KR20140144964A - Pharmaceutical composition comprising Thioredoxin-binding protein as an active ingradient and using thereof - Google Patents

Pharmaceutical composition comprising Thioredoxin-binding protein as an active ingradient and using thereof Download PDF

Info

Publication number
KR20140144964A
KR20140144964A KR1020130067238A KR20130067238A KR20140144964A KR 20140144964 A KR20140144964 A KR 20140144964A KR 1020130067238 A KR1020130067238 A KR 1020130067238A KR 20130067238 A KR20130067238 A KR 20130067238A KR 20140144964 A KR20140144964 A KR 20140144964A
Authority
KR
South Korea
Prior art keywords
txnip
cells
gene
bone marrow
cell
Prior art date
Application number
KR1020130067238A
Other languages
Korean (ko)
Inventor
최인표
정해용
김미정
Original Assignee
한국생명공학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생명공학연구원 filed Critical 한국생명공학연구원
Priority to KR1020130067238A priority Critical patent/KR20140144964A/en
Priority to PCT/KR2014/003786 priority patent/WO2014200180A1/en
Publication of KR20140144964A publication Critical patent/KR20140144964A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4702Regulators; Modulating activity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • A01K67/0276Knock-out vertebrates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/07Animals genetically altered by homologous recombination
    • A01K2217/075Animals genetically altered by homologous recombination inducing loss of function, i.e. knock out
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/105Murine
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • A01K2267/0331Animal model for proliferative diseases
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • A01K2267/035Animal model for multifactorial diseases
    • A01K2267/0387Animal model for diseases of the immune system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/1703Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • A61K38/1709Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Biotechnology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Environmental Sciences (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Toxicology (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Immunology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

The present invention relates to a composition containing thioredoxin-binding protein (TXNIP) as an active ingredient for boosting immunity, inhibiting cancer metastasis, and preventing and treating blood diseases. More specifically, it was confirmed that the frequency of hematopoietic stem cells decreased and the bone marrow proliferative capacity declined in TXNIP-deficient mice, and that the proliferative capacity of TXNIP-deficient mouse-derived bone marrow cells declined through bone-marrow transplantation. Additionally, it was confirmed that the reactive oxygen species level increased and apoptosis was induced in TXNIP knockout mice and TXNIP-deficient cell strains under oxidative stress conditions, and that the bone marrow capability of the cell strains derived from the TXNIP knockout mice decreased. In addition, it was confirmed that cancer metastasis increased and the p53 expression decreased in the TXNIP knockout mice under oxidative stress conditions. Furthermore, direct binding sites between TXNIP and p53 were identified, and it was confirmed that the binding increased under oxidative stress conditions, thereby enhancing p53-mediated transcriptional activities and p53-mediated antioxidant activities. Therefore, a gene carrier, cells, or TXNIP protein, which contains the TXNIP gene of the present invention, can be useful as a composition for boosting immunity, inhibiting cancer metastasis, and preventing and treating blood diseases.

Description

티오레독신-결합 단백질을 유효성분으로 포함하는 약학적 조성물 및 이의 용도{Pharmaceutical composition comprising Thioredoxin-binding protein as an active ingradient and using thereof}A pharmaceutical composition comprising a thioredoxin-binding protein as an active ingredient and its use (Pharmaceutical composition comprising an active ingradient and a use thereof)

본 발명은 티오레독신-결합 단백질(thioredoxin-binding protein; TXNIP)을 유효성분으로 포함하는 면역증강, 암 전이억제, 및 혈액질환 예방 및 치료용 조성물에 관한 것이다.
The present invention relates to a composition for preventing and treating immune enhancement, cancer metastasis, and blood diseases, which comprises thioredoxin-binding protein (TXNIP) as an active ingredient.

산화적 스트레스(oxidative stress) 세포 내에 활성산소(reactive oxygen species; ROS)가 과도하게 축적 또는 항산화 방어 시스템(antioxidant defense system)의 결핍으로 발행한다. 산화적 스트레스는 당뇨, 퇴행성 뇌질환 및 암과 같은 다양한 병리학적 질환을 유도하고(Hole et al., 2011; Sinha et al., 2013), 조혈작용에 있어서, 활성산소의 조절이 중요한 요소임이 확인되었다. 조혈세포(hematopoietic cell)는 산화적 스트레스에 취약하고, 조혈조직(hematopoietic tissue)의 악성화가 만성 산화적 스트레스 조건하에서 관찰되었다(Ghaffari, 2008). 조혈조직에 있어서, 산화환원 상태의 항상성 조절이 정상적인 조혈과정을 위해 중요하다.
Oxidative stress is caused by excessive accumulation of reactive oxygen species (ROS) in cells or by a deficiency of the antioxidant defense system. Oxidative stress induces diverse pathologic diseases such as diabetes, degenerative brain disease, and cancer (Hole et al., 2011; Sinha et al., 2013), and the regulation of reactive oxygen species . Hematopoietic cells are vulnerable to oxidative stress and malignant hematopoietic tissue has been observed under chronic oxidative stress conditions (Ghaffari, 2008). In hematopoietic tissues, homeostasis regulation of the redox state is important for a normal hematopoietic process.

조혈모세포(hematopoietic stem cell; HSC)는 숙주가 일생동안 생산해내는 조혈세포계(hematopoietic cell lineages)의 저장소이다. 상기 조혈모세포 풀은 골수세포(bone marrow; BM)에 있어서, 그들의 무활동(quiescence) 조절 및 자기재생(self-renewal)을 유지한다(Abbas et al., 2010; Rathinam et al., 2011l Scheller et al., 2008). 상기 조혈모세포는 낮은 세포 내 활성산소 수준을 유지하고 있고, 조혈모세포 풀을 유지하기 위하여 조혈모세포 내 산화적 스트레스의 적절한 조절이 요구된다(Blank et al., 2008; Naka et al., 2008). 최근의 몇몇 연구에 의하면 조혈모세포의 기능에 있어서, 활성산소의 유도를 통해 기능 결핍에 관여하는 동정하였다(Ito et al., 2004; Ito et al., 2006; Miyamoto et al., 2007).
Hematopoietic stem cells (HSCs) are a repository of hematopoietic cell lineages that the host produces over a lifetime. The hematopoietic stem cell pool maintains their quiescence control and self-renewal in bone marrow (BM) (Abbas et al., 2010; Rathinam et al., 2011 l Scheller et al. al., 2008). The hematopoietic stem cells maintain a low intracellular level of active oxygen, and appropriate regulation of oxidative stress in hematopoietic stem cells is required to maintain hematopoietic stem cells (Blank et al., 2008; Naka et al., 2008). In recent years, several studies have shown that the function of hematopoietic stem cells is dependent on the induction of reactive oxygen species (Iso et al., 2004; Ito et al., 2006; Miyamoto et al., 2007).

티오레독신-결합 단백질(Thioredoxin-interacting protein; TXNIP)는 397개의 아미노산으로 구성된 50 kDa.의 단백질로 아래스틴과(arrestin family)에 포함된다. Txnip -/- 마우스는 간세포암(hepatocellular carcinoma)의 높은 발생율을 나타내고(Jeong et al., 2009; Kwon et al., 2011; Lee et al., 2005; Song et al., 2003), TXNIP의 발현은 다양한 종류의 종양을 감소시키며, TXNIP의 과발현은 세포주기 진행(cell-cycle progression)을 억제함으로써 종양의 성장을 억제한다(Han et al., 2003). Txnip -/- 마우스의 골수세포에 있어서 자연살해세포(natural killer cell; NK cell)의 수는 감소하고, 장기간 복원된 조혈모세포 집단은 고갈된 표현형(exhausted phenotype)을 나타내고, 빈도(frequency)도 감소하는 것이 확인되었다(Jeong et al., 2009; Lee et al., 2005).
Thioredoxin-interacting protein (TXNIP) is a 50 kDa protein composed of 397 amino acids and is contained in the arrestin family. Txnip - / - mice exhibit a high incidence of hepatocellular carcinoma (Jeong et al., 2009; Kwon et al., 2011; Lee et al., 2005; Song et al., 2003) Overexpression of TXNIP inhibits tumor growth by inhibiting cell-cycle progression (Han et al., 2003). In the bone marrow cells of Txnip - / - mice, the number of natural killer cells (NK cells) decreases, the long-term restored hematopoietic stem cell population exhibits an exhausted phenotype and the frequency decreases (Jeong et al., 2009; Lee et al., 2005).

종양 억제단백질인 p53은 유전적 스트레스(genotoxic stress)에 대한 반응으로 성장중지(growth arrest) 또는 세포사멸(apoptosis)을 통하여 비정상적 세포의 확장(expansion)을 제한하는 역할을 한다(Olovnikov et al., 2009; Sablina et al., 2005). p53 경로는 프로테오소말 분해(proteosomal degradation)를 위해서 p53 표적 단백질인 E3 유비퀴틴 리가아제(E3 ubiquitin ligase) 기능을 하는 MDM2(mouse double minute 2)에 의해서 조절된다(Sasaki et al., 2011). p53은 항-세포사멸 또는 항-산화 유전자의 발현 유도에 의해 강한 전-생존 경로(pro-survival pathway)에 작용한다(Bensaad and Vousden, 2007; Janicke et al., 2008). 이전 연구에 의하면 조혈세포 풀의 유지에 있어서, TXNIP의 항-노화(anti-aging) 효과에 대해 밝혀진바 있다(Jeong et al., 2009; Kim et al., 2007).
P53, a tumor suppressor protein, plays a role in restricting the expansion of abnormal cells through growth arrest or apoptosis in response to genotoxic stress (Olovnikov et al. 2009; Sablina et al., 2005). The p53 pathway is regulated by MD2 (mouse double minute 2), which functions as a p53 target protein, E3 ubiquitin ligase, for proteosomal degradation (Sasaki et al., 2011). p53 acts on a strong pro-survival pathway by inducing anti-apoptotic or anti-oxidative gene expression (Bensaad and Vousden, 2007; Janicke et al., 2008). Previous studies have shown anti-aging effects of TXNIP in the maintenance of hematopoietic cell pools (Jeong et al., 2009; Kim et al., 2007).

이에 본 발명자들은 항산화 스트레스를 억제하므로써 조혈세포에서 면역증강의 효과를 나타내는 약학적 조성물을 연구하던 중, TXNIP 결핍 마우스에서 조혈모세포의 빈도가 감소하고, 골수증식 능력이 감소하며, 골수이식을 통해 TXNIP 결핍 마우스-유래 골수세포의 증식능력이 감소하는 것을 확인하였다. 또한, 산화적 스트레스 조건하의 TXNIP 녹아웃 마우스 및 TXNIP 결핍 세포주에서 활성산소의 수준이 증가하고, 세포사멸을 유도하며, 상기 TXNIP 녹아웃 마우스 유래 세포주의 골수증식 능력이 감소하는 것을 확인하였다. 또한, 산화적 스트레스 조건하의 TXNIP 녹아웃 마우스에서 암 전이가 증가하는 것을 확인하였고, p53의 발현이 감소함을 확인하였다. 또한, TXNIP 및 p53 사이에 직접적인 결합 위치를 확인하였고, 상기 결합이 산화적 스트레스 조건하에서 증가하며, 이로 인하여 p53-매개의 전사활성이 증가하고, 또한, p53-매개 항산화활성이 증가하는 것을 확인함으로써 본 발명을 완성하였다.
Accordingly, the present inventors have studied a pharmaceutical composition showing the effect of immunity enhancement in hematopoietic cells by inhibiting the antioxidant stress. In the TXNIP deficient mice, the frequency of hematopoietic stem cells decreases, the bone marrow proliferation capacity decreases, The proliferative capacity of deficient mouse-derived bone marrow cells was decreased. In addition, it was confirmed that levels of reactive oxygen species were increased in TXNIP knockout mice and TXNIP deficient cell lines under oxidative stress conditions, inducing apoptosis, and the bone marrow proliferative capacity of the TXNIP knockout mouse derived cell line was decreased. Also, it was confirmed that cancer metastasis was increased in TXNIP knockout mice under oxidative stress conditions, and p53 expression was decreased. Also, a direct binding site between TXNIP and p53 was identified, confirming that the binding increased under oxidative stress conditions, leading to an increase in the p53-mediated transcriptional activity and an increase in p53-mediated antioxidant activity Thus completing the present invention.

본 발명의 목적은 티오레독신-결합 단백질(thioredoxin-binding protein; TXNIP)을 유효성분으로 포함하는 면역증강, 암 전이억제, 및 혈액질환 예방 및 치료용 조성물을 제공하는 것이다.
It is an object of the present invention to provide a composition for preventing and treating immune enhancement, inhibition of cancer metastasis, and blood diseases comprising thioredoxin-binding protein (TXNIP) as an active ingredient.

상기 목적을 달성하기 위하여, 본 발명은 TXNIP(Thioredixin-interacting protein) 유전자를 포함하는 유전자 전달체, 세포 또는 TXNIP 단백질을 유효성분으로 함유하는 면역증강용 약학적 조성물을 제공한다.In order to achieve the above object, the present invention provides a pharmaceutical composition for immune enhancement comprising as an active ingredient a gene carrier, cell or TXNIP protein comprising a TXNIP (Thioredixin-interacting protein) gene.

또한, 본 발명은 TXNIP 유전자를 포함하는 유전자 전달체, 세포 또는 TXNIP 단백질을 유효성분으로 함유하는 면역증강용 건강식품을 제공한다.The present invention also provides a health food for immunity enhancement comprising as an active ingredient a gene carrier, cell or TXNIP protein comprising a TXNIP gene.

또한, 본 발명은 TXNIP 유전자를 포함하는 유전자 전달체, 세포 또는 TXNIP 단백질을 유효성분으로 함유하는 암 전이억제용 약학적 조성물을 제공한다.The present invention also provides a pharmaceutical composition for inhibiting cancer metastasis comprising as an active ingredient a gene carrier, cell or TXNIP protein comprising a TXNIP gene.

또한, 본 발명은 XNIP 유전자를 포함하는 유전자 전달체, 세포 또는 TXNIP 단백질을 유효성분으로 함유하는 암 전이억제용 건강식품을 제공한다.In addition, the present invention provides a health food for inhibiting cancer metastasis which comprises a gene carrier, cell or TXNIP protein comprising XNIP gene as an active ingredient.

또한, 본 발명은 TXNIP 유전자를 포함하는 유전자 전달체, 세포 또는 TXNIP 단백질을 유효성분으로 함유하는 혈액질환 예방 및 치료용 약학적 조성물을 제공한다.The present invention also provides a pharmaceutical composition for the prevention and treatment of blood diseases comprising a gene carrier, cell or TXNIP protein comprising TXNIP gene as an active ingredient.

또한, 본 발명은 TXNIP 유전자를 포함하는 유전자 전달체, 세포 또는 TXNIP 단백질을 유효성분으로 함유하는 혈액질환 예방 및 개선용 건강식품을 제공한다.
In addition, the present invention provides a health food for prevention and improvement of blood diseases comprising a gene carrier, cell or TXNIP protein containing TXNIP gene as an active ingredient.

본 발명의 TXNIP가 산화적 스트레스 조건하에서 조혈모세포(hematopoietic stem cell; HSC)의 골수증식 능력을 조절하고, 생체 내에서 항산화 활성을 나타내며, 조혈세포(hematopoietic cell)에서 p53과 결합하여 활성산소를 조절함으로써 면역증강, 암 전이억제, 및 혈액질환 예방 및 치료용 조성물로 유용하게 사용될 수 있다.
The TXNIP of the present invention regulates the bone marrow proliferative capacity of hematopoietic stem cells (HSC) under oxidative stress conditions, exhibits antioxidative activity in vivo, binds to p53 in hematopoietic cells and regulates active oxygen Thereby being useful as a composition for improving immunity, suppressing cancer metastasis, and preventing or treating blood diseases.

