싱에 의해 이온전도성 층(302)의 표면(322) 상에 평탄하게 가로눕도록 만들어질 수 있다. 복수의 섬유종단의 노출은 전도성을 증가시킬 수 있다.
도 4는 본 발명의 방법으로 형성된 전기전도성 통로를 갖는 평판형 연료전지 어레이의 개략도이다. 단일의 실이 이온전도성 부재층의 너비를 횡단할 수 있거나 또는 적합한 모든 패턴이 구현될 수 있다. 상기 실은 기판(102) 내에 루프(306)를 형성한다. 일단 단일의 실이 라인을 가로지르면, 상기 루프는 절단되어 복수의 섬유종단을 노출시킨다.
도 5a~5b는 본 발명의 방법에 의한 일 구현예의 순차적 도면을 도시하며 하나 이상의 전기전도성 층(506)을 갖는 하나 이상의 돌출부(530)를 갖는 하나 이상의 예비형성구조화 클램핑요소(510: preformed structured clamping element)에 의해 클램핑된 이온전도성 층(502)의 단면도이다. 예를 들어 평판형 연료전지 어레이의 적합한 전극들 간에 우효한 전기연결이 형성되도록 상기 하나 이상의 전기전도성 층은 상기 예비형성 요소의 모든 적합한 부분상에 있을 수 있다. 상기 예비형성구조화 요소는 기판 평면에 대략 평행한 면들을 가질 수 있고, 기판평면에 대략 수직인 하나 이상의 돌출부(530)를 가질 수 있다. 상기 돌출부는 적합한 모든 형상으로 될 수 있다. 예를 들어, 상기 돌출부는 기판을 통해 삽입된 종단에서 첨단형상을 가질 수 있다. 예를 들어, 상기 돌출부는 대다수 돌출부가 실질적으로 동일한 직경을 갖도록 일반적으로 원통형상을 가질 수 있다. 일부 구현예에서, 이온전도성 층은 하나 이상의 피막을 포함할 수 있다. 도 5a 및 5b는 제1측면(520) 상에 피막(516)을, 제2측면(522) 상에 피막(518)을 갖는 이온전도성 층(502)의 단면도를 도시한다. 상기 피막은 전극물질이나 촉매물질을 포함할 수 있다. 상기 피막은 불연속 영역(512)(514)을 포함할 수 있다. 하나 이상의 연료전지층에서 불연속영역의 예는 미국 특허공개공보 제2009/0162722호(2008. 12. 22 출원) "ELECTROCHEMICAL CELL ASSEMBLIES INCLUDING A REGION OF DISCONTINUITY"에 기술되어 있다. 상기 예비형성구조화 클램핑요소(510)는 코팅된 이온전도성 층 또는 이 층상의 불연속영역들과 정렬될 수 있다. 하나 이상의 전기전도성 층(506)은 기판상에서 인접한 전도성 층들과 함께 전기연결부를 형성할 수있다. 따라서, 상기 예비형성 요소는 평판형 연료전지 어레이를 만들기 위해 기판을 통해 전기전도성 통로를 생성하는 간단하고 효과적인 방법을 제공할 수 있다.
상기 예비형성구조화 클램핑요소는 원하는 전기전도성 층을 갖는 앵호한 전기연결부가 만들어질 수 있도록 충분히 크고 적합하게 배치된 전도성 표면들을 가질 수 있다. 일부 실시예에서, 상기 전도성 표면들은 돌출부 상이나 평행면들 상의 피막에 의해 형성된다. 일부 실시예에서, 상기 전도성 표면들은 전도성 물질 자체로부터 형성되는 돌출부에 의하여 또는 전도성 물질 자체로부터 형성되는 평행면들로부터 형성된다. 일부 구현예에서, 전도성 피막과, 전도성 물질로부터 형성되는 면이나 돌출부의 조합에 의해 도전이 제공된다. 상기 전도성 표면들은 하나 이상의 돌출부의 모든 부분 상에서 또는 하나 이상의 평행면의 모든 부분 상에서 또는 그 둘 다에서 생길 수 있다. 일부 실시예에서, 상기 평행면들의 영역 또는 상기 돌출부의 크기는 기밀 밀봉이 형성될 수 있는 기판으로 계면영역을 생성하는데 충분할 수 있다. 일부 구현예에서, 상기 예비형성 요소의 두 평행면들 간의 압축력이 기밀 밀봉을 제공하는 것을 도울 수 있고, 일부 실시예에서는 추후 기술하는 압축력의 다른 이점을 제공할 수 있다. 일 실시예에서, 전도성 층(506)을 갖는 하나 이상의 돌출부(530)가 이온전도성 막(502)을 관통하여 이온전도성 층의 대향측면상에 수납클램프(540)와 연결할 수 있다. 