KR20150001057A - Preparation method of puffed rice powder extruded with enzyme for ready-to-eat foods - Google Patents

Preparation method of puffed rice powder extruded with enzyme for ready-to-eat foods Download PDF

Info

Publication number
KR20150001057A
KR20150001057A KR20130073669A KR20130073669A KR20150001057A KR 20150001057 A KR20150001057 A KR 20150001057A KR 20130073669 A KR20130073669 A KR 20130073669A KR 20130073669 A KR20130073669 A KR 20130073669A KR 20150001057 A KR20150001057 A KR 20150001057A
Authority
KR
South Korea
Prior art keywords
extruded
enzyme
extrusion
water
rice flour
Prior art date
Application number
KR20130073669A
Other languages
Korean (ko)
Inventor
정진옥
천지연
최갑성
김용인
Original Assignee
도울바이오푸드영농조합법인
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 도울바이오푸드영농조합법인 filed Critical 도울바이오푸드영농조합법인
Priority to KR20130073669A priority Critical patent/KR20150001057A/en
Publication of KR20150001057A publication Critical patent/KR20150001057A/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L7/00Cereal-derived products; Malt products; Preparation or treatment thereof
    • A23L7/10Cereal-derived products
    • A23L7/104Fermentation of farinaceous cereal or cereal material; Addition of enzymes or microorganisms
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L7/00Cereal-derived products; Malt products; Preparation or treatment thereof
    • A23L7/10Cereal-derived products
    • A23L7/161Puffed cereals, e.g. popcorn or puffed rice
    • A23L7/165Preparation of puffed cereals involving preparation of meal or dough as an intermediate step
    • A23L7/17Preparation of puffed cereals involving preparation of meal or dough as an intermediate step by extrusion
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23PSHAPING OR WORKING OF FOODSTUFFS, NOT FULLY COVERED BY A SINGLE OTHER SUBCLASS
    • A23P30/00Shaping or working of foodstuffs characterised by the process or apparatus
    • A23P30/20Extruding
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23PSHAPING OR WORKING OF FOODSTUFFS, NOT FULLY COVERED BY A SINGLE OTHER SUBCLASS
    • A23P30/00Shaping or working of foodstuffs characterised by the process or apparatus
    • A23P30/30Puffing or expanding
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2300/00Processes
    • A23V2300/10Drying, dehydrating
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/07Bacillus
    • C12R2001/10Bacillus licheniformis

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Nutrition Science (AREA)
  • Organic Chemistry (AREA)
  • Microbiology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Manufacturing & Machinery (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Cereal-Derived Products (AREA)

Abstract

The present invention relates to a method for manufacturing extrusion puffed rice flour by adding heat-resistant alpha-amylase to water to make an enzyme solution; injecting rice flour and the enzyme solution into an extrusion molding machine and performing an extrusion puffing process to make an enzymatically treated and extrusion puffed product; and grinding the enzymatically treated and extrusion puffed product. The extrusion puffed rice flour of the present invention has a low water adsorption index and thus reduces the content of the water used to manufacture dough or slurry including rice, thereby allowing the manufacture of dough or slurry having high solid contents. In addition, the extrusion puffed rice flour has a high water solubility index and a low starch polymerization degree and also has excellent dispersion stability, thereby being easily dispersed even in cold water. Furthermore, a dispersed solution of the extrusion puffed rice flour is maintained for a long period of time. Therefore, the extrusion puffed rice flour has excellent usability as a raw ingredient to manufacture an instant convenience food product such as instant porridge, baby food, beverage, etc. which can be taken instantly by only adding the water of room temperature to the extrusion puffed rice flour.

Description

즉석 편이식 제조를 위한 효소압출팽화미분의 제조방법{Preparation method of puffed rice powder extruded with enzyme for ready-to-eat foods}Description: TECHNICAL FIELD The present invention relates to a preparation method of puffed rice powder extruded with an enzyme for ready-to-

본 발명은 내열성 알파-아밀라아제 효소와 쌀가루를 각각 쌍축 압출 성형기에 동시에 주입하여 압출팽화물을 제조하고, 분쇄하는 것으로, 수분 용해지수가 높고, 분산 안정성이 우수하여 즉석 간편 편이식 제조에 유용한 압출팽화미분을 제조하는 방법에 관한 것이다. The present invention relates to a process for producing extruded extrudate by simultaneously injecting a heat resistant alpha-amylase enzyme and a rice flour into a biaxial extrusion molding machine to produce an extruded extrudate and pulverize the extruded extrudate, To a method for producing a fine powder.

쌀은 인간이 섭취하는 곡물 중 가장 중요한 에너지 공급원의 하나로, 우리나라를 비롯한 동남아시아 지역에서는 수천년 전부터 쌀을 주식 및 전통식품 등으로 섭취하여 왔다. 그러나 1950년대부터 수입된 밀가루의 영향으로 면류, 빵류, 과자류 등 밀 섭취로 인한 한국인들의 식습관이 바뀌기 시작하면서 쌀 섭취율은 매년 감소하고, 쌀 재고량은 증가하게 됨에 따라 밀을 대신해 쌀을 원료로 하는 제품 개발에 관한 연구가 절실히 요구되고 있다. 이에, 쌀 스낵 제조, 쌀가루와 다른 곡물 또는 원료의 혼합, 알파 미분 제조, 효소 민감성 연구, 쌀을 원료로 한 압출물 등의 쌀을 이용한 연구들이 활발하게 진행되고 있다.Rice is one of the most important energy sources of human cereals. In South and Southeast Asia, rice has been consumed for thousands of years in stocks and traditional foods. However, due to the influence of wheat imported from the 1950s, as the eating habits of Koreans due to wheat ingestion such as noodles, breads, confectionaries began to change, the rice consumption rate decreased every year and rice stocks increased, Research on development is urgently required. Therefore, studies using rice such as rice snack manufacturing, rice flour and other grains or raw materials, preparation of alpha derivatives, enzyme sensitivity studies, and extrudates made from rice have been actively conducted.

최근에는 기존의 밀가루를 대체한 쌀 제품의 확장을 통해 쌀 소비 형태를 늘리고자 하는 연구가 활발히 진행되고 있으며, 영양과 건강 및 편의성까지 고려한 즉석 간편 편이식(인스턴트식)에 쌀을 이용하는 방안이 고려되고 있다. In recent years, research has been actively carried out to increase the consumption of rice through the expansion of rice products replacing conventional flour. There is also a plan to utilize rice for instant, simple transplantation (instant formula) considering nutrition, health and convenience. .

즉석 간편 편이식은 간편하게 조리하여 취식할 수 있는 특징을 가지는 것으로, 취사활동을 하기 힘든 조건이나, 바쁜 현대인들이 간편하게 이용하기에 유익하다. 대부분의 즉석 간편 편이식은 외국 식생활에서 유래한 제품들로서 해외에서는 밀을 주식으로 하고 있어 밀가루를 이용한 제품들에 대한 연구는 활발하나, 쌀을 이용한 제품은 부족한 실정이며, 대부분이 열풍건조, 동결건조, 분말화 등 이미 일반화된 단순 가공에 불과한 실정이다.The instant, easy-to-take-side formula has features that can be cooked and cooked easily, which makes it difficult to cook, but it is beneficial for busy modern people to use it easily. Most of the quick-turn rounds are products derived from foreign diets. In overseas countries, wheat is used as a stock. Research on flour-based products is active, but products using rice are scarce. Most of them are dried by hot wind, It is a simple process that is already generalized, such as powdering.

대한민국 특허등록번호 제10-0112127호에는 곡물을 70±20 ℃의 온수조에서 호화되도록 침지한 후 동결건조하여 수분을 2 내지 5 %로 낮추고, 이를 주원료로 이용하여 만든 인스턴트 죽의 제조방법이 기재되어 있으며, 대한민국 특허등록번호 제10-0170801호는 늙은 호박 분말, 곡분 등을 배전기(90-150 ℃)로 0.3 내지 시간 동안 배전하여 부원료를 혼합하여 만드는 인스턴트 호박 수프를 기재하고 있다. 대한민국 특허공개번호 제10-1998-0065336호에서는 누룽지는 수분함량 10 내지 15 % 정도로 열풍건조 또는 5 % 이내로 냉동건조시킨 후 이를 분쇄하여 만든 인스턴트 누룽지 식품의 제조 방법을 기재하고 있으며, 대한민국 특허등록번호 제10-0034518호에는 쌀가루, 중력분 및 식염을 원료로?하여 이중 압축성형기에 각각 투입하여 성형한 후 절단 및 건조하는 것을 특징으로 하는 인스턴트 죽의 제조 방법이 기재되어 있다.Korean Patent Registration No. 10-0112127 discloses a method for producing instant porridge made by immersing grains in a hot water tank at 70 ± 20 ° C for lavaging and then lyophilizing to reduce the moisture to 2 to 5% Korean Patent Registration No. 10-0170801 discloses an instant pumpkin soup made by mixing old ingredients such as pumpkin powder, flour, etc. with a distributor (90-150 ° C) for 0.3 hour to mix the additives. Korean Patent Laid-Open Publication No. 10-1998-0065336 discloses a method for preparing instant rice cake food, which is prepared by hot-air drying at a moisture content of about 10 to 15% or freeze-drying at a moisture content of 5% or less, and then pulverizing it. 10-0034518 discloses a method for producing instant porridge, which comprises feeding rice flour, gravity powder, and salt as raw materials into a double compression molding machine, molding the mixture, and cutting and drying the mixture.

그러나, 상기와 같은 단순 열풍 건조나 스팀 증자를 통해 건조된 분쇄물의 경우 곡류, 특히 쌀의 내부까지는 고르게 알파화 되지 않아 직화에 의해 충분한 열이 가해지지 않으면 취식에 적합한 조리 적성을 나타내기 어려우며, 열풍 건조에 따른 색상의 변화나 이취의 발생으로 풍미를 떨어뜨리게 된다. 동결 건조의 경우는 분자 구조적으로는 다공질의 특성을 보유하게 되어 조리시 단시간에 수분이 내부까지 빠르게 침투할 수 있는 장점이 있지만, 전분의 호화를 위한 사전 열처리 공정이 별도로 필요하게 되어 인건비, 설비, 생산성의 저하 등을 유발하여 제조 경비 상승이 과도하게 발생할 수 있어 바람직하지 않다. However, in the case of the pulverized product dried through the simple hot air drying or the steam boiling as described above, the cereals, especially the inside of the rice, are not evenly converted to the alpha, so that if sufficient heat is not applied by the flame burning, The flavor is lowered due to the change of color or the generation of odor due to drying. In the case of freeze-drying, it has the advantage of having a porous nature in molecular structure, so that moisture can penetrate quickly to the inside in a short time during cooking. However, since a preheating process for starch is needed separately, The productivity is lowered, and the manufacturing cost is excessively increased, which is not preferable.

또한, 상기와 같은 가공법으로 제조된 제품들의 경우 불을 가해서 3분 이상의 추가 조리가 필요한 것을 본다면, 진정한 즉석 간편 편이식이라 하기 어렵고, 점점 까다로워지는 소비자들의 요구를 충족시키기 부족하다. In addition, if the product manufactured by the above-mentioned processing method requires additional cooking for 3 minutes or more by lighting, it is difficult to say that it is a genuine instant easy-to-eat type, and it is not enough to meet the demand of increasingly complicated consumers.

압출성형공정은 1930년대에 노동집약적인 기술의 해결 방안으로 산업에 응용되기 시작하여, 고분자 플라스틱 성형에 가장 먼저 적용되었으며, 식품에 적용된 것은 1930년대 중반 파스타 생산에 이용되면서 시작되었다. 최근에는 식품, 사료, 생물 산업, 의약품 산업 등 다양한 산업 분야에 활용 기술이 지속적으로 발전하고 있다[Critical Reviews in Food Science and Nutrition. 49, 361-368].The extrusion process began to be applied to the industry as a solution to labor intensive technology in the 1930s, and was first applied to polymer plastic molding. The application to food began in the mid 1930s when it was used for pasta production. Recently, applied technology has been continuously developed in various industrial fields such as food, feed, bio-industry, and pharmaceutical industry [Critical Reviews in Food Science and Nutrition. 49, 361-368].