도 1A는 늙은 TXNIP 녹아웃(knock-out) 마우스에서 조혈모세포(hematopoietic stem cell; HSC)의 빈도(frequency)가 감소하는 것을 나타내는 도이다.
Young: 어린 마우스, 및
Old: 늙은 마우스.
도 1B는 경쟁적 골수증식(competitive repopulation assay) 및 단계적 골수이식(serial bone marrow transplantation assay; serial BMT assay)의 실험방법을 나타내는 도이다.
도 1C TXNIP 녹아웃 마우스에서 골수증식 능력이 감소하는 것을 나타내는 도이다.
WT-Y: 야생형 어린 마우스,
WT-O: 야생형 늙은 마우스,
KO-Y: TXNIP 녹아웃된 어린 마우스, 및
KO-O: TXNIP 녹아웃된 늙은 마우스.
도 1D는 TXNIP 녹아웃 마우스로부터 수여받은 전체 골수세포의 재생능력이 감소하는 것을 나타내는 도이다.
WT: 야생형,
KO: TXNIP 녹아웃,
Young: 어린 마우스, 및
Old: 늙은 마우스.
도 1E는 공여체-유래 골수세포의 증식능력이 TXNIP 녹아웃 마우스 유래한 수여체에서 감소하는 것을 나타내는 도이다.
WT: 야생형,
KO: TXNIP 녹아웃,
1st: 첫번째 골수이식 후, 및
2nd: 두번째 골수이식 후.
도 1F는 골수이식 후 조혈모세포 및 전구세포(progenitor)의 집단이 TXNIP 녹아웃 마우스에서 감소하는 것을 나타내는 도이다.
WT: 야생형, 및
KO: TXNIP 녹아웃.
도 2A는 TXNIP 녹아웃 마우스 유래 골수세포에서 활성산소 수준이 현저히 증가하는 것을 나타내는 도이다.
WT-Y: 야생형 어린 마우스,
WT-O: 야생형 늙은 마우스,
KO-Y: TXNIP 녹아웃된 어린 마우스, 및
KO-O: TXNIP 녹아웃된 늙은 마우스.
도 2B는 TXNIP 녹아웃 마우스 유래 골수세포를 이식한 마우스에서 활성산소의 수준이 높은 것을 나타내는 도이다.
WT: 야생형, 및
KO: TXNIP 녹아웃.
도 2C는 산화적 스트레스 조건하에서 TXNIP 녹아웃 마우스 유래 골수세포에서 활성산소의 수준이 높은 것을 나타내는 도이다.
WT: 야생형, 및
KO: TXNIP 녹아웃.
도 2D는 산화적 스트레스 조건하에서 TXNIP 녹아웃 마우스 유래 골수세포의 세포사멸(apoptosis)이 증가함을 나타내는 도이다.
WT: 야생형, 및
KO: TXNIP 녹아웃.
도 3A는 경쟁적 골수증식, 집락형성단위-비장(colony forming unit-spleen; CFU-S) 및 방사선보호 분석(radioprotection assay)의 실험방법을 나타내는 도이다.
도 3B 및 3C는 산화적 스트레스 조건하에서 TXNIP 녹아웃 마우스 유래 골수세포의 골수증식 및 조혈모세포 빈도가 감소함을 나타내는 도이다.
WT-PBS: 야생형 대조군 마우스,
WT-PA: 야생형 마우스에 파라콰트(paraquat)를 처리한 군,
KO-PBS: TXNIP 녹아웃 대조군 마우스, 및
KO-PA: TXNIP 녹아웃 마우스에 파라콰트를 처리한 군.
도 3D는 산화적 스트레스 조건하에서 TXNIP 녹아웃 마우스 유래 골수세포의 집락형성단위-비장 수가 감소하는 것을 타나내는 도이다.
WT: 야생형,
KO: TXNIP 녹아웃 마우스,
PBS: PBS를 처리한 군, 및
PA: 파라콰트를 처리한 군.
도 3E는 산화적 스트레스 조건하에서 TXNIP 녹아웃 마우스 유래 골수세포의 생존율이 낮음을 나타내는 도이다.
WT-PBS: 야생형 대조군 마우스,
WT-PA: 야생형 마우스에 파라콰트를 처리한 군,
KO-PBS: TXNIP 녹아웃 대조군 마우스, 및
KO-PA: TXNIP 녹아웃 마우스에 파라콰트를 처리한 군.
도 3F 및 3G는 산화적 스트레스 조건하에서 TXNIP 녹아웃 마우스 유래 LKS 세포주가 수여체에서 골수증식 및 조혈모세포 빈도가 감소함을 나타내는 도이다.
WT-PBS: 야생형 대조군 마우스,
WT-PA: 야생형 마우스에 파라콰트를 처리한 군,
KO-PBS: TXNIP 녹아웃 대조군 마우스, 및
KO-PA: TXNIP 녹아웃 마우스에 파라콰트를 처리한 군.
도 4A는 산화적 스트레스 조건하에서 TXNIP 녹아웃 마우스의 생존율이 감소함을 나타내는 도이다.
WT-PA: 야생형 마우스에 파라콰트를 처리한 군,
KO-PA: TXNIP 녹아웃 마우스에 파라콰트를 처리한 군, 및
KO-PA+NAC: TXNIP 녹아웃 마우스에 파라콰트 및 항산화제를 처리한 군.
도 4B는 산화적 스트레스 조건하에서 TXNIP 녹아웃 마우스 유래 골수이식한 마우스의 생존율이 감소함을 나타내는 도이다.
CD45.1(WT): 야생형 골수를 수여받은 야생형 CD45.1 마우스, 및
CD45.1(KO): TXNIP 녹아웃 골수를 수여받은 야생형 CD45.1 마우스.
도 4C는 산화적 스트레스 조건하에서 TXNIP 녹아웃 마우스의 비장크기 및 세포질이 감소함을 나타내는 도이다.
WT: 야생형,
KO: TXNIP 녹아웃 마우스,
PBS: PBS를 처리한 군, 및
PA: 파라콰트를 처리한 군.
도 4D는 산화적 스트레스 조건하에서 TXNIP 녹아웃 마우스에서 세포사멸이 증가함을 나타내는 도이다.
WT: 야생형,
KO: TXNIP 녹아웃 마우스,
PBS: PBS를 처리한 군, 및
PA: 파라콰트를 처리한 군.
도 4E는 산화적 스트레스 조건하에서 TXNIP 녹아웃 마우스의 흉선에 손상이 발생함을 나타내는 도이다.
WT-PBS: 야생형 대조군 마우스,
WT-PA: 야생형 마우스에 파라콰트를 처리한 군,
KO-PBS: TXNIP 녹아웃 대조군 마우스, 및
KO-PA: TXNIP 녹아웃 마우스에 파라콰트를 처리한 군.
도 4F는 산화적 스트레스 조건하의 TXNIP 녹아웃 마우스에서 암 전이가 증가함을 나타내는 도이다.
WT-PBS: 야생형 대조군 마우스,
WT-PA: 야생형 마우스에 파라콰트를 처리한 군,
KO-PBS: TXNIP 녹아웃 대조군 마우스, 및
KO-PA: TXNIP 녹아웃 마우스에 파라콰트를 처리한 군.
도 4G는 TXNIP 녹아웃 마우스 유래 전체 골수세포를 수여받은 마우스에서 폐 전이가 증가함을 나타내는 도이다.
WT-PBS: 야생형 대조군 마우스,
WT-PA: 야생형 마우스에 파라콰트를 처리한 군,
KO-PBS: TXNIP 녹아웃 대조군 마우스, 및
KO-PA: TXNIP 녹아웃 마우스에 파라콰트를 처리한 군.
도 5A 및 5B는 골수세포에서 활성산소 및 TXNIP 수준이 역상관관계(inverse correlation)에 있음을 나타내는 도이다.
도 5C는 TXNIP 녹아웃 골수세포에서 p53의 발현이 감소함을 나타내는 도이다.
WT: 야생형, 및
KO: TXNIP 녹아웃.
도 5D는 TXNIP 녹아웃 골수세포에서 활성산소의 수준이 증가함을 나타내는 도이다.
WT: 야생형, 및
KO: TXNIP 녹아웃.
도 5E는 p53-/- 조혈모세포 및 전구세포에서 활성산소의 수준이 높음을 나타내는 도이다.
WT: 야생형,
Txnip-/-: TXNIP 결핍,
p53-/-: p53 결핍.
도 5F 및 5G는 p53을 억제한 경우 TXNIP-/- 조혈모세포 및 전구세포에서 활성산소의 수준이 증가함을 나타내는 도이다.
Control: 대조군,
Txnip shRNA: 야생형 또는 TXNIP 녹아웃 LKS 세포에 Txnip에 대한 shRNA를 처리한 군,
p53 shRNA: 야생형 또는 TXNIP 녹아웃 LKS 세포에 p53에 대한 shRNA를 처리한 군,
WT: 야생형 마우스,
WT/PFT-α: 야생형에 p53 억제제를 처리한 군,
KO: TXNIP 녹아웃 마우스, 및
KO/PFT-α: TXNIP 녹아웃 마우스에 p53 억제제를 처리한 군.
도 5H는 산화적 스트레스 조건하에서 p53-/- 마우스의 조혈모세포 및 면역세포의 활성산소 수준이 증가함을 나타내는 도이다.
WT: 야생형, 및
p53-/-: p53 결핍.
도 5I는 산화적 스트레스 조건하에서 p53-/- 마우스의 생존율이 감소함을 나타내는 도이다.
WT: 야생형, 및
p53-/-: p53 결핍.
도 5J는 산화적 스트레스 조건하에서 TXNIP 녹아웃 마우스에 p53 억제제를 처리한 경우 마우스의 생존율이 감소함을 나타내는 도이다.
WT: 야생형,
KO: TXNIP 녹아웃 마우스, 및
KO/PFT-α: TXNIP 녹아웃 마우스에 p53 억제제를 처리한 군.
도 6A는 p53에 결합하는 TXNIP의 위치를 확인한 도이다.
도 6B는 TXNIP와 결합하는 p53의 도메인(domain)을 확인한 도이다.
도 6C는 산화적 스트레스 조건하에서 TXNIP 및 p53 사이의 결합이 증가함을 나타내는 도이다.
도 6D는 TXNIP의 C247S 및 C267S 돌연변이는 p53과 결합하지 못하여 동일한 위치에 존재하지 않음을 나타내는 도이다.
도 6E는 TXNIP에 의해서 p53 및 MDM2 사이의 결합이 감소함을 나타내는 도이다.
Vector: 대조군,
TXNIP(WT): 야생형 TXNIP, 및
TXNIP(DW): TXNIP의 이중 돌연변이.
도 6F는 TXNIP 및 p53 사이의 결합에 의해서 세포 내 p53-매개 전사활성이 증가함을 나타내는 도이다.
도 7A 및 7B는 조혈세포에서 p53 및 이의 표적 단백질의 발현을 확인한 도이다.
도 7C는 TXNIP 결핍 세포주에서 p53 표적 단백질의 발현이 감소함을 나타내는 도이다.
WT: 야생형, 및
KO: TXNIP 녹아웃.
도 7D는 TXNIP 결핍 세포주에서 산화촉진 유전자 mRNA의 발현이 증가함을 나타내는 도이다.
WT: 야생형, 및
KO: TXNIP 녹아웃.
도 7E는 산화적 스트레스 조건하의 TXNIP 결핍 세포주에서 p53의 활성변화를 나타내는 도이다.
WT: 야생형, 및
KO: TXNIP 녹아웃.
도 7F는 야생형 TXNIP 또는 p53을 형질주입한 골수세포를 골수이식한 마우스에서 조혈모세포의 빈도가 회복되는 것을 나타내는 도이다.
WT(Fresh): 야생형 골수세포,
WT(Vector): 야생형 골수세포에 벡터만을 형질주입한 군,
KO(Fresh): TXNIP 결핍 골수세포,
KO(Vector): TXNIP 결핍 골수세포에 벡터만을 형질주입한 군,
KO(p53): TXNIP 결핍 골수세포에 p53을 형질주입한 군,
KO(TXNIP): TXNIP 결핍 골수세포에 야생형 TXNIP를 형질주입한 군, 및
KO(DM): TXNIP 결핍 골수세포에 이중 돌연변이형 TXNIP를 형질주입한 군.
도 7G는 야생형 TXNIP 또는 p53을 형질주입한 골수세포를 골수이식한 마우스의 생존율이 증가함을 나타내는 도이다.
WT/Vector: 야생형 골수세포에 벡터만을 형질주입한 군,
KO/Vector: TXNIP 결핍 골수세포에 벡터만을 형질주입한 군,
KO/Txnip(WT): TXNIP 결핍 골수세포에 야생형 TXNIP를 형질주입한 군,
KO/Txnip(DM): TXNIP 결핍 골수세포에 이중 돌연변이형 TXNIP를 형질주입한 군, 및
KO/p53: TXNIP 결핍 골수세포에 p53을 형질주입한 군.
1A is a graph showing a decrease in the frequency of hematopoietic stem cells (HSC) in an old TXNIP knock-out mouse.
Young: Young mouse, and
Old: Old mouse.
1B is a diagram illustrating an experimental method of competitive repopulation assay and serial bone marrow transplantation assay (serial BMT assay).
Figure 1C shows a decrease in myeloproliferative capacity in TXNIP knockout mice.
WT-Y: wild-type mouse,
WT-O: wild old mouse,
KO-Y: TXNIP knockout young mouse, and
KO-O: TXNIP An old knockout mouse.
FIG. 1D shows that the ability of the whole bone marrow cells regenerated from the TXNIP knockout mouse is decreased.
WT: wild type,
KO: TXNIP knockout,
Young: Young mouse, and
Old: Old mouse.
FIG. 1E is a graph showing that the proliferative capacity of donor-derived bone marrow cells is decreased in a recipient body derived from a TXNIP knockout mouse.
WT: wild type,
KO: TXNIP knockout,
1st: After the first bone marrow transplantation, and
2nd: After the second bone marrow transplant.
Figure 1F is a graph showing that the population of hematopoietic stem cells and progenitor after bone marrow transplantation is reduced in TXNIP knockout mice.
WT: wild type, and
KO: TXNIP knockout.
FIG. 2A shows a significant increase in the level of active oxygen in TXNIP knockout mouse-derived bone marrow cells.
WT-Y: wild-type mouse,
WT-O: wild old mouse,
KO-Y: TXNIP knockout young mouse, and
KO-O: TXNIP An old knockout mouse.
FIG. 2B is a graph showing a high level of reactive oxygen species in a mouse transplanted with TXNIP knockout mouse-derived bone marrow cells. FIG.
WT: wild type, and
KO: TXNIP knockout.
2C is a graph showing that the levels of reactive oxygen species in the bone marrow cells derived from TXNIP knockout mice are high under oxidative stress conditions.
WT: wild type, and
KO: TXNIP knockout.
Figure 2D is an illustration of increased apoptosis of TXNIP knockout mouse derived bone marrow cells under oxidative stress conditions.
WT: wild type, and
KO: TXNIP knockout.
FIG. 3A shows experimental methods of competitive myelogenous proliferation, colony forming unit-spleen (CFU-S) and radioprotection assay.
FIGS. 3B and 3C show that the bone marrow proliferation and hematopoietic stem cell frequency of TXNIP knockout mouse derived bone marrow cells are decreased under oxidative stress conditions. FIG.
WT-PBS: wild-type control mice,
WT-PA: wild-type mouse treated with paraquat,
KO-PBS: TXNIP knockout control mice, and
KO-PA: TXNIP knockout mice treated with paraquats.
Figure 3D shows the decrease in colony forming unit-spleen count of bone marrow cells derived from TXNIP knockout mice under oxidative stress conditions.
WT: wild type,
KO: TXNIP knockout mouse,
PBS: PBS-treated group, and
PA: The group treated with paraquat.
Figure 3E is a graph showing the low survival rate of TXNIP knockout mouse-derived bone marrow cells under oxidative stress conditions.
WT-PBS: wild-type control mice,
WT-PA: wild-type mouse treated with paraquat,
KO-PBS: TXNIP knockout control mice, and
KO-PA: TXNIP knockout mice treated with paraquats.
FIGS. 3F and 3G show that the LKS cell line derived from TXNIP knockout mice under oxidative stress conditions is reduced in bone marrow proliferation and hematopoietic stem cell count in recipient mice.
WT-PBS: wild-type control mice,
WT-PA: wild-type mouse treated with paraquat,
KO-PBS: TXNIP knockout control mice, and
KO-PA: TXNIP knockout mice treated with paraquats.
Figure 4A is a graph showing that the survival rate of TXNIP knockout mice is decreased under oxidative stress conditions.
WT-PA: wild-type mouse treated with paraquat,
KO-PA: a group treated with paraquat in a TXNIP knockout mouse, and
KO-PA + NAC: TXNIP knockout mouse treated with paraquat and antioxidant.
FIG. 4B is a graph showing that the survival rate of mice transplanted with TXNIP knockout mice under oxidative stress conditions is decreased. FIG.
CD45.1 (WT): Wild type CD45.1 mouse that received wild type bone marrow, and
CD45.1 (KO): Wild type CD45.1 mice that received TXNIP knockout marrow.
4C is a graph showing the decrease in spleen size and cytoplasm of TXNIP knockout mice under oxidative stress conditions.
WT: wild type,
KO: TXNIP knockout mouse,
PBS: PBS-treated group, and
PA: The group treated with paraquat.
Figure 4D is an illustration of increased cell death in TXNIP knockout mice under oxidative stress conditions.
WT: wild type,
KO: TXNIP knockout mouse,
PBS: PBS-treated group, and
PA: The group treated with paraquat.
4E is a graph showing that damage to the thymus occurs in TXNIP knockout mice under oxidative stress conditions.
WT-PBS: wild-type control mice,
WT-PA: wild-type mouse treated with paraquat,
KO-PBS: TXNIP knockout control mice, and
KO-PA: TXNIP knockout mice treated with paraquats.
4F is an illustration of increased cancer metastasis in TXNIP knockout mice under oxidative stress conditions.
WT-PBS: wild-type control mice,
WT-PA: wild-type mouse treated with paraquat,
KO-PBS: TXNIP knockout control mice, and
KO-PA: TXNIP knockout mice treated with paraquats.
FIG. 4G is a graph showing that lung metastasis is increased in mice that received whole bone marrow cells derived from TXNIP knockout mice.
WT-PBS: wild-type control mice,
WT-PA: wild-type mouse treated with paraquat,
KO-PBS: TXNIP knockout control mice, and
KO-PA: TXNIP knockout mice treated with paraquats.
Figures 5A and 5B are graphs showing that the levels of reactive oxygen and TXNIP in bone marrow cells are inverse correlation.
FIG. 5C is a graph showing the decrease in p53 expression in TXNIP knockout bone marrow cells.
WT: wild type, and
KO: TXNIP knockout.
FIG. 5D is a graph showing that the level of reactive oxygen increases in TXNIP knockout bone marrow cells. FIG.
WT: wild type, and
KO: TXNIP knockout.
5E is a graph showing a high level of reactive oxygen species in p53 - / - hematopoietic stem cells and progenitor cells.
WT: wild type,
Txnip - / - : TXNIP deficiency,
p53 - / - : p53 deficiency.
FIGS. 5F and 5G are graphs showing the increase in levels of reactive oxygen species in TXNIP - / - hematopoietic stem cells and progenitor cells when p53 is inhibited.
Control: Control,
Txnip shRNA: wild-type or TXNIP knockout LKS cells treated with shRNA for Txnip,
p53 shRNA: wild-type or TXNIP knockout LKS cells treated with shRNA for p53,
WT: wild type mouse,
WT / PFT-α: group treated with p53 inhibitor in wild type,
KO: TXNIP knockout mouse, and
KO / PFT-α: TXNIP knockout mice treated with p53 inhibitor.
5H is an elevation of active oxygen levels of hematopoietic stem cells and immune cells of p53 - / - mice under oxidative stress conditions.
WT: wild type, and
p53 - / - : p53 deficiency.
Figure 5I is a graph showing that the survival rate of p53 - / - mice decreases under oxidative stress conditions.
WT: wild type, and
p53 - / - : p53 deficiency.
Figure 5J is a graph showing that the survival rate of mice is reduced when p53 inhibitor is treated with TXNIP knockout mice under oxidative stress conditions.
WT: wild type,
KO: TXNIP knockout mouse, and
KO / PFT-α: TXNIP knockout mice treated with p53 inhibitor.
6A is a view showing the position of TXNIP binding to p53.
FIG. 6B shows the domain of p53 binding to TXNIP.
Figure 6C is an illustration showing increased binding between TXNIP and p53 under oxidative stress conditions.
Figure 6D shows that the C247S and C267S mutations of TXNIP do not bind to p53 and therefore are not in the same position.
Figure 6E is a graph showing that the binding between p53 and MDM2 is reduced by TXNIP.
Vector: Control,
TXNIP (WT): wild type TXNIP, and
TXNIP (DW): Double mutation of TXNIP.
Figure 6F is an illustration of increased intracellular p53-mediated transcription activity by binding between TXNIP and p53.
7A and 7B are diagrams showing the expression of p53 and its target protein in hematopoietic cells.
FIG. 7C is a graph showing the decrease in the expression of p53 target protein in the TXNIP deficient cell line.
WT: wild type, and
KO: TXNIP knockout.
FIG. 7D is a graph showing an increase in the expression of the oxidation promoting gene mRNA in the TXNIP deficient cell line. FIG.
WT: wild type, and
KO: TXNIP knockout.
7E is a graph showing the activity of p53 in a TXNIP deficient cell line under oxidative stress conditions.
WT: wild type, and
KO: TXNIP knockout.
FIG. 7F shows that the frequency of hematopoietic stem cells is restored in a mouse transplanted with wild-type TXNIP or p53 transfected bone marrow cells.
WT (Fresh): wild-type bone marrow cells,
WT (Vector): group transfected with wild-type bone marrow cells alone,
KO (Fresh): TXNIP deficient bone marrow cells,
KO (Vector): a vector transfected with TXNIP deficient bone marrow cells,
KO (p53): p53 transfected into TXNIP deficient bone marrow cells,
KO (TXNIP): TXNIP deficient bone marrow cells were transfected with wild type TXNIP, and
KO (DM): TXNIP deficient bone marrow cells were transfected with double mutant TXNIP.
FIG. 7G is a graph showing an increase in the survival rate of wild-type TXNIP or p53 transfected bone marrow transplanted mice.
WT / Vector: wild-type bone marrow cells were transfected with vector only,
KO / Vector: TXNIP deficient bone marrow cells were transfected with vector only,
KO / Txnip (WT): wild-type TXNIP transfected into TXNIP deficient myeloid cells,
KO / Txnip (DM): TXNIP deficient bone marrow cells were transfected with double mutant TXNIP, and
KO / p53: p53 transfected into TXNIP deficient bone marrow cells.

이하, 본 발명을 상세히 설명한다.
Hereinafter, the present invention will be described in detail.

본 발명은 TXNIP(Thioredixin-interacting protein) 유전자를 포함하는 유전자 전달체, 세포 또는 TXNIP 단백질을 유효성분으로 함유하는 면역증강용 약학적 조성물을 제공한다.The present invention provides a pharmaceutical composition for immune enhancement comprising as an active ingredient a gene carrier, cell or TXNIP protein comprising a TXNIP (Thioredixin-interacting protein) gene.

상기 TXNIP 유전자는 서열번호 29 및 30으로 구성된 염기서열을 갖는 것이 바람직하나 이에 한정하지 않는다.The TXNIP gene preferably has a nucleotide sequence consisting of SEQ ID NOS: 29 and 30, but is not limited thereto.

상기 유전자 전달체는 벡터 또는 재조합 바이러스인 것이 바람직하나 이에 한정하지 않으며, 상기 벡터는 선형 DNA, 플라스미드 DNA 또는 재조합 바이러스성 벡터인 것이 바람직하고, 상기 재조합 바이러스는 레트로 바이러스, 아데노 바이러스, 아데노 부속 바이러스 및 헤르페스 심플렉스 바이러스로 구성된 군으로부터 선택된 어느 하나인 것이 바람직하나 이에 한정하지 않는다.The gene carrier is preferably a vector or a recombinant virus, but is not limited thereto. Preferably, the vector is a linear DNA, a plasmid DNA or a recombinant viral vector. The recombinant virus may be a retrovirus, an adenovirus, And simplex virus. However, the present invention is not limited thereto.

상기 세포는 조혈모세포(hematopoietic stem cell; HSC)인 것이 가장 바람직하나 이에 한정하지 않는다.The cells are most preferably hematopoietic stem cells (HSC), but are not limited thereto.

상기 면역증강은 면역 시스템의 항상성 유지에 의한 것이 바람직하나 이에 한정하지 않으며, 또한, 이는 조혈모세포의 항상성 유지에 의한 것이 바람직하나 이에 한정하지 않는다. 또한, 상기 면역증강은 TXNIP 및 p53 사이의 상호작용(interaction)에 의한 항산화 활성에 의한 것이 바람직하나 이에 한정하지 않는다.
The immune enhancement is preferably due to the homeostasis of the immune system, but is not limited thereto, and is preferably, but not always, due to the homeostasis of hematopoietic stem cells. In addition, the immune enhancement is preferably, but not limited to, antioxidant activity by the interaction between TXNIP and p53.

본 발명의 구체적인 실시예에서, 본 발명자들은 TXNIP 녹아웃 마우스에서 조혈모세포의 빈도(frequency)가 감소하고(도 1A 참조), 전체 골수세포의 골수증식 능력이 감소하며(도 1C 참조), TXNIP 녹아웃 마우스로부터 골수이식을 받은 마우스에서도 전체 골수세포 및 조혈모세포의 빈도가 감소함을 확인하였다(도 1D 참조). 또한, 상기 결과는 골수이식을 2번 반복한 후에도 동일한 결과를 나타내었다(도 1E 및 1F 참조). 또한, TXNIP 녹아웃 마우스 유래 골수세포에서 활성산소의 수준이 증가하고(도 2A 내지 2C 참조), 이는 세포사멸을 유도함을 확인하였다(도 2D 참조). 또한, 산화적 스트레스 조건하에서 TXNIP 녹아웃 마우스의 골수증식 능력이 감소하고(도 3B 및 3C 참조), 상기 마우스 유래 골수세포의 집락형성-비장(colony forming unit-spleen; CFU-S)의 수가 감소하며(도 3D 참조), 이들 마우스는 낮은 생존율을 나타내는 것을 확인하였다(도 3E 참조). 또한, TXNIP 녹아웃 마우스로부터 분리된 조혈모세포의 골수증식 능력이 감소하고(도 3F 및 3G 참조), 산화적 스트레스 조건하에서 상기 TXNIP 녹아웃 마우스의 생존율이 감소하며(도 4A 참조), 산화적 스트레스 조건하에서 TXNIP 녹아웃 마우스 유래 골수세포를 이식한 수여체의 생존율 또한 감소함을 확인하였다(도 4B 참조). 산화적 스트레스 조건하에서 TXNIP 녹아웃 마우스의 비장크기 및 세포질이 감소하고(도 4C 참조), 흉선에 손상이 발생하였으며(도 4E 참조), 상기 마우스에서 세포사멸이 증가하였고(도 4D), 암 전이가 증가하는 것을 확인하였다(도 4F 및 4G 참조). 또한, 골수세포에서 활성산소 및 TXNIP 발현 수준 및 TXNIP 녹아웃 골수세포에서 p53 발현 및 활성산소의 수준이 역상관관계(inverse correlation)가 있음을 확인하였다(도 5A 내지 5D 참조). 또한, p53-/- 조혈모세포에서 활성산소의 수준이 높고(도 5E 참조), p53을 억제하는 경우 TXNIP-/- 조혈모세포에서 활성산소의 수준이 증가하며(도 5F 및 5G 참조), 산화적 스트레스 조건하에서도 p53-/- 조혈모세포에서 활성산소의 수준이 증가하는 것을 확인하였다(도 5H 참조). 또한, 산화적 스트레스 조건하에서 p53-/- 마우스 및p53 억제제를 처리한 마우스의 생존율이 감소함을 확인하였다(도 5I 및 5J 참조). 또한, TXNIP 및 p53에서 상호작용하는 위치를 확인하고(도 6A 및 6B 참조), 산화적 스트레스 조건하에서 상기 TXNIP 및 p53의 상호작용이 증가하며(도 6C 참조), p53과 상호작용하는 TXNIP 부위에 돌연변이를 유발한 이중 돌연변이형 TXNIP는 세포 내에서 p53과 동일한 위치에 존재하지 않는 것을 확인하였다(도 6D 참조). 또한, TXNIP에 의해서 p53 및 MDM2(mouse double minute 2) 사이의 상호작용이 감소하고(도 6E 참조), TXNIP 및 p53의 상호작용에 의해서 p53-매개 전사활성이 증가함을 확인하였다(도 5F 참조). 또한, 조혈세포에서 p53 및 이의 표적 단백질의 발현을 확인하고(도 7A 및 7B 참조), TXNIP가 결핍된 경우, p53 표적 단백질의 발현이 감소하며(도 7C 참조), 상기 TXNIP 결핍 세포주에서 산화촉진 유전자의 발현이 증가하는 것을 확인하였다(도 7D 참조). 또한, TXNIP의 발현변화에 따라서 p53의 활성에 변화가 있고(도 7E 참조), TXNIP 결핍 골수세포 또는 마우스에 야생형의 p53 또는 TXNIP를 형질주입하였을 때, 조혈모세포의 빈도가 회복되고, 마우스의 생존율이 증가하는 것을 확인하였다(도 7F 및 7G 참조).In a specific embodiment of the present invention, the present inventors have found that the frequency of hematopoietic stem cells decreases in TXNIP knockout mice (see FIG. IA), and the overall bone marrow cell myeloproliferative capacity decreases (see FIG. 1C) The number of whole bone marrow cells and hematopoietic stem cells also decreased in mice that received bone marrow transplantation from the mice (see FIG. 1D). The results also showed the same results after two bone marrow transplantations (see FIGS. 1E and 1F). In addition, it was confirmed that the level of reactive oxygen increases in TXNIP knockout mouse-derived bone marrow cells (see FIGS. 2A to 2C), which induces apoptosis (see FIG. 2D). In addition, under oxidative stress conditions, the bone marrow proliferative capacity of TXNIP knockout mice decreases (see Figures 3B and 3C) and the number of colony forming unit-spleen (CFU-S) (See Figure 3D), confirming that these mice exhibited low survival rates (see Figure 3E). In addition, the myeloproliferative capacity of hematopoietic stem cells isolated from TXNIP knockout mice decreases (see Figures 3F and 3G) and the survival rate of the TXNIP knockout mice decreases under oxidative stress conditions (see Figure 4A), under oxidative stress conditions The survival rate of recipients transplanted with TXNIP knockout mouse-derived bone marrow cells was also decreased (see FIG. 4B). Under oxidative stress conditions, the spleen size and cytoplasm of the TXNIP knockout mouse decreased (see FIG. 4C) and the thymus was damaged (see FIG. 4E), and cell death was increased in the mice (FIG. 4D) (See Figures 4F and 4G). In addition, it was confirmed that there is an inverse correlation between levels of active oxygen and TXNIP expression in bone marrow cells and levels of p53 expression and active oxygen in TXNIP knockout bone marrow cells (see FIGS. 5A to 5D). In addition, when the level of reactive oxygen species is high in p53 - / - hematopoietic stem cells (see FIG. 5E) and inhibits p53, the level of reactive oxygen species increases in TXNIP - / - hematopoietic stem cells (see FIGS. 5F and 5G) It was confirmed that the level of reactive oxygen increases in p53 - / - hematopoietic stem cells under stress conditions (see FIG. 5H). Also, it was found that the survival rate of mice treated with p53 - / - and p53 inhibitors decreased under oxidative stress conditions (see Figures 5I and 5J). 6A and 6B), and the interaction of TXNIP and p53 is increased under oxidative stress conditions (see FIG. 6C), and in the TXNIP site interacting with p53 It was confirmed that the double mutant TXNIP that caused the mutation was not located at the same position as p53 in the cells (see FIG. 6D). In addition, it was confirmed that the interaction between p53 and MDM2 (mouse double minute 2) was reduced by TXNIP (see FIG. 6E), and the p53-mediated transcription activity was increased by the interaction of TXNIP and p53 ). In addition, the expression of p53 and its target protein in hematopoietic cells was confirmed (see FIGS. 7A and 7B), and when TXNIP was deficient, the expression of p53 target protein decreased (see FIG. 7C), and the TXNIP- The expression of the gene was increased (see Fig. 7D). In addition, when the expression of TXNIP is changed, the activity of p53 is changed (see FIG. 7E). When the wild type p53 or TXNIP is transfected into TXNIP deficient bone marrow cells or mice, the frequency of hematopoietic stem cells is restored, (See Figs. 7F and 7G).