일부 실시예에서, 상기 수납클램프는 상기 기판상에서 돌출부나 전기전도성 층의 전도성 표면을 접촉할만큼 충분한 크기의 전도성 표면을 갖는 반면, 다른 구현예에서는 상기 수납클램프는 전도성 표면을 갖지 않는다. 일부 구현예에서, 개구를 부분적으로 또는 완전히 형성하는데 툴이 사용될 수 있고, 이후 상기 돌출부는 상기 개구를 통과할 수 있다. 여러 구현예에서, 구조화 클램핑요소는 전도성은 아니지만 순전히 구조적 기능(예로서, 상부 및 저부 클램핑요소들 간의 압축력을 유지하는 등의)을 수행하는 돌출부(530)를 가질 수 있다. 사용에 있어서, 상기 예비형성구조화 클램핑요소들은 두 연료전지의 애노드 영역 및 캐소드 영역 간에 중첩영역 상부에 위치될 수 있고 이후 상기 전도성 돌출부는 이온전도성 막을 천공함으로써 일 표면으로부터 대향 표면으로(예로서, 일 연료전지의 애노드로부터 다른 인접한 연료전지의 캐소드로) 전도성 통로를 생성할 수 있다. 돌출부(530)는 상부 구조요소(510)와 수납클램프(540) 간의 기계적 연결을 형성하여 이들을 정위치로 지지하는 한편, 이들 상의 전기전도성 표면은 면관통 전기전도도를 제공할 수 있다. 상기 돌출부(530)와 대응하는 수납클램프(540)의 결합은 면관통 전도성 돌출부 부근에서 기판상에 정적 압축하중이 인가될 수 있게 한다.
일부 구현예에서, 예비형성구조화 클램핑요소는 유체 매니폴드와 같이 이온전도성 막 등의 기판을 연료전지시스템의 다른 요소로 본딩할 수 있다. 이는 복수의 요소들을 본딩하기 위한 부가의 접착제의 필요를 없앨 수 있다. 유체 매니폴드의 예로는 본 출원인의 미국특허공개공보 제2009/0081493호(2009. 3. 26 출원) "FUEL CELL SYSTEMS INCLUDING SPACE-SAVING FLUID PLENUM AND RELATED METHODS"에 기술되어있다.
상기 예비형성구조화 클램핑요소는 연료전지의 전폭을 가로질러 연장할 수 있거나, 또는 도 6c에 도시하듯이 복수의 작은 클램핑요소(610) 및 수납클램핑 요소(640)가 연속하여 설치될 수 있다. 클램핑 요소는 특정한 연료전지구조에 적합한 클램핑 및 전기적 상호연결구구조 조합을 생성하기 위하여 선택적으로 전기전도성이 부여된 클램핑 부재 영역을 갖는 전체 전기화학전지시스템에 적합하다고 판단되는 적합하고 편리한 모든 패턴으로 배열될 수 있다. 도 6a는 전도성 피막(606)을 갖는 복수의 돌출부(630a)(630b)를 갖춘 상부 예비형성구조화 클램핑요소(610)의 단면도를 도시한다. 상부 클램핑요소(610)는 기판(602)을 관통할 수 있거나 또는 부분적으로 또는 완전히 예비천공된 기판(602)을 통해 삽입될 수 있다. 기판(602)은 제1피막(616) 및 제2피막(618)과 불연속영역(612)(614)을 가질 수 있다. 상부 클램핑요소(610)은 하나 이상의 수납클램핑요소(640)과 결합함으로써 하나 이상의 전도성 통로를 형성할 수 있다. 단일의 수납클램핑요소(640)는 하나 이상의 상부 클램핑요소(610)과 결합할 수 있다. 단일의 상부 클램핑요소(610)는 하나 이상의 수납클램핑요소(640)과 결합할 수 있다. 일 실시예에서, 상기 상부요소의 벌크는 비전도성이고, 상기 상부요소의 돌출부(630)는 전도성 피막을 가지며, 복수의 돌출부(630)는 전기적으로 이웃의 단위연료전지를 연결하는 상호연결구를 형성한다.
일부 실시예에서, 상기 예비형성 구조체는 전도성 물질이나 비전도성 물질로부터 형성될 수 있다. 예를 들어, 상기 예비형성 구조체는 플라스틱이나 금속으로 형성될 수 있다. 일부 실시예에서, 상기 구조체 표면상으로 전도성 물질의 침적(deposition)은 상기 구조체상에 전도성 표면을 제공할 수 있다. 상기 예비형성 구조체가 전도성 물질로 형성되는 실시예에 있어서, 전도성 물질의 침적은 상기 예비형성 구조체가 더욱 전도성이 될 수 있게 한다. 장착시, 저저항 전도성 통로가 캐소드와 이웃 연료전지의 애노드 간에 형성될 수 있다. 일부 실시예에서, 예비형성 구조체는 천공 돌출부 주위의 누설을 방지하는 수단을 제공하기 위해 밀봉부재를 더 포함할 수 있다. 상기 밀봉부재는 적합한 모든 형상으로 될 수 있고 모든 적합한 물질로 제조될 수 있다. 예를 들어, 상기 밀봉부재는 기판과 예비형성 구조체 요소의 평행면 간에 맞거나 또는 다른 적합한 위치에 맞는 고무 링이나 와셔의 형태로 될 수 있다.