압출 조리와 효소처리 공정을 함께 이용함으로 곡류의 이화학적 특성 변화를 유도하는 다양한 연구들이 시도되었다. 신해헌 등은 압출팽화로 압출물을 제조한 다음 효소처리하여 수분용해지수 및 수용성 식이섬유의 증가를 유도하였고[Korean J. Food sci. Technol. 35, 849-855], 이강권 등(1994)은 쌀 이유식 제조를 위해 3가지 amylase 효소(Termamyl 120LS, BAN 240L, malt powder)를 단축압출성형기(single screw extruder)를 이용하여 쌀 압출팽화물을 제조하여 이유식 제조에 바람직한 저점도 팽화물을 얻었다고 보고하였다[Korean J. Food sci. Technol. 26, 670-678]. 그러나, 이러한 연구들은 전통적인 제조 공정보다는 시간을 단축시키는 효과를 가져오지만 여전히 수분함량을 조절하거나 효소처리 공정들이 압출조리 공정과 별도로 되어있어 시간과 인력이 많이 요구된다는 단점이 있다.Various studies have been attempted to induce changes in the physicochemical properties of cereals by using extrusion cooking and enzyme treatment. Shin et al. Produced an extrudate by extrusion blending and then treated with an enzyme to induce an increase in water solubility index and soluble dietary fiber [Korean J. Food Sci. Technol. 35, 849-855] and Lee Kang Kwon et al. (1994) used three amylase enzymes (Termamyl 120LS, BAN 240L, malt powder) for the production of rice flour using a single screw extruder And thus obtained a low-viscosity swell which is desirable for the production of baby foods [Korean J. Food Sci. Technol. 26, 670-678]. These studies, however, have the disadvantage that they require time and manpower because they have a time-saving effect rather than a traditional manufacturing process but still have moisture content or enzyme processing steps separate from the extrusion cooking process.

따라서, 수분용해지수가 높고, 전분중합도가 낮으면서도, 분산 안정성이 우수하여 찬물에서도 쉽게 분산되고, 분산액이 장시간 유지되는 특성을 나타내어 실온의 물을 첨가하는 것만으로도 즉석에서 섭취가 가능한 즉석 간편 편이식의 개발이 필요한 실정이다. Accordingly, it is possible to provide a quick-action, easy-to-use instant food which can be easily ingested by simply adding water at room temperature, exhibiting high water-solubility index and low starch polymerization degree, It is necessary to develop a transplant.

본 발명의 목적은 1-2분 내에 물을 흡수하고 부풀어 올라 인공적으로 호화시키지 않아도 쉽게 물에 용해되고 분산되어, 열처리나 유화제를 필요로 하지 않는 쌀을 이용하는 식품, 주로 즉석 죽, 이유식, 또는 음료 등의 즉석 간편 편이식 제조에 활용될 수 있는 수분흡착지수가 낮고, 수분용해지수가 높으면서도, 전분중합도가 낮고, 소화율은 높은 압출팽화미분을 제공하기 위한 것이다.It is an object of the present invention to provide a food using rice which does not require heat treatment or emulsifying agent so that it easily dissolves and disperses in water without absorbing water and swelling up artificially within 1 to 2 minutes, The present invention is intended to provide an extruded expanded derivative having a low moisture adsorption index, a high water solubility index, a low starch polymerization degree, and a high digestibility, which can be utilized in the production of instant single piece transplantation.

본 발명은 상기 과제를 해결하기 위하여 물 100 부피부에 대하여 내열성 알파-아밀라아제 효소 0.1-3 부피부를 첨가하여 효소액을 제조하는 단계; 쌀가루와 상기 효소액을 각각 압출성형기에 동시에 주입하여 압출재료를 공급하는 단계; 상기 압출재료를 배럴온도 70-105 ℃, 스크류 회전속도 50-250 rpm 조건에서 압출성형하여 압출팽화물을 제조하는 단계; 및 상기 압출팽화물을 건조한 후 분쇄하여 압출팽화미분을 제조하는 단계;를 포함하는 압출팽화미분의 제조방법을 제공한다.In order to solve the above-described problems, the present invention provides a method for producing an enzyme solution, comprising: preparing an enzyme solution by adding 0.1-3 parts of heat-resistant alpha-amylase enzyme to 100 parts of water; Feeding the extruded material by simultaneously injecting the rice flour and the enzyme liquid into an extrusion molding machine; Extruding the extruded material at a barrel temperature of 70 to 105 DEG C and a screw rotation speed of 50 to 250 rpm to produce an extruded extrudate; And drying and pulverizing the extruded expanded material to prepare an extruded expanded fine powder.

본 발명의 일 실시예에 의하면, 상기 압출재료는 수분함량이 25-30 중량%일 수 있는데, 상기 압출재료 중 상기 쌀가루의 주입속도를 700-850 g/min으로, 효소액 주입속도를 150-250 mL/min으로 동시 주입함으로써 상기 수분함량을 제공할 수 있다. According to an embodiment of the present invention, the extruded material may have a moisture content of 25-30% by weight, wherein an injection rate of the rice flour is 700-850 g / min and an injection rate of the enzyme liquid is 150-250 lt; RTI ID = 0.0 > mL / min. < / RTI >

본 발명의 다른 일 실시예에 의하면, 상기 내열성 알파-아밀라아제 효소는 Bacillus licheniformis 유래의 Termamyl 120L type L(Novozymes, Denmark, 120 KNU/g)일 수 있으며, According to another embodiment of the present invention, the thermostable alpha-amylase enzyme may be Termamyl 120L type L (Novozymes, Denmark, 120 KNU / g) derived from Bacillus licheniformis ,

상기 압출성형에 사용되는 내열성 알파-아밀라아제 효소를 포함하는 효소액은 10-1000 KNU/kg의 역가를 가질 수 있다.The enzyme solution containing the heat-resistant alpha-amylase enzyme used in the extrusion may have a potency of 10-1000 KNU / kg.

또한 본 발명은 상기 방법으로 제조되는 압출팽화미분을 제공한다. The present invention also provides an extruded expanded derivative prepared by the above method.

상기 압출팽화미분은 수분 함량이 1 내지 10 중량%이고, 수분흡착지수가 0.5 내지 2.5 g/g이며, 수분용해지수가 20 내지 40 %이고, 전분중합도가 3 내지 7 포도당유닛이고, 알파-아밀라아제에 의한 전분소화율이 73 % 이상일 수 있으며, 입자의 크기가 1-50 mesh일 수 있다.Wherein the extruded expanded fine powder has a moisture content of 1 to 10% by weight, a moisture adsorption index of 0.5 to 2.5 g / g, a water solubility index of 20 to 40%, a starch polymerization degree of 3 to 7 glucose units, an alpha-amylase May be 73% or more, and the particle size may be 1-50 mesh.

본 발명에서 상기 압출팽화미분은 쌀을 포함하는 반죽, 슬러리 또는 희석액이 제조과정에 이용되는 면 제품, 빵, 스낵, 씨리얼, 죽, 음료 또는 술 제조에 사용되는 것을 특징으로 한다.In the present invention, the extruded expanded fine powder is characterized in that the dough, slurry or diluent containing rice is used in the manufacture of cotton products, breads, snacks, cereal, porridge, beverages or drinks used in the manufacturing process.

본 발명의 방법에 따라 제조된 압출팽화미분은 쌀가루와 내열성 알파-아밀라아제 효소가 첨가된 효소액을 각각 쌍축 압출 성형기에 동시에 주입하여 배럴온도 70-105 ℃, 스크류 회전속도 50-250 rpm의 조건하에서 압출팽화시켜 제조되는 것으로, 효소첨가와 수분함량 조절하는 공정을 압출공정 중에 진행되도록 공정을 일원화하여 공정시간을 단축하였다. 본 발명에 따른 압출팽화미분은 일반 분쇄 쌀가루 및 내열성 알파-아밀라아제 처리 없이 압출팽화시켜 분쇄한 쌀가루와 비교하여 수분흡착지수가 낮아 쌀을 포함하는 반죽이나 슬러리 제조에 사용되는 물의 함량을 줄여 고형분 함량이 높은 반죽이나 슬러리를 제조할 수 있으며, 수분용해지수가 높고, 전분중합도가 낮으면서도, 분산 안정성이 우수하여 찬물에서도 쉽게 분산되고, 분산액이 장시간 유지되는 특성을 나타내어 실온의 물을 첨가하는 것만으로도 즉석에서 섭취가 가능한 즉석죽, 이유식, 음료 등의 즉석 간편 편이식 제품 제조를 위한 원재료로서 활용가능성이 높다. The extruded expanded fine powders prepared according to the method of the present invention were obtained by simultaneously injecting an enzyme solution containing rice flour and heat resistant alpha-amylase enzyme into a biaxial extrusion extruder, extruding under the conditions of a barrel temperature of 70-105 DEG C and a screw rotation speed of 50-250 rpm And the process time is shortened by unifying the process so that the process of adding enzyme and adjusting the moisture content is performed during the extrusion process. The extruded expanded fine powder according to the present invention has a lower moisture adsorption index than the pulverized rice flour which is extruded and expanded without processing the ordinary pulverized rice flour and the heat resistant alpha-amylase, so that the content of water used for preparing the dough or slurry containing rice is reduced, It is possible to produce a high dough or a slurry, has a high water-solubility index and a low starch polymerization degree, and is excellent in dispersion stability, so that it is easily dispersed in cold water and the dispersion is maintained for a long time. It is highly likely to be used as a raw material for the manufacture of ready-to-use transplantable products such as ready-to-eat porridge, baby foods, and drinks.

도 1은 본 발명의 일 실시예 및 비교예에 따라 제조된 압출팽화물의 팽화율을 나타낸 그래프이다.
도 2는 본 발명의 일 실시예 및 비교예에 따라 제조된 압출팽화물 및 쌀 알곡의 미세구조를 관찰하기 위해 주사전자현미경으로 2000배 확대촬영한 이미지이다. 도 2a는 쌀알곡을 확대 촬영한 이미지이고, 도 2b는 비교예에 따라 제조된 압출팽화물의 이미지이며, 도 2c는 본 발명의 실시예 2에 따라 제조된 압출팽화물의 이미지이고, 도 2d는 실시예 4에 따라 제조된 압출팽화물의 이미지이다.
도 3은 본 발명의 일 실시예 및 비교예에 따라 제조된 압출팽화미분의 평균중합도를 나타낸 그래프이다.
도 4는 본 발명의 일 실시예 및 비교예에 따라 제조된 압출팽화미분의 전분소화율을 나타낸 그래프이다.
도 5는 본 발명의 일 실시예 및 비교예에 따라 제조된 압출팽화미분의 수분흡착지수(water absorption index, WAI) 및 수분용해지수(water soluble index, WSI)를 나타낸 그래프이다.
도 6은 본 발명의 일 실시예 및 비교예에 따라 제조된 압출팽화미분의 페이스트 호화 점도를 나타낸 그래프이다.
도 7은 본 발명의 일 실시예 및 비교예에 따라 제조된 압출팽화미분의 분산안정성을 나타낸 그래프이다.
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a graph showing the expansion rate of an extruded expanded product produced according to one embodiment of the present invention and a comparative example. FIG.
FIG. 2 is an image enlarged at 2000 times magnification by a scanning electron microscope in order to observe the microstructure of rice hulls and extruded swell produced according to an embodiment and a comparative example of the present invention. FIG. 2B is an image of the extruded bulb manufactured according to the comparative example, FIG. 2C is an image of the extruded bulb manufactured according to Embodiment 2 of the present invention, FIG. An image of the extruded bulb made according to Example 4.
3 is a graph showing the average degree of polymerization of extruded expanded fine powders prepared according to one embodiment of the present invention and a comparative example.
4 is a graph showing the starch digestibility of the extruded expanded fine powder prepared according to one embodiment of the present invention and a comparative example.
5 is a graph showing a water absorption index (WAI) and a water soluble index (WSI) of extruded expanded fine powders prepared according to one embodiment of the present invention and a comparative example.
FIG. 6 is a graph showing the paste-enhanced viscosity of the extruded expanded fine powder prepared according to one embodiment of the present invention and a comparative example.
7 is a graph showing dispersion stability of extruded expanded fine powders prepared according to one embodiment of the present invention and a comparative example.

압출성형공정은 단일 공정 안에서 고압과 고온의 가열처리(HTST: high temperature short time)에 의해 원료가 혼합, 분쇄, 성형, 건조가 일어나는 가공 방법이다. 배럴(barrel) 안에서 시료를 밀어내면서 회전하는 스크류에 의해 시료가 혼합되며 층밀림(shear)과 열처리가 동시에 이루어짐으로서 소재의 성질을 분자결합 수준까지 변형시키기 때문에 전단력에 의한 시료의 절단, 파쇄, 팽화뿐만 아니라 전분 입자의 무정형화, 덱스트린화를 통한 저분자화, 단백질의 변성, 분자간 결합 및 조직화와 같은 구조적 변화 외에도 미생물의 사멸 및 살균, 독성물질의 파괴, 냄새의 제거, 밀도 조절 및 갈색화 반응 등이 단일 공정 내에서 신속히 진행되므로 다른 열처리 공정과 비교하여 경제적이고 효율적인 공정이라 할 수 있다.The extrusion molding process is a processing method in which raw materials are mixed, crushed, molded and dried by a high temperature and short time (HTST) process in a single process. The sample is mixed by a rotating screw while pushing the sample in the barrel, and shearing and heat treatment are simultaneously performed by the shear and heat treatment so that the properties of the material are deformed to the molecular bonding level. Therefore, the cutting, crushing, In addition to structural changes such as amorphous starch particles, low molecular weight through dextrinization, protein denaturation, intermolecular binding and organization, microorganisms are killed and sterilized, toxic substances are destroyed, odors are removed, density is controlled, It is an economical and efficient process compared with other heat treatment process because it proceeds quickly in a single process.