따라서, 본 발명자들은 TXNIP가 생체 내에서 p53과의 상호작용을 통해 항산화 활성을 나타내는 것을 확인하였다.
Therefore, the present inventors confirmed that TXNIP exhibits antioxidative activity through interaction with p53 in vivo.

본 발명의 TXNIP 유전자를 포함하는 유전자 전달체, 세포 또는 TXNIP 단백질을 함유하는 조성물은 상기 성분에 추가로 동일 또는 유사한 기능을 나타내는 유효성분을 1종 이상 함유할 수 있다. The gene carrier, cell or TXNIP protein-containing composition containing the TXNIP gene of the present invention may further contain one or more active ingredients showing the same or similar functions in addition to the above components.

본 발명의 조성물은 약제학적으로 허용 가능한 첨가제를 더 포함할 수 있으며, 이때 약제학적으로 허용 가능한 첨가제로는 전분, 젤라틴화 전분, 미결정셀룰로오스, 유당, 포비돈, 콜로이달실리콘디옥사이드, 인산수소칼슘, 락토스, 만니톨, 엿, 아라비아고무, 전호화전분, 옥수수전분, 분말셀룰로오스, 히드록시프로필셀룰로오스, 오파드라이, 전분글리콜산나트륨, 카르나우바 납, 합성규산알루미늄, 스테아린산, 스테아린산마그네슘, 스테아린산알루미늄, 스테아린산칼슘, 백당, 덱스트로스, 소르비톨 및 탈크 등이 사용될 수 있다. 본 발명에 따른 약제학적으로 허용 가능한 첨가제는 상기 조성물에 대해 0.1 ~ 90 중량부 포함되는 것이 바람직하나 이에 한정되는 것은 아니다.The composition of the present invention may further comprise a pharmaceutically acceptable additive, wherein pharmaceutically acceptable additives include starch, gelatinized starch, microcrystalline cellulose, lactose, povidone, colloidal silicon dioxide, calcium hydrogen phosphate, lactose Starch glycolate, sodium starch glycolate, carnauba wax, synthetic aluminum silicate, stearic acid, magnesium stearate, aluminum stearate, calcium stearate, calcium stearate, , White sugar, dextrose, sorbitol and talc. The pharmaceutically acceptable additives according to the present invention are preferably included in the composition in an amount of 0.1 to 90 parts by weight, but are not limited thereto.

즉, 본 발명의 조성물은 실제 임상 투여 시에 경구 및 비경구의 여러 가지 제형으로 투여될 수 있는데, 제제화할 경우에는 보통 사용하는 충진제, 증량제, 결합제, 습윤제, 붕해제, 계면활성제 등의 희석제 또는 부형제를 사용하여 조제될 수 있다. 경구투여를 위한 고형제제에는 정제, 환제, 산제, 과립제, 캡슐제 등이 포함되며, 이러한 고형 제제는 TXNIP 유전자를 포함하는 유전자 전달체, 세포 또는 TXNIP 단백질에 적어도 하나 이상의 부형제 예를 들면, 전분, 칼슘카보네이트(Calcium carbonate), 수크로스(Sucrose), 락토오스(Lactose) 또는 젤라틴 등을 섞어 조제될 수 있다. 또한, 단순한 부형제 이외에 마그네슘 스티레이트 탈크 같은 윤활제들도 사용될 수 있다. 경구를 위한 액상 제제로는 현탁제, 내용액제, 유제 및 시럽제 등이 해당되는데 흔히 사용되는 단순희석제인 물, 리퀴드 파라핀 이외에 여러 가지 부형제, 예를 들면 습윤제, 감미제, 방향제, 보존제 등이 포함될 수 있다. 비경구 투여를 위한 제제에는 멸균된 수용액, 비수성용제, 현탁제, 유제, 동결건조제제, 좌제가 포함될 수 있다. 비수성용제, 현탁용제로는 프로필렌글리콜(Propylene glycol), 폴리에틸렌 글리콜, 올리브 오일과 같은 식물성 기름, 에틸올레이트와 같은 주사 가능한 에스테르 등이 사용될 수 있다. 좌제의 기제로는 위텝솔(witepsol), 마크로골, 트윈(tween) 61, 카카오지, 라우린지, 글리세로제라틴 등이 사용될 수 있다.That is, the composition of the present invention can be administered in various formulations of oral and parenteral administration at the time of actual clinical administration. In the case of formulation, a diluent such as a filler, an extender, a binder, a wetting agent, a disintegrant, . ≪ / RTI > Solid formulations for oral administration include tablets, pills, powders, granules, capsules, etc. These solid preparations may be, for at least one or more excipients, for example, the gene delivery system, cells or TXNIP protein comprising TXNIP gene, starch, calcium Calcium carbonate, sucrose, lactose, gelatin, or the like. In addition to simple excipients, lubricants such as magnesium stearate talc may also be used. Examples of the liquid preparation for oral use include suspensions, solutions, emulsions and syrups, and various excipients such as wetting agents, sweetening agents, fragrances, preservatives and the like may be included in addition to water and liquid paraffin, which are simple diluents commonly used . Formulations for parenteral administration may include sterile aqueous solutions, non-aqueous solutions, suspensions, emulsions, freeze-dried preparations, and suppositories. Propylene glycol, polyethylene glycol, vegetable oil such as olive oil, injectable ester such as ethyl oleate, and the like can be used as the non-aqueous solvent and suspension agent. Examples of the suppository base include witepsol, macrogol, tween 61, cacao butter, laurin, glycerogelatin and the like.

본 발명의 조성물은 목적하는 방법에 따라 경구 투여하거나 비경구 투여할 수 있으며, 비경구 투여시 피부 외용 또는 복강내주사, 직장내주사, 피하주사, 정맥주사, 근육내 주사 또는 흉부내 주사 주입방식을 선택하는 것이 바람직하다. 투여량은 환자의 체중, 연령, 성별, 건강상태, 식이, 투여시간, 투여방법, 배설률 및 질환의 중증도 등에 따라 그 범위가 다양하다.The composition of the present invention may be administered orally or parenterally in accordance with the intended method, and may be administered orally, parenterally or intraperitoneally, rectally, subcutaneously, intravenously, intramuscularly, . The dosage varies depending on the patient's body weight, age, sex, health condition, diet, administration time, administration method, excretion rate, and severity of disease.

투약 단위는, 예를 들면 개별 투약량의 1, 2, 3 또는 4배를 함유하거나 또는 1/2, 1/3 또는 1/4배를 함유할 수 있다. 개별 투약량은 구체적으로 유효 약물이 1회에 투여되는 양을 함유하며, 이는 통상 1일 투여량의 전부, 1/2, 1/3 또는 1/4배에 해당한다. 본 발명의 조성물의 유효용량은 0.0001 ~ 10 g/㎏일 수 있고, 구체적으로 0.001 ~ 1 g/kg일 수 있으며, 하루 1 ~ 6회 투여될 수 있다. 그러나, 투여 경로, 질병의 중증도, 성별, 체중, 연령 등에 따라서 증감될 수 있으므로 상기 투여량이 어떠한 방법으로도 본 발명의 범위를 한정하는 것은 아니다.The dosage unit may contain, for example, 1, 2, 3 or 4 times the individual dose or may contain 1/2, 1/3 or 1/4 times the dose. The individual dosages specifically include amounts in which the active drug is administered in a single dose, which usually corresponds to the full, half, one-third, or one-fourth of the daily dose. The effective dose of the composition of the present invention may be 0.0001 to 10 g / kg, specifically 0.001 to 1 g / kg, and may be administered 1 to 6 times a day. However, the dosage may not be limited in any way because it may be increased or decreased depending on route of administration, severity of disease, sex, weight, age, and the like.

본 발명의 조성물은 단독으로, 또는 수술, 방사선 치료, 호르몬 치료, 화학 치료 및 생물학적 반응 조절제를 사용하는 방법들과 병용하여 사용할 수 있다.
The composition of the present invention may be used alone or in combination with methods using surgery, radiation therapy, hormone therapy, chemotherapy, and biological response modifiers.

본 발명은 TXNIP 유전자를 포함하는 유전자 전달체, 세포 또는 TXNIP 단백질을 유효성분으로 함유하는 면역증강용 건강식품을 제공한다.The present invention provides an immunomodulating health food containing as an active ingredient a gene carrier, cell or TXNIP protein comprising a TXNIP gene.

본 발명의 건강식품은 TXNIP 유전자를 포함하는 유전자 전달체, 세포 또는 TXNIP 단백질을 그대로 첨가하거나 다른 식품 또는 식품 성분과 함께 사용될 수 있고, 통상적인 방법에 따라 적절하게 사용될 수 있다.The health food of the present invention can be used as it is with the gene carrier, cell or TXNIP protein containing the TXNIP gene as it is or with other food or food ingredients, and can be suitably used according to conventional methods.

상기 건강식품의 종류에는 특별한 제한은 없다. 상기 TXNIP 유전자를 포함하는 유전자 전달체, 세포 또는 TXNIP 단백질을 첨가할 수 있는 식품의 예로는 육류, 소시지, 빵, 초콜릿, 캔디류, 스넥류, 과자류, 피자, 라면, 기타 면류, 껌류, 아이스크림류를 포함한 낙농제품, 각종 스프, 음료수, 차, 드링크제, 알코올음료 및 비타민 복합제 등이 있으며, 통상적인 의미에서의 건강식품을 모두 포함한다.There is no particular limitation on the kind of the health food. Examples of the food to which the TXNIP gene-containing gene carrier, cell or TXNIP protein can be added include dairy products including meat, sausage, bread, chocolate, candy, snacks, confectionery, pizza, ramen, other noodles, gums, Products, various soups, drinks, tea, drinks, alcoholic beverages, and vitamin complexes, and includes health foods in a conventional sense.

본 발명의 건강음료 조성물은 통상의 음료와 같이 여러 가지 향미제 또는 천연 탄수화물 등을 추가 성분으로서 함유할 수 있다. 상술한 천연 탄수화물은 포도당, 과당과 같은 모노사카라이드, 말토스, 슈크로스와 같은 디사카라이드, 및 덱스트린, 사이클로덱스트린과 같은 폴리사카라이드, 자일리톨, 소르비톨, 에리트리톨 등의 당알콜이다. 감미제로서는 타우마틴, 스테비아 추출물과 같은 천연 감미제나, 사카린, 아스파르탐과 같은 합성 감미제 등을 사용할 수 있다. 상기 천연 탄수화물의 비율은 본 발명의 조성물 100 당 일반적으로 약 0.01 ~ 0.04 g, 바람직하게는 약 0.02 ~ 0.03 g 이다.The health beverage composition of the present invention may contain various flavors or natural carbohydrates as an additional ingredient such as ordinary beverages. Such natural carbohydrates are monosaccharides such as glucose and fructose, disaccharides such as maltose and sucrose, and polysaccharides such as dextrin and cyclodextrin, and sugar alcohols such as xylitol, sorbitol and erythritol. Examples of sweeteners include natural sweeteners such as tau martin and stevia extract, synthetic sweeteners such as saccharin and aspartame, and the like. The ratio of the natural carbohydrate is generally about 0.01 to 0.04 g, preferably about 0.02 to 0.03 g per 100 of the composition of the present invention.

상기 외에 본 발명의 건강식품은 여러 가지 영양제, 비타민, 전해질, 풍미제, 착색제, 펙트산 및 그의 염, 알긴산 및 그의 염, 유기산, 보호성 콜로이드 증점제, pH 조절제, 안정화제, 방부제, 글리세린, 알코올, 탄산음료에 사용되는 탄산화제 등을 함유할 수 있다. 그 밖에 천연 과일주스, 과일주스 음료 및 야채 음료의 제조를 위한 과육을 함유할 수 있다. 이러한 성분은 독립적으로 또는 혼합하여 사용할 수 있다. 이러한 첨가제의 비율은 크게 중요하진 않지만 본 발명의 조성물 100 중량부 당 0.01 ~ 0.1 중량부의 범위에서 선택되는 것이 일반적이다.
In addition to the above, the health food of the present invention may contain various nutrients, vitamins, electrolytes, flavors, colorants, pectic acids and salts thereof, alginic acid and its salts, organic acids, protective colloid thickeners, pH adjusters, stabilizers, preservatives, glycerin, , A carbonating agent used in carbonated drinks, and the like. It may also contain flesh for the production of natural fruit juices, fruit juice drinks and vegetable drinks. These components may be used independently or in combination. The proportion of such additives is not critical, but is generally selected in the range of 0.01 to 0.1 parts by weight per 100 parts by weight of the composition of the present invention.

본 발명은 TXNIP 유전자를 포함하는 유전자 전달체, 세포 또는 TXNIP 단백질을 유효성분으로 함유하는 암 전이억제용 약학적 조성물을 제공한다.The present invention provides a pharmaceutical composition for inhibiting cancer metastasis comprising, as an active ingredient, a gene carrier, cell or TXNIP protein comprising a TXNIP gene.

본 발명은 XNIP 유전자를 포함하는 유전자 전달체, 세포 또는 TXNIP 단백질을 유효성분으로 함유하는 암 전이억제용 건강식품을 제공한다.The present invention provides a health food for inhibiting cancer metastasis comprising as an active ingredient a gene carrier, cell or TXNIP protein comprising an XNIP gene.

상기 암은 유방암, 간암, 위암, 결장암, 골암, 췌장암, 두부 또는 경부 암, 자궁암, 난소암, 직장암, 식도암, 소장암, 항문부근암, 결장암, 나팔관암종, 자궁내막암종, 자궁경부암종, 질암종, 음문암종, 호지킨병, 전립선암, 방광암, 신장암, 수뇨관암, 신장세포암종, 신장골반암종 및 중추신경계 종양으로 이루어진 군으로부터 선택되는 것이 바람직하고, 본 발명의 바람직한 실시예에 의하면 폐암인 것이 더욱 바람직하나 이에 한정하지 않는다.
The cancer may be selected from the group consisting of breast cancer, liver cancer, stomach cancer, colon cancer, bone cancer, pancreatic cancer, head or neck cancer, uterine cancer, ovarian cancer, rectum cancer, esophageal cancer, small bowel cancer, anorectal cancer, colon cancer, fallopian tube carcinoma, endometrial carcinoma, The cancer is preferably selected from the group consisting of carcinoma, vulvar carcinoma, Hodgkin's disease, prostate cancer, bladder cancer, kidney cancer, ureter cancer, renal cell carcinoma, renal pelvic carcinoma and central nervous system tumor. According to a preferred embodiment of the present invention, , But is not limited thereto.

본 발명은 TXNIP 유전자를 포함하는 유전자 전달체, 세포 또는 TXNIP 단백질을 유효성분으로 함유하는 혈액질환 예방 및 치료용 약학적 조성물을 제공한다.The present invention provides a pharmaceutical composition for preventing and treating blood diseases, which comprises a gene carrier, cell or TXNIP protein containing TXNIP gene as an active ingredient.

본 발명은 TXNIP 유전자를 포함하는 유전자 전달체, 세포 또는 TXNIP 단백질을 유효성분으로 함유하는 혈액질환 예방 및 개선용 건강식품을 제공한다.The present invention provides a health food for prevention and improvement of blood diseases containing a gene carrier, cell or TXNIP protein containing TXNIP gene as an active ingredient.

상기 혈액질환은 빈혈, 다혈증, 백혈병, 골수이형성증, 골수 섬유증, 혈소판 감소증으로 구성된 군으로부터 선택된 어느 하나인 것이 바람직하나 이에 한정하지 않는다.
Preferably, the blood disease is any one selected from the group consisting of anemia, plethora, leukemia, myelodysplasia, myelofibrosis and thrombocytopenia.

또한, 본 발명의 TXNIP mRNA 또는 단백질은 이의 발현수준은 면역증강, 암 전이억제, 및 혈액질환을 진단하는데 사용할 수 있고, 아울러, 이들 발현수준을 조절하는 후보약물을 선별하기 위한 면역증강, 암 전이억제, 및 혈액질환 후보약물의 스크리닝에 사용될 수 있다.
In addition, the expression level of TXNIP mRNA or protein of the present invention can be used to diagnose immune enhancement, cancer metastasis inhibition, and blood disease, and also can be used for immunologic enhancement, cancer metastasis for screening candidate drugs that regulate these expression levels Inhibition, and screening of candidate drugs for blood diseases.

이하, 본 발명을 실시예에 의해서 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to examples.

단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명이 하기 실시예 및 제조예에 의해서 한정되는 것은 아니다.
However, the following examples are illustrative of the present invention, and the present invention is not limited by the following examples and production examples.

<< 실시예Example 1>  1> TXNIPTXNIP 결핍이 조혈모세포( Deficiency is hematopoietic stem cell ( hematopoietichematopoietic stemstem cellcell ; ; HSCHSC )에 미치는 영향 확인),

<1-1> 실험동물의 준비<1-1> Preparation of experimental animals

TXNIP 녹아웃(knockout; KO) 마우스는 공지된 방법대로 제조하였고(Lee et al., 2005), 유사유전자형의(congenic) CD45.1+ C57BL/6 마우스 및 p53 -/- 마우스(B6.129S2-Trp53tm1Tyj/J)는 잭슨 연구소(Jackson Laboratory, 미국)에서 구입하였다. 모든 마우스는 12시간 간격으로 빛-어둠이 반복되는 무균 동물시설에서 사육되었고, 8 내지 12주의 어린 마우스 및 22 내지 23개월의 늙은 마우스가 실험에 사용되었다. p53 -/- , Txnip -/- (KO) 및 야생형(wild type; WT) 마우스에 파라콰트(paraquat) 40, 50 또는 80 ㎎/㎏, 및 N-아세틸-시스테인(N-acetyl-cysteine; NAC, Sigma-Aldrich, 미국) 100 ㎎/㎏ 또는 PFT-α(Sigma, 미국) 5 ㎎/㎏을 복강 내에 주사하였다. 모든 실험은 실험동물연구소(institute for laboratory animal research)의 실험동물의 관리 및 사용을 위한 가이드(guide for the care and use of laboratory animals)에 준수하여 수행되었다.
TXNIP knockout (KO) mice were prepared according to known methods (Lee et al., 2005) and were used in congenic CD45.1 + C57BL / 6 mice and p53 - / - mice (B6.129S2-Trp53 tm1Tyj / J) was purchased from the Jackson Laboratory (Jackson Laboratory, USA). All mice were housed at a sterile animal facility where light-dark was repeated at 12-hour intervals, and 8 to 12 weeks of young mice and 22 to 23 months of old mice were used in the experiment. 50 or 80 mg / kg of paraquat and N-acetyl-cysteine (NAC) in p53 - / - , Txnip - / - (KO) and wild type Sigma-Aldrich, USA) or 5 mg / kg of PFT-alpha (Sigma, USA). All experiments were carried out in accordance with the guidelines for the management and use of laboratory animals by the Institute for Laboratory Animal Research.