본 발명의 일부 구현예에 있어서, 연료전지층은 하나 이상의 성능향상층을 포함한다. 이러한 성능향상층은 본 출원인의 전술한 PCT국제특허출원공개 제WO2011/079378호에 기술되어있다. 도 6b는 제1측면(620)과 제2측면(622)을 갖는 이온전도성 막(602)의 단면도이다. 제1피막(616)과 성능향상층(636)은 불연속영역(612)과 함께 제1측면(620) 상부에 그리고 이에 인접하게 배치될 수 있다. 제2피막(618)은 불연속영역(614)과 함께 제2측면(622) 상부에 그리고 이에 인접하게 배치될 수 있다. 전기전도성 피막(606)을 갖는 돌출부(630)을 갖는 상부 클램핑요소(610)는 이온전도성 막과 성능향상층을 천공할 수 있고(또는 예비형성된 개구에 부분적으로 또는 완전히 삽입될 수 있고) 저부 클램핑요소(640)과 접촉할 수 있다.
도 7a~7b는 본 발명 방법의 일 구현예의 순차적 도면을 도시하며 제1측면(720) 상에 배치된 전극물질 층(716)과 제2측면(722) 상에 배치된 전극물질 층(718)을 갖는 이온전도층(702)의 단면도를 도시한다. 층들(716)(718)은 각각 불연속영역(712)(714)을 갖는다. 불연속영역(712)(714)은 길고 좁을 수 있거나(예컨대, 스트립 상) 또는 기타 형상일 수 있다. 도 7a에서, 이온전도성 층(702)은 전기전도성 부분(738) 및 비전도성 부분(739)을 포함하는 캡 또는 인서트(insert)(710)와 정렬될 수 있다. 상기 비전도성 부분(739)는 유전체 부분으로 될 수 있다. 캡(710)은 적합한 모든 물질로 될 수 있고, 예로서 캡(710)은 원하는 부분에 전기전도성으로 되도록 선택적으로 코팅되는 플라스틱이나 유전체 물질로 될 수 있다. 캡(710)은 길고 좁거나(예컨대, 스트립 상) 또는 일반적으로 불연속영역(712)의 형상에 매칭되도록 되는 기타 적합한 모든 형상으로 될 수 있다. 캡(710)은 연료전지층의 전폭을 따라 연장될 수 있거나 또는 도 6c에 도시된 바와 같은 복수의 작은 클램핑요소들과 유사하게 복수의 작은 캡들이 제공될 수 있다. 캡(710)은 전기전도성 영역 및 비전도성 영역 둘 다를 포함하므로, 기판상에 수용된 이웃하는 단위연료전지들 간의 비전도성 갭은 생략될 수 있다. 이는 연료전지 어레이를 형성하는데 있어서 복잡함을 줄일 수 있다.
이온전도성 층(702)은 또한 전도성 부분(748)과 비전도성 부분(749)을 포함하는 유체매니폴드 층(750)과 정렬될 수 있다. 일부 실시예에서, 비전도성 부분(749)은 유전체 부분으로 될 수 있디. 도 7b에서, 캡(710)은 이온전도성 층(702)의 일 표면(720)에 근접하게 접근시키는 반면, 유체매니폴드 층(750)은 이온전도성 층(702)의 대향표면(722)에 근접하게 접근된다. 전기전도성 물질(706)은 캡(710)과, 이온전도성 층(702)의 일부분과 유체매니폴드 층(750)의 일부분을 거쳐 지나갈 수 있다. 전도성 물질(706)은 예를 들어 전도성 실의 형태일 수 있다. 이러한 예에서, 캡(710)과 매니폴드 층(750)은 이온전도성 층(702)에 개구를 형성하는 돌출부 없이 클램핑 요소로서 작용한다. 따라서, 캡(710)과 매니폴드 층(750)은 이온전도성 층(702)의 표면을 가로질러 상기 클램핑 부하를 분배하는데, 이로써 일부 실시예에서 부가의 클램핑 요소들의 필요가 경감되거나 없어질 수 있다. 전도성 실(706)은 이온전도성 층(702)을 통해 연장한다. 실(706)은 클램핑 력을 확보하기 위해 팽팽하게 당겨질 수 있다. 상기 실의 팽팽함은 예를 들어 기밀 밀봉이 만들어질 수 있을 만큼 바람직한 양의 클램핑 력을 생성하도록 적합하게 선택될 수 있다. 또는, 캡(710)이 이온전도성 층(702) 표면에 인접하도록 접근되기 이전에 전도성 물질이 상기 캡 내부에 삽입될 수 있다.