압출성형 공정 조건은 원료투입속도, 스크류 회전속도, 배럴 온도, 수분함량, 사출구의 구조, 스크루 배열에 따라 조절이 가능하며, 이러한 독립변수의 조절을 통하여 소화율 향상 뿐만 아니라 영양소의 생체 이용률이 향상되는 파스타, 식물성 단백질, 건조 음료 믹스, 건조 스프, 시리얼, 유아식, 죽, 스낵, 어육 및 축육 가공 등의 다양한 이화학적 특성을 가지는 제품을 생산할 수 있다.Extrusion process conditions can be controlled by feed rate, screw rotation speed, barrel temperature, moisture content, structure of outlet and screw arrangement. By controlling these independent variables, nutrient bioavailability can be improved as well as improving digestibility. Such as pasta, vegetable protein, dry beverage mix, dried soup, cereal, baby food, porridge, snacks, fish meat and meat processing.

이에 본 발명자들은 압출성형공정을 이용하여 상기와 같은 문제점을 해결하기 위하여 예의 노력한 결과, 본 발명에 따른 동방향 쌍축 압출성형기(twin screw extruder)를 이용하여 압출공정과 동시에 내열성 알파-아밀라아제 효소로 처리하여 내열성 알파-아밀라아제 효소의 활성 최적온도인 70-105 ℃의 조건에서 압출팽화 공정을 진행함으로써 수분용해지수가 높고, 전분중합도가 낮으면서도, 분산 안정성이 우수하여, 즉석 간편 편이식 제품 제조에 적합한 압출팽화미분을 제조하는 방법을 개발하여 본 발명을 완성하게 되었다. Accordingly, the present inventors have made intensive efforts to solve the above problems by using an extrusion molding process, and as a result, they have found that a twin screw extruder according to the present invention can be used for extrusion processing simultaneously with heat resistant alpha-amylase enzyme Amylase enzyme at a temperature of 70-105 ° C, which is the optimum temperature for the enzyme activity. Thus, it has a high water-solubility index and low starch polymerization degree, and is excellent in dispersion stability and suitable for the production of instant, The present invention has been completed by developing a method for producing an extruded expanded powder.

본 발명에 의하면, 상기 내열성 알파-아밀라아제(α-Amylase) 효소는 전분의 α-1, 4-glucoside 결합을 무작위로 가수분해하여 분자량이 적은 dextrin과 더불어 분자량이 비교적 큰 각종 올리고당을 생성시키는 효소로 이러한 작용은 전분의 점도 감소, 환원력 증가, Iodine-color 반응에서의 변화, 광학 회전력의 변화, glycogen 용액의 탁도 감소 등의 특성 변화를 가져온다. 본 발명에서는 90-100℃의 온도에서 최적활성을 나타내는 내열성 효소로 알려진 Bacillus licheniformis 유래의 Termamyl 120L type L(Novozymes, Denmark, 120 KNU/g)을 사용하였다.According to the present invention, the heat-resistant α-amylase enzyme randomly hydrolyzes α-1, 4-glucoside bonds of starch to produce various oligosaccharides having a relatively high molecular weight along with dextrin having a low molecular weight These effects lead to changes in properties such as viscosity reduction of starch, increase in reducing power, change in Iodine-color reaction, change in optical rotation force, decrease in turbidity of glycogen solution. In the present invention, Termamyl 120L type L (Novozymes, Denmark, 120 KNU / g) derived from Bacillus licheniformis, which is known as a heat-resistant enzyme exhibiting optimal activity at a temperature of 90-100 ° C., was used.

본 발명에 의하면, 상기 동방향 쌍축 압출성형기(twin screw extruder)를 이용한 압출팽화 공정은 공정시간을 단축할 뿐 아니라 효소첨가 방법을 수분의 주입과 동시에 진행하여 수분함량 조절 공정까지도 압출공정 중 진행되도록 하여 시간과 인력 감소 효과를 가지는 단일화공정이다. According to the present invention, the extrusion blowing process using the twin screw extruder in the same direction not only shortens the process time, but also proceeds with the addition of water at the same time as the water addition process so that the moisture content adjustment process is performed during the extrusion process This is a unification process with time and manpower reduction effects.

본 발명에 의하면, 동방향 쌍축 압출성형기(twin screw extruder)를 이용한 압출팽화 공정은 단축 압출성형에 비하여 높은 압력과 층밀림 현상을 유도할 수 있어 쌀의 분자적 변화를 보다 가속화할 수 있으며, According to the present invention, the extrusion blowing process using a twin screw extruder in the same direction can induce a high pressure and a layer pushing phenomenon as compared with the uniaxial extrusion molding, thereby accelerating the molecular change of the rice,

기존의 온도보다 낮은 70-105 ℃의 온도에서 압출팽화물을 제조할 수 있어 내열성 아밀라아제 효소를 압출 공정 중에 사용할 수 있으므로, 공정을 단축시킴으로써 시간절약 및 경제성을 향상시켰다.
The extruded extrudate can be prepared at a temperature of 70-105 ° C, which is lower than the conventional temperature, and the heat-resistant amylase enzyme can be used during the extrusion process, thereby shortening the process time and improving the time and economy.

이하, 본 발명을 상세하게 설명한다. Hereinafter, the present invention will be described in detail.

본 발명에 있어서, '즉석 간편 편이식'이란 단 시간 내에 쉽게 조리할 수 있고, 저장이나 보존이 간단하며, 수송 및 휴대가 간편한 식품으로 물을 부어 즉석에서 먹을 수 있는 식품을 의미하며, 상기 물은 특별한 열처리나 유화제를 필요로 하지 않으며, 실온의 물을 사용할 수 있으며, 냉장 보관된 물을 사용할 수도 있다.
In the present invention, the term " instant, single-handed transplantation " means a food which can be easily cooked in a short time, is simple to store and preserve, is easy to transport and easy to carry, Does not require special heat treatment or emulsifier, can use room temperature water, and can use refrigerated water.

본 발명에 있어서, 상기 쌀가루는 쌀을 분쇄한 것으로, 분쇄된 크기는 제한이 없으나, 1-50 mesh 인 것이 바람직한데, 쌀가루의 크기가 상기 범위 미만이면, 표면적이 증가해 입자들끼리 강한 응집력을 가져 입자들끼리 엉기는 현상이 발생하여 케이킹 현상이 일어나고, 상기 범위를 초과하면 입자들이 너무 커 거친 식감을 나타냄으로 바람직하지 않다.
In the present invention, the rice flour is obtained by pulverizing rice. The size of the rice flour is not limited, but it is preferably 1-50 mesh. When the size of the rice flour is less than the above range, the surface area increases, The particles tend to be entangled with each other to cause a caking phenomenon, and if the particle size exceeds the above range, the particles are too large to exhibit a rough texture.

본 발명은 물 100 부피부에 대하여 내열성 알파-아밀라아제 효소 0.1-3 부피부를 첨가하여 효소액을 제조하는 단계; 쌀가루와 상기 효소액을 각각 압출성형기에 동시에 주입하여 압출재료를 공급하는 단계; 상기 압출재료를 배럴온도 70-105 ℃, 스크류 회전속도 50-250 rpm 조건에서 압출성형하여 압출팽화물을 제조하는 단계; 및 상기 압출팽화물을 건조한 후 분쇄하여 압출팽화미분을 제조하는 단계;를 포함하는 압출팽화미분의 제조방법을 제공한다.The present invention relates to a process for preparing an enzyme solution by adding 0.1-3 parts of heat-resistant alpha-amylase enzyme to 100 parts of water of skin; Feeding the extruded material by simultaneously injecting the rice flour and the enzyme liquid into an extrusion molding machine; Extruding the extruded material at a barrel temperature of 70 to 105 DEG C and a screw rotation speed of 50 to 250 rpm to produce an extruded extrudate; And drying and pulverizing the extruded expanded material to prepare an extruded expanded fine powder.

상기 압출재료는 수분함량이 25-30 중량%일 수 있는데, 상기 압출재료 중 상기 쌀가루의 주입속도를 700-850 g/min으로, 효소액 주입속도를 150-250 mL/min으로 동시 주입함으로써 상기 수분함량을 제공할 수 있으며, The extruded material may have a moisture content of 25-30% by weight. The feed rate of the rice flour in the extruded material is 700-850 g / min, and the rate of injecting the enzyme is 150-250 ml / min. Lt; RTI ID = 0.0 >

이때, 상기 내열성 알파-아밀라아제 효소는 Bacillus licheniformis 유래의 Termamyl 120L type L(Novozymes, Denmark, 120 KNU/g)를 사용하는 것이 바람직한데, 상기 Termamyl 120L type L의 효소활성 최적 온도는 90-100 ℃으로 배럴온도 70-105 ℃에서 압출팽화물을 제조하는 본 발명에 적합하다.Preferably, the thermostable α-amylase enzyme is Termamyl 120L type L (Novozymes, Denmark, 120 KNU / g) derived from Bacillus licheniformis. The optimum temperature for the enzyme activity of Termamyl 120L type L is 90-100 ° C. Suitable for the present invention to produce extrudates at barrel temperatures of 70-105 ° C.

본 발명에 의하면 상기 내열성 알파-아밀라아제 효소는 물 100 부피부에 대하여 0.1-3 부피부를 사용할 수 있는데, 좀 더 바람직하게는 0.4-3 부피부를 사용할 수 있다. 상기 범위를 초과하여 사용하더라도 팽화율 감소, 전분중합도 감소, 전분 소화율 증가, 수분흡착지수 감소, 수분용해지수 증가, 페이스트 호화점도 감소 및 분산 안정성 증가 등의 효과 상승정도가 미미하여 경제적이지 못함으로 바람직하지 않으며, 상기 범위 미만이면 효소의 양이 너무 적어 내열성-알파아밀라아제 첨가에 따른 효과를 기대하기 어려워 바람직하지 않다. According to the present invention, the heat-resistant alpha-amylase enzyme can be used in an amount of 0.1 to 3 parts per 100 parts of water, more preferably 0.4 to 3 parts of the skin. Even when used in excess of the above range, the degree of increase in the effects of reduction in expansion ratio, decrease in starch polymerization degree, increase in starch digestibility, decrease in moisture absorption index, increase in water solubility index, decrease in paste viscosity viscosity and increase in dispersion stability is insufficient, If the amount is less than the above range, the amount of the enzyme is too small and it is difficult to expect the effect of the heat resistance-alpha amylase addition.

본 발명에 의하면, 상기 압출성형에 사용되는 상기 내열성 알파-아밀라아제 효소를 포함하는 효소액은 10-1000 KNU/kg의 역가를 가질 수 있는데, According to the present invention, the enzyme solution containing the heat-resistant alpha-amylase enzyme used in the extrusion molding may have a potency of 10-1000 KNU / kg,

예를 들어, 본 발명의 효소액이 물 100 부피부에 내열성 알파-아밀라아제 효소를 0.4 부피부를 사용하였을때는 110-130 KNU/kg의 역가를 가질 수 있고, 내열성 알파-아밀라아제 효소를 0.8 부피부를 사용하였을때는 230-250 KNU/kg의 역가를 가질 수 있으며, 3 부피부를 사용하였을때는 920-940 KNU/kg의 역가를 가질 수 있다.For example, the enzyme solution of the present invention may have a potency of 110-130 KNU / kg when 100 parts of water and 0.4 part of heat-resistant alpha-amylase enzyme are used in skin, 0.8 part of heat-resistant alpha-amylase enzyme, When used, it may have a titer of 230-250 KNU / kg, and when using 3 parts of skin, it may have a titer of 920-940 KNU / kg.

본 발명에 의하면, 상기 온도 및 회전속도 범위를 벗어나 압출 성형하면 호화가 완전히 일어나지 않아 재수화능이 떨어지는 문제가 발생할 수 있어 바람직하지 않다. According to the present invention, when extrusion molding is carried out beyond the temperature and the rotational speed range, there is a problem that the degree of rehydration deteriorates because the gelation does not occur completely, which is not preferable.

본 발명에 의하면 상기 제조방법으로 제조된 압출팽화미분은 분 함량이 1 내지 10 중량%이고, 수분흡착지수가 0.5 내지 2.5 g/g이며, 수분용해지수가 20 내지 40%이고, 전분중합도가 3 내지 7 포도당유닛이고, 내열성 알파-아밀라아제에 의한 소화율이 73% 이상일 수 있으며, According to the present invention, the extruded expanded fine powder produced by the above production method has a powder content of 1 to 10% by weight, a moisture adsorption index of 0.5 to 2.5 g / g, a water solubility index of 20 to 40% To 7 glucose units, and the digestibility by the heat-resistant alpha-amylase may be 73% or more,

상기 압출팽화미분은 입자의 크기가 1-50 mesh일 수 있다.The extruded expanded fine powder may have a particle size of 1-50 mesh.