<1-2> <1-2> TXNIPTXNIP 결핍에 의한 조혈모세포의 빈도( Frequency of Hematopoietic Stem Cells Due to Deficiency frequencyfrequency ) 감소효과 확인) Reduction effect confirmation

TXNIP 결핍이 조혈작용에 미치는 영향을 확인하기 위하여 어리거나(12주) 늙은(22 내지 23개월) Txnip +/+ (WT) 및 Txnip -/- (KO) 마우스로부터 조혈모세포(hematopoietic stem cell)의 빈도(frequency)를 분석하였다.To investigate the effect of TXNIP deficiency on hematopoietic activity, we used hematopoietic stem cells from Txnip + / + (WT) and Txnip - / - (KO) mice at 12 months of age (22 to 23 months) Frequency was analyzed.

구체적으로, 조혈줄기세포를 분석하기 위하여 쥐의 대퇴골, 경골과 좌골을 분리한 후, 막자사발을 이용하여 뼈로부터 골수세포를 분리하고 RPMI1640 배지에 현탁시킨 다음 원심분리하여 배지를 제거하고, 2% FBS가 포함된 PBS 완충용액으로 세포를 현탁시켜 원심분리 후 상층액을 제거하였다. 그리고나서 다시 한 번 2% FBS가 포함된 PBS 완충용액으로 재현탁한 후 세포의 수를 결정하고 107 개의 세포를 분주하였다. 리니지+(Lineage+) 세포를 염색하기 위하여 바이오틴(biotin)이 붙어 있는 Mac-1, Gr-1, Ter119, NK1.1, CD2 및 B220을 넣고, c-Kit(PE-Cy7), Sca-1(PE), CD150(PE-Cy5), CD48(APC-Cy7), CD34(FITC), CD135(APC)를 같이 첨가하여 25분간 4℃에서 반응시켰으며, 2% FBS가 포함된 PBS 완충용액으로 세포를 씻어내고 스트랩타비딘(streptavidin)이 붙어있는 BD Horizon V450으로 25분간 4℃에서 반응시켜 리니지+ 세포를 염색하였다. 상기 염색된 세포의 분석은 FACSanto II(BD Biosciences)를 사용하였다.Specifically, in order to analyze the hematopoietic stem cells, the femur, tibia and sciatica were separated from the femur, and bone marrow cells were separated from the bone using a mortar bowl, suspended in RPMI1640 medium, centrifuged to remove the medium, Cells were suspended in PBS buffer containing FBS and centrifuged to remove the supernatant. After resuspension with PBS buffer containing 2% FBS, the number of cells was determined and 10 7 cells were added. Lineage + (Lineage +) with biotin (biotin) attached to stain the cells Mac-1, Gr-1, Ter119, NK1.1, into the CD2 and B220, c-Kit (PE- Cy7), Sca-1 (PE), CD150 (PE-Cy5), CD48 (APC-Cy7), CD34 (FITC) and CD135 (APC) were added thereto and reacted at 4 ° C for 25 minutes. Cells were washed and stained with BD Horizon V450 with streptavidin for 25 min at 4 ° C to stain Lineage + cells. The stained cells were analyzed using FACSanto II (BD Biosciences).

그 결과, 도 1A에 나타난 바와 같이, 늙은 야생형 마우스에서 HSC 빈도가 현저히 높고, 반면에 어린 녹아웃 마우스에서는 상대적으로 HSC 빈도가 감소한 것을 확인하였다(도 1A).
As a result, it was confirmed that the HSC frequency was significantly higher in old wild-type mice as shown in FIG. 1A, while the HSC frequency was relatively decreased in young knockout mice (FIG. 1A).

<< 실시예Example 2>  2> TXNIPTXNIP 결핍에 의한 경쟁적 골수증식 능력( Competitive myeloproliferative capacity due to deficiency ( competitivecompetitive repopulationrepopulation capacity) 감소효과 확인 capacity reduction effect

<2-1> 골수(<2-1> Bone marrow ( bonebone marrowmarrow ; ; BMBM ) 세포의 준비) Preparation of cells

전체 골수 세포는 2% FBS가 포함된 RPMI-1640 배지(WelGENE, 대한민국)에서 배양된 마우스의 대퇴골(femurs), 경골(tibias), 무명골(hipbones) 및 견갑골(shoulder bone)의 조직을 갈아서 분리하였고, 적혈구(red blood cell; RBC)는 ACK 완충액[0.15 M NH4Cl, 1.0 mM KHCO3, 0.1 mM EDTA(pH 7.0)]을 이용하여 용해되거나, 용해되지 않았다. 또한, 상기 세포는 여과기를 이용하여 여과되었다. 골수 세포는 당업계의 당업자에게 잘 알려진 방법으로 염색되었고(Jeong et al., 2009), FACSCanto II를 이용하여 분석되었으며, Lineage-c-Kit+Sca+(LKS) 세포는 FACSAria 세포 선별기(sorter)로 각각 분리되었다. Lineage-c-kit+(LK) 세포의 준비를 위해서는 MACS 정제 방법을 사용하였다.
Whole bone marrow cells were obtained by grinding tissue of femurs, tibias, hipbones and shoulder bones of mice cultured in RPMI-1640 medium (WelGENE, Korea) containing 2% FBS , And red blood cells (RBC) were dissolved or not dissolved using ACK buffer [0.15 M NH 4 Cl, 1.0 mM KHCO 3 , 0.1 mM EDTA (pH 7.0)]. Further, the cells were filtered using a filter. The bone marrow cells were stained by a method well known to those skilled in the art (Jeong et al., 2009), analyzed using FACSCanto II, and Lineage - c-Kit + Sca + (LKS) cells were stained with FACSAria cell sorter Respectively. Lineage - c - kit + (LK) cells were prepared by MACS purification method.

<2-2> <2-2> TXNIPTXNIP 결핍에 의한 경쟁적 골수증식 능력을 감소효과 확인 Decreased competitive bone marrow proliferative capacity by deficiency

상기 실시예 <2-1>의 방법으로 준비된 세포주를 이용하여 골수증식 능력을 확인하기 위하여 골수이식(bone marrow transplantation; BMT)을 수행하였다.Bone marrow transplantation (BMT) was performed to confirm the bone marrow proliferation using the cell line prepared by the method of Example <2-1>.

구체적으로, 어리거나 늙은 야생형 또는 TXNIP 녹아웃 마우스(CD45.2+) 또는 이의 유사유전자형의 마우스(CD45.1+)로부터 수득한 전체 골수세포(whole bone marrow; WBM) 2.0 x 106 또는 LSK 세포 5.0 x 103개를 잘 섞어 혼합물을 제조하고, 상기 혼합물을 방사능을 조사한(9 Gy) 야생형인 유사유전자형(CD45.1+) 수여체(recipient)의 정맥 내로 주사하였다. 공여체(donor)-유래 세포의 골수증식은 표면 마커에 대한 항체를 이용하여 꼬리 혈관(tail vein) 및 골수 세포에 PB 염색을 통해 관찰되었다. 비-경쟁적 이식을 위해서, 야생형 또는 TXNIP 녹아웃 마우스의 전체 골수세포 2.5 x 106개를 방사능 조사한(9 Gy) 야생형인 유사유전자형(CD45.1+) 수여(recipient) 마우스의 정맥 내로 주사하였고, 8주 후에 분석을 수행하였다. 또한, PB 염색은 꼬리 정맥으로부터 혈액을 채취하여 ACK 용액(0.15 M NH4Cl, 1.0 mM KHCO3, 0.1 mM MEDTA, pH 7.4)를 처리하여 적혈구를 제거하고 CD45.1(FITC) 및 CD45.2(APC) 항체로 2% FBS가 포함된 PBS 완충용액으로 세포를 현탁하여 4℃에서 20분간 염색한 후, 2% FBS가 포함된 PBS 완충용액으로 세포를 세척하고, 다시 현탁하여 유세포 분석기로 분석하였다.Specifically, whole bone marrow (WBM) 2.0 x 10 &lt; 6 &gt; obtained from a young or old wild-type or TXNIP knockout mouse (CD45.2 + ) or its analogous genotype (CD45.1 + ) or LSK cells 5.0 x 10 3 were mixed to prepare a mixture and the mixture was injected intravenously into a radioactively irradiated (9 Gy) wild-type, quasi-genotype (CD45.1 + ) recipient. Donor-derived cell marrow proliferation was observed via PB staining of tail vein and bone marrow cells using antibodies against surface markers. Non-competitive for the transplantation, it was injected intravenously in wild-type or whole bone marrow cells of a mouse knockout TXNIP a 2.5 x 10 6 irradiated radiation (9 Gy) of the wild-type genotype similar (CD45.1 +) granted (recipient) mice, 8 Analysis was performed after a week. PB staining was performed by collecting blood from the tail vein and treating the ACK solution (0.15 M NH 4 Cl, 1.0 mM KHCO 3 , 0.1 mM MEDTA, pH 7.4) to remove the red blood cells and incubated with CD45.1 (FITC) and CD45.2 (APC) antibody, the cells were suspended in PBS buffer containing 2% FBS, stained at 4 ° C for 20 minutes, washed with PBS buffer solution containing 2% FBS, suspended again, analyzed with a flow cytometer Respectively.

그 결과, 도 1C에 나타난 바와 같이 늙은 야생형 마우스의 LKS 및 전체 골수세포의 골수증식 능력은 약간 변화를 나타냈으나, 반면 늙은 TXNIP 녹아웃 마우스의 LKS 및 전체 골수세포의 골수증식 능력은 현저히 감소함을 확인하였다(도 1C). 또한, 도 1D에 나타난 바와 같이 젊거나 늙은 TXNIP 녹아웃 마우스로부터 수여받은 수여체의 전체 골수세포는 조혈모세포의 빈도 및 야생형 마우스로부터 수여된 전구세포(progenitor)에 비하여 현저히 감소함을 확인하였다(도 1D).
As a result, as shown in FIG. 1C, the bone marrow proliferative capacity of LKS and whole bone marrow cells of old wild-type mice was slightly changed, whereas the bone marrow proliferative capacity of LKS and whole bone marrow cells of old TXNIP knockout mice was significantly decreased (Fig. 1C). In addition, as shown in Fig. 1D, it was confirmed that the whole bone marrow cells of the recipient body obtained from young or old TXNIP knockout mice were significantly reduced in the frequency of hematopoietic stem cells and the progenitor from wild-type mice (Fig. 1D ).

<2-3> <2-3> TXNIPTXNIP 결핍에 의한 공여체-유래 골수 세포의 감소효과 확인 Decreased donor-derived bone marrow cells by deficiency

상기 실시예 <2-2>에서 수행된 골수이식을 2번 반복하여 공여체-유래 골수세포의 증식 능력을 확인하기 위하여 단계적 BMT 검사(serial BMT assay)를 수행하였다. The BMT assay (serial BMT assay) was performed to confirm the proliferative capacity of the donor-derived bone marrow cells by repeating the bone marrow transplantation performed in Example <2-2> twice.

구체적으로, 공여체(CD45.2)로부터 분리된 골수세포(2.0 x 106) 및 수여체(CD45.1)로부터 분리된 골수세포(1.0 x 106)를 잘 섞어주고 방사선을 조사한(9 Gy) 수여체(CD45.1)의 꼬리 정맥에 투여한 후, 16주 후에 공여체 및 수여체의 세포가 섞여있는 수여체의 골수세포(2.0 x 106)을 분리하여 다시 방사선을 조사한(9 Gy) 수여체(CD45.1)의 꼬리 정맥에 투여한 후, 16주 후에 수여체에서 PB 및 골수세포를 분석하였다.Specifically, to give mixture of bone marrow cells (1.0 x 10 6) separated from the bone marrow cells (2.0 x 10 6) and can booty (CD45.1) isolated from the donor (CD45.2) well irradiated with the radiation (9 Gy) After 16 weeks, the bone marrow cells (2.0 x 10 6 ) containing the donor and recipient cells were isolated and then irradiated (9 Gy) to the tail vein of the recipient (CD45.1) After administration to the tail vein of the female body (CD45.1), PB and bone marrow cells were analyzed in the recipient after 16 weeks.

그 결과, 도 1E 및 1F에 나타난 바와 같이 공여체-유래 골수 세포의 증식능력이 TXNIP 녹아웃 마우스 유래한 수여체에서 현저히 감소하고(도 1E), 또한, 골수에 존재하는 조혈모세포 또는 전구세포를 확인한 결과, TXNIP 녹아웃 마우스 유래한 수여체에서 현저히 감소함을 확인하였다(도 1F).
As a result, as shown in Figs. 1E and 1F, the proliferative capacity of the donor-derived bone marrow cells was markedly decreased in the recipient body derived from the TXNIP knockout mice (Fig. 1E), and the hematopoietic stem cells or progenitor cells present in the bone marrow , And significantly decreased in the recipient body derived from TXNIP knockout mouse (Fig. 1F).

<< 실시예Example 3>  3> 산화적Oxidative 스트레스 조건하에서  Under stress conditions TXNIPTXNIP of 조혈세포Hematopoietic 활성산소 조절효과 확인 Check the effect of active oxygen control

<3-1> <3-1> TXNIPTXNIP 녹아웃 마우스에서 유래한 골수세포의 활성산소 수준 증가 확인 Identification of increased levels of free radicals in bone marrow cells derived from knockout mice

골수이식 후, 초기 조혈모세포의 고갈이 활성산소의 축적에 의한 것인지 확인하기 위하여 세포 내 활성산소의 수준을 측정하였다.After bone marrow transplantation, the levels of active oxygen in the cells were measured to determine if depletion of early hematopoietic stem cells was due to accumulation of free radicals.

구체적으로, 어리거나 늙은 야생형 또는 TXNIP 마우스로부터 유래한 세포에서 세포 내 활성산소의 양을 측정하기 위하여 유세포분석기(flow cytometry)를 사용하였고, 이때, 활성산소-특이적 형광 탐침(ROS-specific fluorescent probe)인 DCF(C6827) 및 DHE(D11347)(Invitrogen, 미국)가 사용되었다. 실험에 사용될 세포를 분리하자마자 2% FBS를 포함하는 PBS에 최종농도가 각각 5 μM DFC 또는 2.5 μM DHE가 되도록 제조된 용액을 첨가하여 37℃ 배양기에서 15분 동안 반응시켜주었다. 활성산소-특이적 형광탐침 반응을 하기 전 조혈줄기세포를 분석하기 위하여 쥐의 대퇴골, 경골과 좌골을 분리한 후 막자사발을 이용하여 뼈로부터 골수세포를 분리하고 RPMI1640 배지에 현탁시킨 다음, 원심분리하여 배지를 제거하고 2% FBS가 포함된 PBS 완충용액으로 세포를 현탁시켜 원심분리 후 상층액을 제거하였다. 다시 한번 2% FBS가 포함된 PBS 완충용액으로 현탁시킨 후 세포의 수를 결정하고 107 개의 세포를 분주하였다. 상기 방법으로 조혈줄기세포를 염색하고 2% FBS를 포함하는 PBS에 최종농도가 각각 5 μM DFC 또는 2.5 μM DHE가 되도록 제조된 용액을 첨가하여 37℃ 배양기에서 15분 동안 반응시킨 후, 2% FBS를 포함하는 PBS로 상기 세포를 세척하고 유세포 분석기를 이용하여 세포분석을 수행하였다. Specifically, flow cytometry was used to measure the amount of intracellular reactive oxygen species in cells from young or old wild-type or TXNIP mice, where ROS-specific fluorescent probes ) DCF (C6827) and DHE (D11347) (Invitrogen, USA) were used. As soon as the cells to be used for the experiment were separated, a solution prepared so as to have a final concentration of 5 μM DFC or 2.5 μM DHE in PBS containing 2% FBS was added and reacted in a 37 ° C. incubator for 15 minutes. In order to analyze the hematopoietic stem cells before the reactive oxygen-specific fluorescence probe reaction, the femur, tibia and sciatica of the rats were separated, the bone marrow cells were separated from the bone using a mortar bowl, suspended in RPMI1640 medium, The medium was removed, and the cells were suspended in PBS buffer containing 2% FBS. After centrifugation, the supernatant was removed. Once again, the cells were suspended in PBS buffer containing 2% FBS, and the number of cells was determined, and 10 7 cells were dispensed. Hematopoietic stem cells were stained with the above method, and a solution prepared so as to have a final concentration of 5 [mu] M DFC or 2.5 [mu] M DHE in PBS containing 2% FBS was added and incubated at 37 [deg.] C for 15 minutes. Lt; / RTI &gt; and the cell was analyzed using a flow cytometer.

그 결과, 도 2A에 나타난 바와 같이 늙은 TXNIP 녹아웃 마우스 유래 골수세포가 야생형 대조군과 비교하여 활성산소의 수준이 현저히 증가하는 것을 확인하였다(도 2A).
As a result, as shown in Fig. 2A, it was confirmed that the bone marrow cells derived from old TXNIP knockout mouse significantly increased the levels of active oxygen compared with the wild type control (Fig. 2A).

<3-2> <3-2> TXNIPTXNIP 녹아웃 마우스 유래 골수세포 이식 마우스에서 활성산소 수준 증가 확인 Increased levels of active oxygen in knockout mouse-derived bone marrow transplant mice

TXNIP 녹아웃 마우스 유래 골수세포를 유지하는데 있어서 증가한 활성산소의 영향을 확인하기 위하여 전체 골수세포(CD45.2+)를 방사선을 조사한 야생의 유사유전자형(CD45.1+) 수여체에 이식하고 9개월 후, 세포 내 활성산소의 수준을 상기 실시예 <2-1>의 방법을 이용하여 측정하였다.TXNIP knockout mice after total bone marrow cells (CD45.2 +) similar to the genotype of wild irradiating radiation to the implant (CD45.1 +), and can booty 9 months to determine the effect of the increase of free radicals in maintaining the bone marrow-derived cells , And the level of active oxygen in the cells was measured using the method of Example <2-1> above.

그 결과, 도 2B에 나타난 바와 같이 TXNIP 녹아웃 유래 골수세포에 있어서 활성산소의 수준이 현저히 높음을 확인하였다(도 2B). 이는 본 발명의 TXNIP가 공지된 바와 같이 티오레독신(thioredoxin)을 억제하는 산화촉진제(pro-oxidant)로서의 기능(Lee et al., 2005; Patwari et al., 2006; Schulze et al., 2002)외에 다른 메카니즘에 의해서 활성산소로부터 조혈세포를 보호하는 것을 나타낸다.
As a result, as shown in FIG. 2B, it was confirmed that the levels of active oxygen in the TXNIP knockout-derived bone marrow cells were remarkably high (FIG. 2B). This is because the TXNIP of the present invention functions as a pro-oxidant which inhibits thioredoxin (Lee et al., 2005; Patwari et al., 2006; Schulze et al., 2002) Which protects hematopoietic cells from free radicals by other mechanisms.

<< 실시예Example 4>  4> 조혈세포에서In hematopoietic cells TXNIPTXNIP 에 의한 항산화 활성 확인Antioxidant activity

<4-1> <4-1> 산화적Oxidative 스트레스 조건하에서  Under stress conditions TXNIPTXNIP 의 결핍에 의한 활성산소 증가 유도효과 확인Of Inhibiting the Increase of Active Oxygen

산화적 스트레스하의 조혈세포에서 TXNIP의 항산화 기능을 확인하기 위하여 어린 마우스에서 활성산소의 수준을 측정하였다.To determine the antioxidant function of TXNIP in hematopoietic cells under oxidative stress, levels of reactive oxygen species in young mice were measured.

구체적으로, 강한 산화적 스트레스 유도물질(inducer)인 파라콰트(paraquat)를 어린 마우스의 복강 내에 주사한 뒤, 세포 내 활성산소의 수준을 상기 실시예 <2-1>의 방법으로 측정하였다.Specifically, paraquat, which is a strong oxidative stress inducer, was injected into the abdominal cavity of a young mouse, and the level of active oxygen in the cell was measured by the method of Example <2-1> above.

그 결과, 도 2C에 나타난 바와 같이 TXNIP 녹아웃 마우스 유래한 골수세포에서 활성산소의 수준이 유의적으로 높은 것을 확인하였다(도 2C).
As a result, it was confirmed that levels of reactive oxygen species were significantly higher in bone marrow cells derived from TXNIP knockout mouse as shown in FIG. 2C (FIG. 2C).

<4-2> <4-2> 산화적Oxidative 스트레스 조건하에서  Under stress conditions TXNIPTXNIP 의 결핍에 의한 세포사멸(Cell death due to deficiency of apoptosisapoptosis ) 유도효과 확인) Confirmation of induction effect

TXNIP 결핍이 산화적 스트레스에 의한 활성산소를 증가시키고, 또한 이에 따른 세포사멸을 유도하는지 확인하였다.TXNIP deficiency was found to increase reactive oxygen species by oxidative stress and induce apoptotic cell death.

구체적으로, 강한 산화적 스트레스 유도물질(inducer)인 파라콰트(paraquat, 40 ㎎/㎏)를 어린 마우스의 복강 내에 주사한 뒤 마우스로부터 골수세포를 분리하고, 조혈줄기세포를 염색한 후 결합(binding) 용액에 현탁한 세포에 Annexin V(BD Bioscience)를 5 ㎕ 첨가하여 빛이 차단된 상온(25℃)에서 15분간 반응시킨 뒤, 결합 용액을 적당히 추가하여 유세포 분석기를 사용하여 세포를 분석하였다. Specifically, bone marrow cells were isolated from mice after injecting paraquat (40 mg / kg), which is a strong oxidative stress inducer, into the abdominal cavity of young mice, staining hematopoietic stem cells, After 5 μl of Annexin V (BD Bioscience) was added to the cells suspended in the solution, the reaction was allowed to proceed at room temperature (25 ° C) for 15 minutes, and the cells were analyzed using a flow cytometer.

그 결과, 도 2D에 나타난 바와 같이 TXNIP 녹아웃 마우스 유래한 골수세포에서 세포 사멸이 현저히 증가하였고(도 2D), 이는 TXNIP 녹아웃 조혈모세포가 활성산소에 더욱 민감함을 나타낸다.
As a result, as shown in FIG. 2D, cell death was significantly increased in bone marrow cells derived from TXNIP knockout mouse (FIG. 2D), indicating that TXNIP knockout hematopoietic stem cells were more sensitive to active oxygen.

<< 실시예Example 5>  5> TXNIPTXNIP end 산화적Oxidative 스트레스 조건하에서 조혈모세포의 골수증식 능력을 조절 Controlling myeloproliferative capacity of hematopoietic stem cells under stress conditions

<5-1> <5-1> 산화적Oxidative 스트레스 조건하에서  Under stress conditions TXNIPTXNIP 녹아웃 마우스의 골수증식 능력 감소 확인 Decreased myeloproliferative capacity of knockout mouse

조혈모세포의 골수증식 능력에 있어 산화적 스트레스의 영향을 확인하기 위하여 경쟁적 골수증식 검사(competitive repopulation assay)를 상기 실시예 <2-2>의 방법으로 수행하였다.To confirm the effect of oxidative stress on the myeloproliferative capacity of hematopoietic stem cells, a competitive repopulation assay was performed by the method of Example <2-2> above.