도 8은 기판에 전기전도성 통로를 형성하기 위한 본 발명 방법에 의한 일 구현예의 흐름도이다. 본 방법(800)에 있어서, 기판에 개구가 형성된다(단계 860). 상기 기판의 개구 내에 전도성 물질을 배치한다(단계 870). 상기 기판은 프레싱되어(단계 890) 상기 기판의 제1측면에서 제2측면으로 연장하는 전도성 통로를 형성한다. 상기 기판을 프레싱하는데 필요한 압력은 예를 들어 대략 50~200psi 범위일 수 있다. 상기 기판의 프레싱은 경화단계, 어닐링단계 또는 이의 조합을 수반할 수 있다. 상기 프레싱, 경화 및 어닐링은 연속적으로 또는 동시에 수행될 수 있다.
이상 전술한 것은 설명을 위한 것으로 이에 한정되지 아니한다. 전술한 바에 따라 해당 분야에서 통상의 지식을 가진 자에 의한 바와 같은 기타 구현예들이 사용될 수 있다. 또한, 본 발명의 상세한 설명에 있어서 다양한 특징들은 함께 그룹지워져 본 개시를 간소화할 수 있다. 이는 청구되지 않고 개시되지 아니한 특징이 모든 특허청구항에 필수적이라고 의도한다고 해석되어서는 안 된다. 오히려, 발명대상은 특정 개시된 구현예의 모든 특징보다 작게 있을 수 있다. 따라서, 다음의 특허청구항들은 각 자신이 별개의 구현예로서 여기서 본 발명의 상세한 설명에 포함된다. 본 발명의 범위는 특허청구항들이 갖는 전 범위의 등가물들과 함께 다음 특허청구항들을 참조하여 결정되어야 한다.
부가의 구현예들
본 발명은 다음의 예시적 구현예들을 제공하며 이의 번호는 중요한 것을 가리키는 것으로 이해되어서는 안된다:
구현예 1은 전기전도성 통로를 형성하기 위한 방법에 있어서, 제1주면(主面) 및 제2주면과 제1체적을 갖는 평판형 기판을 입수 및 공급 중의 적어도 하나를 하되, 상기 기판은 적어도 하나의 이온전도성 영역을 포함하는 단계와; 상기 평판형 기판의 상기 적어도 하나의 이온전도성 영역에 적어도 하나의 개구를 형성하되, 상기 개구는 상기 제1주면과 제2주면 간에 연장하고 상기 제1체적과 실질적으로 동일한 제2체적을 갖는 천공된 평판형 기판을 이루는 단계와; 상기 천공된 평판형 기판의 개구 내에 전기전도성 물질을 배치하여 상기 제1주면과 제2주면 간에 연장하는 전기전도성 통로를 부여하는 단계와; 상기 기판이 상기 제1주면과 제2주면 간에 실질적으로 기밀하도록 상기 전기전도성 통로가 상기 기판에 밀봉되는 단계를 포함하는 방법을 제공한다.
구현예 2는 구현예 1에 있어서 상기 개구는 하나 이상의 행잉채드(hanging chad)의 형성없이 형성되는 방법을 제공한다.
구현예 3은 구현예 1 또는 2에 있어서 전기화학전지를 제조하는 방법을 포함하는 방법을 제공한다.
구현예 4는 구현예 1~3 중의 어느 하나에 있어서 상기 이온전도성 영역은 양자전도영역인 방법을 제공한다.
구현예 5는 구현예 1~4 중의 어느 하나에 있어서 상기 형성 및 상기 배치는 실질적으로 동시에 수행되는 방법을 제공한다.
구현예 6은 구현예 1~5 중의 어느 하나에 있어서 천공 요소가 상기 전기전도성 물질의 막의 형성과 배치를 실질적으로 동시에 수행하는 방법을 제공한다.
구현예 7은 구현예 1~6 중의 어느 하나에 있어서 상기 기판이 상기 제1주면 및 제2주면 간에 실질적으로 기밀이도록 상기 기판을 밀봉할만큼 충분하게 상기 기판을 가압하거나 또는 상기 기판에 새로운 물질을 가하는 것을 더 포함하는 방법을 제공한다.
구현예 8은 구현예 7에 있어서 상기 기판을 가압하는 것은 적어도 침적된 전기전도성 물질의 위치에 상기 기판의 제1주면 및 제2주면에 압축압력을 인가하는 것을 포함하는 방법을 제공한다.
구현예 9는 구현예 7 또는 8에 있어서 상기 기판을 가압하는 것은 상기 제1주면 및 제2주면 간에 연장하는 상기 전기전도성 통로를 약 15psi 이하의 기체압력으로 밀봉하는 방법을 제공한다.
구현예 10은 구현예 7~9 중의 어느 하나에 있어서 상기 기판을 가압하는 것은 상기 기판을 롤링(rolling)하는 것을 포함하는 방법을 제공한다.