상기 입자의 크기가 상기 범위를 벗어나 분쇄하면 수율과 수용성이 떨어지는 문제가 야기될 수 있어 바람직하지 않다. When the size of the particles is out of the above range, pulverization may cause a problem of poor yield and water solubility, which is not preferable.

본 발명에 의하면, 상기 압출팽화미분은 쌀을 포함하는 반죽, 슬러리 또는 희석액이 제조과정에 이용되는 면 제품, 빵, 스낵, 씨리얼, 이유식, 죽, 음료 또는 술 제조에 사용될 수 있으며, 특히, 높은 수분용해지수를 필요로 하는 즉석죽, 이유식 및 음료 등의 유동성을 가진 고열량 제품을 만드는데 더욱 유용하다.
According to the present invention, the extruded expanded fine powder can be used for producing a cotton product, bread, snack, cereal, baby food, porridge, beverage or drink in which a dough, a slurry or a diluent containing rice is used in the manufacturing process, It is more useful for making high calorimetric products with fluidity such as ready-to-eat porridge, baby foods and beverages that require a water solubility index.

이하, 바람직한 실시예를 들어 본 발명을 더욱 상세하게 설명한다. 그러나, 이들 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이에 의하여 제한되지 않는다는 것은 당업계의 통상의 지식을 가진 자에게 자명할 것이다.
Hereinafter, the present invention will be described in more detail with reference to preferred embodiments. It will be apparent, however, to those skilled in the art that these embodiments are for further explanation of the present invention and that the scope of the present invention is not limited thereby.

재료의 준비Preparation of materials

쌀가루는 쌀을 분쇄기(미래식품산업기계, 서울, 한국)으로 분쇄하여 50 mesh 체를 통과시켜 준비하였으며, 데시케이터에 보관하며 사용하였다. The rice flour was prepared by pulverizing rice with a pulverizer (Future Food Industrial Machinery, Seoul, Korea) and passing it through a 50 mesh sieve, and storing it in a desiccator.

상기 내열성 알파-아밀라아제 효소는 Bacillus licheniformis에서 분리된 최적 활성온도가 90-100℃인 내열성 알파-아밀라제인 터마밀(Thermamyl 120L, 노보자임, 덴마크; 역가가 120 KNU/g (6,000 BAU/g))을 사용하였다. 상기 효소는 최적 pH는 5.5~7.0, 최적온도는 90 내지 95 ℃이며 최고 100 ℃에서 5분까지 효소의 활성이 실활되지 않는 특성을 가진 내열성 효소이다.
The heat-resistant alpha-amylase enzyme is a thermostable alpha-amylase Thermamyl 120L (Novozymes, Denmark; activity of 120 KNU / g (6,000 BAU / g)) isolated from Bacillus licheniformis at an optimal activation temperature of 90-100 ° C. Were used. The enzyme has an optimum pH of 5.5 to 7.0, an optimum temperature of 90 to 95 ° C, and a heat-resistant enzyme having the property that enzyme activity is not inactivated up to 5 minutes at 100 ° C.

실시예Example

쌀가루를 원료로 하여 압출성형 공정중에 내열성 알파-아밀라아제 효소를 첨가하여 단일공정 안에서 효소 농도에 따른 압출팽화물을 생산하고 분쇄하여 압출팽화미분을 제조하였다.
Extruded expanded powders were produced by pulverizing extruded extrudates according to enzyme concentration in a single process by adding heat - resistant α - amylase enzyme during extrusion molding process using rice flour as a raw material.

실시예 1.Example 1.

압출 재료로 쌍축 동방향 압출성형기(Corotating twin screw extruder, Model DZ56-III, Jinan Saixin Machinery Co. Ltd., China)를 이용하여 팽화물을 제조하였으며, 상기 압출성형기의 스크류 직경은 65 mm, 배럴의 직경과 길이의 비(L/D ratio)는 15.5:1, 압출 조건은 스크류 회전속도는 75 rpm, 시료 주입속도는 780 g/min, 압출성형기의 1구역, 2구역 및 3구역의 배럴 온도를 각각 80, 85 및 95 ℃로 조절하여 사용하였다.The extruded material was extruded using a twin screw extruder (Model DZ56-III, Jinan Saixin Machinery Co., Ltd., China). The screw diameter of the extruder was 65 mm, (L / D ratio) of 15.5: 1 in the diameter-to-length ratio, 75 rpm in the screw rotation speed, 780 g / min in the sample injection speed, and 1 bar, 2 bar and 3 barrel temperature of the extruder 85, and 95 < 0 > C, respectively.

쌀가루의 효소처리를 위하여, 물 10 리터당 내열성 알파-아밀라아제 40 ml를 첨가하여 0.04 부피%의 효소액을 제조하였다. For enzymatic treatment of the rice flour, 40 ml of heat resistant alpha-amylase per 10 liters of water was added to prepare an enzyme solution of 0.04 vol%.

압출재료의 수분함량이 30 중량%가 되도록 쌀가루를 0.775 Kg/min 으로 주입하고, 상기 효소액을 200 mL/min 으로 주입하여 압출 성형하여 압출팽화물을 제조하였다. 이때 효소는 역가가 123.84 KNU/Kg 이었다.Rice flour was injected at 0.775 Kg / min so that the moisture content of the extruded material was 30% by weight, and the enzyme solution was injected at 200 mL / min and extrusion molded to produce an extrudate. The enzyme had a potency of 123.84 KNU / Kg.

생성된 압출팽화물은 70 ℃의 건조기에서 15 시간 동안 건조한 후, 분쇄기로 분쇄하고 50 mesh 체로 체질하여 압출팽화미분을 제조하였다.
The resulting extrudate was dried in a dryer at 70 ° C for 15 hours, pulverized by a pulverizer and sieved with a 50 mesh sieve to prepare an extruded expanded fine powder.

실시예 2.Example 2.

0.04 부피%인 효소액 대신 0.08 부피%인 효소액을 사용한 것을 제외하고는 실시예 1의 방법으로 압출팽화미분을 제조하였으며, 이때 효소는 역가가 247.68 KNU/Kg 이었다.
Except that 0.08% by volume of the enzyme solution was used instead of the enzyme solution of 0.04% by volume. The activity of the enzyme extruded powder was 247.68 KNU / Kg.

실시예 3.Example 3.

0.04 부피%인 효소액 대신 3 부피%인 효소액을 사용한 것을 제외하고는 실시예 1의 방법으로 압출팽화미분을 제조하였으며, 이때 효소는 역가가 928.8 KNU/Kg 이었다.
Extruded expanded powder was prepared by the method of Example 1 except that an enzyme solution of 3 vol% instead of the enzyme solution of 0.04 vol% was used, and the enzyme had a potency of 928.8 KNU / Kg.

실시예 4.Example 4.

0.04 부피%인 효소액 대신 5 부피%인 효소액을 사용한 것을 제외하고는 실시예 1의 방법으로 압출팽화미분을 제조하였으며, 이때 효소는 역가가 1548 KNU/Kg 이었다.
The extruded expanded fine powder was prepared by the method of Example 1 except that 5 vol.% Of the enzyme solution was used instead of 0.04 vol.% Of the enzyme solution. The enzyme had a potency of 1548 KNU / Kg.

비교예 1.Comparative Example 1

0.04 부피%인 효소액 대신 효소를 넣지 않은 물을 사용한 것을 제외하고는 실시예 1의 방법으로 압출팽화미분을 제조하였다.
Extruded expanded fine powder was prepared by the method of Example 1, except that enzyme-free water was used instead of the enzyme solution of 0.04% by volume.

비교예 2. Comparative Example 2

내열성 알파-아밀라아제 대신에 Aspergillus oryzae 유래의 알파-아밀라아제를 사용한 것을 제외하고는 실시예 1의 방법으로 압출팽화미분을 제조하였다.
Instead of heat-resistant alpha-amylase Aspergillus oryzae The extruded expanded fine powder was prepared in the same manner as in Example 1, except that the resulting alpha-amylase was used.

비교예 3. Comparative Example 3

내열성 알파-아밀라아제 대신에 Aspergillus oryzae 유래의 알파-아밀라아제를 사용한 것을 제외하고는 실시예 3의 방법으로 압출팽화미분을 제조하였다.
Aspergillus instead of heat-resistant alpha-amylase oryzae The extruded expanded fine powder was prepared in the same manner as in Example 3, except that the resulting alpha-amylase was used.

비교예 4Comparative Example 4

쌍축 동방향 압출 성형기의 1구역, 2구역 및 3구역의 배럴 온도를 각각 55, 60 및 65 ℃로 조절하여 사용한 것을 제외하고는 실시예 1의 방법으로 압출팽화미분을 제조하였다.
Extruded expanded fine powders were prepared in the same manner as in Example 1, except that the barrel temperatures of the first, second and third zones of the biaxial co-extrusion extruder were adjusted to 55, 60 and 65 ° C, respectively.

비교예 5Comparative Example 5

쌍축 동방향 압출 성형기의 1구역, 2구역 및 3구역의 배럴 온도를 각각 110, 115 및 120 ℃로 조절하여 사용한 것을 제외하고는 실시예 1의 방법으로 압출팽화미분을 제조하였다.
Extruded expanded fine powders were prepared in the same manner as in Example 1 except that the barrel temperatures of the first, second and third zones of the biaxial co-extrusion extruder were adjusted to 110, 115 and 120 ° C, respectively.

비교예 6Comparative Example 6

쌍축 동방향 압출 성형기의 스크류 회전속도를 75 rpm 대신 300 rpm으로 조절하여 사용한 것을 제외하고는 실시예 1의 방법으로 압출팽화미분을 제조하였다.
Extruded expanded fine powder was prepared in the same manner as in Example 1, except that the screw rotating speed of the biaxial co-axial extrusion molding machine was adjusted to 300 rpm instead of 75 rpm.

시험예Test Example

실시예에 따라 제조한 압출팽화물의 평균중합도 전분소화율, 팽화율, 미세구조, 수분흡착지수, 수분용해지수, 페이스트 점도, 분산안정성을 측정하였다.
The degree of starch digestibility, expansion ratio, microstructure, water adsorption index, water solubility index, paste viscosity, and dispersion stability of the extruded expanded product prepared according to the examples were measured.

시험예Test Example 1. 평균중합도 측정 1. Measurement of average polymerization degree

평균중합도는 총당을 시료 내의 환원말단수로 나누어 계산하였다. 실험을 위한 시료는 압출팽화미분 1 g을 원심분리용 시험관에 넣고 증류수 50 mL을 가한 후 50℃ 항온교반기에서 200 rpm으로 1시간 동안 반응시킨 후 원심분리(1800 rpm, 20분)하여 얻어진 상등액을 11 μm 필터(Whatman, grade 1, Buckinghamshire HP7 9NA, England)에 통과시켜 이를 총당과 환원말단수 측정을 위한 시험액으로 사용하였다. 총당의 정량은 phenol-sulfuric acid법을 사용하였다[Anal. chem. 28, 350-356]. 시료 용액 1 mL에 5% 페놀 용액 1 mL을 가하여 잘 혼합한 후 진한-황산 5 mL을 가하여 가수분해가 진행되도록 시료를 잘 혼합하고 실온에서 30분간 방치한 후 470 nm에서 흡광도를 측정하였다. 당표준 용액은 D-glucose를 25∼100 ug/mL로 제조하여 동일한 방법으로 반응시킨 후 검량선을 작성하고 이를 시험액과 비교하여 당함량을 계산하였다. 환원말단수는 Park-Johnson법을 변형하여 사용하였다[Carbohydrate Research. 94, 205-213]. 시료 1 mL에 0.5 mL potassium ferricyanide(1 g/L)와 0.5 mL potassium cyanide가 포함된 sodium carbonate-sodium hydrogencarbonate buffer(potassium cyanide, 4.8 g Na2CO3, 9.2 g NaHCO3, 0.65 g KCN을 1 L 증류수에 녹인 것)를 첨가한 후 15분 동안 끓인 후 10분간 흐르는 물에 냉각시켰다. 냉각된 시험관에 2.5 mL ferric ammonium sulfate(3 g/L of 50 mM H2SO4)를 가한 후 정확히 20분 후에 715 nm에서 흡광도를 측정하였다. 바탕시료는 시험용액 대신 증류수를 사용하였고 표준용액은 D-glucose 5 ug/mL 용액을 단계희석하여 시료와 동일한 방법으로 처리한 후 검량선을 작성하여 시험용액의 환원말단수 계산에 이용하였다. The average degree of polymerization was calculated by dividing total sugar by the number of reducing ends in the sample. The sample for the experiment was prepared by adding 1 g of extruded bulk powder to a centrifuge tube, adding 50 mL of distilled water, reacting at 200 rpm for 1 hour at 50 ° C, centrifuging (1800 rpm, 20 minutes) 11 μm filter (Whatman, grade 1, Buckinghamshire HP7 9NA, England) and used as a test solution for measuring the total sugar and reducing end number. The total amount of sugar was determined by phenol-sulfuric acid method [Anal. chem. 28,350-356]. Add 1 mL of 5% phenol solution to 1 mL of sample solution, mix thoroughly, add 5 mL of concentrated sulfuric acid, and mix thoroughly to allow hydrolysis to proceed. After incubation at room temperature for 30 minutes, absorbance was measured at 470 nm. For the standard solution, D-glucose was prepared at 25 ~ 100 ug / mL, reacted by the same method, and a calibration curve was prepared and the sugar content was calculated by comparing with the test solution. The reducing end number was modified by the Park-Johnson method [Carbohydrate Research. 94, 205-213]. Sodium carbonate-sodium hydrogencarbonate buffer (potassium cyanide, 4.8 g Na 2 CO 3 , 9.2 g NaHCO 3 , 0.65 g KCN) containing 0.5 mL potassium ferricyanide (1 g / L) Dissolved in distilled water), boiled for 15 minutes, and then cooled in water flowing for 10 minutes. 2.5 mL ferric ammonium sulfate (3 g / L of 50 mM H 2 SO 4 ) was added to the cooled test tube and the absorbance was measured at 715 nm after exactly 20 minutes. For the blank sample, distilled water was used instead of the test solution. The standard solution was prepared by diluting the 5 ug / mL solution of D-glucose in the same manner as the sample, and then using a calibration curve to calculate the reducing end number of the test solution.