그 결과, 도 3B 및 3C에 나타난 바와 같이 산화적 스트레스 조건하에서 TXNIP 녹아웃 마우스 유래 골수세포는 골수증식 능력 및 조혈모세포 빈도가 감소한 것을 확인하였다(도 3B 및 3C)
As a result, as shown in FIGS. 3B and 3C, TXNIP knockout mouse-derived bone marrow cells showed decreased myeloproliferative capacity and hematopoietic stem cell frequency under oxidative stress conditions (FIGS. 3B and 3C)

<5-2> <5-2> 산화적Oxidative 스트레스 조건하에서  Under stress conditions TXNIPTXNIP 녹아웃 마우스 비장에서의  Knockout Mouse in the Spleen 집락형Colony type 성단위 감소확인Confirm declining unit

산화적 스트레스 조건하에서 TXNIP 녹아웃 마우스 유래 골수세포가 비장에서 집락형성을 확인하기 위하여 집락형성단위-비장(colony forming unit-spleen; CFU-S)을 수행하였다.Under oxidative stress conditions, TXNIP knockout mouse derived bone marrow cells underwent colony forming unit-spleen (CFU-S) to identify colony formation in the spleen.

구체적으로, 방사선 조사(9 Gy)한 야생형의 유사유전자형(CD45.1+) 수여체에 야생형 또는 TXNIP 녹아웃 마우스에 산화적 스트레스를 유발하기 위해 파라콰트를 처리한 1 x 105개의 골수세포를 정맥에 주사하였다. 이때 대조군 마우스에는 PBS를 처리해 주었다. 상기 마우스에서 비장을 분리하여 카르노이 용액(Carnoy's solution)[60% 에탄올, 30% 클로로포름, 10% 아세트산(V/V)]에 고정하고, 7일 후 미세한 콜로니(microscopic colonies)의 수를 세었다. Specifically, 1 x 10 5 bone marrow cells treated with paraquat to induce oxidative stress in wild-type or TXNIP knockout mice to irradiated (9 Gy) wild-type pseudotypic (CD45.1 + ) recipients were injected intravenously Respectively. At this time, control mice were treated with PBS. The spleen was separated from the mice and fixed in a Carnoy's solution (60% ethanol, 30% chloroform, 10% acetic acid (V / V)) and the number of microscopic colonies was counted after 7 days.

그 결과, 도 3D에 나타난 바와 같이 산화적 스트레스 조건하에서 TXNIP 녹아웃 마우스 유래 골수세포의 집락형성단위-비장 수가 유의적으로 감소하는 것을 확인하였다(도 3D).
As a result, it was confirmed that the colony forming unit-spleen number of bone marrow cells derived from TXNIP knockout mouse was significantly reduced under oxidative stress conditions (FIG. 3D), as shown in FIG. 3D.

<5-3> <5-3> 산화적Oxidative 스트레스 조건하에서  Under stress conditions TXNIPTXNIP 녹아웃 마우스의 생존율 감소 확인 Reduced survival rate of knockout mice

산화적 스트레스 조건하에서 TXNIP 녹아웃 마우스의 생존율을 확인하기 위하여 방사선보호 분석(radioprotection assay)을 수행하였다.A radioprotection assay was performed to determine the survival rate of TXNIP knockout mice under oxidative stress conditions.

구체적으로, 상기 실시예 <2-2>의 방법으로 골수이식을 수행한 뒤, 야생형 골수세포의 생존율이 60% 이상이 되도록 수를 조절하였다. 적혈구(red blood cell; RBC)는 공여체의 전체 골수세포로부터 분리되었고, 야생형에 PBS를 처리한 마우스, 야생형에 파라콰트를 처리한 마우스, TXNIP 녹아웃에 PBS를 처리한 마우스 및 TXNIP 녹아웃에 파라콰트를 처리한 마우스로부터 분리한 각각의 골수세포 1.5 x 105개를 방사선 조사된(9 Gy) 유사유전자형(CD45.1+) 수여체에 주사하였다. 상기 실험의 결과는 정상적인 혈액생성 과정으로 인해서 공여체 골수세포로부터 충분한 양의 조혈모세포를 받은 마우스는 골수이식 후에 생존이 가능할 수 있는 이유를 나타낸다. 또한, 수여체 생존율은 매일 기록되었고, 카플란-메이어 생존곡선(Kaplan-Meier survival curve)로 표시되었다.Specifically, the bone marrow transplantation was performed by the method of Example < 2-2 &gt;, and the number of the bone marrow cells was controlled so that the survival rate of the wild type bone marrow cells was more than 60%. Red blood cells (RBCs) were isolated from the whole bone marrow cells of the donors and were treated with PBS in the wild type, wild type paraquat treated mice, PBS treated with TXNIP knockout, and TXNIP knockout treated with paraquat 1.5 x 10 5 bone marrow cells isolated from mice were injected into irradiated (9 Gy) pseudotyped (CD45.1 + ) recipients. The results of this experiment indicate that mice that received a sufficient amount of hematopoietic stem cells from donor bone marrow cells due to normal blood production may be able to survive after bone marrow transplantation. In addition, graft survival was recorded daily and expressed as the Kaplan-Meier survival curve.

그 결과, 도 3E에 나타난 바와 같이 야생형과 비교하여, 산화적 스트레스 조건하에서 TXNIP 녹아웃 마우스 유래 골수세포는 낮은 생존율을 나타내었다(도 3E).
As a result, TXNIP knockout mouse-derived bone marrow cells showed low survival rate under oxidative stress conditions as compared to the wild type as shown in FIG. 3E (FIG. 3E).

<5-4> <5-4> TXNIPTXNIP 녹아웃 마우스로부터 분리된 조혈모세포의 골수증식 능력 감소확인 Decreased myeloproliferative capacity of hematopoietic stem cells isolated from knockout mouse

직접적으로 조혈모세포의 골수증식 능력을 확인하기 위하여 마우스로부터 LKS 세포(CD45.2+)를 분리하고, 경쟁적 골수증식 분석을 상기 실시예 <2-2>의 방법으로 수행하였다.LKS cells (CD45.2 +) were isolated from mice to confirm the myeloproliferative ability of the hematopoietic stem cells directly, and a competitive bone marrow proliferation assay was performed by the method of Example <2-2> above.

그 결과, 도 3F 및 3G에 나타난 바와 같이, 산화적 스트레스 조건하에서 TXNIP 녹아웃 마우스 유래된 LKS 세포주가 수여체에서 골수증식 능력 및 조혈모세포 빈도에 있어서 현저히 감소함을 확인하였다(도 3F 및 3G).As a result, as shown in FIGS. 3F and 3G, it was confirmed that the LKS cell line derived from the TXNIP knockout mice under the oxidative stress condition significantly decreased the myeloproliferative capacity and hematopoietic stem cell frequency in the recipient (FIGS. 3F and 3G).

따라서, 상기 결과는 TXNIP가 산화적 스트레스 조건하에서 활성산소의 수준을 조절함으로써 조혈모세포의 골수증식 능력을 유지함을 나타낸다.
Thus, the above results indicate that TXNIP maintains the ability of the hematopoietic stem cell to proliferate by regulating the level of reactive oxygen species under oxidative stress conditions.

<< 실시예Example 6> 생체 내에서  6> In vivo TXNIPTXNIP 의 항산화 효과 확인Antioxidative effect of

<6-1> <6-1> 산화적Oxidative 스트레스 조건하에서  Under stress conditions TXNIPTXNIP 녹아웃 마우스의 생존율 감소 확인 Reduced survival rate of knockout mice

조혈모세포 유지에서 TXNIP의 역할에 기초하여, 본 발명자들은 TXNIP 결핍이 조혈계(hematopoietic system)에 미치는 영향을 생체 내 산화적 스트레스에 대한 방어적인 면에서 확인해 보았다. Based on the role of TXNIP in hematopoietic stem retention, the present inventors have examined the effect of TXNIP deficiency on the hematopoietic system in terms of protection against oxidative stress in vivo.

구체적으로, 산화적 스트레스 환경을 유도하기 위하여 40 ㎎/㎏의 파라콰트를 마우스에 주입하였고, 실험은 상기 실시예 <5-3>의 방법으로 수행되었다. Specifically, in order to induce an oxidative stress environment, 40 ㎎ / kg of paraquat was injected into mice, and the experiment was carried out by the method of Example <5-3>.

그 결과, 도 4A에 나타난 바와 같이 모든 TXNIP 녹아웃 마우스는 160 시간 내에 죽었으며, 그러나 야생형 마우스는 상기 시간 내에 죽지 않았고, 2개월 이상 생존하였다. 또한, 항산화제인 N-아세틸시스테인(N-acetylcysteine, NAC)을 처리한 군에서는 TXNIP 녹아웃 마우스임에도 불구하고 약 70%의 회복율을 나타냈다(도 4A)
As a result, all of the TXNIP knockout mice died within 160 hours, as shown in Figure 4A, but the wild type mice did not die within that time and survived more than 2 months. In addition, in the group treated with N-acetylcysteine (NAC), which was an antioxidant, the recovery rate was about 70% despite the TXNIP knockout mouse (FIG. 4A)

<6-2> <6-2> 산화적Oxidative 스트레스 조건하에서  Under stress conditions TXNIPTXNIP 녹아웃 마우스 유래 골수를 이식한 수여체의 생존율 감소 확인 Decreased survival rate of knockout mouse-derived bone marrow transplant recipients

다른 조직에 있어서 독성효과의 가능성을 배제하고, 산화적 스트레스에 대한 조혈세포의 진성반응(intrinsic response)을 결정하기 위하여 골수이식을 상기 실시예 <2-2>의 방법으로 수행하였고, 8주 후, 산화적 스트레스 환경을 유도하기 위하여 40 ㎎/㎏의 파라콰트를 마우스에 주입하였다.Bone marrow transplantation was performed by the method of Example <2-2> to exclude the possibility of toxic effects in other tissues and to determine the intrinsic response of the hematopoietic cells to oxidative stress. After 8 weeks , And 40 ㎎ / ㎏ of paraquat was injected into mice to induce an oxidative stress environment.

그 결과, 도 4B에 나타난 바와 같이 TXNIP 녹아웃 마우스 유래 전체 골수세포를 받은 마우스는 150 시간 내에 죽었으나, 야생형 마우스 유래 전체 골수세포를 받은 마우스는 70%가 생존하였다(도 4B).
As a result, as shown in FIG. 4B, mice receiving whole bone marrow cells derived from TXNIP knockout mice died within 150 hours, whereas mice receiving whole wild-type mouse-derived bone marrow cells survived 70% (FIG. 4B).

<6-3> <6-3> 산화적Oxidative 스트레스 조건이  Stress condition TXNIPTXNIP 녹아웃 마우스의 비장 및 흉선( Spleen and Thymus of Knockout Mice thymusthymus )에 미치는 영향 확인),

상기 실시예 <6-3>의 실험에 사용된 마우스에서 비장을 분리하여 산화적 스트레스 조건하에서 TXNIP 녹아웃 마우스 및 야생형 마우스의 비장을 관찰하였다.Spleens were isolated from mice used in the experiment of Example < 6-3 > and spleen of TXNIP knockout mice and wild type mice were observed under oxidative stress conditions.

구체적으로, 8주령의 야생형 마우스 및 TXNIP 녹아웃 마우스에 파라콰트를 40 ㎎/㎏으로 복강에 투여하고, 96시간 후에 마우스로부터 비장 및 흉선을 꺼내어 바로 사진 촬영하였다.Specifically, paraquat was administered to abdominal cavity at 40 mg / kg in 8-week-old wild-type mouse and TXNIP knockout mouse, and spleen and thymus were taken out from mouse after 96 hours and immediately photographed.

그 결과, 도 4C에 나타난 바와 같이 산화적 스트레스에 노출된 TXNIP 녹아웃 마우스의 비장 크기 및 세포질이 유의적으로 감소함을 확인하였다(도 4C). 또한, 상기 마우스의 흉선을 관찰한 결과, 도 4E에 나타난 바와 같이 산화적 스트레스에 노출된 TXNIP 녹아웃 마우스에 있어서, 흉선에 유의적인 손상이 발생함을 확인하였다(도 4E).
As a result, it was confirmed that the spleen size and cytoplasm of TXNIP knockout mice exposed to oxidative stress were significantly decreased as shown in FIG. 4C (FIG. 4C). In addition, the thymus of the mouse was observed. As shown in FIG. 4E, it was confirmed that significant damage to the thymus occurred in TXNIP knockout mice exposed to oxidative stress (FIG. 4E).

<6-4> <6-4> 산화적Oxidative 스트레스 조건하에서  Under stress conditions TXNIPTXNIP 녹아웃 마우스의 세포사멸 증가 확인 Increased cell death in knockout mice

산화적 스트레스 하에서 TXNIP 녹아웃 마우스의 비장에서 세포사멸(apoptosis)의 발생을 확인하기 위해서 TUNEL 분석 및 아넥신 V 염색(annexin V staining)을 수행하였다. TUNEL analysis and annexin V staining were performed to confirm the occurrence of apoptosis in the spleen of TXNIP knockout mice under oxidative stress.

구체적으로, 8주령의 야생형 마우스 및 TXNIP 녹아웃 마우스에 파라콰트를 40 ㎎/㎏으로 복강에 투여하고, 96시간 후에 마우스로부터 비장 및 흉선을 꺼내어 비장의 세포 수를 측정하고, 세포사멸을 측정하기 위하여 아넥신 V(Annexin V)를 염색하여 유세포 분석기로 확인하였으며, 일부는 10% 포르말린 용액에 고정하여 비장의 H&E 염색 및 세포사멸을 확인하기 위하여 TUNEL 염색을 당업계의 당업자에게 잘 알려진 방법으로 수행하였다. Specifically, 8 weeks old wild-type mouse and TXNIP knockout mouse were administered paraquat at a dose of 40 mg / kg per abdominal cavity. After 96 hours, the spleen and thymus were removed from the mouse to measure the cell number of the spleen. Tinel staining was performed by methods well known to those skilled in the art in order to confirm H & E staining and cell death of the spleen by staining with Annexin V and confirming with flow cytometry and fixing in a 10% formalin solution.

그 결과, 도 4D에 나타난 바와 같이 산화적 스트레스에 노출된 TXNIP 녹아웃 마우스에서 세포사멸이 현저히 증가함을 확인하였다(도 4D).
As a result, it was confirmed that cell death was significantly increased in TXNIP knockout mice exposed to oxidative stress as shown in FIG. 4D (FIG. 4D).

<< 실시예Example 7>  7> 산화적Oxidative 스트레스 조건하에서 폐암 전이 증가 확인 Confirmation of increased lung metastasis under stress conditions

숙주의 면역 시스템에 있어서, 산화적 스트레스의 영향을 확인하기 위하여 폐암의 전이를 측정하였다.In the host immune system, metastasis of lung cancer was measured to determine the effect of oxidative stress.

8-12주령의 야생형 마우스와 TXNIP 녹아웃 마우스에 B16-F10 흑색종 세포주(melanoma cell)를 PBS 용액으로 현탁하여 마우스 한 마리당 5 x 105 세포를 꼬리 정맥으로 주사하고 이틀 뒤부터 2일 간격으로 두 번 파라콰트를 20mg/kg으로 복강 주사하였다. 8일 후에 쥐의 폐를 분리하여 전이된 흑색종을 촬영하였다.B16-F10 melanoma cells were suspended in PBS solution in 8-12 week old wild-type mice and TXNIP knockout mice, and 5 x 10 5 cells per mouse were injected into the tail vein. Was administered intraperitoneally at a dose of 20 mg / kg. After 8 days, the lungs of the rats were separated and metastatic melanoma was photographed.

그 결과, 도 4F에 나타난 바와 같이 산화적 스트레스에 노출된 TXNIP 마우스에서 암 전이가 유의적으로 증가함을 확인하였다(도 4F).
As a result, it was confirmed that cancer metastasis was significantly increased in TXNIP mice exposed to oxidative stress as shown in FIG. 4F (FIG. 4F).

<< 실시예Example 8>  8> TXNIPTXNIP 의 결핍에 의한 암 전이 증가 확인Of cancer metastasis

골수세포 이식을 통해서 면역세포의 항-전이 반응(anti-metastasis response)을 확인하기 위하여 폐암 세포를 이용하였다.Lung cancer cells were used to confirm the anti-metastasis response of immune cells through bone marrow transplantation.

구체적으로, 야생형 및 TXNIP 녹아웃 공여 마우스로부터 골수세포(CD45.2) 2.5 x 106개를 분리하여 9 Gy의 방사선을 조사한 수여 마우스(CD45.1)의 꼬리 정맥에 세포를 주입하고 8주 후, 상기 <실시예 7>의 방법으로 실험을 수행한 뒤, 13일 뒤에 폐를 분리하여 사진 촬영을 하였다.Specifically, 2.5 x 10 6 bone marrow cells (CD45.2) were isolated from wild-type and TXNIP knockout donor mice, and the cells were injected into the tail vein of the recipient mouse (CD45.1) irradiated with 9 Gy of radiation. After 8 weeks, Experiments were carried out according to the method of Example 7, and the lungs were separated after 13 days and photographed.

그 결과, 도 4G에 나타난 바와 같이 TXNIP 녹아웃 마우스 유래 전체 골수세포를 수여받은 마우스에서 폐 전이가 유의적으로 증가하는 것을 확인하였다(도 4G).As a result, as shown in FIG. 4G, lung metastasis was significantly increased in mice that received whole bone marrow cells derived from TXNIP knockout mice (FIG. 4G).

따라서, TXNIP 녹아웃 마우스에 있어서 파라콰트의 독성효과를 확인하였고, TXNIP 녹아웃 마우스는 산화적 스트레스 조건하에서 기능적인 면역 시스템을 유지하지 못하는 것을 확인하였다. 또한, 상기 결과는 면역세포 및 조혈모세포를 포함하는 전체 조혈세포에 있어서 TXNIP가 활성산소를 조절하는 항산화 단백질 역할을 하는 것을 나타낸다.
Thus, toxic effects of paraquat in TXNIP knockout mice were confirmed, and TXNIP knockout mice were found to be unable to maintain a functional immune system under oxidative stress conditions. In addition, the above results indicate that TXNIP acts as an antioxidant protein to regulate reactive oxygen species in whole hematopoietic cells including immune cells and hematopoietic stem cells.

<< 실시예Example 9> 골수세포에서  9> in bone marrow cells TXNIPTXNIP 단백질, 활성산소 및  Protein, active oxygen and p53p53 수준의 상관관계 확인 Level correlation

<9-1> 골수세포에서 활성산소 및 &Lt; 9-1 > In the bone marrow cells, TXNIPTXNIP 발현 수준의 관련성 확인 Identify the relevance of expression levels

골수세포에서 활성산소 및 TXNIP 발현 수준 사이에 관련성을 확인하기 위하여 상기 실시예 <3-1>의 방법을 사용하여 세포 내 활성산소 및 TXNIP 수준을 확인하였다.To ascertain the relationship between the levels of active oxygen and TXNIP expression in bone marrow cells, intracellular reactive oxygen and TXNIP levels were determined using the method of Example <3-1> above.

그 결과, 도 5A 및 5B에 나타난 바와 같이 골수세포에 있어서, 활성산소 및 TXNIP 수준 사이에 역상관관계(inverse correlation)가 있음을 확인하였다(도 5A 및 5B).
As a result, it was confirmed that there is an inverse correlation between the levels of active oxygen and TXNIP in bone marrow cells as shown in FIGS. 5A and 5B (FIGS. 5A and 5B).

<9-2> 골수세포에서 활성산소 및 &Lt; 9-2 > In the bone marrow cells, TXNIPTXNIP 의 발현 수준의 관련성 확인Of the expression level

최근 공지된 바에 의하면 종양 억제 단백질(tumor suppressor protein)인 p53이 항산화 기능을 하고, 조혈모세포에서 과발현하는 것이 확인되었다. 따라서, 골수세포에서 TXNIP 및 p53 사이의 관련성을 확인하기 위하여 p53을 염색하여 그 수준을 확인하였고, 활성산소 수준은 상기 실시예 <3-1>의 방법을 사용하여 측정되었다.Recently, it has been confirmed that p53, a tumor suppressor protein, is antioxidant and overexpressed in hematopoietic stem cells. Therefore, in order to confirm the relationship between TXNIP and p53 in bone marrow cells, p53 was stained and its level was confirmed. The level of active oxygen was measured using the method of Example <3-1>.

8 - 12 주령의 야생형 및 TXNIP 녹아웃 마우스로부터 상기 실시예 <2-1>의 방법으로 골수세포를 분리하고, 조혈줄기세포의 마커(Lin-c-KitSca-1)를 붙였으며, BD Cytofix/Cytoperm 용액으로 얼음 위에서 30분 동안 고정하였다. 그리고나서 BD Perm/Wash 용액으로 세포를 씻어내고, Cytoperm Plus 용액으로 현탁 후 얼음에서 10분 동안 방치하였으며, 다시 한 번 BD Perm/Wash 용액으로 세포를 씻어주고, BD Cytofix/Cytoperm 용액으로 얼음 위에서 5분 동안 고정한 뒤 BD Perm/Wash 용액으로 세포를 씻어주었다. 상기 세포를 2% FBS가 포함된 PBS 용액으로 현탁하고 FITC가 붙어있는 p53 항체를 넣어 30분 동안 상온에서 반응시킨 후, 2% FBS가 포함된 PBS용액으로 세포를 씻어주고, 재현탁하여 유세포 분석기로 세포분석을 수행하였다.Bone marrow cells were isolated from 8-12 week old wild-type and TXNIP knockout mice by the method of Example <2-1>, and a marker of hematopoietic stem cells (Lin-c-KitSca-1) was attached thereto. BD Cytofix / Cytoperm Solution for 30 minutes on ice. Then, cells were washed with BD Perm / Wash solution, suspended in Cytoperm Plus solution, left on ice for 10 minutes, washed once with BD Perm / Wash solution, and washed with BD Cytofix / Cytoperm solution on ice The cells were washed with BD Perm / Wash solution. The cells were suspended in a PBS solution containing 2% FBS and reacted with a p53 antibody with FITC attached thereto at room temperature for 30 minutes. The cells were then washed with PBS containing 2% FBS, Cell analysis was performed.