구현예 11은 구현예 1~10 중의 어느 하나에 있어서 상기 배치는 코팅, 삽입, 프레싱 및 침적 중의 적어도 하나를 포함하는 방법을 제공한다.
구현예 12는 구현예 1~11 중의 어느 하나에 있어서 상기 전기전도성 통로는 애노드와 인접하는 연료전지의 캐소드를 연결하는 방법을 제공한다.
구현예 13은 구현예 1~12 중의 어느 하나에 있어서 상기 전도성 물질은 촉매를 포함하는 방법을 제공한다.
구현예 14는 구현예 1~13 중의 어느 하나에 있어서 상기 전도성 물질은 분말, 용액, 실, 예비형성구조화(preformed structured) 요소 및 비다공성 요소로부터 선택되는 방법을 제공한다.
구현예 15는 구현예 14에 있어서 상기 전도성 물질은 실이고, 상기 제1주면 및 제2주면 간에 연장하는 상기 전기전도성 통로의 형성한 이후에 상기 기판 외부로 연장하는 실의 적어도 한 부분이 하나 이상의 전극과 연결에 이용가능한 방법을 제공한다.
구현예 16은 구현예 1~15 중의 어느 하나에 있어서 예비형성구조화 요소가 상기 전도성 물질을 포함하는 방법을 제공한다.
구현예 17은 구현예 16에 있어서 상기 예비형성구조화 요소는 상기 평판형 기판에 상기 개구를 형성하는 방법을 제공한다.
구현예 18은 구현예 16 또는 17에 있어서 상기 예비형성구조화 요소는 적어도 2개의 평행면을 포함하는 방법을 제공한다.
구현예 19는 구현예 16~18 중의 어느 하나에 있어서 상기 예비형성구조화 요소는 밀봉부재를 더 포함하는 방법을 제공한다.
구현예 20은 구현예 1~19 중의 어느 하나에 있어서 상기 배치 이후에 상기 하나 이상의 기판영역들의 이온전도성이 증가하도록 하나 이상의 기판영역들을 선택적으로 처리하는 방법을 제공한다.
구현예 21은 전기전도성 통로를 형성하기 위한 방법에 있어서, 제1주면(主面)과 제2주면을 갖는 평판형 기판을 입수 및 공급 중의 적어도 하나를 하되, 상기 기판은 적어도 하나의 이온전도성 영역을 포함하는 단계와; 상기 평판형 기판의 상기 적어도 하나의 이온전도성 영역에 적어도 하나의 개구를 만들되, 상기 개구는 상기 제1주면과 제2주면 간에 연장하고, 개구의 형성 동안 상기 평판형 기판의 실질적으로 아무 것도 제거되지 않는 단계와; 상기 개구 내에 전기전도성 물질을 배치하여 상기 전기전도성 물질을 포함하는 전기전도성 통로를 부여하되, 상기 전기전도성 통로는 상기 제1주면 및 제2주면 간에 연장하는 단계와; 상기 전기전도성 통로는 상기 기판이 상기 제1주면 및 제2주면 간에 실질적으로 기밀이도록 상기 기판에 밀봉되는 단계를 포함하는 방법을 제공한다.
구현예 22는 전기전도성 통로를 형성하기 위한 방법에 있어서, 제1주면(主面) 및 제2주면과 제1체적을 갖는 평판형 이온전도성 기판을 입수 및 공급 중의 적어도 하나를 하되, 상기 기판은 적어도 하나의 이온전도성 영역을 포함하는 단계와; 상기 평판형 기판의 상기 적어도 하나의 이온전도성 영역에 적어도 하나의 개구를 형성하되, 상기 개구는 상기 제1주면과 제2주면 간에 연장하고 상기 제1체적과 실질적으로 동일한 제2체적을 갖는 천공된 평판형 기판을 이루는 단계와; 상기 천공된 평판형 기판의 개구 내에 전기전도성 물질을 배치하여 상기 제1주면과 제2주면 간에 연장하는 전기전도성 통로를 부여하는 단계를 포함하고, 상기 평판형 기판은 상기 제1주면을 포함하는 상부 제1체적과, 상기 제2주면을 포함하는 저부 제1체적을 포함하고, 상기 천공된 평판형 기판은 상기 제1주면을 포함하고 상기 상부 제1체적에 상응하는 상부 제2체적과, 상기 제2주면을 포함하고 상기 저부 제1체적에 상응하는 저부 제2체적을 포함하고, 상기 상부 제1체적은 상기 상부 제2체적과 실질적으로 동일하고, 상기 저부 제1체적은 상기 저부 제2체적과 실질적으로 동일하며; 상기 전기전도성 통로는 상기 기판이 상기 제1주면 및 제2주면 간에 실질적으로 기밀이도록 상기 기판에 밀봉되는 방법을 제공한다.
구현예 23은 구현예 1~22 중의 어느 하나에 있어서 인용된 모든 요소나 선택이 사용 또는 선택이 이로부터 사용하거나 선택하는 것이 가능한 장치 또는 방법을 제공한다.