효소농도(부피%)Enzyme concentration (vol%) 평균중합도Average polymerization degree 표준편차Standard Deviation 실시예 1Example 1 0.40.4 5.935.93 ± 0.25± 0.25 실시예 2Example 2 0.80.8 4.974.97 ± 0.14± 0.14 실시예 3Example 3 33 4.424.42 ± 0.15± 0.15 실시예 4Example 4 55 3.853.85 ± 0.06± 0.06 비교예 1Comparative Example 1 00 62.7662.76 ± 0.51± 0.51 비교예 2Comparative Example 2 0.40.4 59.1559.15 ± 0.35± 0.35 비교예 3Comparative Example 3 33 58.4858.48 ± 0.27± 0.27 비교예 4Comparative Example 4 0.40.4 39.4039.40 ± 0.42± 0.42 비교예 5Comparative Example 5 0.40.4 47.2447.24 ± 0.51± 0.51 비교예 6Comparative Example 6 0.40.4 40.8440.84 ± 0.26± 0.26

상기 표 1에 나타낸 바와 같이, 효소를 첨가하지 않은 비교예 1은 62.76 ± 0.51로 나온 반면, 효소를 첨가한 압출팽화미분은 효소첨가율에 따라 3.85∼5.93의 DP범위를 나타내었다. 이는 장경아 등[Korean J. Food sci. Technol. 28, 1996 44-52]이 보고한 취반미 아밀로스와 아밀로펙틴의 평균 중합도인 597-878과 2660-3140 glucose units에 비해 상당히 낮은 값으로 압출팽화공정의 호화온도 이상의 온도와 고압조건에서 전분구조가 파괴되어 약 DP 63정도의 저분자화 구조가 되었음을 알 수 있으며 압출공정시 처리한 효소에 의하여 DP가 약 3.8∼5.9정도로 낮아졌음을 알 수 있었다. As shown in Table 1, Comparative Example 1 in which the enzyme was not added showed 62.76 ± 0.51, whereas the extruded expanded fine powder with the enzyme showed a DP range of 3.85 to 5.93 depending on the enzyme addition ratio. This is the case with the Korean J. Food Sci. Technol. 28, 1996 44-52] reported that the average degree of polymerization of amylose and amylopectin was 597-878 and that of 2660-3140 glucose units was significantly lower than that of the amylose and amylopectin, indicating that the starch structure was destroyed under the temperature and pressure conditions above the gelatinization temperature of the extrusion- And the DP was reduced to about 3.8 ~ 5.9 by the enzyme treated in the extrusion process.

또한, Aspergillus oryzae 유래의 알파-아밀라아제를 첨가하여 압출팽화한 비교예 2 및 3은 효소를 넣지 않은 비교예 1과 유의적 차이를 보이지 않았다. 이는 주입된 Aspergillus oryzae 유래의 알파-아밀라아제 효소가 압출공정 중의 온도를 견디지 못하고 효소활성을 상실하였기 때문으로 추정된다. Also, Aspergillus oryzae Comparative Examples 2 and 3, which were extruded and expanded by adding the resulting alpha-amylase, showed no significant difference from Comparative Example 1 in which no enzyme was added. This means that Aspergillus oryzae It is presumed that the resultant alpha-amylase enzyme could not withstand the temperature during the extrusion process and lost enzyme activity.

쌍축 동방향 압출 성형기의 1구역, 2구역 및 3구역의 배럴 온도를 각각 55, 60 및 65 ℃로 조절된 비교예 4은 효소로 인하여 비교예 1에 비하여 평균 중합도는 낮아졌으나, 온도가 낮아 활성이 충분히 이루어지지 못하여 DP가 약 39.40 정도를 타나냈으며, 배럴온도가 높은 비교예 5는 높은 온도로 인하여 효소활성이 저하되어 DP가 약 47 정도를 나타내었다. Comparative Example 4 in which the barrel temperatures of Zone 1, Zone 2 and Zone 3 of the biaxial extrusion co-extruder were adjusted to 55, 60 and 65 ° C, respectively, showed that the average degree of polymerization was lower than that of Comparative Example 1 due to the enzyme, And DP was about 39.40. In Comparative Example 5 where the barrel temperature was high, the enzyme activity was lowered due to the high temperature, and the DP was about 47.

한편, 스크류 속도가 300 rpm인 비교예 6은 빠른 속도로 인하여 충분한 압력을 제공하지 못하여 압출팽화능이 떨어져 전분사슬을 충분히 절단하지 못하는 것으로 추측된다.On the other hand, in Comparative Example 6 in which the screw speed is 300 rpm, it is presumed that the starch chain can not be cut sufficiently due to the extreme expandability due to insufficient pressure due to the high speed.

상기 결과를 통해, 내열성 알파-아밀라아제를 사용하며, 상기 내열성 알파-아밀라아제의 첨가량이 늘어날수록, 내열성 알파-아밀라아제의 최적 활성온도 범위인 70-105 ℃ 범위일 수록 압출물의 전분사슬이 많이 절단되는 것을 알 수 있었으며, 효소의 첨가 비율이 높아짐에 따라 중합도 값이 유의적으로 낮아지는 경향을 볼 수 있었으나 그 차이는 수치적으로 미미한 정도였다.
As a result, it was found that the starch chain of the extrudate was severely broken as the amount of the heat resistant α-amylase was increased and the optimum temperature of the heat-resistant α-amylase was in the range of 70-105 ° C. As the addition ratio of enzyme increased, the degree of polymerization tended to decrease significantly, but the difference was small.

시험예Test Example 2. 팽화율 측정 2. Measurement of expansion rate

실시예 1 내지 4 에서 제조된 압출팽화물의 단면적 직경을 캘리퍼스(VC-15, Mitutoyo Co., Tokyo, Japan)로 측정하고, 압출기 사출구 직경의 비로 나누어 팽화율을 계산하였다. 건조된 압출팽화물(시료)의 샘플을 50개 취하여 팽화율을 계산하여 평균과 표준편차로 나타내었으며, 이를 하기 표 2 및 도 2에 나타내었다.
The diameter of the cross-sectional area of the extruded expanded material prepared in Examples 1 to 4 was measured with a caliper (VC-15, Mitutoyo Co., Tokyo, Japan) and the expansion ratio was calculated by dividing by the ratio of extruder outlet diameter. Fifty samples of the dried extrudate (sample) were taken and the expansion ratio was calculated. The average and standard deviation were shown in Table 2 and FIG. 2, respectively.

Figure pat00001

Figure pat00001

효소농도(부피%)Enzyme concentration (vol%) 팽화율Expansion ratio 표준편차Standard Deviation 실시예 1Example 1 0.40.4 1.471.47 ± 0.08± 0.08 실시예 2Example 2 0.80.8 1.241.24 ± 0.05± 0.05 실시예 3Example 3 33 0.880.88 ± 0.05± 0.05 실시예 4Example 4 55 0.900.90 ± 0.07± 0.07 비교예 1Comparative Example 1 00 2.182.18 ± 0.08± 0.08 비교예 4Comparative Example 4 0.40.4 1.861.86 ± 0.12± 0.12 비교예 5Comparative Example 5 0.40.4 2.092.09 ± 0.05± 0.05 비교예 6Comparative Example 6 0.40.4 1.741.74 ± 0.14± 0.14

효소액을 첨가하지 않은 압출팽화물의 팽화율은 2.18 ± 0.08로 사출구 직경의 약 2배 이상 팽화되는 것으로 나타났다. 한편, 효소처리 압출팽화물은 효소액 첨가량이 증가할수록 팽화율이 유의적으로 감소하는 것으로 나타났으며, 실시예 1은 사출직경의 약 1.5배, 실시예 2는 사출직경의 약 1.2배로 팽화되었으나, 실시예 3 및 4는 사출구 직경보다 압출물의 직경이 작아서 거의 팽화가 되지 일어나지 않는 것을 확인할 수 있다. 사출구 직경보다 압출팽화물의 직경이 작은 것은 압출 후 건조과정 중 부피가 축소된 것으로 생각된다. 평균중합도에서의 결과로 나타나는 전분 사슬구조의 절단으로 인한 것으로 추측된다.The expansion ratio of the extruded expanded material without addition of the enzyme solution was 2.18 ± 0.08, which was found to expand more than twice the diameter of the injection port. On the other hand, the expansion rate of the enzyme-treated extrudate was significantly decreased with an increase in the amount of the enzyme solution. Example 1 was expanded to about 1.5 times the diameter of the injection, and Example 2 was expanded to about 1.2 times the diameter of the injection. In Examples 3 and 4, it can be confirmed that the diameter of the extrudate is smaller than the diameter of the discharge port, so that the extrudate is hardly expanded. It is considered that the diameter of the extruded expanded material is smaller than the diameter of the extruded material during the drying process after extrusion. It is believed that this is due to cleavage of the starch chain structure resulting in an average degree of polymerization.

한편, 낮은 배럴온도 및 높은 배럴온도에서 팽화시킨 압출 팽화율은 효소처리에 의해 비교예 1에 비하여 압출물의 직경이 작은 팽화물을 얻었으나, 효소활성능이 떨어져 전분 사슬 구조 절단량이 부족하여 실시예 1에 비하여 높은 팽화율을 보인 것으로 추측된다. 또한 스크류 회전속도가 빠른 비교예 6은 건조과정에서 충분히 건조가 이루어지지 못하여 압출팽화물의 직경이 실시예 1보다 큰 것으로 예상되었으며, 압력이 부족하여 팽화가 충분히 이루어지지 못하였다.
On the other hand, the extruding expansion rate expanded at a low barrel temperature and a high barrel temperature was reduced by the enzymatic treatment to a smaller diameter of the extrudate than that of Comparative Example 1, 1, respectively. Also, in Comparative Example 6 in which the screw rotation speed was fast, the extrusion expanded material was expected to be larger in diameter than that of Example 1 due to insufficient drying during the drying process, and the expansion was not sufficiently performed due to insufficient pressure.

시험예Test Example 3. 미세구조의 측정 3. Measurement of microstructure

실시예 2, 4 및 비교예 1 따라 제조된 압출팽화물을 70℃에서 15 시간 건조시키고 전계방사형 주사전자현미경(Field Emission Scanning Electron Microscope, JSM-7100F, Jeol Ltd., Akishima-shi, Japan)으로 미세구조를 측정하였으며, 전분의 알갱이 구조를 확인하기 위하여 대조군으로 쌀알곡의 미세구조를 측정하여 비교하였다. 금박코팅기(Sputter coater 108 auto, Cresington Co., Watford WD19 4BX, England)로 150초 동안 백금 코팅한 후 건조된 시료를 15kV에서 관찰하였으며 이를 도 3에 나타내었다. Extruded extrudates prepared according to Examples 2 and 4 and Comparative Example 1 were dried at 70 ° C for 15 hours and then subjected to field emission scanning electron microscopy (JSM-7100F, Jeol Ltd., Akishima-shi, Japan) Microstructure was measured and microstructure of rice grain was measured and compared as a control to check the grain structure of starch. A platinum coating was applied for 150 seconds on a gold foil coater (Sputter coater 108 auto, Cresington Co., Watford WD19 4BX, England), and the dried sample was observed at 15 kV.