그 결과, 도 5C 및 5D에 나타난 바와 같이 TXNIP 녹아웃 골수세포에서 p53의 발현이 유의적으로 감소하고(도 5C), 활성산소의 수준은 현저히 증가하는 것을 확인하였다(도 5D).As a result, the expression of p53 was significantly decreased (Fig. 5C) and the level of active oxygen was significantly increased in TXNIP knockout bone marrow cells as shown in Figs. 5C and 5D (Fig. 5D).

따라서, 상기 결과는 TXNIP, p53의 발현, 및 활성산소의 조절에 관련성이 있음을 나타내고, 또한, 야생형 골수세포와 비교하였을 때 TXNIP 녹아웃 골수세포에서 p53의 수준차는 적으나, 활성산소의 수준은 높은 차이를 나타냄을 확인하였다. 이는 TNXIP 녹아웃 골수세포에서 활성산소가 p53에 의해서만 조절되지 않음을 나타내고, TXNIP가 없을 때 p53의 수준 변화가 더욱 민감함을 확인하였다.
Thus, the above results show that TXNIP, p53 expression, and regulation of reactive oxygen species are involved, and that the level of p53 in TXNIP knockout bone marrow cells is lower than that of wild-type bone marrow cells, Respectively. This indicates that the active oxygen in the TNXIP knockout bone marrow cells was not regulated only by p53, and that the level of p53 was more sensitive in the absence of TXNIP.

<< 실시예Example 10>  10> 조혈세포의Hematopoietic 활성산소 조절에 있어서  In the regulation of active oxygen p53p53 의 기능 확인Confirm the function of

<10-1> <10-1> p53p53 -/-- / - 조혈모세포 및 전구세포( Hematopoietic stem cells and progenitor cells ( progenitorprogenitor )에서 활성산소 수준 증가 확인) To confirm the increase in free oxygen level

조혈세포의 활성산소 조절에 있어서 p53의 기능을 확인하기 위하여, p53-/- 조혈모세포 및 전구세포의 활성산소 수준을 상기 실시예 <3-1>의 방법을 사용하여 측정하였다.In order to confirm the function of p53 in the regulation of active oxygen of hematopoietic cells, the levels of active oxygen of p53 - / - hematopoietic stem cells and progenitor cells were measured using the method of Example <3-1> above.

그 결과, 도 5E에 나타난 바와 같이 p53-/- 조혈모세포 및 전구세포가 야생형 조혈모세포 및 전구세포에 비해서 활성산소 수준이 높은 것을 확인하였다(도 5E).
As a result, as shown in FIG. 5E, it was confirmed that p53 - / - hematopoietic stem cells and progenitor cells had higher levels of active oxygen than wild type hematopoietic stem cells and progenitor cells (FIG. 5E).

<10-2> <10-2> TXNIPTXNIP  And p53p53 의 더블녹다운(Double knockdown ( doubledouble knockknock -- downdown )에 의한 활성산소의 증가효과 확인) To confirm the increase effect of active oxygen

TXNIP의 발현이 억제된 세포에 p53의 발현을 억제시켜 더블녹다운(double-knock-down)을 시켜 활성산소의 수준을 측정하였다.The level of active oxygen was measured by inhibiting the expression of p53 in double-knock-down cells by inhibiting the expression of TXNIP.

구체적으로, shRNA를 발현할 수 있는 레트로바이러스를 생산하기 위하여 Platinum-E retroviral packaging 세포주(CellBiolabs, 미국)를 사용하였고, shRNA는 HuSH-29 shRNA(OriGene, 미국)를 이용하였다. 상기 세포주로부터 얻어진 바이러스를 8 내지 12 주령의 야생형 및 TXNIP 녹아웃 마우스로부터 분리한 LKS 세포에 3일 동안 3회 감염시켜 유전자의 발현을 실시간 PCR(real-time PCR)로 확인하고, 활성산소의 수준을 확인하였다. 실험의 사용된 shRNA의 서열은 하기에 나타난 바와 같다:Specifically, a Platinum-E retroviral packaging cell line (CellBiolabs, USA) was used to produce retroviruses capable of expressing shRNA, and HuSH-29 shRNA (OriGene, USA) was used as shRNA. The virus obtained from the cell line was inoculated into LKS cells isolated from wild-type and TXNIP knockout mice at 8 to 12 weeks of age for 3 days for 3 times, and expression of the gene was confirmed by real-time PCR and the level of active oxygen Respectively. The sequence of the shRNA used in the experiment is as follows:

mTXNIP(서열번호 1): 5'-GATTCTAAGGTGATGTTCTTAGCACTTTA-3', 및mTXNIP (SEQ ID NO: 1): 5'-GATTCTAAGGTGATGTTCTTAGCACTTTA-3 ', and

mp53(서열번호 2): 5'-TGGCCATCTACAAGAAGTCACAGCACATG-3'.mp53 (SEQ ID NO: 2): 5'-TGGCCATCTACAAGAAGTCACAGCACATG-3 '.

또한, p53 억제제인 PFT-α(Sigma, 미국)는 마우스에 5 ㎎/㎏으로 복강주사한 뒤, 48시간 후에 상기 실시예 <3-1>의 방법을 사용하여 활성산소의 수준을 측정하였다.
In addition, PFT-alpha (Sigma, USA), which is a p53 inhibitor, was intraperitoneally injected into mouse at 5 mg / kg, and after 48 hours, the level of active oxygen was measured using the method of Example <3-1>.

그 결과, 도 5F 및 5G에 나타난 바와 같이 p53 shRNA를 처리하거나, p53 특이 억제제인 PFT-α를 처리한 경우, TXNIP-/- 조혈모세포 및 전구세포에서 활성산소의 수준이 더욱 증가한 것을 확인하였다(도 5F 및 5G).
As a result, when the p53 shRNA was treated or the p53-specific inhibitor PFT-a was treated as shown in FIGS. 5F and 5G, the levels of reactive oxygen species were further increased in TXNIP - / - hematopoietic stem cells and progenitor cells 5F and 5G).

<10-3> <10-3> 산화적Oxidative 스트레스 조건하에서  Under stress conditions p53p53 의 항산화 효과 확인Antioxidative effect of

산화적 스트레스 조건하에서 p53의 항산화 효과를 확인하기 위해서 p53-/- 마우스에 파라콰트를 처리한 뒤, 상기 실시예 <3-1>의 방법을 사용하여 활성산소의 수준을 측정하였다.In order to confirm the antioxidative effect of p53 under oxidative stress conditions, p53 - / - mice were treated with paraquat and the level of active oxygen was measured using the method of Example <3-1> above.

그 결과, 도 5H에 나타난 바와 같이 산화적 스트레스 조건하에서 p53-/- 조혈모세포 및 면역세포의 활성산소 수준이 증가하는 것을 확인하였다(도 5H).
As a result, it was confirmed that the active oxygen levels of p53 - / - hematopoietic stem cells and immune cells were increased under oxidative stress conditions as shown in FIG. 5H (FIG. 5H).

<10-4> <10-4> 산화적Oxidative 스트레스 조건하에서  Under stress conditions p53p53 -/-- / - 마우스의 생존율 감소 확인 Confirm reduction of survival rate of mouse

p53-/- 마우스에 파라콰트 50 ㎎/㎏를 주사하여 산화적 스트레스 환경을 만들어주고, 마우스의 생존율을 상기 실시예 <5-3>의 방법을 이용하여 확인하였다.The p53 - / - mice were injected with paraquat 50 mg / kg to produce an oxidative stress environment, and the survival rate of the mice was confirmed by the method of Example <5-3>.

그 결과, 도 5I에 나타난 바와 같이 야생형의 마우스와 비교하여, 산화적 스트레스 환경하에서 p53-/- 마우스의 생존율이 현저히 감소함을 확인하였다(도 5I).
As a result, it was confirmed that the survival rate of p53 - / - mice was significantly reduced under an oxidative stress environment as compared with wild type mice as shown in FIG. 5I (FIG. 5I).

<10-5> <10-5> 산화적Oxidative 스트레스 조건하에서  Under stress conditions TXNIPTXNIP 녹아웃 마우스에  Knockout Mouse p53p53 억제제 처리에 따른 마우스의 생존율 감소 확인 Identification of reduction of mouse survival rate by inhibitor treatment

산화적 스트레스 환경을 유도하기 위하여 파라콰트 40 ㎎/㎏를 야생형 마우스, Txnip -/- 마우스 및 PFT-α를 처리한 Txnip -/- 마우스에 주사한 후, 마우스들의 생존율을 상기 실시예 <5-3>의 방법을 이용하여 확인하였다.In order to induce an oxidative stress environment, paraquat 40 mg / kg was injected into Txnip - / - mice treated with wild type mice, Txnip - / - mice and PFT- > Method.

그 결과, 도 5J에 나타난 바와 같이 PFT-α를 처리한 Txnip -/- 마우스가 산화적 스트레스에 가장 민감한 것으로 확인되었다(도 5J).As a result, as shown in FIG. 5J, Txnip - / - mice treated with PFT-α were found to be most sensitive to oxidative stress (FIG. 5J).

따라서, 상기 결과는 조혈모세포 및 면역세포 모두에 있어서 활성산소의 수준을 조절하기 위해 TXNIP가 p53과 결합함을 나타낸다.
Thus, the above results indicate that TXNIP binds to p53 in order to regulate levels of reactive oxygen species in both hematopoietic stem cells and immune cells.

<< 실시예Example 11>  11> TXNIPTXNIP  And p53p53 의 직접적인 상호작용(Direct interaction of interactioninteraction ) 확인) Confirm

<11-1> <11-1> TXNIPTXNIP 의 순차적 돌연변이체 제작Sequential mutants of

p53과 결합하는 TXNIP 단백질의 결합부위를 확인하기 위하여, TXNIP의 순차적 돌연변이를 제작하였다.Sequential mutagenesis of TXNIP was performed to identify the binding site of TXNIP protein binding to p53.

구체적으로, 인간 GST-TXNIP 및 FLAG-TXNIP 컨스트럭트(construct)를 TXNIP 돌연변이체(mutant)의 부위 특이적 돌연변이 유도(site-directed mutagenesis)를 위하여 주형으로 사용하였고, 상기 돌연변이체의 제작을 위해서 QuickChange II site-directed mutagenesis kit(Stratagene, 미국)를 제조사의 사용설명서대로 사용하였다. 또한, 상기 돌연변이 컨스트럭트의 제작을 위해 사용한 프라이머는 하기 표 1에 나타내었다.Specifically, the human GST-TXNIP and FLAG-TXNIP constructs were used as templates for site-directed mutagenesis of TXNIP mutants, and for the production of the mutants The QuickChange II site-directed mutagenesis kit (Stratagene, USA) was used as described in the manufacturer's instructions. The primers used for the construction of the mutant construct are shown in Table 1 below.

프라이머 이름Name of the primer 서열(5'→3')The sequence (5 '- &gt; 3') 서열번호SEQ ID NO: human TXNIP(C247S)_Fhuman TXNIP (C247S) _F CTCAGGGACATCCGCATCATGGCGTGGCCTCAGGGACATCCGCATCATGGCGTGGC 33 human TXNIP(C247S)_Rhuman TXNIP (C247S) _R GCCACGCCATGATGCGGATGTCCCTGAGGCCACGCCATGATGCGGATGTCCCTGAG 44 human TXNIP(C267S)_Fhuman TXNIP (C267S) _F CTTCTATCCTGGGCTCCAACATCCTTCGAGCTTCTATCCTGGGCTCCAACATCCTTCGAG 55 human TXNIP(C267S)_Rhuman TXNIP (C267S) _R CTCGAAGGATGTTGGAGCCCAGGATAGAAGCTCGAAGGATGTTGGAGCCCAGGATAGAAG 66 human TXNIP(C333S)_Fhuman TXNIP (C333S) _F GAAGCTCCTCCCTCCTATATGGATGTCGAAGCTCCTCCCTCCTATATGGATGTC 77 human TXNIP(C333S)_Rhuman TXNIP (C333S) _R GACATCCATATAGGAGGGAGGAGCTTCGACATCCATATAGGAGGGAGGAGCTTC 88 human TXNIP(C384S)_Fhuman TXNIP (C384S) _F GAGGTGGATCCCTCCATCCTCAACAACGAGGTGGATCCCTCCATCCTCAACAAC 99 human TXNIP(C384S)_Rhuman TXNIP (C384S) _R GTTGTTGAGGATGGAGGGATCCACCTCGTTGTTGAGGATGGAGGGATCCACCTC 1010

<11-2> <11-2> p53p53 과 결합하는 Coupled with TXNIPTXNIP 의 결합부위 확인Confirmation of binding site

상기 실시예 <11-1>의 방법으로 제작한 컨스트럭트를 사용하여 p53과의 결합부위를 확인하기 위하여 GST 풀다운(pull-down)을 수행하였다.GST pulldown was performed to confirm the binding site with p53 using the construct constructed by the method of Example <11-1>.

구체적으로, 상기 컨스트럭트를 세포에 주입한 후, 48시간 뒤에 세포의 용해물(lysate)를 얻었다. 500 ㎍에 해당하는 용해물을 분주하고, 각각 GST-4B 비드(bead)를 넣었으며, 4℃에서 4시간 동안 반응시켜 비드를 침강시키고, 용해(lysis) 용액으로 3회 세척한 뒤 SDS 로딩(loading) 용액을 처리하고 SDS-PAGE를 수행하였다. 그 후, PVDF 막(membrane)에 옮겨 당업자에게 잘 알려진 방법으로 웨스턴 블랏을 수행하였다.Specifically, 48 hours after the construct was injected into the cells, cell lysate was obtained. 500 μg of lysate was dispensed into each well and GST-4B beads were added. The beads were allowed to settle at 4 ° C for 4 hours, washed three times with a lysis solution, and then subjected to SDS loading loading solution and subjected to SDS-PAGE. Thereafter, the membrane was transferred to a PVDF membrane and Western blotting was performed by a method well known to those skilled in the art.

그 결과, 도 6A에 나타난 바와 같이 TXNIP의 247 및 267 위치의 시스테인(cystein) 잔기가 p53과의 결합에 중요한 역할을 하는 것으로 확인되었다(도 6A).
As a result, as shown in FIG. 6A, it was confirmed that cysteine residues at positions 247 and 267 of TXNIP play an important role in binding to p53 (FIG. 6A).

<11-3> <11-3> p53p53 의 결실 돌연변이체(Of the deletion mutant ( deletiondeletion mutantmutant ) 제작 및 ) Production and TXNIPTXNIP 와의 결합부위 확인Confirm binding site with

이번에는 TXNIP와 결합하는 p53의 부위를 확인하기 위해서 두 개의 결실 돌연변이체를 제작하였다.This time, two deletion mutants were constructed to identify the sites of p53 that bind to TXNIP.

구체적으로 C-말단 또는 N-말단 p53 DNA-결합 도메인(DNA binding-domain; DBD)의 결실 돌연변이를 제작하기 위하여 pfu polymerase mix(바이오니아, 대한민국)을 이용하여 p53 단편을 증폭하였고, pCMV-Flag 벡터의 해당 제한효소 자리에 클로닝을 수행하였다. 이때, 사용된 프라이머는 하기에 나타내었다. TXNIP와의 결합부위를 확인하기 위하여 상기 실시예 <11-2>의 방법으로 GST 풀다운을 수행하였다.Specifically, the p53 fragment was amplified using a pfu polymerase mix (Bioneer, Korea) in order to prepare deletion mutants of C-terminal or N-terminal p53 DNA-binding domain (DBD) Was cloned into the corresponding restriction enzyme site. Here, the primers used are shown below. GST pulldown was performed by the method of Example <11-2> to confirm the binding site with TXNIP.

DBD(EcoRI/XhoI)forward(서열번호 11): 5'-GCGAATTCTTCTTGCATTCTGGGACA-3',DBD ( EcoRI / XhoI ) forward (SEQ ID NO: 11): 5'-GCGAATTCTTCTTGCATTCTGGGACA-3 '

DBD(EcoRI/XhoI)reverse(서열번호 12): 5'-GCCTCGAGGCGGAGATTCTCTTCCTC-3',DBD ( EcoRI / XhoI ) reverse (SEQ ID NO: 12): 5'-GCCTCGAGGCGGAGATTCTCTTCCTC-3 '

DBD-N(EcoRI/XhoI)forward(서열번호 13): 5'-GCGAATTCTTCTTGCATTCTGGGACA-3',DBD-N ( EcoRI / XhoI ) forward (SEQ ID NO: 13): 5'-GCGAATTCTTCTTGCATTCTGGGACA-3 '

DBD-N(EcoRI/XhoI)reverse(서열번호 14): 5'-GCCTCGAGCAAATTTCCTTCCACTCG-3',DBD-N ( EcoRI / XhoI ) reverse (SEQ ID NO: 14): 5'-GCCTCGAGCAAATTTCCTTCCACTCG-3 '

DBD-C(EcoRI/XhoI)forward(서열번호 15): 5'-GCGAATTCCGTGTGGAGTATTTGGAT-3',DBD-C ( EcoRI / XhoI ) forward (SEQ ID NO: 15): 5'-GCGAATTCCGTGTGGAGTATTTGGAT-3 '

DBD-C(EcoRI/XhoI)reverse(서열번호 16): 5'-GCCTCGAGGCGGAGATTCTCTTCCTC-3'.DBD-C ( EcoRI / XhoI ) reverse (SEQ ID NO: 16): 5'-GCCTCGAGGCGGAGATTCTCTTCCTC-3 '.

그 결과, 도 6B에 나타난 바와 같이 TXNIP가 5개의 시스테인 잔기를 포함하는 p53의 C-말단 DNA-결합 도메인 부위와 상호작용하는 것을 확인하였다(도 6B).
As a result, it was confirmed that TXNIP interacted with the C-terminal DNA-binding domain region of p53 containing five cysteine residues as shown in Fig. 6B (Fig. 6B).

<11-4> <11-4> 산화적Oxidative 스트레스 조건하에서  Under stress conditions TXNIPTXNIP  And p53p53 의 결합 증가 확인Confirmation of increase of coupling

산화적 스트레스 조건하에서 TXNIP 및 p53의 결합이 어떻게 변하는지 확인하기 위하여 면역침강법(immunoprecipitation)을 수행하였다.Immunoprecipitation was performed to determine how the binding of TXNIP and p53 changes under oxidative stress conditions.

구체적으로, 세포에 H2O2를 처리한 후, 세포의 용해물을 수득하였다. 상기 용해물의 단백질을 정량하여 500 ㎍이 되도록 각각 분주한 뒤, 토끼-TXNIP(rabbit-TXNIP) 항체를 첨가하고 4℃에서 1시간 동안 반응시켰고, 상기 1차 항체와 결합할 수 있는 단백질 G-아가로스 비드(protein G-agarose bead, Roche, 미국)을 첨가하여 4시간 동안 추가로 반응시켰다. 모든 반응이 끝난 후, 용해 용액으로 상기 비드를 3회 세척하고, SDS-PAGE 및 웨스턴 블랏을 당업계에 잘 알려진 방법으로 수행하였다.Specifically, after the cells were treated with H 2 O 2 , a cell lysate was obtained. The protein of the above-mentioned lysate was quantified and each fraction was divided to 500 μg. Rabbit-TXNIP (rabbit-TXNIP) antibody was added and reacted at 4 ° C. for 1 hour. The protein G- Agarose bead (Roche, USA) was added and further reacted for 4 hours. After all the reactions were completed, the beads were washed three times with lysis solution, and SDS-PAGE and Western blotting were performed by methods well known in the art.

그 결과, 도 6C에 나타난 바와 같이 H2O2를 처리하여 산화적 스트레스 환경으로 만들어 주었을 경우 TXNIP 및 티오레독신(thioredoxin; TRX) 사이의 결합이 해리(dissociation)되고, TXNIP 및 p53 사이의 결합이 현저히 증가하는 것을 확인하였다(도 6C).
As a result, when H 2 O 2 was treated to produce an oxidative stress environment as shown in FIG. 6C, the bond between TXNIP and thioredoxin (TRX) dissociated, and the bond between TXNIP and p53 (Fig. 6C).

<11-5> <11-5> TXNIPTXNIP 이중 돌연변이 및  Double mutation and p53p53 의 세포 내 위치 확인Of cells

산화적 스트레스 조건하에서 TXNIP의 C247S 및 C267S 돌연변이 및 p53 사이의 결합을 확인하기 위하여 면역염색(immunostaining)을 수행하였다.Immunostaining was performed to confirm the binding between C247S and C267S mutations of TXNIP and p53 under oxidative stress conditions.

구체적으로,10% FBS 및 마우스 IL-3 ng/㎖이 포함된 RPMI-1640 배지에서 배양된 뮤린 골수-유래 프로-B 세포주(murine bone marrow-derived pro-B cell)인 Baf3 세포주에 야생형 TXNIP 또는 이중 돌연변이(double mutation; DM) TXNIP를 과발현시켜 면역염색에 사용하였다. 상기 세포주를 Cytofix/Perm 용액(BD Biosciences, 미국)을 이용하여 고정(fixed) 및 투과화(permeabilized)한 후, 2% FBS를 포함하는 PBS에서 p53 1차 항체(Santa Cruz, 미국)를 첨가하여 1시간 동안 반응시킨 후, PBS로 3번 세척하고 Alexa Fluor 488 또는 546(Invitrogen, 미국)의 2차 항체를 처리하여 반응시켰으며, 염색 결과는 LSM510 공초점 현미경(Carl Zeiss, 독일)으로 관찰하였다.Specifically, a wild-type TXNIP or a wild type TXNIP was added to a Baf3 cell line, which was a murine bone marrow-derived pro-B cell cultured in RPMI-1640 medium containing 10% FBS and mouse IL-3 ng / Double mutation (DM) TXNIP was overexpressed and used for immunostaining. The cell line was fixed and permeabilized using a Cytofix / Perm solution (BD Biosciences, USA), and then p53 primary antibody (Santa Cruz, USA) was added in PBS containing 2% FBS After 1 hour of reaction, the cells were washed 3 times with PBS and reacted with Alexa Fluor 488 or 546 (Invitrogen, USA) secondary antibody. The staining results were observed with an LSM510 confocal microscope (Carl Zeiss, Germany) .

그 결과, 도 6D에 나타난 바와 같이 TXNIP의 C247S 및 C267S 돌연변이는 p53과 결합을 하지 못해, 세포 내에서 p53의 발현을 증가시키지 않음을 확인하였다(도 6D).
As a result, as shown in FIG. 6D, it was confirmed that the C247S and C267S mutations of TXNIP did not bind p53 and did not increase the expression of p53 in the cells (FIG. 6D).