Claims (22)

  1. 전기전도성 통로를 형성하기 위한 방법에 있어서,
    제1주면(主面) 및 제2주면과 제1체적을 갖는 평판형 기판을 입수 및 공급 중의 적어도 하나를 하되, 상기 기판은 적어도 하나의 이온전도성 영역을 포함하는 단계와;
    상기 평판형 기판의 상기 적어도 하나의 이온전도성 영역에 적어도 하나의 개구를 형성하되, 상기 개구는 상기 제1주면과 제2주면 간에 연장하고 상기 제1체적과 실질적으로 동일한 제2체적을 갖는 천공된 평판형 기판을 이루는 단계와;
    상기 천공된 평판형 기판의 개구 내에 전기전도성 물질을 배치하여 상기 제1주면과 제2주면 간에 연장하는 전기전도성 통로를 부여하는 단계와;
    상기 기판이 상기 제1주면과 제2주면 간에 실질적으로 기밀하도록 상기 전기전도성 통로가 상기 기판에 밀봉되는 단계를 포함하는 것을 특징으로 하는 방법.
  2. 제1항에 있어서,
    상기 개구는 하나 이상의 행잉채드(hanging chad)의 형성없이 형성되는 것을 특징으로 하는 방법.
  3. 제1항에 있어서,
    전기화학전지를 제조하는 방법을 포함하는 것을 특징으로 하는 방법.
  4. 제1항에 있어서,
    상기 이온전도성 영역은 양자전도영역인 것을 특징으로 하는 방법.
  5. 제1항에 있어서,
    상기 형성 및 상기 배치는 실질적으로 동시에 수행되는 것을 특징으로 하는 방법.
  6. 제1항에 있어서,
    천공 요소가 상기 전기전도성 물질의 막의 형성과 배치를 실질적으로 동시에 수행하는 것을 특징으로 하는 방법.
  7. 제1항에 있어서,
    상기 기판이 상기 제1주면 및 제2주면 간에 실질적으로 기밀이도록 상기 기판을 밀봉할만큼 충분하게 상기 기판을 가압하거나 또는 상기 기판에 새로운 물질을 가하는 것을 더 포함함을 특징으로 하는 방법.
  8. 제7항에 있어서,
    상기 기판을 가압하는 것은 적어도 침적된 전기전도성 물질의 위치에 상기 기판의 제1주면 및 제2주면에 압축압력을 인가하는 것을 포함함을 특징으로 하는 방법.
  9. 제7항에 있어서,
    상기 기판을 가압하는 것은 상기 제1주면 및 제2주면 간에 연장하는 상기 전기전도성 통로를 15psi 이하의 기체압력으로 밀봉하는 것을 특징으로 하는 방법.
  10. 제7항에 있어서,
    상기 기판을 가압하는 것은 상기 기판을 롤링(rolling)하는 것을 포함함을 특징으로 하는 방법.
  11. 제1항에 있어서,
    상기 배치는 코팅, 삽입, 프레싱 및 침적 중의 적어도 하나를 포함하는 것을 특징으로 하는 방법.
  12. 제1항에 있어서,
    상기 전기전도성 통로는 애노드와 인접하는 연료전지의 캐소드를 연결하는 것을 특징으로 하는 방법.
  13. 제1항에 있어서,
    상기 전도성 물질은 촉매를 포함하는 것을 특징으로 하는 방법.
  14. 제1항에 있어서,
    상기 전도성 물질은 분말, 용액, 실, 예비형성구조화 요소 및 비다공성 요소로부터 선택되는 것을 특징으로 하는 방법.
  15. 제14항에 있어서,
    상기 전도성 물질은 실이고, 상기 제1주면 및 제2주면 간에 연장하는 상기 전기전도성 통로의 형성한 이후에 상기 기판 외부로 연장하는 실의 적어도 한 부분이 하나 이상의 전극과 연결에 이용가능한 것을 특징으로 하는 방법.
  16. 제14항에 있어서,
    예비형성구조화 요소가 상기 전도성 물질을 포함하는 것을 특징으로 하는 방법.
  17. 제16항에 있어서,
    상기 예비형성구조화 요소는 상기 평판형 기판에 상기 개구를 형성하는 것을 특징으로 하는 방법.
  18. 제16항에 있어서,
    상기 예비형성구조화 요소는 클램프인 것을 특징으로 하는 방법.
  19. 제16항에 있어서,
    상기 예비형성구조화 요소는 밀봉부재를 더 포함하는 것을 특징으로 하는 방법.
  20. 제1항에 있어서,
    상기 배치 이후에 하나 이상의 기판영역들이 선택적으로 상기 기판영역들의 이온전도성을 증가시키도록 처리되는 것을 특징으로 하는 방법.
  21. 전기전도성 통로를 형성하기 위한 방법에 있어서,
    제1주면(主面)과 제2주면을 갖는 평판형 기판을 입수 및 공급 중의 적어도 하나를 하되, 상기 기판은 적어도 하나의 이온전도성 영역을 포함하는 단계와;
    상기 평판형 기판의 상기 적어도 하나의 이온전도성 영역에 적어도 하나의 개구를 만들되, 상기 개구는 상기 제1주면과 제2주면 간에 연장하고, 개구의 형성 동안 상기 평판형 기판의 실질적으로 아무 것도 제거되지 않는 단계와;
    상기 개구 내에 전기전도성 물질을 배치하여 상기 전기전도성 물질을 포함하는 전기전도성 통로를 부여하되, 상기 전기전도성 통로는 상기 제1주면 및 제2주면 간에 연장하는 단계와;
    상기 전기전도성 통로는 상기 기판이 상기 제1주면 및 제2주면 간에 실질적으로 기밀하도록 상기 기판에 밀봉되는 단계를 포함하는 것을 특징으로 하는 방법.
  22. 전기전도성 통로를 형성하기 위한 방법에 있어서,
    제1주면(主面) 및 제2주면과 제1체적을 갖는 평판형 이온전도성 기판을 입수 및 공급 중의 적어도 하나를 하되, 상기 기판은 적어도 하나의 이온전도성 영역을 포함하는 단계와;
    상기 평판형 기판의 상기 적어도 하나의 이온전도성 영역에 적어도 하나의 개구를 형성하되, 상기 개구는 상기 제1주면과 제2주면 간에 연장하고 상기 제1체적과 실질적으로 동일한 제2체적을 갖는 천공된 평판형 기판을 이루는 단계와;
    상기 천공된 평판형 기판의 개구 내에 전기전도성 물질을 배치하여 상기 제1주면과 제2주면 간에 연장하는 전기전도성 통로를 부여하는 단계를 포함하고,
    상기 평판형 기판은 상기 제1주면을 포함하는 상부 제1체적과, 상기 제2주면을 포함하는 저부 제1체적을 포함하고, 상기 천공된 평판형 기판은 상기 제1주면을 포함하고 상기 상부 제1체적에 상응하는 상부 제2체적과, 상기 제2주면을 포함하고 상기 저부 제1체적에 상응하는 저부 제2체적을 포함하고, 상기 상부 제1체적은 상기 상부 제2체적과 실질적으로 동일하고, 상기 저부 제1체적은 상기 저부 제2체적과 실질적으로 동일하며;
    상기 전기전도성 통로는 상기 기판이 상기 제1주면 및 제2주면 간에 실질적으로 기밀하도록 상기 기판에 밀봉되는 것을 특징으로 하는 방법.
KR1020147016530A 2011-11-18 2012-11-16 연료전지층의 형성방법 KR20150010693A (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161561647P 2011-11-18 2011-11-18
US61/561,647 2011-11-18
PCT/US2012/065694 WO2013075037A1 (en) 2011-11-18 2012-11-16 Methods of forming fuel cell layers

Publications (1)

Publication Number Publication Date
KR20150010693A true KR20150010693A (ko) 2015-01-28

Family

ID=48430226

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020147016530A KR20150010693A (ko) 2011-11-18 2012-11-16 연료전지층의 형성방법

Country Status (7)

Country Link
US (1) US10096845B2 (ko)
EP (1) EP2780965B1 (ko)
JP (1) JP6111259B2 (ko)
KR (1) KR20150010693A (ko)
CN (1) CN104067426B (ko)
TW (1) TW201340451A (ko)
WO (1) WO2013075037A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190137436A1 (en) * 2016-04-29 2019-05-09 Board Of Trustees Of Michigan State University Embroidered electrochemical biosensors and related methods

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9337474B1 (en) * 2010-05-20 2016-05-10 Halbert P. Fischel Electrodes for electrochemical cells
US10096845B2 (en) 2011-11-18 2018-10-09 Intelligent Energy Limited Methods of forming fuel cell layers
US20140302952A1 (en) * 2013-04-05 2014-10-09 Roland Wilfried Sommer Shock and Vibration Attenuating Device for Sports Equipment
WO2015115125A1 (ja) * 2014-01-28 2015-08-06 株式会社村田製作所 固体酸化物燃料電池及び固体酸化物燃料電池スタック
US10522856B2 (en) 2014-12-03 2019-12-31 Global Energy Science, Llc Electrochemical cells with mobile electrolyte
US11504945B2 (en) * 2018-05-09 2022-11-22 Apple Inc. Items formed using stitching equipment with adjustable-shape fixtures

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3135935A (en) * 1962-10-02 1964-06-02 Bell Telephone Labor Inc Transmission line and method of making
US3722440A (en) * 1970-04-01 1973-03-27 Kuraray Co Electrically conductive threads and method of manufacturing clothing exhibiting anti-static properties therewith
GB1506402A (en) * 1974-05-24 1978-04-05 Nishizawa K Electrochemical cell
JP3693039B2 (ja) 2002-06-07 2005-09-07 日本電気株式会社 液体燃料供給型燃料電池
WO2005045970A1 (ja) * 2003-11-06 2005-05-19 Nec Corporation 燃料電池およびその製造方法
US7378176B2 (en) 2004-05-04 2008-05-27 Angstrom Power Inc. Membranes and electrochemical cells incorporating such membranes
US7632587B2 (en) 2004-05-04 2009-12-15 Angstrom Power Incorporated Electrochemical cells having current-carrying structures underlying electrochemical reaction layers
CN100403590C (zh) 2004-12-30 2008-07-16 南亚电路板股份有限公司 积层整合式燃料电池的结构
JP5111869B2 (ja) * 2007-01-18 2013-01-09 三菱マテリアル株式会社 燃料電池
JP5453274B2 (ja) 2007-09-25 2014-03-26 ソシエテ ビック 省スペース流体プレナムを含む燃料電池システムおよびそれに関連する方法
JP5620637B2 (ja) 2007-12-21 2014-11-05 ソシエテ ビックSociete Bic 不連続な領域を有する化学電池部材
WO2009105896A1 (en) 2008-02-29 2009-09-03 Angstrom Power Incorporated Electrochemical cell and membranes related thereto
MX2012007565A (es) 2009-12-28 2012-11-29 Bic Soc Capas para mejorar el rendimiento de celdas de combustible.
EP2519988B1 (en) 2009-12-28 2018-03-28 Intelligent Energy Limited Fuel cells and fuel cell components having asymmetric architecture and methods thereof
US8900774B2 (en) 2010-03-25 2014-12-02 Sanyo Electric Co., Ltd. Fuel cell layer, fuel cell system and method for fabricating the fuel cell layer
US10096845B2 (en) 2011-11-18 2018-10-09 Intelligent Energy Limited Methods of forming fuel cell layers

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190137436A1 (en) * 2016-04-29 2019-05-09 Board Of Trustees Of Michigan State University Embroidered electrochemical biosensors and related methods
US11867655B2 (en) * 2016-04-29 2024-01-09 Board Of Trustees Of Michigan State University Embroidered electrochemical biosensors and related methods

Also Published As

Publication number Publication date
TW201340451A (zh) 2013-10-01
WO2013075037A1 (en) 2013-05-23
US10096845B2 (en) 2018-10-09
US20140317920A1 (en) 2014-10-30
EP2780965A1 (en) 2014-09-24
EP2780965B1 (en) 2017-05-17
EP2780965A4 (en) 2015-08-12
CN104067426B (zh) 2017-05-03
CN104067426A (zh) 2014-09-24
JP6111259B2 (ja) 2017-04-05
JP2015502016A (ja) 2015-01-19

Similar Documents

Publication Publication Date Title
KR20150010693A (ko) 연료전지층의 형성방법
JP5798323B2 (ja) 電気化学電池アレイ、電気化学システムおよびそれに関する方法
US20060083972A1 (en) Membranes and electrochemical cells incorporating such membranes
US8679701B2 (en) Fuel cells
EP2727173B1 (en) Apparatus for connecting fuel cells to an external circuit
KR20140052943A (ko) 연료 전지
US20120301808A1 (en) Performance enhancing layers for fuel cells
US9397351B2 (en) Apparatus and methods for connecting fuel cells to an external circuit
KR102018401B1 (ko) 복합체 표면상의 연료전지 어레이 형성방법
JP2009105009A (ja) 燃料電池、および燃料電池の製造方法
KR20180006778A (ko) 기체 확산층 및 이의 제조 방법
JP2007026722A (ja) 燃料電池の電極形成方法及び膜電極接合体

Legal Events

Date Code Title Description
N231 Notification of change of applicant
N231 Notification of change of applicant
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E601 Decision to refuse application