쌀알곡을 확대 촬영한 도 3a에서는 전분의 알갱이 구조를 확인할 수 있었지만, 도 3b에 나타낸 바와 같이 압출팽화물의 경우 알갱이 형태를 확인할 수 없도록 용융되고 호화되었다. 도 3b 내지 3d에서 확인할 수 있듯이, 압출물 표면은 효소처리 농도가 높을수록 무정형이 침식되어서 큰 공간이 간헐적으로 생성된 형태와 같은 모양을 더욱 형성하였으며, 생전분의 알갱이 형태가 보이지 않았다.
The grain structure of the starch was confirmed in FIG. 3A in which the grain of the rice grain was enlarged. However, as shown in FIG. 3B, in the case of the extruded expanded material, it was melted and agglomerated so that the grain shape could not be confirmed. As can be seen from FIGS. 3b to 3d, the surface of the extrudate was more susceptible to the formation of intermittently formed large spaces due to the erosion of the amorphous as the enzyme concentration was higher, and the granule form of the raw starch was not seen.

시험예Test Example 4. 전분소화율 측정 4. Determination of starch digestibility

압출팽화미분(시료) 1 g을 phosphate buffer(0.2 M, pH 6.9) 30 mL에 분산시키고 분산액 시험관을 95℃의 항온수조에서 30분간 호화시킨 후 25℃ 상온으로 냉각하였다. 여기에 3100 unit의 α-amylase(Sigma, A6380, Saint Louis, U.S.A) 0.12 mg/mL의 농도로 희석하여 1 mL을 첨가한 후 30℃ 항온교반기(HB-201SF, HANBAEK scientific co., Bucheon, Korea)에서 100 rpm으로 16시간 동안 반응시켰다. 반응을 일으킨 시험관에 1.0% 황산용액을 5 mL 첨가하여 효소반응을 종결시킨 후 3,000 rpm에서 원심분리(Combi-514R, Hanmil Science Industrial Co., Inchon, Korea)시켰다. 원심분리된 침전물은 80% 에탄올로 2회 세척한 후 105℃에서 2시간 건조한 다음 건조된 침전물 무게를 측정하고 이를 건조된 압출팽화미분의 무게와 비교하여 다음과 같이 전분소화율을 계산하였다.
1 g of extruded bulk powder (sample) was dispersed in 30 mL of phosphate buffer (0.2 M, pH 6.9), and the dispersion test tube was gelled in a constant temperature water bath at 95 ° C for 30 minutes and cooled to room temperature at 25 ° C. After incubation at 37 ° C for 1 h, the cells were incubated at 37 ° C for 1 h at room temperature. The resulting solution was diluted to 0.12 mg / mL with 3100 units of α-amylase (Sigma, A6380, Saint Louis, USA) ) At 100 rpm for 16 hours. The enzyme reaction was terminated by adding 5 mL of 1.0% sulfuric acid solution to the reaction tube and centrifuged at 3,000 rpm (Combi-514R, Hanmil Science Industrial Co., Inchon, Korea). The centrifuged sediment was washed twice with 80% ethanol, dried at 105 ° C for 2 hours, and the weight of the dried precipitate was measured. The starch digestibility was calculated as follows by comparing with the weight of the extruded extruded powder.

Figure pat00002

Figure pat00002

상기 식에서, In this formula,

시료 건량 = 건조된 살가루의 무게. 1g.Sample dry weight = Weight of dried flesh powder. 1g.

침전물 건량: 전분소화율 반응 후, 원심분리하여 얻어진 침전물을 105 ℃에서 2 시간 건조한 침전물 무게.
Sediment dry weight: After the starch digestibility reaction, the sediment obtained by centrifugation was dried at 105 ° C for 2 hours.

압출성형 시 첨가된 내열성 알파-아밀라아제 효소 농도에 따른 전분소화율 변화를 하기 표 3 및 도 4에 나타내었다. The changes in starch digestibility according to the heat-resistant alpha-amylase enzyme concentration added during extrusion molding are shown in Table 3 and FIG.

효소농도(부피%)Enzyme concentration (vol%) 전분소화율Starch digestibility 표준편차Standard Deviation 실시예 1Example 1 0.40.4 75.2575.25 ± 3.88 + - 3.88 실시예 2Example 2 0.80.8 76.0376.03 ± 2.38± 2.38 실시예 3Example 3 33 85.5085.50 ± 2.01± 2.01 실시예 4Example 4 55 85.4285.42 ± 1.28± 1.28 비교예 1Comparative Example 1 00 64.6464.64 ± 1.52± 1.52

비교예 1에 따른 압출팽화미분의 전분소화율은 64.64 ± 1.52% 였으며 효소액을 주입하여 압출팽화시 유의적으로 증가되는 것을 확인하였다. 압출팽화미은 건조한 경우 가장 낮은 소화율을 나타내었다. 본 실험의 경우 70℃에서 15시간 건조하였으므로 효소를 첨가하지 않은 압출팽화물은 비슷한 결과값을 나타내고 있다. α-amylase 첨가율이 증가할수록 소화율이 증가하는데 실시예 1 내지 4에 대한 결과값은 각각 75.25 ± 3.88, 76.03 ± 2.38, 85.50 ± 2.01 및 85.42 ± 1.28로 나타났다. α-amylase 첨가 유무에 따라 소화율은 확연한 차이를 나타내며, 효소 첨가 비율이 늘어날수록 전분소화율이 증가하는 경향으로 나타났고, 이는 평균중합도에서의 결과로 나타나는 전분 저분자화로 인한 것으로 추측된다. 실시예 1과 2는 서로 유의적 차이를 보이지 않으며, 실시예 3과 4 또한 마찬가지이다.
The starch digestibility of the extruded expanded fine powder according to Comparative Example 1 was 64.64 ± 1.52%, and it was confirmed that the extruded expanded material significantly increased by the injection of the enzyme solution. Extruded puffiness showed the lowest digestibility when dried. In case of this experiment, the extruded extrudate without added enzyme showed similar results because it was dried at 70 ℃ for 15 hours. The digestibility increased as the α-amylase addition rate increased. The results for Examples 1 to 4 were 75.25 ± 3.88, 76.03 ± 2.38, 85.50 ± 2.01, and 85.42 ± 1.28, respectively. The digestibility was significantly different according to the presence or absence of α-amylase. The starch digestibility increased as the enzyme addition ratio increased, suggesting that starch low molecular weight resulted from the average degree of polymerization. Examples 1 and 2 show no significant difference from each other, and Examples 3 and 4 are also the same.

시험예Test Example 5. 수분흡착지수와 수분 용해지수의 측정 5. Measurement of Moisture Adsorption Index and Moisture Solubility Index

50 mL 원심분리용 시험관에 압출팽화미분(시료) 1 g을 넣고 증류수 10 mL을 가하여 분산시킨 후 30℃의 항온수조에서 100 rpm으로 30분간 진탕혼합시킨 후 원심분리(2500 rpm, 20분)하였다. 상등액을 취하여 알루미늄 접시에 옮긴 후 105℃ 열풍건조기에서 2 시간 동안 건조하고 데시케이터에서 30분간 방냉한 후 무게를 측정하여, 수분흡착지수(water absorption index, 이하, WAI)와 수분용해지수(water soluble index, 이하, WSI)를 측정하였으며, 하기 표 4 및 도 5에 나타내었다.1 g of extruded bulk powder (sample) was added to a 50 mL centrifuge tube and dispersed with 10 mL of distilled water. The mixture was shaken at 100 rpm for 30 minutes in a constant temperature water bath at 30 ° C., and centrifuged (2500 rpm, 20 minutes) . The supernatant was transferred to an aluminum plate and dried in a hot air drier at 105 ° C for 2 hours. After cooling for 30 minutes in a desiccator, the weight was measured and the water absorption index (WAI) and water dissolution index soluble index, hereinafter referred to as WSI) was measured and shown in Table 4 and FIG.

수분흡착지수는 상등액을 제외한 침전물의 무게를 평량하여 건조시료 g당 흡수된 수분의 양으로 표시하였으며 수분용해지수와 수분흡착지수의 계산식은 아래와 같다.
The moisture adsorption index is expressed as the amount of water absorbed per gram of the dry sample by weighing the precipitate except for the supernatant. The calculation formula of the water solubility index and the water adsorption index is as follows.

Figure pat00003
Figure pat00003

Figure pat00004
Figure pat00004

상기 식에서,In this formula,

수화된 시료의 질량= 원심분리한 후 상등액을 제외한 침전물의 무게Mass of hydrated sample = weight of precipitate after supernatant after centrifugation

시료의 질량 = 압출팽화미분의 무게Mass of sample = weight of extruded expanded powder

상등액의 고형분 질량 = 원심분리한 후, 상등액을 알루미늄 접시에 옮겨 105 ℃에서 2 시간 건조하고 데시케이터에서 30분간 방냉한 후 측정한 고형분의 함량.Solid content of supernatant = mass after centrifugation, supernatant transferred to aluminum plate, dried at 105 ° C for 2 hours, allowed to stand for 30 minutes in a desiccator, and then measured for solid content.

효소농도(부피%)Enzyme concentration (vol%) 수분흡착지수 (%)Moisture absorption index (%) 수분용해지수 (%)Water Solubility Index (%) 실시예 1Example 1 0.40.4 25.64 ± 1.02d25.64 + 1.02d 2.12 ± 0.06b2.12 + 0.06b 실시예 2Example 2 0.80.8 29.61 ± 2.31c29.61 + - 2.31c 1.89 ± 0.13c1.89 ± 0.13 c 실시예 3Example 3 33 36.22 ± 1.45a36.22 + 1.45a 1.29 ± 0.05d1.29 ± 0.05 d 실시예 4Example 4 55 33.48 ± 0.56b33.48 + - 0.56b 1.11 ± 0.04e1.11 ± 0.04e 비교예 1Comparative Example 1 00 5.06 ± 0.39e5.06 ± 0.39e 4.06 ± 0.01a4.06 ± 0.01a

비교예 1에 비하여 실시예 1의 수분용해지수는 약 5배 증가하였고 수분흡착지수는 1/2로 감소하였다. 상기 표 4에 나타낸 바와 같이, α-amylase 첨가량이 증가할수록 수분용해지수가 증가하는 결과를 나타내는 반면, 수분흡착지수는 감소하는 경향을 나타내었다. The water solubility index of Example 1 was increased about 5 times and the water adsorption index was reduced to 1/2 compared to Comparative Example 1. [ As shown in Table 4, as the amount of? -Amylase added increases, the water solubility index increases, while the moisture adsorption index tends to decrease.

α-amylase를 첨가하여 압출성형 하면 전분 저분자화가 더욱 진행되어 수분용해지수가 증가하고 amylopectin이 더욱 감소하여 수분흡착지수가 감소하는 것으로 추측된다. 또한, 수분용해지수는 α-amylase 첨가에 의해 약 5배까지 급격한 증가를 나타내었는데 이는 아밀라제 작용에 의해 수용성 물질이 증가하기 때문으로 추정된다. When the α-amylase was added, the starch low molecular weight was further increased to increase the water solubility index and the amylopectin was further decreased and the moisture adsorption index decreased. In addition, the water solubility index increased sharply up to about 5 times by the addition of α-amylase, which is presumably due to the increase of water-soluble substances by the action of amylase.

중합도가 낮을 경우, 전분 사슬의 절단이 증가한 경우에 수분흡착지수의 감소와 함께 수용성지수가 증가하는 것을 확인하였으며, 수분용해지수가 증가할수록 편이용 유동식 제품을 개발하는데 더 유용할 것으로 예상된다.
In the case of low degree of polymerization, it was confirmed that the water solubility index increases with decreasing moisture adsorption index when the starch chain cleavage is increased, and it is expected that the water solubility index will be more useful for the development of single use liquid product as the water solubility index increases.

시험예Test Example 6. 페이스트의 호화 점도 측정 6. Measurement of the viscosity of the paste

실시예 1-4 및 비교예 1에 따른 압출팽화미분 3 g을 점도측정용 알루미늄캔에 넣고 25 mL의 증류수를 가한 후 호화온도로 가온하며 만들어지는 페이스트의 점도를 rapid visco analyser(RVA-Techmaster, Perten Inc., Hagersten, Sweden)를 사용하여 측정하였으며, 대조군으로 쌀가루를 사용하여 페이스트 호화 점도를 측정하였다. 호화를 위한 온도조건은 초기온도 50℃에서 1분 동안 50℃로 유지한 다음 3분 48초 동안 95℃로 가열 후 2분 30초 동안 95℃로 유지하였으며 3분 48초에 걸쳐 50℃로 냉각한 뒤 1분 24초 동안 온도를 유지시켰다. 총 소요 시간은 12분 30초였으며 시료의 분산을 증가시키기 위하여 10초간 960 rpm으로 페달을 회전시킨 후 160 rpm에서 점도를 측정하였다. 총 3회 반복하여 압출팽화미분 페이스트의 점도곡선을 얻었으며 이로부터 최고점도(peak viscosity, PV), 최저점도(trough viscosity, TV), 최종점도(final viscosity, FV), 구조 파괴점도(breakdown viscosity, BV)와 회복점도(setback viscosity, SV) 등의 지표를 각각 계산하여 평균과 표준편차 값으로 나타내었으며, 이를 하기 표 5에 나타내었다.3 g of the extruded expanded fine powder according to Example 1-4 and Comparative Example 1 was placed in an aluminum can for viscosity measurement, and 25 mL of distilled water was added thereto, followed by heating to a gelatinization temperature. The viscosity of the resulting paste was measured with a rapid visco analyzer (RVA-Techmaster, Perten Inc., Hagersten, Sweden) and the viscosity of the paste was measured using rice flour as a control. The temperature condition for gelatinization was maintained at 50 캜 for one minute at an initial temperature of 50 캜, then heated to 95 캜 for 3 minutes and 48 seconds, maintained at 95 캜 for 2 minutes and 30 seconds, and cooled to 50 캜 for 3 minutes and 48 seconds Then, the temperature was maintained for 1 minute and 24 seconds. The total time required was 12 minutes and 30 seconds. To increase the dispersion of the sample, the pedal was rotated at 960 rpm for 10 seconds and then the viscosity was measured at 160 rpm. The viscosity curve of the extruded expanded paste was obtained three times in total and the peak viscosity, PV, TV, final viscosity, breakdown viscosity , BV) and setback viscosity (SV) were calculated and expressed as mean and standard deviation values, respectively. The results are shown in Table 5 below.