<11-6> <11-6> TXNIPTXNIP 에 의한 On by p53p53  And MDM2MDM2 사이의 결합 감소효과 확인 Confirm reduction of binding between

p53의 안정성은 유비퀴틴화-의존적 프로테오좀의 분해(ubiquitination-dependent proteosomal degradation)를 통해 MDM2에 의해 조절되는 것이 공지되어 있다(Sasaki et al., 2011). 이에, TXNIP가 p53 및 MDM2의 결합에 어떠한 영향을 미치는지 확인하기 위하여 면역침강을 상기 실시예 <11-4>의 방법으로 수행하였고, 이때, 항-MDM2(Santa Cruz, 미국), 항-p53(Santa Cruz, 미국) 및 항-TXNIP(Invitrogen, 미국) 1차 항체를 사용하였다.The stability of p53 is known to be modulated by MDM2 through ubiquitination-dependent proteosomal degradation (Sasaki et al., 2011). Immunoprecipitation was performed according to the method of Example 11-4 to determine the effect of TXNIP on the binding of p53 and MDM2. Here, anti-MDM2 (Santa Cruz, USA), anti-p53 Santa Cruz, USA) and anti-TXNIP (Invitrogen, USA) primary antibodies were used.

그 결과, 도 6E에 나타난 바와 같이 TXNIP에 의해서 p53 및 MDM2의 결합이 유의적으로 감소하는 것을 확인하였다(도 6E).
As a result, it was confirmed that the binding of p53 and MDM2 was significantly reduced by TXNIP as shown in Fig. 6E (Fig. 6E).

<11-7> <11-7> TXNIPTXNIP  And p53p53 결합-매개 전사활성의 증가 확인 Confirmation of increased binding-mediated transcriptional activity

p53 및 TXNIP의 결합에 의해서 p53의 기능에 어떤 영향을 미치는지 확인하기 위해서 리포터 분석(reporter assay)을 수행하였다.Reporter assays were performed to determine the effect of p53 and TXNIP on the function of p53.

구체적으로, 10% FBS 및 마우스 IL-3 ng/㎖이 포함된 RPMI-1640 배지에서 배양된 뮤린 골수-유래 프로-B 세포주인 Baf3 세포주에 TXNIP 또는 TXNIP(이중 돌연변이체)를 p53-Luc 리포터 및 pRL-CMV 플라스미드 벡터와 리포펙타민-플러스(lipofectamine-plus)를 사용하여 제조사의 사용설명서대로 형질감염(transfection)하였다. 루시퍼라제 활성(luciferase activity)는 p53-Luc 리포터를 사용하여 관찰되었고, 레닐라(renilla) 루시퍼라제-발현 벡터(luciferase-expression vector, Promega, 미국)를 함께 형질감염하여 형질감염의 효율(efficiency)을 확인하였다. 파이어플라이(firefly) 및 레닐라 루시퍼라제 활성은 Dual-Luciferase Reporter Assay System(Promega, 미국)을 사용하여 측정하였다.Specifically, TXNIP or TXNIP (double mutants) were transfected into Baf3 cell line, a murine bone marrow-derived pro-B cell line cultured in RPMI-1640 medium containing 10% FBS and mouse IL-3 ng / The pRL-CMV plasmid vector and lipofectamine-plus were transfected according to the manufacturer's instructions. Luciferase activity was observed using a p53-Luc reporter and the efficiency of transfection by transfecting together a renilla luciferase-expression vector (Promega, USA) Respectively. The firefly and renilla luciferase activities were measured using the Dual-Luciferase Reporter Assay System (Promega, USA).

그 결과, 도 6F에 나타난 바와 같이 TXNIP 및 p53 사이의 결합에 의해서 세포 내에서 p53-매개 전사 활성이 유의적으로 증가하였다(도 6F).As a result, p53-mediated transcription activity was significantly increased in the cells by the binding between TXNIP and p53 as shown in Fig. 6F (Fig. 6F).

따라서, 상기 결과들은 TXNIP가 p53 및 MDM2 사이의 결합을 방해하여 p53 안정성을 증가시키고, p53의 전사 활성을 유도함을 나타낸다.
Thus, these results indicate that TXNIP inhibits binding between p53 and MDM2 to increase p53 stability and induce transcriptional activity of p53.

<< 실시예Example 12> 생체 내에서  12> In vivo TXNIPTXNIP end p53p53 의 항산화 효과 매개 확인Antioxidant effect

<12-1> <12-1> 조혈세포에서In hematopoietic cells p53p53 및 이의 표적 단백질의 발현 확인 And confirming expression of the target protein thereof

TXNIP가 p53-의존적 항산화 유전자의 발현을 통해서 p53의 항산화 활성을 조절할 수 있는 가능성을 확인하기 위하여 야생형의 LKS 및 LK 세포주에서 p53 및 이의 표적 유전자인 SESN1, SESN2, GPX-1, p21 등의 발현을 확인하기 위하여 면역염색 및 웨스턴 블랏을 수행하였다.In order to confirm the possibility that TXNIP can regulate the antioxidant activity of p53 through the expression of p53-dependent antioxidant gene, the expression of p53 and its target genes SESN1, SESN2, GPX-1 and p21 in wild-type LKS and LK cell lines Immunostaining and western blotting were performed for confirmation.

구체적으로, 면역염색은 상기 실시예 <11-5>의 방법대로 수행되었다. 또한, 웨스턴 블랏을 수행하기 위하여 세포주를 PBS로 세척하고, 0.1% Nonidet P-40, 10 ㎎/㎖ 아프로티닌(aprotinin), 10 ㎎/㎖ 류펩틴(leupeptin), 10 mM 불화나트륨(sodium fluoride), 2 ㎎/㎖ a-1-안티트립신(a-1-antitrypsin), 2 mM 피로인산나트륨(sodium pyrophosphate), 25 mM β-글리세로인산 나트륨(sodium β-glycerophosphate), 1 mM 나트륨 오르토바나데이트(sodium orthovanadate) 및 1 mM PMSF(phenylmethylsulfonyl fluoride)가 첨가된 용해 용액[20 mM Hepes(pH 7.9), 10 mM EDTA, 0.1 M KCl, 0.3 M NaCl] 1 x RIPA 완충액을 첨가하여 세포를 용균시켰다. 상기 용균된 세포에서 추출한 단백질은 원심분리를 수행하여 상층액을 수득하였고, BCA 방법을 이용하여 상층액의 단백질 농도를 정량하였다. 그리고나서, 동량의 단백질을 PAGE 전기영동법으로 SDS 러닝 완충액(running buffer)을 사용하여 분리하고, 이를 PVDF 막으로 이동시켜 0.1% 트윈 20(tween 20) 및 5% 무지방 우유(skim milk)가 첨가된 PBS로 전처리를 하였다. 그리고 p53, GPX-1, p21 및 β-액틴에 대한 1차 항체를 처리하여 4℃에서 하룻밤 동안 반응시키고, PBS로 세척한 뒤 2차 항체를 처리하여 상온에서 1시간 동안 반응시켰다. 막은 ECL(Pierce, 미국) 용액을 사용하여 현상하였다.Specifically, immunostaining was carried out according to the method of Example < 11-5 >. In order to perform Western blotting, the cell line was washed with PBS and incubated with 0.1% Nonidet P-40, 10 mg / ml aprotinin, 10 mg / ml leupeptin, 10 mM sodium fluoride, 1-antitrypsin, 2 mM sodium pyrophosphate, 25 mM sodium beta-glycerophosphate, 1 mM sodium orthovanadate, 1 mM sodium pyrophosphate, (20 mM Hepes (pH 7.9), 10 mM EDTA, 0.1 M KCl, 0.3 M NaCl] 1 x RIPA buffer supplemented with 1 mM sodium orthovanadate and 1 mM PMSF (phenylmethylsulfonyl fluoride). The proteins extracted from the lysed cells were centrifuged to obtain supernatant, and the protein concentration of the supernatant was quantified using the BCA method. Then, the same amount of protein was separated by PAGE electrophoresis using an SDS running buffer and transferred to a PVDF membrane to which 0.1% tween 20 and 5% skim milk were added Gt; PBS &lt; / RTI &gt; Then, primary antibodies against p53, GPX-1, p21 and β-actin were reacted overnight at 4 ° C., washed with PBS, treated with secondary antibody, and reacted at room temperature for 1 hour. Membranes were developed using ECL (Pierce, USA) solution.

그 결과, 도 7A 및 7B에 나타난 바와 같이 p53 및 이의 표적 유전자인 SESN1, SESN2, GPX-1 및 p21 단백질의 발현을 확인할 수 있었다(도 7A 및 7B).
As a result, the expression of p53 and its target genes, SESN1, SESN2, GPX-1 and p21 proteins, as shown in Figs. 7A and 7B, was confirmed (Figs. 7A and 7B).

<12-2> <12-2> TXNIPTXNIP 결핍 세포주에서  In a deficient cell line p53p53 표적 유전자의 발현 감소 확인 Identification of expression of target gene

야생형 및 TXNIP가 결핍된 LKS 세포주에서 p53 표적 유전자의 mRNA 발현 수준을 확인하기 위하여 정량적 실시간 PCR(quantitative real-time PCR) 및 RT-PCR을 수행하였다.Quantitative real-time PCR and RT-PCR were performed to confirm the level of mRNA expression of the p53 target gene in wild-type and TXNIP-deficient LKS cell lines.

구체적으로, LKS 세포로부터 TRIzol 및 RNeasy Micro kit(Qiagen, 미국)을 사용하여 전체 RNA를 분리하였고, 정량적 PCR은 SYBR Premix ExTaq(Takara Bio, 일본) 및 Thermal Cycler Dice Real-Time System TP800(Takara Bio, 일본)을 이용하여 수행되었다. RT-PCR은 Maxime PCR premix kit(Intron biotechnology, 대한민국)를 사용하여 제조사의 사용설명서대로 수행하였으며, 이때 사용된 프라이머는 하기 표 2에 나타난 바와 같다.Total RNA was isolated from LKS cells using TRIzol and RNeasy Micro kit (Qiagen, USA). Quantitative PCR was performed using SYBR Premix ExTaq (Takara Bio, Japan) and Thermal Cycler Dice Real-Time System TP800 (Takara Bio, Japan). RT-PCR was performed using Maxime PCR premix kit (Intron biotechnology, Korea) according to the manufacturer's instructions, and the primers used were as shown in Table 2 below.

프라이머 이름Name of the primer 서열(5'→3')The sequence (5 '- &gt; 3') 서열번호SEQ ID NO: BAX_FBAX_F ATGCGTCCACCAAGAAGCTGATGCGTCCACCAAGAAGCTG 1717 BAX_RBAX_R CCCCAGTTGAAGTTGCCATCCCCCAGTTGAAGTTGCCATC 1818 PUMA_FPUMA_F CTGTATCCTGCAGCCTTTGCCTGTATCCTGCAGCCTTTGC 1919 PUMA_RPUMA_R ACGGGCGACTCTAAGTGCTACGGGCGACTCTAAGTGCT 2020 CDKN1A_FCDKN1A_F GGAACATCTCAGGGCCGAAGGAACATCTCAGGGCCGAA 2121 CDKN1A_RCDKN1A_R TGGGCACTTCAGGGTTTTCTTGGGCACTTCAGGGTTTTCT 2222 GPX-1_FGPX-1_F CCAAGTACATCATTTGGTCTCCAAGTACATCATTTGGTCT 2323 GPX-1_RGPX-1_R CATTAGGTGGAAAGGCATCGCATTAGGTGGAAAGGCATCG 2424 SESN1_FSESN1_F CCAGGACGAGGAACTTGGCCAGGACGAGGAACTTGG 2525 SESN1_RSESN1_R CCAGGTAGGAACACTGATGCCCAGGTAGGAACACTGATGC 2626 SESN2_FSESN2_F CTCACAGCTGGTCTGTGTGCTCACAGCTGGTCTGTGTG 2727 SESN2_RSESN2_R CCTCCGTGTGGCAATACCCCTCCGTGTGGCAATACC 2828

그 결과, 도 7C에 나타난 바와 같이 야생형 LKS 세포주와 비교하여 TXNIP 결핍 세포주에서는 항산화 효과를 나타내는 p53 표적 단백질의 발현이 감소한 것을 확인하였다(도 7C).
As a result, as shown in FIG. 7C, the expression of p53 target protein showing antioxidative effect was decreased in the TXNIP-deficient cell line as compared with the wild type LKS cell line (FIG. 7C).

<12-3> <12-3> TXNIPTXNIP 결핍 세포주에서 산화촉진 유전자( In a deficient cell line, an oxidation promoting gene ( propro -- oxidantoxidant genegene )의 발현 증가 확인) Increased expression of

TXNIP 결핍 세포주에서 세포사멸(apoptosis)을 유도하는 산화촉진 유전자의 발현 변화를 확인하기 위해서 상기 실시예 <12-3>의 방법으로 mRNA의 발현 수준을 확인하였으며, 이때 사용된 프라이머는 상기 표 2에 나타내었다.The expression level of mRNA was confirmed by the method of Example 12-3 in order to confirm the expression change of an oxidation promoting gene inducing apoptosis in a TXNIP deficient cell line. Respectively.

그 결과, 도 7D에 나타난 바와 같이 TXNIP 결핍 세포주에서 산화촉진 유전자인 CDKN1A, BAX 및 PUMA의 mRNA 발현 수준이 현저히 증가하는 것을 확인하였다(도 7D). 따라서, 상기 결과는 TXNIP 녹아웃 마우스에서 활성산소의 수준이 현저히 증가하는 것이 p53 활성과 연관이 있을 것을 나타낸다.
As a result, as shown in FIG. 7D, mRNA expression levels of CDKN1A, BAX, and PUMA as the oxidation promoting genes in the TXNIP deficient cell line were significantly increased (FIG. 7D). Thus, the above results indicate that a significant increase in the level of active oxygen in TXNIP knockout mice is associated with p53 activity.

<12-4> <12-4> 산화적Oxidative 스트레스 조건하에서  Under stress conditions TXNIPTXNIP 발현 변화에 따른  Depending on the expression change p53p53 활성 변화 확인 Check for changes in activity

산화적 스트레스 환경에 노출 시간에 따라 TXNIP의 발현 변화 및 이에 따른 p53의 활성변화를 상기 실시예 <12-1>의 방법으로 웨스턴 블랏을 수행하였고, 이때 phospho-p53(S15)(Cell signaling, 미국), p53(Santa Cruz, 미국), TXNIP(Invitrogen, 미국) 및 GAPDH(Santa Cruz, 미국)에 대한 1차 항체를 사용하였다.The expression of TXNIP and the change of p53 activity by the exposure time to the oxidative stress environment were performed by Western blotting according to the method of Example <12-1>, wherein phospho-p53 (S15) ), p53 (Santa Cruz, USA), TXNIP (Invitrogen, USA) and GAPDH (Santa Cruz, USA) were used.

그 결과, 도 7E에 나타난 바와 같이 리니지-(lineage-) 세포주에 있어서, 산화적 스트레스 환경에서 TXNIP의 발현이 증가하고, p53 활성의 다른 동력학(kinetics)을 나타냄을 확인하였다(도 7E).
As a result, as shown in FIG. Lineage 7E - (lineage -) in cell lines, increased expression of TXNIP in oxidative stress environment, view represents a different kinetics (kinetics) of active p53 (Fig. 7E).

<12-5> 생체 내에서 <12-5> In vivo TXNIPTXNIP  And p53p53 의 상호작용에 의한 항산화 활성 확인Identification of antioxidant activity by interaction of

TXNIP 및 p53의 상호작용에 의한 항산화 활성을 직접적으로 확인하기 위해서 야생형의 TXNIP, 이중 돌연변이체 TXNIP 또는 p53 유전자를 TXNIP 녹아웃 마우스 유래 골수세포에 형질주입하였고, 이들 세포를 상기 실시예 <2-2>의 방법으로 유사유전자형(CD45.1+) 수여체에 골수이식을 수행하였다. 골수이식 8주 후, 상기 수여체에 파라콰트(paraquat) 40 ㎎/㎏을 투여하고, 상기 실시예 <1-2>의 방법으로 조혈모세포의 빈도(frequency) 및 상기 실시예 <5-3>의 방법으로 생존율을 측정하였다.In order to directly confirm the antioxidative activity by the interaction of TXNIP and p53, wild-type TXNIP, double mutant TXNIP or p53 gene was transfected into bone marrow cells derived from TXNIP knockout mouse, (CD45.1 + ) recipients by bone marrow transplantation. After 8 weeks of bone marrow transplantation, paraquat 40 mg / kg was administered to the recipient, and the frequency of hematopoietic stem cells was measured according to the method of Example <1-2> Survival rate was measured by the method.

그 결과, 도 7F에 나타난 바와 같이 야생형 TXNIP 또는 p53을 형질주입한 세포를 골수이식한 마우스의 경우 조혈모세포의 빈도가 회복되었고(도 7F), 또한, 도 7G에 나타난 바와 같이, 상기 마우스의 생존율이 증가하는 것을 확인하였다(도 7G).As a result, as shown in FIG. 7F, the frequency of hematopoietic stem cells was restored in mice transplanted with wild type TXNIP or p53 transfected cells (FIG. 7F), and as shown in FIG. 7G, (Fig. 7G).

따라서, 상기 결과는 생체 내에서 p53과의 상호작용을 통하여 TXNIP가 항산화 효과가 있음을 나타낸다(도 7H).
Thus, the above results indicate that TXNIP has an antioxidative effect through interaction with p53 in vivo (Fig. 7H).

<110> Korea Research Institute of Bioscience and Biotechnology <120> Pharmaceutical composition comprising Thioredoxin-binding protein as an active ingradient and using thereof <130> 13P-04-47 <160> 30 <170> KopatentIn 1.71 <210> 1 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> mTXNIP <400> 1 gattctaagg tgatgttctt agcacttta 29 <210> 2 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> mp53 <400> 2 tggccatcta caagaagtca cagcacatg 29 <210> 3 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> human TXNIP(C247S)_F <400> 3 ctcagggaca tccgcatcat ggcgtggc 28 <210> 4 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> human TXNIP(C247S)_R <400> 4 gccacgccat gatgcggatg tccctgag 28 <210> 5 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> human TXNIP(C267S)_F <400> 5 cttctatcct gggctccaac atccttcgag 30 <210> 6 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> human TXNIP(C267S)_R <400> 6 ctcgaaggat gttggagccc aggatagaag 30 <210> 7 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> human TXNIP(C333S)_F <400> 7 gaagctcctc cctcctatat ggatgtc 27 <210> 8 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> human TXNIP(C333S)_R <400> 8 gacatccata taggagggag gagcttc 27 <210> 9 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> human TXNIP(C384S)_F <400> 9 gaggtggatc cctccatcct caacaac 27 <210> 10 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> human TXNIP(C384S)_R <400> 10 gttgttgagg atggagggat ccacctc 27 <210> 11 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> DBD(EcoRI/XhoI)forward <400> 11 gcgaattctt cttgcattct gggaca 26 <210> 12 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> DBD(EcoRI/XhoI)reverse <400> 12 gcctcgaggc ggagattctc ttcctc 26 <210> 13 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> DBD-N(EcoRI/XhoI)forward <400> 13 gcgaattctt cttgcattct gggaca 26 <210> 14 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> DBD-N(EcoRI/XhoI)reverse <400> 14 gcctcgagca aatttccttc cactcg 26 <210> 15 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> DBD-C(EcoRI/XhoI)forward <400> 15 gcgaattccg tgtggagtat ttggat 26 <210> 16 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> DBD-C(EcoRI/XhoI)reverse <400> 16 gcctcgaggc ggagattctc ttcctc 26 <210> 17 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> BAX_F <400> 17 atgcgtccac caagaagctg 20 <210> 18 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> BAX_R <400> 18 ccccagttga agttgccatc 20 <210> 19 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> PUMA_F <400> 19 ctgtatcctg cagcctttgc 20 <210> 20 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> PUMA_R <400> 20 acgggcgact ctaagtgct 19 <210> 21 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> CDKN1A_F <400> 21 ggaacatctc agggccgaa 19 <210> 22 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> CDKN1A_R <400> 22 tgggcacttc agggttttct 20 <210> 23 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> GPX-1_F <400> 23 ccaagtacat catttggtct 20 <210> 24 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> GPX-1_R <400> 24 cattaggtgg aaaggcatcg 20 <210> 25 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> SESN1_F <400> 25 ccaggacgag gaacttgg 18 <210> 26 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> SESN1_R <400> 26 ccaggtagga acactgatgc 20 <210> 27 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> SESN2_F <400> 27 ctcacagctg gtctgtgtg 19 <210> 28 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> SESN2_R <400> 28 cctccgtgtg gcaatacc 18 <210> 29 <211> 1176 <212> DNA <213> Homo sapiens <400> 29 atggtgatgt tcaagaagat caagtctttt gaggtggtct ttaacgaccc tgaaaaggtg 60 tacggcagtg gcgagagggt ggctggccgg gtgatagtgg aggtgtgtga agttactcgt 120 gtcaaagccg ttaggatcct ggcttgcgga gtggctaaag tgctttggat gcagggatcc 180 cagcagtgca aacagacttc ggagtacctg cgctatgaag acacgcttct tctggaagac 240 cagccaacag gtgagaatga gatggtgatc atgagacctg gaaacaaata tgagtacaag 300 ttcggctttg agcttcctca ggggcctctg ggaacatcct tcaaaggaaa atatgggtgt 360 gtagactact gggtgaaggc ttttcttgac cgcccgagcc agccaactca agagacaaag 420 aaaaactttg aagtagtgga tctggtggat gtcaataccc ctgatttaat ggcacctgtg 480 tctgctaaaa aagaaaagaa agtttcctgc atgttcattc ctgatgggcg ggtgtctgtc 540 tctgctcgaa ttgacagaaa aggattctgt gaaggtgatg agatttccat ccatgctgac 600 tttgagaata catgttcccg aattgtggtc cccaaagctg ccattgtggc ccgccacact 660 taccttgcca atggccagac caaggtgctg actcagaagt tgtcatcagt cagaggcaat 720 catattatct cagggacatg cgcatcatgg cgtggcaaga gccttcgggt tcagaagatc 780 aggccttcta tcctgggctg caacatcctt cgagttgaat attccttact gatctatgtt 840 agcgttcctg gatccaagaa ggtcatcctt gacctgcccc tggtaattgg cagcagatca 900 ggtctaagca gcagaacatc cagcatggcc agccgaacca gctctgagat gagttgggta 960 gatctgaaca tccctgatac cccagaagct cctccctgct atatggatgt cattcctgaa 1020 gatcaccgat tggagagccc aacaactcct ctgctagatg acatggatgg ctctcaagac 1080 agccctatct ttatgtatgc ccctgagttc aagttcatgc caccaccgac ttatactgag 1140 gtggatccct gcatcctcaa caacaatgtg cagtga 1176 <210> 30 <211> 1194 <212> DNA <213> Mus musculus <400> 30 atggtgatgt tcaagaagat caagtctttt gaggtggtct tcaacgaccc cgagaaggtg 60 tacggcagcg gggagaaggt ggccggacgg gtaatagtgg aagtgtgtga agttacccga 120 gtcaaagccg tcaggatcct ggcttgcggc gtggccaagg tcctgtggat gcaagggtct 180 cagcagtgca aacagacttt ggactacttg cgctatgaag acacacttct cctagaagag 240 cagcctacag caggtgagaa cgagatggtg atcatgaggc ctggaaacaa atatgagtac 300 aagttcggct tcgagcttcc tcaagggccc ctgggaacat cctttaaagg aaaatatggt 360 tgcgtagact actgggtgaa ggcttttctc gatcgcccca gccagccaac tcaagaggca 420 aagaaaaact tcgaagtgat ggatctagtg gatgtcaata cccctgacct aatggcacca 480 gtgtctgcca aaaaggagaa gaaagtttcc tgcatgttca ttcctgatgg acgtgtgtca 540 gtctctgctc gaattgacag aaaaggattc tgtgaaggtg atgacatctc catccatgct 600 gactttgaga acacgtgttc ccgaatcgtg gtccccaaag cggctattgt ggcccgacac 660 acttaccttg ccaatggcca gaccaaagtg ttcactcaga agctgtcctc agtcagaggc 720 aatcacatta tctcagggac ttgcgcatcg tggcgtggca agagcctcag agtgcagaag 780 atcagaccat ccatcctggg ctgcaacatc ctcaaagtcg aatactcctt gctgatctac 840 gtcagtgtcc ctggctccaa gaaagtcatc cttgatctgc ccctagtgat tggcagcagg 900 tctggtctga gcagccggac atccagcatg gccagccgga cgagctctga gatgagctgg 960 atagacctaa acatcccaga taccccagaa gctcctcctt gctatatgga catcattcct 1020 gaagatcaca gactagagag ccccaccacc cctctgctgg acgatgtgga cgactctcaa 1080 gacagcccta tctttatgta cgcccctgag ttccagttca tgcccccacc cacttacact 1140 gaggtggatc cgtgcgtcct taacaacaac aacaacaaca acaacgtgca gtga 1194 <110> Korea Research Institute of Bioscience and Biotechnology <120> Pharmaceutical composition comprising Thioredoxin-binding protein          as an active ingradient and using them <130> 13P-04-47 <160> 30 <170> Kopatentin 1.71 <210> 1 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> mTXNIP <400> 1 gattctaagg tgatgttctt agcacttta 29 <210> 2 <211> 29 <212> DNA <213> Artificial Sequence <220> Mp53 <400> 2 tggccatcta caagaagtca cagcacatg 29 <210> 3 <211> 28 <212> DNA <213> Artificial Sequence <220> &Lt; 223 > human TXNIP (C247S) _F <400> 3 ctcagggaca tccgcatcat ggcgtggc 28 <210> 4 <211> 28 <212> DNA <213> Artificial Sequence <220> &Lt; 223 > human TXNIP (C247S) _R <400> 4 gccacgccat gatgcggatg tccctgag 28 <210> 5 <211> 30 <212> DNA <213> Artificial Sequence <220> &Lt; 223 > human TXNIP (C267S) _F <400> 5 cttctatcct gggctccaac atccttcgag 30 <210> 6 <211> 30 <212> DNA <213> Artificial Sequence <220> &Lt; 223 > human TXNIP (C267S) _R <400> 6 ctcgaaggat gttggagccc aggatagaag 30 <210> 7 <211> 27 <212> DNA <213> Artificial Sequence <220> &Lt; 223 > human TXNIP (C333S) _F <400> 7 gaagctcctc cctcctatat ggatgtc 27 <210> 8 <211> 27 <212> DNA <213> Artificial Sequence <220> &Lt; 223 > human TXNIP (C333S) _R <400> 8 gacatccata taggagggag gagcttc 27 <210> 9 <211> 27 <212> DNA <213> Artificial Sequence <220> &Lt; 223 > human TXNIP (C384S) _F <400> 9 gaggtggatc cctccatcct caacaac 27 <210> 10 <211> 27 <212> DNA <213> Artificial Sequence <220> &Lt; 223 > human TXNIP (C384S) _R <400> 10 gttgttgagg atggagggat ccacctc 27 <210> 11 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> DBD (EcoRI / XhoI) forward <400> 11 gcgaattctt cttgcattct gggaca 26 <210> 12 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> DBD (EcoRI / XhoI) reverse <400> 12 gcctcgaggc ggagattctc ttcctc 26 <210> 13 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> DBD-N (EcoRI / XhoI) forward <400> 13 gcgaattctt cttgcattct gggaca 26 <210> 14 <211> 26 <212> DNA <213> Artificial Sequence <220> DBD-N (EcoRI / XhoI) reverse <400> 14 gcctcgagca aatttccttc cactcg 26 <210> 15 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> DBD-C (EcoRI / XhoI) forward <400> 15 gcgaattccg tgtggagtat ttggat 26 <210> 16 <211> 26 <212> DNA <213> Artificial Sequence <220> DBD-C (EcoRI / XhoI) reverse <400> 16 gcctcgaggc ggagattctc ttcctc 26 <210> 17 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> BAX_F <400> 17 atgcgtccac caagaagctg 20 <210> 18 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> BAX_R <400> 18 ccccagttga agttgccatc 20 <210> 19 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> PUMA_F <400> 19 ctgtatcctg cagcctttgc 20 <210> 20 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> PUMA_R <400> 20 acgggcgact ctaagtgct 19 <210> 21 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> CDKN1A_F <400> 21 ggaacatctc agggccgaa 19 <210> 22 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> CDKN1A_R <400> 22 tgggcacttc agggttttct 20 <210> 23 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> GPX-1_F <400> 23 ccaagtacat catttggtct 20 <210> 24 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> GPX-1_R <400> 24 cattaggtgg aaaggcatcg 20 <210> 25 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> SESN1_F <400> 25 ccaggacgag gaacttgg 18 <210> 26 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> SESN1_R <400> 26 ccaggtagga acactgatgc 20 <210> 27 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> SESN2_F <400> 27 ctcacagctg gtctgtgtg 19 <210> 28 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> SESN2_R <400> 28 cctccgtgtg gcaatacc 18 <210> 29 <211> 1176 <212> DNA <213> Homo sapiens <400> 29 atggtgatgt tcaagaagat caagtctttt gaggtggtct ttaacgaccc tgaaaaggtg 60 tacggcagtg gcgagagggt ggctggccgg gtgatagtgg aggtgtgtga agttactcgt 120 gtcaaagccg ttaggatcct ggcttgcgga gtggctaaag tgctttggat gcagggatcc 180 cagcagtgca aacagacttc ggagtacctg cgctatgaag acacgcttct tctggaagac 240 cagccaacag gtgagaatga gatggtgatc atgagacctg gaaacaaata tgagtacaag 300 ttcggctttg agcttcctca ggggcctctg ggaacatcct tcaaaggaaa atatgggtgt 360 gtagactact gggtgaaggc ttttcttgac cgcccgagcc agccaactca agagacaaag 420 aaaaactttg aagtagtgga tctggtggat gtcaataccc ctgatttaat ggcacctgtg 480 tctgctaaaa aagaaaagaa agtttcctgc atgttcattc ctgatgggcg ggtgtctgtc 540 tctgctcgaa ttgacagaaa aggattctgt gaaggtgatg agatttccat ccatgctgac 600 tttgagaata catgttcccg aattgtggtc cccaaagctg ccattgtggc ccgccacact 660 taccttgcca atggccagac caaggtgctg actcagaagt tgtcatcagt cagaggcaat 720 catattatct cagggacatg cgcatcatgg cgtggcaaga gccttcgggt tcagaagatc 780 aggccttcta tcctgggctg caacatcctt cgagttgaat attccttact gatctatgtt 840 agcgttcctg gatccaagaa ggtcatcctt gacctgcccc tggtaattgg cagcagatca 900 ggtctaagca gcagaacatc cagcatggcc agccgaacca gctctgagat gagttgggta 960 gatctgaaca tccctgatac cccagaagct cctccctgct atatggatgt cattcctgaa 1020 gatcaccgat tggagagccc aacaactcct ctgctagatg acatggatgg ctctcaagac 1080 agccctatct ttatgtatgc ccctgagttc aagttcatgc caccaccgac ttatactgag 1140 gtggatccct gcatcctcaa caacaatgtg cagtga 1176 <210> 30 <211> 1194 <212> DNA <213> Mus musculus <400> 30 atggtgatgt tcaagaagat caagtctttt gaggtggtct tcaacgaccc cgagaaggtg 60 tacggcagcg gggagaaggt ggccggacgg gtaatagtgg aagtgtgtga agttacccga 120 gtcaaagccg tcaggatcct ggcttgcggc gtggccaagg tcctgtggat gcaagggtct 180 cagcagtgca aacagacttt ggactacttg cgctatgaag acacacttct cctagaagag 240 cagcctacag caggtgagaa cgagatggtg atcatgaggc ctggaaacaa atatgagtac 300 aagttcggct tcgagcttcc tcaagggccc ctgggaacat cctttaaagg aaaatatggt 360 tgcgtagact actgggtgaa ggcttttctc gatcgcccca gccagccaac tcaagaggca 420 aagaaaaact tcgaagtgat ggatctagtg gatgtcaata cccctgacct aatggcacca 480 gtgtctgcca aaaaggagaa gaaagtttcc tgcatgttca ttcctgatgg acgtgtgtca 540 gtctctgctc gaattgacag aaaaggattc tgtgaaggtg atgacatctc catccatgct 600 gactttgaga acacgtgttc ccgaatcgtg gtccccaaag cggctattgt ggcccgacac 660 acttaccttg ccaatggcca gaccaaagtg ttcactcaga agctgtcctc agtcagaggc 720 aatcacatta tctcagggac ttgcgcatcg tggcgtggca agagcctcag agtgcagaag 780 atcagaccat ccatcctggg ctgcaacatc ctcaaagtcg aatactcctt gctgatctac 840 gtcagtgtcc ctggctccaa gaaagtcatc cttgatctgc ccctagtgat tggcagcagg 900 tctggtctga gcagccggac atccagcatg gccagccgga cgagctctga gatgagctgg 960 atagacctaa acatcccaga taccccagaa gctcctcctt gctatatgga catcattcct 1020 gaagatcaca gactagagag ccccaccacc cctctgctgg acgatgtgga cgactctcaa 1080 gacagcccta tctttatgta cgcccctgag ttccagttca tgcccccacc cacttacact 1140 gaggtggatc cgtgcgtcct taacaacaac aacaacaaca acaacgtgca gtga 1194

Claims (16)

TXNIP(Thioredixin-interacting protein) 유전자를 포함하는 유전자 전달체, 세포 또는 TXNIP 단백질을 유효성분으로 함유하는 면역증강용 약학적 조성물.
A pharmaceutical composition for immune enhancement comprising as an active ingredient a gene carrier, cell or TXNIP protein comprising a TXNIP (Thioredixin-interacting protein) gene.
제 1항에 있어서, 상기 TXNIP 유전자는 서열번호 29 및 30으로 구성된 염기서열로 기재된 것을 특징으로 하는 면역증강용 약학적 조성물.
The method of claim 1, wherein the TXNIP Wherein the gene is a nucleotide sequence consisting of SEQ ID NOS: 29 and 30.
제 1항에 있어서, 상기 유전자 전달체는 벡터 또는 재조합 바이러스인 것을 특징으로 하는 면역증강용 약학적 조성물.
The pharmaceutical composition according to claim 1, wherein the gene carrier is a vector or a recombinant virus.
제 3항에 있어서, 상기 벡터는 선형 DNA, 플라스미드 DNA 또는 재조합 바이러스성 벡터인 것을 특징으로 하는 면역증강용 약학적 조성물.
The pharmaceutical composition according to claim 3, wherein the vector is linear DNA, plasmid DNA or recombinant viral vector.
제 1항에 있어서, 상기 재조합 바이러스는 레트로 바이러스, 아데노 바이러스, 아데노 부속 바이러스 및 헤르페스 심플렉스 바이러스로 구성된 군으로부터 선택된 어느 하나인 것을 특징으로 하는 면역증강용 약학적 조성물.
The pharmaceutical composition according to claim 1, wherein the recombinant virus is any one selected from the group consisting of retrovirus, adenovirus, adeno-associated virus, and herpes simplex virus.
제 1항에 있어서, 상기 세포는 조혈모세포 또는 수지상 세포인 것을 특징으로 하는 면역증강용 약학적 조성물.
The pharmaceutical composition for immunostaining according to claim 1, wherein the cell is a hematopoietic cell or a dendritic cell.
제 1항에 있어서, 상기 면역증강은 면역 시스템의 항상성 유지에 의한 것을 특징으로 하는 면역증강용 약학적 조성물.
The pharmaceutical composition according to claim 1, wherein the immune enhancement is due to homeostasis of the immune system.
제 1항에 있어서, 상기 면역증강은 조혈모세포(hematopoietic stem cell)의 항상성 유지에 의한 것을 특징으로 하는 면역증강용 약학적 조성물.
The pharmaceutical composition according to claim 1, wherein the immune enhancement is caused by homeostasis of a hematopoietic stem cell.
제 1항에 있어서, 상기 면역증강은 TXNIP 및 p53 사이의 상호작용(interaction)에 의한 항산화 활성을 나타내는 것을 특징으로 하는 면역증강용 약학적 조성물.
The pharmaceutical composition according to claim 1, wherein the immune enhancement exhibits an antioxidative activity by an interaction between TXNIP and p53.
TXNIP 유전자를 포함하는 유전자 전달체, 세포 또는 TXNIP 단백질을 유효성분으로 함유하는 면역증강용 건강식품.
A gene carrier, cell or TXNIP protein containing TXNIP gene as an active ingredient.
TXNIP 유전자를 포함하는 유전자 전달체, 세포 또는 TXNIP 단백질을 유효성분으로 함유하는 암 전이억제용 약학적 조성물.
A pharmaceutical composition for inhibiting cancer metastasis comprising a gene carrier, cell or TXNIP protein comprising TXNIP gene as an active ingredient.
제 11항에 있어서, 상기 암은 폐암인 것을 특징으로 하는 암 전이억제용 약학적 조성물.
12. The pharmaceutical composition for suppressing cancer metastasis according to claim 11, wherein the cancer is lung cancer.
TXNIP 유전자를 포함하는 유전자 전달체, 세포 또는 TXNIP 단백질을 유효성분으로 함유하는 암 전이억제용 건강식품.
A gene transfer carrier comprising TXNIP gene, a cell, or a TXNIP protein as an active ingredient.
TXNIP 유전자를 포함하는 유전자 전달체, 세포 또는 TXNIP 단백질을 유효성분으로 함유하는 혈액질환 예방 및 치료용 약학적 조성물.
A pharmaceutical composition for the prevention and treatment of blood diseases comprising a gene carrier, cell or TXNIP protein containing TXNIP gene as an active ingredient.
제 14항에 있어서, 상기 혈액질환은 빈혈, 다혈증, 백혈병, 골수이형성증, 골수 섬유증, 혈소판 감소증으로 구성된 군으로부터 선택된 어느 하나인 것을 특징으로 하는 혈액질환 예방 및 치료용 약학적 조성물.
15. The pharmaceutical composition according to claim 14, wherein the blood disease is any one selected from the group consisting of anemia, platelet aggregation, leukemia, myelodysplasia, myelofibrosis, and thrombocytopenia.
TXNIP 유전자를 포함하는 유전자 전달체, 세포 또는 TXNIP 단백질을 유효성분으로 함유하는 혈액질환 예방 및 개선용 건강식품.





A health food for the prevention and improvement of blood diseases containing a TXNIP gene-containing gene carrier, a cell or a TXNIP protein as an active ingredient.





KR1020130067238A 2013-06-12 2013-06-12 Pharmaceutical composition comprising Thioredoxin-binding protein as an active ingradient and using thereof KR20140144964A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020130067238A KR20140144964A (en) 2013-06-12 2013-06-12 Pharmaceutical composition comprising Thioredoxin-binding protein as an active ingradient and using thereof
PCT/KR2014/003786 WO2014200180A1 (en) 2013-06-12 2014-04-29 Pharmaceutical composition containing thioredoxin-binding protein as active ingredient and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130067238A KR20140144964A (en) 2013-06-12 2013-06-12 Pharmaceutical composition comprising Thioredoxin-binding protein as an active ingradient and using thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020150070442A Division KR101598905B1 (en) 2015-05-20 2015-05-20 Pharmaceutical composition comprising Thioredoxin-binding protein as an active ingradient and using thereof

Publications (1)

Publication Number Publication Date
KR20140144964A true KR20140144964A (en) 2014-12-22

Family

ID=52022445

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130067238A KR20140144964A (en) 2013-06-12 2013-06-12 Pharmaceutical composition comprising Thioredoxin-binding protein as an active ingradient and using thereof

Country Status (2)

Country Link
KR (1) KR20140144964A (en)
WO (1) WO2014200180A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018056706A1 (en) * 2016-09-22 2018-03-29 한국생명공학연구원 Composition comprising thioredoxin-interacting protein-derived peptide or polynucleotide encoding same as effective ingredient for reverse-ageing of aged stem cell and use thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200080107A1 (en) 2018-09-07 2020-03-12 Crispr Therapeutics Ag Universal donor cells
CN114364791A (en) 2019-09-05 2022-04-15 克里斯珀医疗股份公司 Universal donor cell
US11104918B2 (en) 2019-09-05 2021-08-31 Crispr Therapeutics Ag Universal donor cells
CA3203392A1 (en) 2020-12-31 2022-07-07 Alireza Rezania Universal donor cells

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060128073A (en) * 2005-06-08 2006-12-14 한국생명공학연구원 An agent for differentiating hematopoietic stem cell into natural killer cell comprising vdup1 protein or gene edcoding the same, and a method of differentiating hematopoietic stem cell into natural killer cell using thereof
KR100860081B1 (en) * 2006-11-13 2008-09-24 한국생명공학연구원 Pharmaceutical composition for regulating the degradation of HIF1-?

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060128073A (en) * 2005-06-08 2006-12-14 한국생명공학연구원 An agent for differentiating hematopoietic stem cell into natural killer cell comprising vdup1 protein or gene edcoding the same, and a method of differentiating hematopoietic stem cell into natural killer cell using thereof
KR100860081B1 (en) * 2006-11-13 2008-09-24 한국생명공학연구원 Pharmaceutical composition for regulating the degradation of HIF1-?

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
[논문1] CANCER RESEARCH (2003) *
[논문2] LEUKEMIA (2011) *
[논문3] CANCER RESEARCH (2004) *
[논문4] IMMUNITY (2005) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018056706A1 (en) * 2016-09-22 2018-03-29 한국생명공학연구원 Composition comprising thioredoxin-interacting protein-derived peptide or polynucleotide encoding same as effective ingredient for reverse-ageing of aged stem cell and use thereof
KR20180032506A (en) * 2016-09-22 2018-03-30 한국생명공학연구원 Composition comprising peptide derived from thioredoxin-interacting protein or polynucleotide encoding the peptide for rejuvenation of stem cell

Also Published As

Publication number Publication date
WO2014200180A1 (en) 2014-12-18

Similar Documents

Publication Publication Date Title
Guo et al. Metabolic reprogramming of terminally exhausted CD8+ T cells by IL-10 enhances anti-tumor immunity
Kim et al. TBK1 regulates prostate cancer dormancy through mTOR inhibition
Ebling et al. Human 6-sulfo LacNAc-expressing dendritic cells are principal producers of early interleukin-12 and are controlled by erythrocytes
Zhou et al. Dickkopf-1 is a key regulator of myeloma bone disease: opportunities and challenges for therapeutic intervention
KR101841339B1 (en) A peptide having anticancer activity, pharmaceutical composition and composition of health functional food for prevention and treatment of cancer comprising an effective amount of the peptide
KR20140144964A (en) Pharmaceutical composition comprising Thioredoxin-binding protein as an active ingradient and using thereof
Islam et al. Pin1 regulates osteoclast fusion through suppression of the master regulator of cell fusion DC‐STAMP
US11566226B2 (en) Natural killer cells
WO2013107413A1 (en) Use of phosphorylation pathway-related factor in regulating function of regulatory t cell
KR101124622B1 (en) Activation method for Natural killer cell via regulating SOCS2 expression
KR101987354B1 (en) Composition comprising peptide derived from thioredoxin-interacting protein or polynucleotide encoding the peptide for rejuvenation of stem cell
Kim et al. Lack of transglutaminase 2 diminished T‐cell responses in mice
KR101598905B1 (en) Pharmaceutical composition comprising Thioredoxin-binding protein as an active ingradient and using thereof
CN111166867B (en) Function and use of PD-1 ubiquitination agonist
US9752151B2 (en) Composition for treatment or metastasis suppression of cancers which includes p34 expression inhibitor or activity inhibitor as active ingredient
KR20150145588A (en) Pharmaceutical composition for enhancing sensitivity to anticancer drugs comprising expression or activity inhibitor of PKM2 as an active ingredient
JP7141630B2 (en) Immune checkpoint inhibitor and method for producing the same
JP2020072699A (en) Meal-controlled expression of nucleic acid coding apoptosis-promoting protein
US20150368611A1 (en) Induced regulatory t cell and use thereof
KR102179381B1 (en) Composition for improving immunity reinforcement or anti-cancer activity comprising MAL expressed stem cell like memory T cell
Chen et al. Regulation of epidermal growth factor receptor tyrosine kinase inhibitor resistance via Ambra1-mediated autophagy in non-small cell lung cancer
Kang et al. 3', 4', 7, 8-Tetrahydroxyflavone inhibits RANKL-induced osteoclast formation and bone resorption
KR20210058723A (en) Composition for preventing or treating immune disease comprising inhibitor of Vimentin
KR101649489B1 (en) A method of increasing cytotoxicity of NK cell by regulating the expression of miR-150
KR101192724B1 (en) Activation method for Natural killer cell via regulating microRNA expression

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E90F Notification of reason for final refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
E801 Decision on dismissal of amendment
A107 Divisional application of patent
WITB Written withdrawal of application