최고점도Peak 최저점도Lowest point 절연파괴점도Dielectric breakdown viscosity 최종점도Final viscosity 역류점도Countercurrent viscosity 피크타임Peak time 통과온도Passing temperature 대조군Control group 2026.0 ± 46.2a 2026.0 ± 46.2 a 1138.7 ± 49.7a 1138.7 ± 49.7 a 887.3 ± 15.5a 887.3 ± 15.5 a 2365.7 ± 56.9a 2365.7 ± 56.9 a 339.7 ± 11.7a 339.7 ± 11.7 a 6.0 ± 0.0a 6.0 ± 0.0 a 88.9 ± 0.588.9 ± 0.5 실시예1Example 1 27.0 ± 2.7c 27.0 ± 2.7 c 13.7 ± 1.5c 13.7 ± 1.5 c 13.3 ± 4.26c 13.3 + - 4.26 c 22.3 ± 0.6c 22.3 + - 0.6 c -4.7 ± 3.1c -4.7 ± 3.1 c 2.4 ± 0.1e 2.4 ± 0.1 e -- 실시예2Example 2 26.7 ± 3.2c 26.7 ± 3.2 c 9.7 ± 1.2c 9.7 ± 1.2 c 17.0 ± 2.7c 17.0 ± 2.7 c 15.7 ± 1.2c 15.7 ± 1.2 c -11.0 ± 2.7c -11.0 + - 2.7 c 4.3 ± 0.0c 4.3 ± 0.0 c -- 실시예3Example 3 15.0 ± 2.0c 15.0 ± 2.0 c 5.0 ± 1.0c 5.0 ± 1.0 c 10.0 ± 1.0c 10.0 ± 1.0 c 7.7 ± 0.6c 7.7 ± 0.6 c  -7.3 ± 1.5c -7.3 ± 1.5 c 3.2 ± 0.1d 3.2 ± 0.1 d -- 실시예4Example 4 16.0 ± 1.0c 16.0 ± 1.0 c 4.0 ± 1.7c 4.0 ± 1.7 c 12.0 ± 1.0c 12.0 ± 1.0 c 7.7 ± 1.5c 7.7 ± 1.5 c -8.3 ± 2.1c -8.3 ± 2.1 c 3.3 ± 0.2d 3.3 ± 0.2 d -- 비교예 1Comparative Example 1 703.3 ± 7.1b 703.3 ± 7.1 b 326.3 ± 5.0b 326.3 + 5.0 b 377.0 ± 2.7b 377.0 ± 2.7 b 740.0 ± 2.7b 740.0 ± 2.7 b 36.7 ± 8.4b 36.7 ± 8.4 b 5.3 ± 0.0b 5.3 ± 0.0 b 95.2 ± 0.195.2 ± 0.1

페이스트 점도는 일반적으로 압출성형 전분의 거시적 분해(macromolecular degradation)를 측정하기 위하여 이용되며 압출팽화물의 전분분해정도 및 점도변화를 관찰할 수 있다. 대조군인 쌀가루의 점도를 측정한 결과 최고점도(peak viscosity, PV)가 2026 cP였으며 비교예 1인 효소액을 첨가하지 않은 쌀가루 압출팽화물의 점도는 약 703 cP로 측정되어 압출팽화물의 PV가 쌀가루에 비해 1/3가량 감소된 것을 확인 할 수 있었다. 최저점도(trough viscosity, TV)는 쌀가루가 약 1138 cP를 나타내었고 효소액을 첨가하지 않은 쌀가루 압출팽화물은 326을 나타내어 최저점도 또한 1/4가량 감소되었다. 전분 현탁액을 95℃에서 50℃로 냉각시킬 때에 전분입자가 붕괴되기 쉬운 정도를 나타내는 절연파괴점도(breakdown viscosity, BV)은 쌀가루가 887 cP이고 효소액을 첨가하지 않은 쌀가루 압출팽화물은 337 cP로 1/2정도 감소되었다. 최종점도(final viscosity, FV)와 냉각 후 점도가 상승하는 정도(노화의 정도)를 나타내는 역류점도(setback viscosity, SV) 역시 쌀가루에 비해 효소액을 첨가하지 않은 쌀가루 압출팽화물이 현저하게 낮은 수준으로 감소되었고 peak time(PT)도 6.0에서 5.3으로 감소되었으나, 통과온도(Pasting temperature)는 88.9에서 95.2℃로 높아졌다. 전체적으로 쌀가루에 비해 효소액을 첨가하지 않은 쌀가루 압출팽화물의 점도가 낮은 것은 압출공정의 의해 저분자화가 일어나면서 점도가 감소된 결과를 나타내는 것으로 확인할 수 있었다.The paste viscosity is generally used to measure the macromolecular degradation of the extruded starch, and the degree of starch decomposition and viscosity change of the extruded swollen material can be observed. As a result of measuring the viscosity of the control rice flour, the peak viscosity (PV) was 2026 cP, and the viscosity of the extruded rice flour without addition of the enzyme solution of Comparative Example 1 was measured to be about 703 cP. The PV of the extruded swollen material was compared with the rice flour It was confirmed that the amount of the water was reduced by about 1/3. The trough viscosity (TV) showed about 1138 cP of rice flour, and the rice swelling extrudate without enzyme solution showed 326, and the lowest point was also decreased about 1/4. The breakdown viscosity (BV), which indicates the degree to which the starch particles are easily collapsed when the starch suspension is cooled from 95 ° C to 50 ° C, is 887 cP for the rice flour and 337 cP for the rice flour extrudate without the enzyme solution / 2. The setback viscosity (SV), which indicates the final viscosity (FV) and the degree of increase in viscosity after cooling (degree of aging), is also significantly lower than that of rice flour And the peak time (PT) decreased from 6.0 to 5.3, but the pasting temperature increased from 88.9 to 95.2 ℃. As a whole, it was confirmed that the viscosity of the extruded extruded rice flour without addition of the enzyme solution was lower than that of the rice flour, indicating that the viscosity was decreased due to the low molecular weight caused by the extrusion process.

비교예 1의 압출팽화물과 실시예 1의 압출팽화물의 경우 PV, TV, BV 그리고 FV는 실시예 1의 압출팽화물이 1/26 - 1/33정도 감소되었고, SV와 PT는 현저히 감소되었다. pasting temperature가 측정이 되지 않은 이유는 효소처리에 의해 압출팽화물이 완전히 호화가 진행되어 더 이상 호화가 되지 않는 것으로 보인다. In the case of the extruded expandable material of Comparative Example 1 and the extruded expanded material of Example 1, the extruded expandable material of Example 1 was reduced by 1/26 to 1/33, and the SV and the PT were remarkably decreased in PV, TV, BV and FV . The reason why the pasting temperature is not measured is that the extruded swell is completely lengthened by the treatment of the enzyme, and it is no longer considered to be luxurious.

효소처리 압출팽화 시료의 경우 첨가된 효소액 농도에 따른 점도는 PV, TV, BV, FV 그리고 SV 모든 지표에서 유의적인 차이가 관찰되지 않았으며 PT에서 미미하지만 유의적인 감소를 나타내었다. 이는 주로 효소처리에 의한 전분의 가수분해 작용에 따른 저분자화에 기인하는 것이라 판단되며, 압출성형을 할 경우 전분사슬구조가 절단되어 점도가 크게 감소하고 효소처리를 한 압출물은 강하게 효소반응을 하여 완전히 호화된 것으로 보인다.
In the case of enzyme - treated extruded blended samples, the viscosity according to the added enzyme concentration was not significantly different in PV, TV, BV, FV and SV, but showed a slight but significant decrease in PT. It is considered that this is mainly due to low molecular weight due to hydrolysis of starch by enzymatic treatment, and when the extrusion process is performed, the starch chain structure is severed and the viscosity is greatly decreased, and the enzyme treated extrudate undergoes strong enzyme reaction It seems to be totally luxurious.

시험예Test Example 7. 분산 안정성 측정 7. Measurement of dispersion stability

시험관 30개를 준비하여 각각 증류수 25 mL를 담고, 실시예 1 내지 4 및 비교예 1에 따라 제조한 압출팽화미분을 각각 2, 3, 4, 5, 6, 7 g(분산액 농도 = 8, 12, 16, 20, 24, 28 중량%)을 취해 시험관에 첨가한 후 voltex mixer를 이용해 분산시켜 현탁액을 만들고 15 mL-test tube에 12 cm 높이가 되도록 채웠다. 초기 분산액의 높이를 시작으로 하여 초기 정치 1, 12, 24시간 후에 침전된 높이를 측정하여 분산 용액의 안정성을 현탁액 높이에 대한 백분율로 다음과 같이 계산하였으며 하기 표 6 및 도 7에 나타내었다.
30 test tubes were prepared and each of the extruded expanded powders prepared according to Examples 1 to 4 and Comparative Example 1 was filled with 25 mL of distilled water and the extruded expanded powders prepared in Examples 1 to 4 and Comparative Example 1 were dispersed at 2, 3, 4, 5, 6, and 7 g , 16, 20, 24, 28% by weight) was added to the test tube and dispersed using a voltex mixer to make a suspension. The 15 mL-test tube was filled to a height of 12 cm. The height of the precipitate after 1, 12, and 24 hours from the beginning of the initial dispersion was measured, and the stability of the dispersion solution was calculated as a percentage of the suspension height as shown in the following Table 6 and FIG.

Figure pat00005

Figure pat00005

분산액농도 (중량%)Dispersion concentration (% by weight) 압출팽화
미분
Extrusion blowing
differential
효소농도
(부피%)
Enzyme concentration
(volume%)
분산안정성(%)Dispersion stability (%)
1시간 후After 1 hour 12시간 후After 12 hours 24시간 후After 24 hours

8



8

대조군Control group 00 10.8 10.8 4.2 4.2 5.0 5.0
실시예 1Example 1 0.40.4 5.0 5.0 4.2 4.2 5.0 5.0 실시예 2 Example 2 0.80.8 4.2 4.2 4.2 4.2 5.8 5.8 실시예 3 Example 3 33 4.2 4.2 4.2 4.2 4.2 4.2 실시예 4 Example 4 55 95.8 95.8 62.5 62.5 55.8 55.8 비교예 1 Comparative Example 1 00 62.5 62.5 58.3 58.3 58.3 58.3

12



12

대조군Control group 00 20.8 20.8 20.8 20.8 21.7 21.7
실시예 1Example 1 0.40.4 8.3 8.3 4.2 4.2 5.8 5.8 실시예 2Example 2 0.80.8 5.8 5.8 5.8 5.8 6.7 6.7 실시예 3Example 3 33 4.2 4.2 4.2 4.2 5.8 5.8 실시예 4Example 4 55 91.7 91.7 67.5 67.5 61.7 61.7 비교예 1Comparative Example 1 00 87.5 87.5 81.7 81.7 82.5 82.5

16



16

대조군Control group 00 47.5 47.5 33.3 33.3 28.3 28.3
실시예 1Example 1 0.40.4 100.0 100.0 100.0 100.0 100.0 100.0 실시예 2Example 2 0.80.8 100.0 100.0 100.0 100.0 99.2 99.2 실시예 3Example 3 33 99.2 99.2 87.5 87.5 84.2 84.2 실시예 4Example 4 55 89.2 89.2 78.3 78.3 70.0 70.0 비교예 1Comparative Example 1 00 100.0 100.0 100.0 100.0 100.0 100.0

20



20

대조군Control group 00 33.3 33.3 37.5 37.5 37.5 37.5
실시예 1Example 1 0.40.4 100.0 100.0 100.0 100.0 100.0 100.0 실시예 2Example 2 0.80.8 100.0 100.0 100.0 100.0 99.2 99.2 실시예 3Example 3 33 99.2 99.2 90.8 90.8 86.7 86.7 실시예 4Example 4 55 91.7 91.7 80.8 80.8 75.8 75.8 비교예 1Comparative Example 1 00 100.0 100.0 100.0 100.0 100.0 100.0

24



24

대조군Control group 00 41.7 41.7 45.8 45.8 45.8 45.8
실시예 1Example 1 0.40.4 100.0 100.0 100.0 100.0 100.0 100.0 실시예 2Example 2 0.80.8 100.0 100.0 100.0 100.0 99.2 99.2 실시예 3Example 3 33 98.3 98.3 87.5 87.5 85.8 85.8 실시예 4Example 4 55 89.2 89.2 80.0 80.0 69.2 69.2 비교예 1Comparative Example 1 00 100.0 100.0 100.0 100.0 100.0 100.0

28



28

대조군Control group 00 95.8 95.8 45.8 45.8 49.2 49.2
실시예 1Example 1 0.40.4 100.0 100.0 100.0 100.0 100.0 100.0 실시예 2Example 2 0.80.8 100.0 100.0 100.0 100.0 99.2 99.2 실시예 3Example 3 33 100.0 100.0 99.2 99.2 95.0 95.0 실시예 4Example 4 55 95.8 95.8 80.0 80.0 76.7 76.7 비교예 1Comparative Example 1 00 100.0 100.0 100.0 100.0 100.0 100.0

분산액 농도 8 중량%와 12 중량%의 경우, 비교예 1의 압출팽화미분과, 실시예 4의 압출팽화미분을 제외하고는 증류수에 분산되지 못하고 침전물이 단시간에 분리되는 특성을 나타내었다.In the case of the dispersion concentration of 8 wt% and 12 wt%, the extruded expanded fine powder of Comparative Example 1 and the extruded expanded fine powder of Example 4 were not dispersed in distilled water and the precipitate was separated in a short time.

한편, 분산액 농도 16∼24 중량%의 경우 비교예 1의 압출팽화미분은 실온의 물에서 빠르게 물을 흡수하고 팽윤되어 점성을 나타내며 겔 형태를 나타내었으며 24시간이 지나도록 물층과의 분리는 일어나지 않았다. 이러한 결과는 WAI가 효소첨가 0%에서 가장 높은 결과와도 일치되는 결과라 하겠다. 이렇듯 찬물에서도 쉽게 풀어지고 분산액이 일정하게 오래 유지되는 성질을 이용한다면 실온의 물에서도 즉석으로 타 먹을 수 있는 식음료로 활용할 수 있을 것으로 보인다. On the other hand, in the case of the dispersion concentration of 16 to 24 wt%, the extruded expanded fine powder of Comparative Example 1 rapidly absorbed water at room temperature and swelled to exhibit a viscous gel shape, and did not separate from the water layer after 24 hours . These results are consistent with the results of WAI at the 0% enzyme addition. It can be used as a food and beverage that can be instantly rinsed even at room temperature if it is easily released from cold water and the dispersion liquid is maintained for a long time.

겔 형태로 굳어버린 비교예 1의 압출팽화미분을 제외하고 가장 안정적인 분산 안정성을 보인 압출팽화미분 시료는 효소첨가 0.4 부피%와 0.8 부피%인 실시예 1, 2의 압출팽화미분이었다. 실시예 3, 4의 압출팽화미분은 시간이 지남에 따라 상등액과 침전물로 분리되는 현상을 보였으며, 실시예 1, 2의 압출팽화미분은 24시간이 지나도 침전물이 가라앉지 않았다. 실시예 3, 4의 경우 WSI는 매우 높으나 WAI가 많이 낮아 압출팽화미분이 수분을 흡수하여 분산되지 못하고 층분리가 일어나는 것으로 추측된다. Except for the extruded expanded fine particles of Comparative Example 1 in which the gel was hardened, the extruded expanded differentialsamples showing the most stable dispersion stability were the extruded expanded derivatives of Examples 1 and 2 which contained 0.4 vol% of the enzyme and 0.8 vol% of the enzyme. The extruded expanded fine powders of Examples 3 and 4 were separated into supernatant and precipitate over time, and the extruded expanded powders of Examples 1 and 2 did not sink even after 24 hours. In Examples 3 and 4, the WSI is very high but the WAI is very low, and it is presumed that the extruded expanded fine powder absorbs moisture and can not be dispersed and layer separation occurs.

압출팽화미분의 잘 분산되고 잘 부풀어 오르며, 1~2분 안에 물을 흡수하고 부풀어 올라 인공적으로 호화시키지 않아도 쉽게 물에 용해되고 분산되는 이러한 특성을 이용하면 실온의 물에 특별한 열처리나 유화제를 사용하지 않고 즉석에서 타 먹을 수 있는 열량 밀도가 높은 식음료 등으로 활용할 수 있을 것으로 보인다.Extruded Expanded fine powder is well dispersed and well swollen. It absorbs and disperses water in 1-2 minutes. It can easily dissolve and disperse in water even if it is not artificially resolved. It is possible to use special heat treatment or emulsifier at room temperature. And it can be utilized as food and beverage with high calorie density that can be eaten instantly.

Claims (7)

물 100 부피부에 대하여 내열성 알파-아밀라아제 효소 0.1-3 부피부를 첨가하여 효소액을 제조하는 단계;
쌀가루와 상기 효소액을 각각 압출성형기에 동시에 주입하여 압출재료를 공급하는 단계;
상기 압출재료를 배럴온도 70-105 ℃, 스크류 회전속도 50-250 rpm 조건에서 압출성형하여 압출팽화물을 제조하는 단계; 및
상기 압출팽화물을 건조한 후 분쇄하여 압출팽화미분을 제조하는 단계;를 포함하는 압출팽화미분의 제조방법.
100 parts of water Heat-resistant alpha-amylase enzyme 0.1-3 part for skin Preparation of an enzyme solution by adding skin;
Feeding the extruded material by simultaneously injecting the rice flour and the enzyme liquid into an extrusion molding machine;
Extruding the extruded material at a barrel temperature of 70 to 105 DEG C and a screw rotation speed of 50 to 250 rpm to produce an extruded extrudate; And
And drying and pulverizing the extruded expanded material to produce extruded expanded fine powder.
제1항에 있어서, 상기 압출재료는 수분함량이 25-30 중량%인 것을 특징으로 하는 압출팽화미분의 제조방법.The method according to claim 1, wherein the extruded material has a moisture content of 25-30% by weight. 제1항에 있어서, 상기 쌀가루의 주입속도는 700-850 g/min이고, 효소액 주입속도는 150-250 mL/min인 것을 특징으로 하는 압출팽화미분의 제조방법.The method of claim 1, wherein the feeding rate of the rice flour is 700-850 g / min and the feeding rate of the enzyme is 150-250 mL / min. 제1항에 있어서, 상기 내열성 알파-아밀라아제 효소는 Bacillus licheniformis 유래의 Termamyl 120L type L(Novozymes, Denmark, 120 KNU/g)인 것을 특징으로 하는 압출팽화미분의 제조방법.The method according to claim 1, wherein the heat-resistant alpha-amylase enzyme is Termamyl 120L type L (Novozymes, Denmark, 120 KNU / g) derived from Bacillus licheniformis . 제1항 내지 제4항 중 어느 한 항에 따라 제조되고, 수분 함량이 1 내지 10 중량%이고, 수분흡착지수가 0.5 내지 2.5 g/g이며, 수분용해지수가 20 내지 40%이고, 전분중합도가 3 내지 7 포도당유닛이고, 내열성 알파-아밀라아제에 의한 전분소화율이 73% 이상인 것을 특징으로 하는 압출팽화미분.5. A process for producing starch according to any one of claims 1 to 4, wherein the water content is 1 to 10% by weight, the water absorption index is 0.5 to 2.5 g / g, the water solubility index is 20 to 40% Is 3 to 7 glucose units, and the starch digestibility by the heat-resistant alpha-amylase is 73% or more. 제5항에 있어서, 상기 압출팽화미분은 입자의 크기가 1-50 mesh 인 것을 특징으로 하는 압출팽화미분.6. The extruded expanded differential according to claim 5, wherein the extruded expanded fine powder has a particle size of 1-50 mesh. 제5항에 있어서, 상기 압출팽화미분은 쌀을 포함하는 반죽, 슬러리 또는 희석액이 제조과정에 이용되는 면 제품, 빵, 스낵, 씨리얼, 이유식, 죽, 음료 또는 술 제조에 사용되는 것을 특징으로 하는 압출팽화미분.


The extruded expanded fine powder according to claim 5, wherein the extruded expanded fine powder is used for producing a cotton product, a bread, a snack, a cereal, a baby food, a porridge, a beverage or a drink in which a dough, a slurry or a diluent containing rice is used in the manufacturing process Extruded expanded differential.


KR20130073669A 2013-06-26 2013-06-26 Preparation method of puffed rice powder extruded with enzyme for ready-to-eat foods KR20150001057A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20130073669A KR20150001057A (en) 2013-06-26 2013-06-26 Preparation method of puffed rice powder extruded with enzyme for ready-to-eat foods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20130073669A KR20150001057A (en) 2013-06-26 2013-06-26 Preparation method of puffed rice powder extruded with enzyme for ready-to-eat foods

Publications (1)

Publication Number Publication Date
KR20150001057A true KR20150001057A (en) 2015-01-06

Family

ID=52474914

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20130073669A KR20150001057A (en) 2013-06-26 2013-06-26 Preparation method of puffed rice powder extruded with enzyme for ready-to-eat foods

Country Status (1)

Country Link
KR (1) KR20150001057A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110463909A (en) * 2019-09-06 2019-11-19 江南大学 A kind of instant brewed powder of whole wheat and the preparation method and application thereof
CN115553423A (en) * 2022-09-19 2023-01-03 安徽佳谷豆智能科技有限公司 Processing method of novel rice product capable of being fried into crisp skin
CN116158509A (en) * 2023-03-20 2023-05-26 浙江大学 Preparation method of instant brown rice flour
KR102649857B1 (en) * 2023-09-26 2024-03-21 주식회사 마이웰에프앤에프 Feed additive composition to improve digestive function and method for manufacturing feed additive composition

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110463909A (en) * 2019-09-06 2019-11-19 江南大学 A kind of instant brewed powder of whole wheat and the preparation method and application thereof
CN115553423A (en) * 2022-09-19 2023-01-03 安徽佳谷豆智能科技有限公司 Processing method of novel rice product capable of being fried into crisp skin
CN116158509A (en) * 2023-03-20 2023-05-26 浙江大学 Preparation method of instant brown rice flour
CN116158509B (en) * 2023-03-20 2024-05-28 浙江大学 Preparation method of instant brown rice flour
KR102649857B1 (en) * 2023-09-26 2024-03-21 주식회사 마이웰에프앤에프 Feed additive composition to improve digestive function and method for manufacturing feed additive composition

Similar Documents

Publication Publication Date Title
Park et al. Clean label starch: production, physicochemical characteristics, and industrial applications
Ye et al. Properties of starch after extrusion: A review
Ma et al. Research progress on properties of pre-gelatinized starch and its application in wheat flour products
Onyango Starch and modified starch in bread making: A review
CN103070354B (en) Processing method of whole-grain instant porridge
KR101323521B1 (en) Production of low calorie, extruded, expanded foods having a high fiber content
Sharma et al. Effect of extrusion on morphology, structural, functional properties and in vitro digestibility of corn, field pea and kidney bean starches
JP2779345B2 (en) Process for producing amylase-resistant granular starch
Singkhornart et al. Influence of germination and extrusion with CO2 injection on physicochemical properties of wheat extrudates
US20060272634A1 (en) Production of enzyme-resistant starch by extrusion
Wang et al. Effect of enrichment with stabilized rice bran and extrusion process on gelatinization and retrogradation properties of rice starch
Zhang et al. Effects of moisture content on digestible fragments and molecular structures of high amylose jackfruit starch prepared by improved extrusion cooking technology
EP3481227B1 (en) Process for preparation of food product comprising hydrolyzed starch
JPH05292934A (en) Extruded food containing high amylose starch
JPH11196771A (en) Snack food for infants
WO2019163965A1 (en) Starch with high dietary fiber content suitably usable in foods and beverages
KR20150001057A (en) Preparation method of puffed rice powder extruded with enzyme for ready-to-eat foods
US20070134392A1 (en) Slowly digestible starch product
Luo et al. Pre-fermentation of rice flour for improving the cooking quality of extruded instant rice
Butt et al. A comprehensive review on scope, characteristics and applications of instant starches in food products.
JP2005192457A (en) Processed rice food and method for producing the same
TWI754623B (en) Mixture of alpha-glucans, its production and uses
EP2792248B1 (en) Method for producing indigestible starch having improved processability
Clerici Physical and/or chemical modifications of starch by thermoplastic extrusion
JP2006238758A (en) Cereal processed food and method for producing the same

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid