KR20140134635A - Recombinant microorganism with kauronic acid production ability and method for preparing kauronic acid using the same - Google Patents

Recombinant microorganism with kauronic acid production ability and method for preparing kauronic acid using the same Download PDF

Info

Publication number
KR20140134635A
KR20140134635A KR20140146182A KR20140146182A KR20140134635A KR 20140134635 A KR20140134635 A KR 20140134635A KR 20140146182 A KR20140146182 A KR 20140146182A KR 20140146182 A KR20140146182 A KR 20140146182A KR 20140134635 A KR20140134635 A KR 20140134635A
Authority
KR
South Korea
Prior art keywords
acid
recombinant
vector
kauric
gene
Prior art date
Application number
KR20140146182A
Other languages
Korean (ko)
Other versions
KR101533350B1 (en
Inventor
이평천
공민경
Original Assignee
아주대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 아주대학교산학협력단 filed Critical 아주대학교산학협력단
Publication of KR20140134635A publication Critical patent/KR20140134635A/en
Application granted granted Critical
Publication of KR101533350B1 publication Critical patent/KR101533350B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y505/00Intramolecular lyases (5.5)
    • C12Y505/01Intramolecular lyases (5.5.1)
    • C12Y505/01013Ent-copalyl diphosphate synthase (5.5.1.13)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • C12N9/0073Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14) with NADH or NADPH as one donor, and incorporation of one atom of oxygen 1.14.13
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1085Transferases (2.) transferring alkyl or aryl groups other than methyl groups (2.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P15/00Preparation of compounds containing at least three condensed carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • C12P5/007Preparation of hydrocarbons or halogenated hydrocarbons containing one or more isoprene units, i.e. terpenes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/42Hydroxy-carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y114/00Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
    • C12Y114/13Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14) with NADH or NADPH as one donor, and incorporation of one atom of oxygen (1.14.13)
    • C12Y114/13078Ent-kaurene oxidase (1.14.13.78)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y205/00Transferases transferring alkyl or aryl groups, other than methyl groups (2.5)
    • C12Y205/01Transferases transferring alkyl or aryl groups, other than methyl groups (2.5) transferring alkyl or aryl groups, other than methyl groups (2.5.1)
    • C12Y205/01029Geranylgeranyl diphosphate synthase (2.5.1.29)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y402/00Carbon-oxygen lyases (4.2)
    • C12Y402/03Carbon-oxygen lyases (4.2) acting on phosphates (4.2.3)
    • C12Y402/03019Ent-kaurene synthase (4.2.3.19)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present invention relates to a recombinant microorganism with kaureonic acid production ability, which is a precursor of stevioside, and a method for manufacturing of kaureonic acid using the same. According to the present invention, a mess of kaureonic acid which is the precursor of stevioside of natural sweetener can be provided by only a simple process, by manipulating a metabolism pathway by recombinant gene induced to microorganism, not by directly separating from a stevia extract.

Description

카우린산 생성능을 가지는 재조합 미생물 및 이를 이용한 카우린산의 제조 방법 {Recombinant microorganism with kauronic acid production ability and method for preparing kauronic acid using the same}Recombinant microorganism with kauronic acid production ability and method for preparing kauronic acid using the same

본 발명은 스테비오사이드의 전구체인 카우린산 생성능을 가지는 재조합 미생물 및 이를 이용한 카우린산의 제조 방법에 관한 것이다.The present invention relates to a recombinant microorganism having the ability to produce kauric acid, which is a precursor of stevioside, and a method for producing kauric acid using the same.

스테비아 (Stevia rebaudiana Bertoni)는 국화과의 여러해살이풀로 원산지는 남미의 브라질과 파라과이의 국경지역에 인접한 고산지대이다. 스테비아는 하천이나 습지대 주변에서 자생하며, 잎에 감미물질이 함유되어 있다. 스테비아의 감미 성분은 스테비올 (steviol)을 배당체로 하는 스테비오사이드 (Stevioside), 레바우디오사이드-에이 (Rebaudioside-A) 등이 있다. Stevia ( Stevia rebaudiana Bertoni ) is a perennial plant in the family Asteraceae. Its origin is an alpine region adjacent to the border of Brazil and Paraguay in South America. Stevia grows wild in rivers or around wetlands, and contains sweetening substances in its leaves. The sweetening ingredients of stevia include stevioside, rebaudioside-A, etc., which use steviol as a glycoside.

스테비오사이드는 설탕의 약 200배, 레바우디오사이드-에이는 설탕의 약 250배의 감미도를 가지는 천연 감미료이다. 스테비오사이드는 뒷맛이 약간 쓴 후미를 가지고 있지만, 레바우디오사이드-에이는 쓴맛이 거의 없어 감미 성분으로 우수하다. 이에, 스테비오사이드를 글루코실화하여 레바우디오사이드-에이를 생산하기 위한 노력이 계속되었으며, 공여체로서 스테비올 글리코시드를 이용하여 글리코실전이반응 (transglycosylation)을 진행하는 것이 밝혀졌다. Stevioside is a natural sweetener that has about 200 times the sweetness of sugar, and Rebaudioside-A is about 250 times that of sugar. Stevioside has a slightly bitter aftertaste, but Rebaudioside-A has little bitterness, so it is excellent as a sweetening ingredient. Accordingly, efforts to produce rebaudioside-A by glucosylating stevioside have been continued, and it has been found that transglycosylation is performed using steviol glycoside as a donor.

현재까지 스테비오사이드의 생산과 관련된 연구는 스테비아 (Stevia rebaudiana Bertoni)의 잎으로부터 직접 추출하는 것이 주된 내용이었으며, 스테비아 자체의 추출물에서 스테비오사이드를 억제하고, 감미질이 우수한 레바우디오사이드 A의 생산 수율을 높이기 위한 효소 처리 방법 등이 연구되어 왔다. 선행 특허문헌으로는 스테비오사이드를 주성분으로 한 스테비아 추출물과 ß-1,4-갈락토실 당화합물을 포함하는 수용액상에서 ß-1,4-갈락토실 전이효소를 작용시켜 스테비오사이드에 갈락토실기를 제조하는 방법 (일본특허공개 제58-94367호), 물과 소수성 유기용매를 혼합한 반응계에서 효소반응에 의하여 스테비오사이드를 당전이 스테비오사이드로 전환하여 스테비오사이드의 미질을 개선하는 방법 (한국등록특허 특1994-528호), 스테비오사이드와 레바우디오사이드 A 혼합물로부터 알코올과 물에 대한 용해도 차이를 이용하여 각각을 결정형으로 분리하는 방법 (일본특허공개 제56-121453호), 스테비아 식물에 감마광선을 조사하여 레바우디오사이드 A를 다량 함유케 하는 식물로 유전적 변형을 유발시키는 방법 (일본특허공개 제2002-34502호) 등이 개시되어 있다.Until now, studies related to the production of stevioside have been mainly on extracting directly from the leaves of Stevia rebaudiana Bertoni, and suppressing stevioside from the extract of Stevia itself, and reducing the production yield of rebaudioside A with excellent sweetness. Enzyme treatment methods have been studied to increase. In the prior patent literature, a ß-1,4-galactosyl transferase was applied to stevioside in an aqueous solution containing a stevia extract and a ß-1,4-galactosyl saccharide compound as a main component of stevioside, thereby forming a galactosyl group on stevioside. Method of manufacturing (Japanese Patent Laid-Open No. 58-94367), a method of improving the quality of stevioside by converting stevioside to sugar transfer stevioside by enzymatic reaction in a reaction system in which water and a hydrophobic organic solvent are mixed (registered in Korea Patent No. 1994-528), a method of separating each of stevioside and rebaudioside A into a crystalline form using the difference in solubility in alcohol and water (Japanese Patent Laid-Open No. 56-121453), gamma on stevia plants A method of inducing genetic modification into a plant that contains a large amount of rebaudioside A by irradiating light rays (Japanese Patent Laid-Open No. 2002-34502) and the like are disclosed.

이에, 본 발명자들은 미생물을 이용하여 스테비오사이드를 생산하는 새로운 방법을 개발하고자 노력한 결과, 스테비오사이드의 전구체인 카우린산을 합성할 수 있는 재조합 벡터를 개발하고, 상기 벡터로 형질 전환된 재조합 미생물이 우수한 카우린산 생성능을 가지는 것을 확인함으로써 본 발명을 완성하였다.Accordingly, the present inventors have tried to develop a new method for producing stevioside using microorganisms, as a result of developing a recombinant vector capable of synthesizing the precursor of stevioside, kauric acid, and the recombinant microorganism transformed with the vector The present invention was completed by confirming that it has excellent kauric acid producing ability.

본 발명의 목적은 스테비오사이드의 전구체인 카우린산 제조용 재조합 벡터를 제공하는데 있다. An object of the present invention is to provide a recombinant vector for the production of stevioside precursor kauric acid.

본 발명의 또 다른 목적은 스테비오사이드의 전구체인 카우린산 생성능을 가지는 재조합 미생물을 제공하는데 있다. Another object of the present invention is to provide a recombinant microorganism having the ability to produce kauric acid, which is a precursor of stevioside.

본 발명의 또 다른 목적은 상기 재조합 미생물을 이용한 스테비오사이드의 전구체인 카우린산의 제조 방법을 제공하는데 있다. Another object of the present invention is to provide a method for producing a stevioside precursor kauric acid using the recombinant microorganism.

본 발명의 목적을 달성하기 위해서, 본 발명은 GGDPS를 코딩하는 유전자; CDPS를 코딩하는 유전자; KS를 코딩하는 유전자; 및 KO (kaurene oxidase)를 코딩하는 유전자를 포함하는 스테비오사이드의 전구체인 카우린산 제조용 재조합 벡터를 제공한다.In order to achieve the object of the present invention, the present invention is a gene encoding GGDPS; A gene encoding CDPS; A gene encoding KS; And it provides a recombinant vector for producing a stevioside precursor kauric acid containing a gene encoding KO (kaurene oxidase).

또한 본 발명은, 상기 재조합 벡터로 형질 전환된 스테비오사이드의 전구체인 카우린산 생성능을 가지는 재조합 미생물을 제공한다. In addition, the present invention provides a recombinant microorganism having the ability to produce kauric acid, which is a precursor of stevioside transformed with the recombinant vector.

또한 본 발명은, (a) 상기 재조합 미생물을 배양하는 단계; 및 (b) 상기 (a)단계에서 수득한 미생물 배양액으로부터 카우린산을 회수하는 단계;로 이루어지는 스테비오사이드의 전구체인 카우린산의 제조 방법을 제공한다. In addition, the present invention, (a) culturing the recombinant microorganism; And (b) recovering kauric acid from the microbial culture medium obtained in step (a).

본 발명에 따르면 스테비아의 추출물로부터 직접 분리하는 것이 아닌, 미생물에 도입된 재조합 유전자에 의해 대사경로를 조작함으로써, 간단한 공정만으로도 천연 감미료인 스테비오사이드의 전구체인 카우린산을 다량으로 제공할 수 있다.According to the present invention, by manipulating the metabolic pathway by a recombinant gene introduced into a microorganism, rather than directly separating from the extract of stevia, it is possible to provide a large amount of kauric acid, a precursor of stevioside, a natural sweetener with only a simple process.

도 1은 카우린, 카우린산 및 스테비올의 생합성 대사회로를 나타낸 도이다.
도 2는 본 발명에서 클로닝에 이용된 벡터를 나타낸 도이다 ((A) pGEM-T Easy 벡터, (B) pUC_mod 벡터, (C) pET23 벡터를 변형한 발현 벡터, (D) pSTV29 벡터).
도 3은 재조합 대장균으로부터 분리 및 정제한 CDPS를 확인한 도이다.
도 4는 in vitro 어세이를 통해 생산된 copalol을 GC/MS 분석을 통해 나타낸 도이다.
도 5는 재조합 대장균으로부터 분리 및 정제한 KS를 확인한 도이다.
도 6은 in vitro 어세이를 통해 생산된 copalol 및 카우린을 GC/MS 분석을 통해 나타낸 도이다.
도 7은 in vitro 어세이를 통해 생산된 카우린을 GC/MS 분석을 통해 나타낸 도이다.
도 8은 재조합 대장균으로부터 분리 및 정제한 CDPS 및 KS 단백질을 SDS-PAGE를 통해 나타낸 도이다.
도 9는 스테비아 및 다양한 균주로부터 유래한 GGDPS를 이용하여 생산된 카우린을 GC/MS를 통해 나타낸 도이다.
도 10은 스테비아 및 다양한 균주로부터 유래한 GGDPS를 이용하여 생산된 카우린의 양을 비교하여 나타낸 도이다.
도 11은 로도박터 스페로이드(Rhodobacter sphaeroides)로부터 유래된 GGDPS (crtE)와 스테비아(Stevia rebaudiana Bertoni)로부터 유래된 CDPS 및 KS를 코딩하는 유전자가 포함된 재조합 벡터를 나타낸 도이다.
도 12는 배양 방식에 따른 카우린 생산량의 변화를 나타낸 도이다.
도 13은 스테비아로부터 유래된 정상 KO 유전자 및 세 개의 돌연변이(L28Q, N284H, F446V)를 가지는 KO* 유전자를 이용하여 생산된 카우린산의 양을 비교하여 나타낸 도이다.
도 14는 세 개의 돌연변이(L28Q, N284H, F446V)를 가지는 KO* 유전자를 이용하여 생산된 카우린산을 GC/MS를 통해 나타낸 도이다.
도 15는 로도박터 스페로이드(Rhodobacter sphaeroides)로부터 유래된 GGDPS (crtE)와 스테비아(Stevia rebaudiana Bertoni)로부터 유래된 CDPS, KS 및 세 개의 돌연변이(L28Q, N284H, F446V)를 가지는 KO* 유전자를 코딩하는 유전자가 포함된 재조합 벡터를 나타낸 도이다.
도 16은 카우린산을 생산하는 유전자군과 KAH 유전자를 이용하여 생산된 스테비올의 양을 나타낸 도이다.
1 is a diagram showing the biosynthetic metabolic circuit of kaurin, kauric acid and steviol.
2 is a diagram showing a vector used for cloning in the present invention ((A) pGEM-T Easy vector, (B) pUC_mod vector, (C) an expression vector modified from pET23 vector, (D) pSTV29 vector).
3 is a diagram illustrating CDPS isolated and purified from recombinant E. coli.
4 is a diagram showing copalol produced through an in vitro assay through GC/MS analysis.
5 is a diagram illustrating KS isolated and purified from recombinant E. coli.
6 is a diagram showing copalol and kaurin produced through an in vitro assay through GC/MS analysis.
7 is a diagram showing the cowrin produced through an in vitro assay through GC/MS analysis.
8 is a diagram showing CDPS and KS proteins isolated and purified from recombinant E. coli through SDS-PAGE.
9 is a diagram showing the cowrin produced using GGDPS derived from stevia and various strains through GC/MS.
10 is a diagram showing a comparison of the amount of cowin produced using GGDPS derived from stevia and various strains.
11 is a diagram showing a recombinant vector containing a gene encoding GGDPS (crtE) derived from Rhodobacter sphaeroides and CDPS and KS derived from Stevia rebaudiana Bertoni.
12 is a diagram showing the change in the amount of cowrin production according to the culture method.
13 is a diagram showing a comparison of the amount of kauric acid produced using a normal KO gene derived from stevia and a KO* gene having three mutations (L28Q, N284H, F446V).
14 is a diagram showing kauric acid produced using a KO* gene having three mutations (L28Q, N284H, F446V) through GC/MS.
Figure 15 is a GGDPS (crtE) derived from Rhodobacter sphaeroides and CDPS derived from Stevia rebaudiana Bertoni , KS and encoding KO* gene with three mutations (L28Q, N284H, F446V). It is a diagram showing a recombinant vector containing a gene.
16 is a diagram showing the amount of steviol produced using the gene group producing kauric acid and the KAH gene.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 GGDPS (geranylgeranyl diphosphate synthase)를 코딩하는 유전자; CDPS (copalyl diphosphate synthase)를 코딩하는 유전자; 및 KS (kaurene synthase)를 코딩하는 유전자를 포함하는 스테비오사이드의 전구체인 카우린 제조용 재조합 벡터를 제공한다. The present invention relates to a gene encoding GGDPS (geranylgeranyl diphosphate synthase); A gene encoding CDPS (copalyl diphosphate synthase); And it provides a recombinant vector for producing a stevioside precursor kaurine containing a gene encoding KS (kaurene synthase).

또한 본 발명은 GGDPS를 코딩하는 유전자; CDPS를 코딩하는 유전자; KS를 코딩하는 유전자; 및 KO (kaurene oxidase)를 코딩하는 유전자를 포함하는 스테비오사이드의 전구체인 카우린산 제조용 재조합 벡터를 제공한다.In addition, the present invention is a gene encoding GGDPS; A gene encoding CDPS; A gene encoding KS; And it provides a recombinant vector for producing a stevioside precursor kauric acid containing a gene encoding KO (kaurene oxidase).

또한 본 발명은 (1) GGDPS를 코딩하는 유전자; CDPS를 코딩하는 유전자; KS를 코딩하는 유전자; 및 KO를 코딩하는 유전자를 포함하는 재조합 벡터; 및 (2) KAH (kaurenoic acid hydroxylase)를 코딩하는 유전자를 포함하는 재조합 벡터;를 모두 포함하는 스테비오사이드의 전구체인 스테비올 제조용 재조합 벡터를 제공한다.In addition, the present invention (1) a gene encoding GGDPS; A gene encoding CDPS; A gene encoding KS; And a recombinant vector comprising a gene encoding KO; And (2) a recombinant vector comprising a gene encoding KAH (kaurenoic acid hydroxylase); it provides a recombinant vector for producing steviol, a precursor of stevioside, including all.

상기 유전자는 스테비아 레바우디아나 (Stevia rebaudiana Bertonii)로부터 유래된 것을 특징으로 하나, 다른 생물 유래라 하더라도 도입되는 숙주세포에서 발현되어 동일한 효소 활성을 나타내는 한 이에 제한되지 않는다.The gene is characterized by being derived from Stevia rebaudiana Bertonii , but is not limited thereto as long as it is expressed in host cells into which it is introduced and exhibits the same enzyme activity even if it is derived from another organism.

상기 GGDPS (geranylgeranyl diphosphate synthase)를 코딩하는 유전자는 로도박터 스페로이드(Rhodobacter sphaeroides)로부터 유래된 서열번호 1로 표시되는 뉴클레오티드인 것이 바람직하며, 이 경우 스테비아 레바우디아나 유래 GGDPS를 이용할 때에 비해 현저하게 우수한 효율로 스테비오사이드의 전구체를 생성할 수 있다. The gene encoding the GGDPS (geranylgeranyl diphosphate synthase) is preferably a nucleotide represented by SEQ ID NO: 1 derived from Rhodobacter sphaeroides , and in this case, it is significantly superior to when using GGDPS derived from Stevia rebaudiana. Stevioside precursors can be produced with efficiency.

상기 CDPS (copalyl diphosphate synthase)를 코딩하는 유전자는 스테비아 레바우디아나로부터 유래된 서열번호 2로 표시되는 뉴클레오티드인 것이 바람직하다. The gene encoding the CDPS (copalyl diphosphate synthase) is preferably a nucleotide represented by SEQ ID NO: 2 derived from Stevia rebaudiana.

상기 KS (kaurene synthase)를 코딩하는 유전자는 스테비아 레바우디아나로부터 유래된 서열번호 3으로 표시되는 뉴클레오티드인 것이 바람직하다. The gene encoding the KS (kaurene synthase) is preferably a nucleotide represented by SEQ ID NO: 3 derived from Stevia rebaudiana.

상기 KO (kaurene oxidase)를 코딩하는 유전자는 스테비아 레바우디아나로부터 유래된 서열번호 4로 표시되는 뉴클레오티드 또는 서열번호 5로 표시되는 뉴클레오티드인 것이 바람직하다. 상기 서열번호 5로 표시되는 뉴클레오티드는 세 개의 돌연변이(L28Q, N284H, F446V)를 가지고 있는 KO 유전자를 코딩하는 것으로, 정상 KO 유전자 (서열번호 4)를 이용할 때에 비해 현저하게 우수한 효율로 스테비오사이드의 전구체를 생성할 수 있다. The gene encoding the KO (kaurene oxidase) is preferably a nucleotide represented by SEQ ID NO: 4 derived from Stevia rebaudiana or a nucleotide represented by SEQ ID NO: 5. The nucleotide represented by SEQ ID NO: 5 encodes a KO gene having three mutations (L28Q, N284H, F446V), and is a precursor of stevioside with remarkably superior efficiency compared to when using a normal KO gene (SEQ ID NO: 4). Can be created.

상기 KAH (kaurenoic acid hydroxylase)를 코딩하는 유전자는 스테비아 레바우디아나로부터 유래된 서열번호 6으로 표시되는 뉴클레오티드인 것이 바람직하다. The gene encoding the KAH (kaurenoic acid hydroxylase) is preferably a nucleotide represented by SEQ ID NO: 6 derived from Stevia rebaudiana.

본 발명에서 용어 "벡터"는 적합한 숙주 내에서 목적 유전자를 발현시킬 수 있도록 적합한 조절 서열에 작동 가능하게 연결된 유전자의 염기서열을 함유하는 유전자 작제물을 의미하는 것으로, 상기 조절 서열은 전사를 개시할 수 있는 프로모터, 그러한 전사를 조절하기 위한 임의의 오퍼레이터 서열 및 전사 및 해독의 종결을 조절하는 서열을 포함할 수 있다. In the present invention, the term "vector" refers to a gene construct containing a nucleotide sequence of a gene operably linked to a suitable control sequence so that the target gene can be expressed in a suitable host, and the control sequence is used to initiate transcription. Capable promoters, any operator sequence to regulate such transcription, and sequences that control termination of transcription and translation.

본 발명에서 "작동 가능하게 연결된"은 일반적 기능을 수행하도록 핵산 발현조절 서열과 목적하는 단백질을 코딩하는 핵산 서열이 기능적으로 연결되어 있는 것을 말한다. 예를 들어 프로모터와 단백질 또는 RNA를 코딩하는 핵산 서열이 작동가능하게 연결되어 코딩서열의 발현에 영향을 미칠 수 있다. 재조합 벡터와의 작동적 연결은 당해 기술분야에서 잘 알려진 유전자 재조합 기술을 이용하여 제조할 수 있으며, 부위-특이적 DNA 절단 및 연결은 당해 기술 분야에서 일반적으로 알려진 효소 등을 사용한다.In the present invention, "operably linked" refers to a functional linkage between a nucleic acid expression control sequence and a nucleic acid sequence encoding a protein of interest to perform a general function. For example, a promoter and a nucleic acid sequence encoding a protein or RNA can be operably linked to affect the expression of the coding sequence. The operative linkage with the recombinant vector can be prepared using gene recombination techniques well known in the art, and site-specific DNA cleavage and linkage use enzymes generally known in the art.

본 발명에서 “목적 유전자의 발현"은 상기 목적 유전자를 발현시켜 목적 유전자가 코딩하는 단백질을 생산하는 것을 의미할 수 있다. 본 발명에서 목적 유전자를 발현하는 방법은 상기 목적 유전자를 포함하는 벡터로 형질 전환된 형질 전환체 (숙주세포, 미생물 등)를 배양하여 상기 목적 유전자가 코딩하는 단백질을 발현시키는 방법이며, 이를 통해 상기 단백질이 관여되는 생합성 경로의 최종 산물을 제조할 수 있다.In the present invention, "expression of a target gene" may mean expressing the target gene to produce a protein encoded by the target gene In the present invention, the method of expressing the target gene is characterized by a vector containing the target gene. This is a method of culturing the transformed transformant (host cell, microorganism, etc.) to express the protein encoded by the target gene, and through this, the final product of the biosynthetic pathway involving the protein can be prepared.

본 발명의 벡터는 세포 내에서 복제 가능한 것이면 특별히 한정되지 않으며 당업계에 알려진 임의의 벡터를 이용할 수 있으며, 예컨대 플라스미드, 코즈미드, 파지 입자, 바이러스 벡터일 수 있다. The vector of the present invention is not particularly limited as long as it can replicate in cells, and any vector known in the art may be used, such as a plasmid, cosmid, phage particle, or viral vector.

본 발명에서는 바람직한 일 실시예로, 본 발명에 따른 카우린 제조용 벡터의 벡터맵을 도 11에 도시하였으며, 카우린산 제조용 벡터의 벡터맵을 도 15에 도시하였다.
In the present invention, as a preferred embodiment, a vector map of a vector for producing cowin according to the present invention is shown in FIG. 11, and a vector map of a vector for producing kauric acid is shown in FIG. 15.

또한 본 발명은, 상기 재조합 벡터로 형질 전환된 카우린, 카우린산 또는 스테비올 생성능을 가지는 재조합 미생물을 제공한다. In addition, the present invention provides a recombinant microorganism having the ability to produce cowin, kauric acid or steviol transformed with the recombinant vector.

상기 미생물은 대장균, 박테리아, 효모 및 곰팡이로 구성된 군에서 선택되는 것을 이용할 수 있으며, 바람직하게는 대장균이나, 카우린, 카우린산 또는 스테비올 생성능을 가지고 있는 한 이에 제한되지 않는다.The microorganism may be selected from the group consisting of E. coli, bacteria, yeast, and fungi, and is not limited thereto, preferably, as long as it has E. coli, or cowin, kauric acid, or steviol-producing ability.

재조합 벡터를 세포 내로 도입시키는 방법은 당업계에 공지된 방법을 이용할 수 있으며, 바람직하게는 형질 전환 방법이다. 상기 "형질 전환"은 DNA를 숙주로 도입하여 DNA가 염색체외 인자로서 또는 염색체 통합완성에 의해 복제가능하게 되는 것을 의미한다. 형질 전환은 핵산 분자를 유기체, 세포, 조직 또는 기관에 도입하는 어떤 방법도 포함되며, 당 분야에서 공지된 바와 같이 숙주 세포에 따라 적합한 표준 기술을 선택하여 수행할 수 있다. 이런 방법에는 전기천공법 (electroporation), 인산칼슘 (CaPO4) 침전, 염화칼슘 (CaCl2) 침전, 미세주입법 (microinjection), 폴리에틸렌글리콜 (PEG)법, DEAE (diethylaminoethyl)-덱스트란법, 양이온 리포좀법, 및 초산 리튬-DMSO법 등이 포함될 수 있으나 이에 제한되지 않는다.
A method of introducing a recombinant vector into a cell may use a method known in the art, and is preferably a transformation method. The "transformation" means that DNA is introduced into a host so that the DNA becomes replicable as an extrachromosomal factor or by chromosomal integration completion. Transformation includes any method of introducing a nucleic acid molecule into an organism, cell, tissue or organ, and as known in the art, can be performed by selecting a suitable standard technique according to the host cell. These methods include electroporation, calcium phosphate (CaPO 4 ) precipitation, calcium chloride (CaCl 2 ) precipitation, microinjection, polyethylene glycol (PEG) method, DEAE (diethylaminoethyl)-dextran method, cationic liposome method. , And lithium acetate-DMSO method may be included, but are not limited thereto.

또한 본 발명은, (a) 상기 재조합 미생물을 배양하는 단계; 및 (b) 상기 (a)단계에서 수득한 미생물 배양액으로부터 카우린, 카우린산 또는 스테비올을 회수하는 단계;로 이루어지는 카우린, 카우린산 또는 스테비올의 제조 방법을 제공한다. In addition, the present invention, (a) culturing the recombinant microorganism; And (b) recovering cowin, kauric acid or steviol from the microbial culture solution obtained in step (a).

본 발명에 있어서, 재조합 미생물의 배양은 통상적으로 알려진 배양 방법을 사용하여 수행할 수 있다. In the present invention, the cultivation of the recombinant microorganism can be performed using a commonly known culture method.

본 발명에 있어서, 재조합 미생물 및 이의 배양액으로부터 카우린, 카우린산 또는 스테비올의 분리 및 회수는 해당 물질의 물리, 화학적 특성에 따라 적합한 공지의 방법을 이용할 수 있으며, 예를 들어 증류, 전기투석, 투과증발, 크로마토그래피, 용매추출, 반응추출, HPLC 등을 이용할 수 있으며, 이들을 조합하여 이용할 수 있으나, 이에 제한되지 않는다.
In the present invention, the separation and recovery of cowin, kauric acid or steviol from the recombinant microorganism and its culture medium can be performed using a known method suitable according to the physical and chemical properties of the material, for example, distillation, electrodialysis. , Pervaporation, chromatography, solvent extraction, reaction extraction, HPLC, and the like, may be used, and may be used in combination, but are not limited thereto.

이하 본 발명의 이해를 돕기 위하여 바람직한 실시예를 통하여 구체적으로 설명한다. 그러나 하기의 실시예는 본 발명을 예시하기 위한 것일 뿐 본 발명의 내용이 한정되는 것은 아니다.
Hereinafter, it will be described in detail through preferred embodiments to aid the understanding of the present invention. However, the following examples are for illustrative purposes only and are not intended to limit the content of the present invention.

실시예 1. 벡터의 확보 및 클로닝 프라이머의 제작Example 1. Securing of Vector and Preparation of Cloning Primer

카우린, 카우린산 및 스테비올의 생합성 대사회로는 도 1과 같다. The biosynthetic metabolic circuit of cowin, kauric acid and steviol is shown in FIG.

도 1에 나타낸 바와 같이, 카우린 생합성 관련 효소는 GGDPS (geranylgeranyl diphosphate synthase, crtE), CDPS (copalyl diphosphate synthase), KS (kaurene synthase) 등이 있으며, 카우린산 생합성 관련 효소에는 KO (kaurene oxidase)가 더 포함되고, 스테비올 생합성 관련 효소에는 KAH (kaurenoic acid hydroxylase)가 더 포함된다. As shown in FIG. 1, the enzymes related to kaurin biosynthesis include GGDPS (geranylgeranyl diphosphate synthase, crtE), CDPS (copalyl diphosphate synthase), KS (kaurene synthase), and the like, and the enzyme related to kaurin acid biosynthesis is KO (kaurene oxidase). Is further included, and the enzyme related to steviol biosynthesis further includes kaurenoic acid hydroxylase (KAH).

스테비오사이드 전구체의 생성능을 가지는 재조합 미생물을 제조하기 위하여, 생합성 관련 효소를 확보하기 위한 클로닝을 수행하였다. 먼저 액체질소 하에서 스테비아 레바우디아나 (Stevia rebaudiana Bertoni)의 잎에 있는 수분을 제거하고, 상기 건조물을 막자사발에서 곱게 갈았다. 당업계에 공지된 방법을 이용하여 스테비아 잎의 전체 RNA를 수득하고, 이로부터 cDNA를 합성하였다. In order to prepare a recombinant microorganism having the ability to generate a stevioside precursor, cloning was performed to secure an enzyme related to biosynthesis. First, moisture from the leaves of Stevia rebaudiana Bertoni was removed under liquid nitrogen, and the dried product was finely ground in a mortar. Total RNA of stevia leaves was obtained using a method known in the art, and cDNA was synthesized therefrom.

본 발명에서 생합성 유전자 클로닝, 어셈블리 및 단백질 발현을 확인하기 위해 이용된 벡터 맵을 도 2에 나타내었다. A vector map used to confirm biosynthetic gene cloning, assembly, and protein expression in the present invention is shown in FIG. 2.

도 2에 나타낸 바와 같이, T-벡터 (A)는 Promega사의 pGEM®-T Easy Vector System I에서 제공되는 pGEM®-T Easy Vector를 이용하였으며, pUC_mod 벡터 (B)는 일반적인 클로닝 과정에서 이용하였다. 또한, invitrogen사의 pET23 벡터 (C)를 변형한 발현 벡터를 단백질 분리 및 정제를 위한 실험에서 이용하였으며, Takara사의 pSTV29벡터 (D)는 유전자를 어셈블리 (Assembly)하는 용도로 이용하였다.As shown in FIG. 2, as the T-vector (A), pGEM®-T Easy Vector provided by Promega's pGEM®-T Easy Vector System I was used, and the pUC_mod vector (B) was used in a general cloning process. In addition, an expression vector modified from invitrogen's pET23 vector (C) was used in experiments for protein isolation and purification, and Takara's pSTV29 vector (D) was used for assembly of genes.

또한, 각 유전자를 클로닝하기 위한 프라이머를 하기 표 1 내지 3에 나타내었다 (밑줄로 표시된 부분은 각 유전자와 상보적인 부분을 나타냄). In addition, primers for cloning each gene are shown in Tables 1 to 3 below (the portions indicated by the underline indicate portions complementary to each gene).

pUC_mod 벡터로 클로닝 하기 위한 프라이머 염기서열Primer sequence for cloning into pUC_mod vector 유전자gene 프라이머 염기서열Primer sequence 제한효소 자리Restriction enzyme site GGDPSGGDPS 5’-F GCTCTAGAAGGAGGATTACAAAATGGCTCTTGTAAATCCCAC - 3’5'-F GCTCTAGAAGGAGGATTACAAA ATGGCTCTTGTAAATCCCAC -3' XbaIXbaI 5’-R GGAATTCTCAGTTTTGCCTATAAG - 3’5'-R GGAATTC TCAGTTTTGCCTATAAG -3' EcoRIEcoRI CDPSCDPS 5’-F GCTCTAGAAGGAGGATTACAAAATGAAGACCGGCTTCATC - 3’5'-F GCTCTAGAAGGAGGATTACAAA ATGAAGACCGGCTTCATC -3' XbaIXbaI 5’-R TTCCCTTGCGGCCGCTCATATTACAATCTCGAAC - 3’5'-R TTCCCTTGCGGCCGC TCATATTACAATCTCGAAC -3' NotINotI KSKS 5’-F GCTCTAGAAGGAGGATTACAAAATGAATCTTTCACTATGCATC - 3’5'-F GCTCTAGAAGGAGGATTACAAA ATGAATCTTTCACTATGCATC -3' XbaIXbaI 5’-R TTCCCTTGCGGCCGCTTACCTTTGTTCTTCATTTTC - 3’5'-R TTCCCTTGCGGCCGC TTACCTTTGTTCTTCATTTTC -3' NotINotI KO
(또는 KO*)
EN
(Or KO*)
5’-F GCTCTAGAAGGAGGATTACAAAATGGATGCCGTCACCGGTTTG - 3’5'-F GCTCTAGAAGGAGGATTACAAA ATGGATGCCGTCACCGGTTTG -3' XbaIXbaI
5’-R GGAATTCTCATATCCTGGGCTTTATTATG - 3’5'-R GGAATTC TCATATCCTGGGCTTTATTATG -3' EcoRIEcoRI KAHKAH 5’-F GCTCTAGAAGGAGGATTACAAAATGATTCAGGTGCTGACCC - 3’5'-F GCTCTAGAAGGAGGATTACAAA ATGATTCAGGTGCTGACCC -3' XbaIXbaI 5’-R GGAATTCTTAGACTTGGTGTGGGTGC - 3’5'-R GGAATTC TTAGACTTGGTGTGGGTGC -3' EcoRIEcoRI

T 벡터로 클로닝 하기 위한 프라이머 염기서열Primer sequence for cloning into T vector 유전자gene 프라이머 염기서열Primer sequence CDPSCDPS 5’-F ATGAAGACCGGCTTCATC - 3’5’-F ATGAAGACCGGCTTCATC-3’ 5’-R TCATATTACAATCTCG - 3’5’-R TCATATTACAATCTCG-3’ KSKS 5’-F ATGAATCTTTCACTATG - 3’5’-F ATGAATCTTTCACTATG-3’ 5’-R TTACCTTTGTTCTTCAT - 3’5’-R TTACCTTTGTTCTTCAT-3’

pET 벡터로 클로닝 하기 위한 프라이머 염기서열Primer sequence for cloning into pET vector 유전자gene 프라이머 염기서열Primer sequence 제한효소 자리Restriction enzyme site GGDPSGGDPS 5’-F TCCCCCCGGGGCTCTTGTAAATCCCAC - 3’5'-F TCCCCCCGGG GCTCTTGTAAATCCCAC -3' XmaIXmaI 5’-R GGAATTCTCAGTTTTGCCTATAAG - 3’5'-R GGAATTC TCAGTTTTGCCTATAAG -3' EcoRIEcoRI CDPSCDPS 5’-F TCCCCCCGGGAAGACCGGCTTCATC - 3’5'-F TCCCCCCGGG AAGACCGGCTTCATC -3' XmaIXmaI 5’-R TTCCCTTGCGGCCGCTCATATTACAATCTCGAAC - 3’5'-R TTCCCTTGCGGCCGC TCATATTACAATCTCGAAC -3' NotINotI KSKS 5’-F TCCCCCCGGGAATCTTTCACTATGCATC - 3’5'-F TCCCCCCGGG AATCTTTCACTATGCATC -3' XmaIXmaI 5’-R TTCCCTTGCGGCCGCTTACCTTTGTTCTTCATTTTC - 3’5'-R TTCCCTTGCGGCCGC TTACCTTTGTTCTTCATTTTC -3' NotINotI

상기 각 벡터에 각 유전자를 클로닝한 구체적인 재조합 벡터의 정보를 하기 표 4에 나타내었다.Table 4 shows information on specific recombinant vectors that cloned each gene into each of the vectors.

플라스미드Plasmid 특성characteristic pUCMpUCM pUC19으로부터 변형된 앰피실린 내성을 가지고 있으며 지속적으로 발현이 가능한 벡터A vector that has ampicillin resistance modified from pUC19 and can be continuously expressed pUCM_GGDPS pUCM_GGDPS 스테비아 레바우디아나로부터 유래한 GGDPS 발현 벡터GGDPS expression vector derived from Stevia rebaudiana pUCM_CDPSpUCM_CDPS 스테비아 레바우디아나로부터 유래한 CDPS 발현 벡터CDPS expression vector from Stevia rebaudiana pUCM_KSpUCM_KS 스테비아 레바우디아나로부터 유래한 KS 발현 벡터KS expression vector derived from Stevia rebaudiana pUCM_KOpUCM_KO 스테비아 레바우디아나로부터 유래한 KO 발현 벡터KO expression vector derived from Stevia rebaudiana pUCM_KO*pUCM_KO* 스테비아 레바우디아나로부터 유래한 세 개의 돌연변이(L28Q, N284H, F446V)를 가지는 KO* 발현 벡터KO* expression vector with three mutations (L28Q, N284H, F446V) derived from Stevia rebaudiana pUCM_KAHpUCM_KAH 스테비아 레바우디아나의 단백질 시퀀스 정보로부터 합성한 KAH 발현 벡터KAH expression vector synthesized from protein sequence information of Stevia rebaudiana pGEM®-T EasypGEM®-T Easy 클로닝을 위한 T벡터 T vector for cloning pGEM_CDPSpGEM_CDPS 스테비아 레바우디아나로부터 유래한CDPS가 삽입된 벡터CDPS-inserted vector derived from Stevia rebaudiana pGEM_KSpGEM_KS 스테비아 레바우디아나로부터 유래한KS가 삽입된 벡터KS-inserted vector derived from Stevia Rebaudiana pET21pET21 C-terminal에 6개의 His tag을 갖고 있는 단백질 발현용 벡터Vector for protein expression with 6 His tags in C-terminal pET21_GGDPSpET21_GGDPS 스테비아 레바우디아나로부터 유래한 GGDPS 단백질 발현 벡터GGDPS protein expression vector derived from Stevia rebaudiana pET21_CDPSpET21_CDPS 스테비아 레바우디아나로부터 유래한 CDPS 단백질 발현 벡터CDPS protein expression vector derived from Stevia rebaudiana pET21_KSpET21_KS 스테비아 레바우디아나로부터 유래한 KS 단백질 발현 벡터KS protein expression vector derived from Stevia rebaudiana pET23MpET23M N-terminal에 His tag을 갖고 있는 단백질 발현용 벡터Vector for protein expression with His tag in N-terminal pET23M_GGDPSpET23M_GGDPS 스테비아 레바우디아나로부터 유래한 GGDPS 단백질 발현 벡터GGDPS protein expression vector derived from Stevia rebaudiana pET23M_CDPSpET23M_CDPS 스테비아 레바우디아나로부터 유래한 CDPS 단백질 발현 벡터CDPS protein expression vector derived from Stevia rebaudiana pET23M_KSpET23M_KS 스테비아 레바우디아나로부터 유래한 KS 단백질 발현 벡터KS protein expression vector derived from Stevia rebaudiana pSTV29pSTV29 카우린산 생성 유전자 어셈블리를 위한 클로람페니콜 내성을 가지고 있는 벡터 Chloramphenicol-resistant vector for assembly of kauric acid-producing gene pSTV29_CDPSpSTV29_CDPS 스테비아 레바우디아나로부터 유래한 CDPS가 삽입된 벡터CDPS-inserted vector derived from Stevia rebaudiana pSTV29_CDPS_KSpSTV29_CDPS_KS 스테비아 레바우디아나로부터 유래한 CDPS, KS가 삽입된 벡터CDPS and KS derived vector from Stevia rebaudiana pSTV29_crtE_CDPS_KSpSTV29_crtE_CDPS_KS 스테비아 레바우디아나로부터 유래한 CDPS, KS와 로도박터 스페로이드로부터 유래한 crtE를 가지는 KS가 어셈블리 되어 있는 카우린 생산 벡터A cowin production vector in which CDPS and KS derived from Stevia rebaudiana and KS with crtE derived from Rhodobacter spheroid are assembled pSTV29_crtE_CDPS_KS_KOpSTV29_crtE_CDPS_KS_KO 스테비아 레바우디아나로부터 유래한 CDPS, KS와 로도박터 스페로이드로부터 유래한 crtE 및 스테비아 레바우디아나로부터 유래한 정상 KO 유전자가 어셈블리 되어있는 카우린산 생산 벡터Kauric acid production vector in which CDPS derived from Stevia rebaudiana, crtE derived from KS and Rhodobacter spheroid, and normal KO gene derived from Stevia rebaudiana are assembled pSTV29_crtE_CDPS_KS_KO*pSTV29_crtE_CDPS_KS_KO* 스테비아 레바우디아나로부터 유래한 CDPS, KS와 로도박터 스페로이드로부터 유래한 crtE 및 스테비아 레바우디아나로부터 유래한 세 개의 돌연변이(L28Q, N284H, F446V)를 가지는 KO*가 어셈블리 되어있는 카우린산 생산 벡터Kauric acid production vector in which CDPS derived from Stevia rebaudiana, crtE derived from KS and Rhodobacter spheroid, and KO* with three mutations (L28Q, N284H, F446V) derived from Stevia rebaudiana are assembled

최종적으로 확보한 클론에 대하여 NCBI의 데이터베이스와 비교하여 염기서열 및 아미노산 서열을 비교하였다.
The nucleotide sequence and amino acid sequence were compared with the NCBI database for the finally obtained clone.

실시예 2. In vitro functional assay Example 2. In vitro functional assay

2-1. CDPS (Copalyl diphosphate synthase) 활성 확인2-1. Confirmation of CDPS (Copalyl diphosphate synthase) activity

CDPS 유전자를 삽입한 pET23M_CDPS 재조합 벡터를 이용하여 공지된 전기천공법 (electroporation)에 따라 형질 전환된 재조합 대장균을 제조하였다. 이를 50ml LB 배지에서 37℃에서 OD600nm에서 0.6이 될 때까지 배양한 후에 0.1 mM의 IPTG로 발현을 유도한 후, 30℃에서 3시간 동안 추가로 배양하였다. 배양액 내의 재조합 대장균을 원심분리를 통해 모으고, 모아진 세포 펠렛에 GGDP 어세이 완충액 (50mM potassium phosphate pH 8, 10% glycerol, 2mM DTT, 5mM MgCl2)과 라이소자임 (lysozyme, 100 mg/ml)을 섞어주었다. 이를 37℃에서 15분 간 배양한 뒤에 얼음에서 20초 간 3회 초음파 처리하였다. 이를 12000g에서 원심분리 한 후, 상등액을 제거하였다. 상기 과정을 통해 수득한 CDPS 단백질을 His-tag 정제를 통해 확인하였다. 이를 도 3에 나타내었다. Using the pET23M_CDPS recombinant vector into which the CDPS gene was inserted, transformed recombinant E. coli was prepared according to a known electroporation method. This was incubated in 50ml LB medium at 37°C at OD600nm until it reached 0.6, followed by induction of expression with 0.1 mM IPTG, followed by further incubation at 30°C for 3 hours. Recombinant E. coli in the culture medium was collected through centrifugation, and GGDP assay buffer (50mM potassium phosphate pH 8, 10% glycerol, 2mM DTT, 5mM MgCl 2 ) and lysozyme (100 mg/ml) were mixed with the collected cell pellet. . This was incubated at 37° C. for 15 minutes and then sonicated 3 times for 20 seconds on ice. After centrifuging this at 12000g, the supernatant was removed. The CDPS protein obtained through the above process was confirmed through His-tag purification. This is shown in FIG. 3.

도 3에 나타낸 바와 같이, IPTG로 발현 유도 후 시간대 별로 CDPS의 분자량에 해당하는 약 90kDa 근처에서 밴드를 확인하였으며, 재조합 대장균 내에서 발현된 CDPS가 높은 순도로 분리 및 정제되었음을 SDS-PAGE상에서 확인하였다.
As shown in FIG. 3, after induction of expression with IPTG, a band was confirmed at about 90 kDa corresponding to the molecular weight of CDPS for each time period, and it was confirmed on SDS-PAGE that CDPS expressed in recombinant E. coli was isolated and purified with high purity. .

다음으로, 상기 과정을 통해 수득한 CDPS가 정상적으로 발현되어 GGDP에서 CDP로의 전환이 정상적으로 이루어지는지를 확인하기 위해, 하기와 같은 실험을 수행하였다. 먼저 상기 과정을 통해 수득한 CDPS 유전자가 발현된 재조합 대장균의 단백질 추출물 500㎍과 250㎕의 GGDP 어세이 완충액에 녹인 GGDP (Sigma, St Louis, Missouri, USA) 10㎍을 섞어 30℃에서 2시간 동안 배양하였다. 그 후 가스 크로마토그래피-질량분석기 (gas chromatography-mass spectrometry, GC/MS)를 이용하여 생성 단백질을 확인하였다. 이때, GGDP에서 CDP로의 전환이 이루어지면, 말단에 인산기가 붙어서 copalyl diphosphate 구조를 형성하게 되는데, 상기 물질은 GC/MS를 통한 분석이 불가능하므로, CIP (Calf-intestinal alkaline phosphatase) 처리를 통해 인산기를 제거하고 분석하였다. 대조군으로 유전자를 발현시키지 않은 공벡터를 삽입한 재조합 대장균의 단백질 추출물을 이용하였다. 그 결과를 도 4에 나타내었다. Next, the following experiment was performed to confirm whether the CDPS obtained through the above process was normally expressed and the conversion from GGDP to CDP was normally performed. First, 500 µg of protein extract of recombinant E. coli expressing the CDPS gene obtained through the above process and 10 µg of GGDP (Sigma, St Louis, Missouri, USA) dissolved in 250 µl of GGDP assay buffer were mixed at 30° C. for 2 hours. Cultured. Then, the produced protein was confirmed using gas chromatography-mass spectrometry (GC/MS). At this time, when the conversion from GGDP to CDP occurs, a phosphate group is attached to the terminal to form a copalyl diphosphate structure.Since the material cannot be analyzed through GC/MS, the phosphate group is treated through CIP (Calf-intestinal alkaline phosphatase) treatment. Removed and analyzed. As a control, a protein extract of recombinant E. coli into which an empty vector that did not express a gene was inserted was used. The results are shown in FIG. 4.

도 4에 나타낸 바와 같이, 질량값 290 m/z에서 하나의 분리된 피크를 확인하였으며, 조각화된 매스 패턴 결과와 GC/MS 라이브러리를 비교한 결과, 상기 물질이 copalol 구조인 것을 확인하였다. 상기 결과를 통해 재조합 대장균 내에서 CDPS가 정상적으로 발현되어 활성을 가지고 있음을 확인하였다.
As shown in FIG. 4, one separated peak was confirmed at a mass value of 290 m/z, and as a result of comparing the fragmented mass pattern result with the GC/MS library, it was confirmed that the material has a copalol structure. Through the above results, it was confirmed that CDPS was normally expressed and active in recombinant E. coli.

2-2. KS (Kaurene synthase) 활성 확인2-2. Confirmation of KS (Kaurene synthase) activity

상기 실시예 2-1에서의 CDPS 유전자를 삽입한 pET23M_CDPS 재조합 벡터 대신 KS 유전자를 삽입한 pET23M_KS 재조합 벡터를 이용한 것을 제외하고는, 상기 실시예 2-1과 동일한 방법으로 실험을 수행하였다. 상기 과정을 통해 수득한 KS 단백질을 His-tag 정제를 통해 확인하였다. 이를 도 5에 나타내었다. The experiment was performed in the same manner as in Example 2-1, except that the pET23M_KS recombinant vector into which the KS gene was inserted was used instead of the pET23M_CDPS recombinant vector into which the CDPS gene was inserted in Example 2-1. The KS protein obtained through the above process was confirmed through His-tag purification. This is shown in FIG. 5.

도 5에 나타낸 바와 같이, IPTG로 발현 유도 후 시간대 별로 KS의 분자량에 해당하는 약 89kDa 근처에서 밴드를 확인하였으며, 재조합 대장균 내에서 발현된 KS가 높은 순도로 분리 및 정제되었음을 SDS-PAGE상에서 확인하였다.
As shown in FIG. 5, after induction of expression with IPTG, a band was identified around 89 kDa corresponding to the molecular weight of KS for each time period, and it was confirmed on SDS-PAGE that KS expressed in recombinant E. coli was separated and purified with high purity. .

다음으로, 상기 과정을 통해 수득한 정상적으로 발현되어 CDP에서 카우린으로의 전환이 정상적으로 이루어지는지를 확인하기 위해, 하기와 같은 실험을 수행하였다. 먼저 상기 과정을 통해 수득한 KS 유전자가 발현된 재조합 대장균의 단백질 추출물 250㎍, 상기 실시예 2-1에서 수득한 CDPS 유전자가 발현된 재조합 대장균의 단백질 추출물 250㎍ 및 10㎍의 GGDP를 섞어 30℃에서 2시간 동안 배양하였다. 그 후 가스 크로마토그래피-질량분석기 (gas chromatography-mass spectrometry, GC/MS)를 통해 생성 단백질을 확인하였다. 대조군으로 유전자를 발현시키지 않은 공벡터를 삽입한 재조합 대장균의 단백질 추출물을 이용하였다. 그 결과를 도 6 및 도 7에 나타내었다. Next, the following experiment was performed to confirm whether the conversion from CDP to cowin was normally performed by normal expression obtained through the above process. First, 250 μg of the protein extract of recombinant E. coli expressing the KS gene obtained through the above process, 250 μg of the protein extract of the recombinant E. coli expressing the CDPS gene obtained in Example 2-1, and 10 μg of GGDP were mixed at 30° C. Incubated for 2 hours at. After that, the produced protein was confirmed through gas chromatography-mass spectrometry (GC/MS). As a control, a protein extract of recombinant E. coli into which an empty vector that did not express a gene was inserted was used. The results are shown in FIGS. 6 and 7.

도 6에 나타낸 바와 같이, GC/MS를 통해 중간 산물인 copalol과 최종 산물인 카우린이 구분되어 확인되었다. 또한, 도 7에 나타낸 바와 같이, 질량값 272 m/z에서 하나의 분리된 피크가 확인되었으며, 조각화된 매스 패턴 결과와 GC/MS 라이브러리를 비교한 결과, 상기 물질이 카우린임을 다시 한번 확인하였다. As shown in Fig. 6, copalol as an intermediate product and cowin as a final product were identified and identified through GC/MS. In addition, as shown in FIG. 7, one separated peak was confirmed at a mass value of 272 m/z, and as a result of comparing the fragmented mass pattern result with the GC/MS library, it was confirmed once again that the material was cowin. .

마지막으로, 최종 단백질 추출물을 SDS-PAGE를 통해 추출과 정제가 제대로 이루어졌는지 확인하였다. 그 결과를 도 8에 나타내었다. Finally, it was confirmed that the final protein extract was properly extracted and purified through SDS-PAGE. The results are shown in FIG. 8.

도 8에 나타낸 바와 같이, CDPS 및 KS 단백질이 추출 및 정제가 제대로 이루어졌음을 확인하였다. 이후 실험은 상기 과정을 통해 확인된 CDPS 및 KS 단백질 추출물을 이용하여 수행하였다.
As shown in Fig. 8, it was confirmed that the CDPS and KS proteins were properly extracted and purified. Subsequent experiments were performed using the CDPS and KS protein extracts identified through the above process.

이상의 실험 결과를 통해, in vitro assay에서 CDPS가 GGDP를 기질로 하여 CDP(copalyl diphosphate)를 만들고, KS가 이를 기질로 하여 카우린을 생성하는 것을 확인하였다. 따라서 이후 실험은 기질을 첨가하여 카우린을 생산하는 방법이 아닌, 대장균 내에서 GGDPS와 KS를 발현하여 직접 카우린을 생성해내는 시스템을 제작하고자 하였다.
Through the above experimental results, it was confirmed that in an in vitro assay, CDPS made copalyl diphosphate (CDP) using GGDP as a substrate, and KS produced cowlin using this as a substrate. Therefore, the subsequent experiment was not a method of producing kaurin by adding a substrate, but to create a system that directly generates kaurin by expressing GGDPS and KS in E. coli.

실시예 3. GGDPS (crt E) 스크리닝 Example 3. GGDPS (crt E) screening

카우린 생성능이 우수한 재조합 미생물을 제조하기 위하여, GGDPS (crtE) 스크리닝을 수행하였다. 스테비아 레바우디아나 (Stevia rebaudiana Bertoni)의 GGDPS (crtE)를 대조군으로 하고, 다른 균주로부터 유래한 GGDPS(crt E)와 같은 기능을 하는 유전자를 확보하였다. Rhodopirellula Baltica SH1, Pantoea agglomerans, Corynebacterium glutamicum Rhodobacter sphaeroides, Rhodobacter capsulatus, Brevibacterium linens 등 총 여섯 가지 균주에서 유래한 GGDPS (crtE)와 같은 기능을 하는 유전자를 이용하여 최종 카우린의 생산량을 비교하였다. 카우린의 경우 표준이 존재하지 않아 정확한 정량 분석이 어렵기 때문에 상대적인 정량 비교 실험을 위해 총 세 번의 실험을 수행하였으며, 단위 셀 당 생산되는 카우린의 양을 상대적인 정량값으로 비교하였다. In order to prepare a recombinant microorganism having excellent cowrin-producing ability, GGDPS (crtE) screening was performed. GGDPS (crtE) of Stevia rebaudiana Bertoni was used as a control, and a gene having the same function as GGDPS (crt E) derived from another strain was obtained. Final cowrin production was compared using genes that function like GGDPS (crtE) from a total of six strains including Rhodopirellula Baltica SH1, Pantoea agglomerans, Corynebacterium glutamicum Rhodobacter sphaeroides, Rhodobacter capsulatus, and Brevibacterium linens. In the case of cowin, since there is no standard, it is difficult to perform an accurate quantitative analysis, so a total of three experiments were performed for a relative quantitative comparison experiment, and the amount of cowin produced per unit cell was compared with a relative quantitative value.

보다 구체적으로, 유전자 어셈블리 (Gene assembly)한 pSTV29_CDPS_KS에 6종류의 pUCM_crtE를 발현하여 형질 전환 세포를 확보하였다. 형질 전환 세포에서 최종 생성된 카우린를 분리하기 위하여, 하기와 같은 세 가지 방법을 이용하였다. More specifically, transformed cells were obtained by expressing six types of pUCM_crtE in pSTV29_CDPS_KS subjected to gene assembly. In order to separate the final produced cowin from transformed cells, the following three methods were used.

a) 전체 배양된 세포 (0.2 g-wet cell weight, g-wcw)를 클로로포름:MeOH = 2:1 용액으로 추출한 뒤에, 같은 용액으로 최종 용출 (elution)하였다. a) The entire cultured cells (0.2 g-wet cell weight, g-wcw) were extracted with a chloroform:MeOH = 2:1 solution, and then finally eluted with the same solution.

b) 전체 배양된 세포 (0.2 g-wcw)를 헥산 용액으로 추출한 뒤에, 같은 용액으로 최종 용출하였다. b) The entire cultured cells (0.2 g-wcw) were extracted with a hexane solution, and then finally eluted with the same solution.

c) 전체 배양된 세포 (0.2 g-wcw)를 클로로포름:MeOH = 2:1 용액으로 추출한 군과 헥산 용액으로 추출한 군을 모두 건조한 뒤에, 메톡시아민하이드로클로라이드 (metoxyaminhydrochloride) 40㎕을 넣고 37℃에서 2시간 동안 진탕 배양하였다. 그 뒤 MSTFA을 넣고 37℃에서 30분 동안 진탕 배양하여 최종 샘플을 확보하였다. c) After drying all the cultured cells (0.2 g-wcw) with chloroform:MeOH = 2:1 solution and the group extracted with hexane solution, 40 µl of methoxyaminhydrochloride was added and at 37°C. It was incubated with shaking for 2 hours. Thereafter, MSTFA was added and incubated with shaking at 37° C. for 30 minutes to obtain a final sample.

a)와 b)의 방법을 통해 수득한 물질은 피크의 풍도(abundance)가 굉장히 높고 다른 피크가 많았으며, c)의 방법을 통해 수득한 물질이 비교적 안정적인 패턴의 결과를 나타내었다. 따라서 c)의 방법을 통해 수득한 물질을 GC/MS를 통해 분석하였다. 그 결과를 도 9 및 도 10에 나타내었다. The material obtained through the methods a) and b) had very high abundance of peaks and had many other peaks, and the material obtained through the method c) showed a relatively stable pattern. Therefore, the material obtained through the method of c) was analyzed through GC/MS. The results are shown in FIGS. 9 and 10.

도 9 및 도 10에 나타낸 바와 같이, 스테비아로부터 유래한 GGDPS를 이용한 경우, 카우린을 정성적으로 확인할 수 없었다. 또한, GGDPS의 종류에 따른 카우린의 생성량을 정량적으로 비교해본 결과, 로도박터 스페로이드(Rhodobacter sphaeroides) 유래의 GGDPS(crtE)를 이용할 경우 단위 세포 당 가장 많은 카우린이 생성됨을 확인하였다. 따라서 이후 실험은 로도박터 스페로이드(Rhodobacter sphaeroides) 유래의 GGDPS(crtE)를 어셈블리 하여 이용하였다.
As shown in Figs. 9 and 10, in the case of using GGDPS derived from stevia, it was not possible to qualitatively confirm cowrin. In addition, as a result of quantitatively comparing the amount of kaurin produced according to the type of GGDPS, it was confirmed that the most kaurine was produced per unit cell when using GGDPS (crtE) derived from Rhodobacter sphaeroides. Therefore, in subsequent experiments, GGDPS (crtE) derived from Rhodobacter sphaeroides was assembled and used.

실시예 4. CDPS, KS 및 GGDPS (crtE)를 포함하는 카우린 제조용 재조합 벡터의 제작Example 4. Construction of a recombinant vector for cowrin production containing CDPS, KS and GGDPS (crtE)

상기 실시예 3의 결과를 토대로, 재조합 대장균 내에서 다량의 카우린을 생성하기 위하여, CDPS, KS 및 GGDPS (crtE)를 하나의 플라스미드에서 발현할 수 있도록 조립하여, 재조합 벡터를 제작하였다. 상기 재조합 벡터의 벡터 맵을 도11에 나타내었다. Based on the results of Example 3, in order to generate a large amount of cowin in recombinant E. coli, CDPS, KS, and GGDPS (crtE) were assembled to be expressed in one plasmid, thereby constructing a recombinant vector. The vector map of the recombinant vector is shown in FIG. 11.

상기 재조합 벡터로 형질 전환된 재조합 균주 내에서 카우린의 생성이 이루어지는 것을 확인하였으며, 이를 통해 기존의 스테비아 유래의 GGDPS 유전자가 아닌 로도박터 스페로이드(Rhodobacter sphaeroides) 유래의 GGDPS를 이용하여 재조합 미생물 내에서 다량의 카우린을 효과적으로 생산할 수 있는 시스템을 구축하였다.
It was confirmed that the production of kaurin in the recombinant strain transformed with the recombinant vector was confirmed, through which GGDPS derived from Rhodobacter sphaeroides rather than the existing Stevia-derived GGDPS gene was used in the recombinant microorganism. We have established a system that can effectively produce a large amount of cowin.

실시예 5. 발효조 배양을 통한 카우린 생산 재조합 균주의 생산성 증대 검증Example 5. Verification of increasing productivity of recombinant strains producing cowrin through fermentation tank culture

상기 실시예 4에서 제조한 재조합 벡터로 형질 전환된 재조합 미생물 (대장균) 내에서 카우린의 생산성 증대를 위해 발효조 (fermentor) 배양을 실시하였다. 보다 구체적으로는, 탄소원 (carbon source)으로 글리세롤을 포함하는 1L의 LGN (yast extract 5g, tryptone 10g, NaCl 5g, sodium nitrate 10g, glycerol 5g)을 이용하였으며, 질소 가스를 지속적으로 공급하여 혐기성 배양을 실시하여 카우린을 생산할 수 있는지를 확인하였다. 플라스크 조건에서의 비교 실험을 위해 120ml의 병에 100ml의 글리세롤을 포함하는 1L의 LGN (yast extract 5g, tryptone 10g, NaCl 5g, sodium nitrate 10g, glycerol 5g)을 넣고 산소가 공급되지 않도록 밀봉하여 혐기성 배양을 실시하였다. 최종적으로 같은 단위 셀 당 생산되는 카우린의 양을 비교하였다. 그 결과를 도 12에 나타내었다. In order to increase the productivity of cowin in the recombinant microorganism (E. coli) transformed with the recombinant vector prepared in Example 4, a fermentor was cultured. More specifically, 1L of LGN (yast extract 5g, tryptone 10g, NaCl 5g, sodium nitrate 10g, glycerol 5g) containing glycerol as a carbon source was used, and anaerobic culture was performed by continuously supplying nitrogen gas. It was carried out to see if it could produce cowrin. For a comparative experiment under flask conditions, 1L of LGN (yast extract 5g, tryptone 10g, NaCl 5g, sodium nitrate 10g, glycerol 5g) containing 100ml of glycerol was added to a 120ml bottle and sealed so that no oxygen was supplied for anaerobic culture. Was carried out. Finally, the amount of cowrin produced per unit cell was compared. The results are shown in FIG. 12.

도 12에 나타낸 바와 같이, 동일한 혐기성 배양 조건에서 같은 양의 재조합 균주가 생성한 카우린을 추출하여 분석한 결과, 플라스크 배양보다 발효조 배양을 실시하였을 때, 더 많은 양의 카우린을 생산할 수 있음을 확인하였다.
As shown in FIG. 12, as a result of extracting and analyzing the cowlin produced by the same amount of recombinant strain under the same anaerobic culture conditions, it was found that when the fermentation tank culture was performed than the flask culture, a larger amount of cowrin could be produced. Confirmed.

실시예 6. 카우린산의 생성을 위한 KO (정상 KO 또는 돌연변이 KO*) 스크리닝Example 6. KO (normal KO or mutant KO*) screening for the production of kauric acid

종래의 pSTV29의 벡터에 상기 실시예 4에서 우수한 카우린 생성능을 가지는 것을 확인한 로도박터 스페로이드(Rhodobacter sphaeroides) 유래의 GGDPS (crtE), 스테비아 유래의 CDPS 및 KS 유전자를 어셈블리하여 카우린 제조용 재조합 벡터 (pSTV29_crtE_CDPS_KS)를 제작하였다 (도 11 참조). 상기 재조합 벡터(pSTV29_crtE_CDPS_KS)와 함께 스테비아로부터 유래한 정상 KO 유전자 및 세 개의 돌연변이(L28Q, N284H, F446V)를 가지는 KO* 유전자를 포함하는 재조합 발현 벡터 (pUCM-KO 또는 pUCM-KO*)를 이용하여 공지된 전기천공법 (electroporation)에 따라 형질 전환된 재조합 대장균을 제조하였다. 상기 재조합 대장균이 최종적으로 생산하는 카우린산의 생성량을 확인하였다. 카우린산의 경우 표준이 존재하지 않아 정확한 정량 분석이 어렵기 때문에 상대적인 정량 비교 실험을 위해 총 세 번의 실험을 수행하였으며, 단위 세포 당 생산되는 카우린산의 양을 상대적인 정량값으로 비교하였다. 그 결과를 도 13에 나타내었다. Recombinant vector for cowrin production by assembling GGDPS (crtE) derived from Rhodobacter sphaeroides , CDPS and KS genes derived from stevia in a conventional pSTV29 vector, which was confirmed to have excellent cowrin-producing ability in Example 4 ( pSTV29_crtE_CDPS_KS) was prepared (see FIG. 11). Using a recombinant expression vector (pUCM-KO or pUCM-KO*) comprising a normal KO gene derived from stevia and a KO* gene having three mutations (L28Q, N284H, F446V) together with the recombinant vector (pSTV29_crtE_CDPS_KS) The transformed recombinant E. coli was prepared according to a known electroporation method. The amount of kauric acid finally produced by the recombinant E. coli was confirmed. In the case of kauric acid, since there is no standard, it is difficult to perform an accurate quantitative analysis, so a total of three experiments were performed for a relative quantitative comparison experiment, and the amount of kauric acid produced per unit cell was compared with a relative quantitative value. The results are shown in FIG. 13.

도 13에 나타낸 바와 같이, KO 유전자가 포함되지 않는 벡터로 형질 전환된 대조군에서는 카우린산이 전혀 생성되지 않았으나, KO 유전자 중에서도 정상 유전자가 아닌 세 개의 돌연변이(L28Q, N284H, F446V)를 가지는 KO* 유전자를 포함한 재조합 벡터로 형질 전환된 군에서는 카우린산의 생성능이 현저하게 증가함을 확인하였다.As shown in Figure 13, in the control group transformed with a vector that does not contain the KO gene, kauric acid was not produced at all, but among the KO genes, the KO* gene having three mutations (L28Q, N284H, F446V) other than the normal gene In the group transformed with a recombinant vector including, it was confirmed that the ability to produce kauric acid was remarkably increased.

상기 카우린산의 생성을 GC/MS를 통해 재확인하기 위하여, 재조합 대장균에 5ml의 클로로포름:MeOH=2:1 용액 및 2ml의 물을 넣고 충분히 섞은 뒤에 인터널스탠다드(IS)로 n-헥사데칸(hexadecane)을 절대량 넣었다. 상기 용액에 열을 가한 후, 초음파 처리하여 추출한 후, 건조한 뒤에 TMSD (Trimethylsilydiazomethane, methylation)를 넣고 70℃에서 1시간 동안 반응시켰다. 그 결과를 도 14에 나타내었다. In order to reconfirm the production of kauric acid through GC/MS, 5 ml of a chloroform:MeOH=2:1 solution and 2 ml of water were added to the recombinant E. coli, thoroughly mixed, and then n-hexadecane ( hexadecane) was added in an absolute amount. After heat was applied to the solution, it was extracted by ultrasonic treatment, and after drying, TMSD (Trimethylsilydiazomethane, methylation) was added and reacted at 70° C. for 1 hour. The results are shown in FIG. 14.

도 14에 나타낸 바와 같이, 카우린산의 생성이 확인되었다.
As shown in Fig. 14, production of kauric acid was confirmed.

실시예 7. CDPS, KS, GGDPS (crt E) 및 돌연변이 KO*를 포함하는 카우린산 제조용 재조합 벡터의 제작Example 7. Construction of a recombinant vector for producing kauric acid containing CDPS, KS, GGDPS (crt E) and mutant KO*

상기 실시예 6의 실험 결과를 토대로, 재조합 대장균 내에서 다량의 카우린산을 생성하기 위하여, CDPS, KS, 로도박터 스페로이드 유래의 GGDPS (crtE) 및 세 개의 돌연변이(L28Q, N284H, F446V)를 가지는 KO*를 하나의 플라즈미드에서 발현할 수 있도록 조립하여, 재조합 벡터를 제작하였다. 상기 재조합 벡터의 벡터 맵을 도 15에 나타내었다. Based on the experimental results of Example 6, in order to generate a large amount of kauric acid in recombinant E. coli, CDPS, KS, GGDPS (crtE) and three mutations (L28Q, N284H, F446V) derived from Rhodobacter spheroids were used. Eggplants were assembled so that KO* could be expressed in one plasmid, thereby constructing a recombinant vector. The vector map of the recombinant vector is shown in FIG. 15.

상기 재조합 벡터로 형질 전환된 재조합 균주 내에서 카우린산의 생성이 이루어지는 것을 확인하였으며, 이를 통해 기존의 스테비아 유래의 정상 KO 유전자가 아닌 세 개의 돌연변이(L28Q, N284H, F446V)를 가지는 KO* 유전자를 이용하여 재조합 미생물 내에서 다량의 카우린산을 효과적으로 생산할 수 있는 시스템을 구축하였다. It was confirmed that the production of kauric acid in the recombinant strain transformed with the recombinant vector was confirmed, through which the KO* gene having three mutations (L28Q, N284H, F446V) other than the conventional stevia-derived normal KO gene Using this, a system capable of effectively producing a large amount of kauric acid in recombinant microorganisms was constructed.

실시예 8. 스테비올 생산능을 가지는 재조합 미생물의 제작Example 8. Preparation of a recombinant microorganism having steviol-producing ability

상기 실시예 7에서 제조한 카우린산 생성 모듈을 포함하는 재조합 벡터 (도 15 참조)와 스테비아 유래의 KAH를 발현시키는 재조합 발현 벡터 (pUCM_KAH)를 함께 이용하여, 상기 실시예 6과 동일한 방법으로 재조합 대장균을 제조하였다. 상기 재조합 대장균을 100ml의 LB (yast extract 5g, tryptone 10g, NaCl 5g) 배지를 이용하여, 30℃에서 16시간 내지 24시간 동안 배양하여 배양액을 확보하였다. 상기 재조합 대장균으로부터 생성된 스테비올의 분리 및 정성 분석을 위하여, 재조합 대장균의 배양액을 클로로포름:MeOH=2:1의 용액으로 추출하고 건조한 후, TMSD (Trimethylsilydiazomethane, methylation) 50㎕을 넣고 70℃에서 1시간 동안 반응시켰다. 그 결과를 도 16에 나타내었다. Using the recombinant vector containing the kauric acid production module prepared in Example 7 (see Fig. 15) and the recombinant expression vector (pUCM_KAH) expressing KAH derived from stevia together, recombination in the same manner as in Example 6 E. coli was prepared. The recombinant E. coli was cultured at 30° C. for 16 to 24 hours using 100 ml of LB (yast extract 5g, tryptone 10g, NaCl 5g) medium to obtain a culture solution. For the separation and qualitative analysis of the steviol generated from the recombinant E. coli, the culture medium of the recombinant E. coli was extracted with a solution of chloroform: MeOH = 2: 1, dried, and then TMSD (Trimethylsilydiazomethane, methylation) 50 [mu]l was added and 1 at 70[deg.]C. It was allowed to react for hours. The results are shown in FIG. 16.

도 16에 나타낸 바와 같이, KAH 유전자가 포함되지 않는 재조합 벡터로 형질 전환된 대조군에서는 스테비올이 전혀 생성되지 않았으나, 정상 KO 유전자를 포함한 재조합 벡터로 형질 전환된 군(푸른색)에서는 스테비올이 미량으로 생성됨을 확인하였으며, 세 개의 돌연변이(L28Q, N284H, F446V)를 가지는 KO* 유전자를 포함한 재조합 벡터로 형질 전환된 군(붉은색)에서는 현저하게 많은 양의 스테비올이 생성됨을 확인하였다.
As shown in FIG. 16, steviol was not produced at all in the control group transformed with the recombinant vector not containing the KAH gene, but the group transformed with the recombinant vector containing the normal KO gene (blue color) contained a trace amount of steviol. It was confirmed that it was generated as, and it was confirmed that a remarkably large amount of steviol was produced in the group (red) transformed with a recombinant vector containing a KO* gene having three mutations (L28Q, N284H, F446V).

<110> AJOU UNIVERSITY INDUSTRY-ACADEMIC COOPERATION FOUNDATION <120> Recombinant microorganism with kaurene, kauronic acid, or steviol production ability and method for preparing kaurene, kauronic acid, or steviol using the same <130> 15 <150> KR 10-2012-0040906 <151> 2012-04-19 <160> 6 <170> KopatentIn 2.0 <210> 1 <211> 867 <212> DNA <213> Rhodobacter sphaeroides <400> 1 atggcgtttg aacagcggat tgaagcggca atggcagcgg cgatcgcgcg gggccagggc 60 tccgaggcgc cctcgaagct ggcgacggcg ctcgactatg cggtgacgcc cggcggcgcg 120 cgcatccggc ccacgcttct gctcagcgtg gccacggcct gcggcgacga ccgcccggct 180 ctgtcggacg cggcggcggt ggcgcttgag ctgatccatt gcgcgagcct cgtgcatgac 240 gatctgccct gcttcgacga tgccgagatc cggcgcggca agcccacggt gcatcgcgcc 300 tattccgagc cgctggcgat cctcaccggc gacagcctga tcgtgatggg cttcgaggtg 360 ctggcccgcg ccgcggccga ccagccgcag cgggcgctgc agctggtgac ggcgctggcg 420 gtgcggacgg ggatgccgat gggcatctgc gcggggcagg gctgggagag cgagagccag 480 atcaatctct cggcctatca tcgggccaag accggcgcgc tcttcatcgc cgcgacccag 540 atgggcgcca ttgccgcggg ctacgaggcc gagccctggg aagagctggg agcccgcatc 600 ggcgaggcct tccaggtggc cgacgacctg cgcgacgcgc tctgcgatgc cgagacgctg 660 ggcaagcccg cggggcagga cgagatccac gcccgcccga acgcggtgcg cgaatatggc 720 gtcgagggcg cggcgaagcg gctgaaggac atcctcggcg gcgccatcgc ctcgatcccc 780 tcctgcccgg gcgaggcgat gctggccgag atggtccgcc gctatgccga gaagatcgtg 840 ccggcgcagg tcgcggcccg cgtctga 867 <210> 2 <211> 2361 <212> DNA <213> Stevia rebaudiana <400> 2 atgaagaccg gcttcatctc tcccgccacc gtcttccacc accgtatttc tccggcaacc 60 accttccgcc accacctttc tccggcgacc accaactcca ctggaattgt agctcttaga 120 gacatcaact tccggtgtaa agcggtatcc aaagagtact ctgatttact acaaaaagat 180 gaggcttcat ttaccaagtg ggacgatgac aaagtgaagg accatttgga cacaaataag 240 aatttgtatc caaacgatga gatcaaggag tttgttgaga gcgtgaaagc aatgtttggt 300 tctatgaatg acggagaaat aaatgtgtca gcgtatgata cggcttgggt tgcactcgtg 360 caagatgttg atggaagtgg ttcccctcaa tttccatcaa gtttggagtg gatcgcgaac 420 aatcaactct cagatgggtc ttggggcgat catttgttat tttcggctca tgataggatc 480 attaacacgt tggcatgtgt tatagcgcta acttcttgga acgtccatcc aagtaaatgt 540 gaaaaaggac tgaattttct tagagaaaac atatgtaaac tcgaagacga gaacgcggaa 600 catatgccaa ttggttttga agtcacgttc ccgtcgctaa tagatatcgc aaagaagcta 660 aatattgaag ttcctgagga tactcctgcc ttaaaagaaa tttatgcaag aagagacata 720 aaactcacaa agataccaat ggaagtattg cacaaagtgc ccacaacttt acttcatagt 780 ttggaaggaa tgccagattt ggaatgggaa aaacttctga aattgcaatg caaagatgga 840 tcatttctgt tttctccatc atctactgct tttgcactca tgcaaacaaa agatgaaaag 900 tgtcttcagt atttgacaaa tattgttacc aaattcaatg gtggagttcc gaatgtgtac 960 ccggtggatc tattcgaaca tatttgggta gttgatcgac ttcaacgact tgggatttct 1020 cgttatttca aatcagagat caaagattgc gttgaatata ttaacaagta ttggacaaag 1080 aatgggattt gttgggcaag aaacacgcac gtacaagata ttgatgatac cgcaatggga 1140 tttagggttt taagagcaca tggttatgat gttactccag atgtatttcg acaatttgag 1200 aaggatggta aattcgtatg tttcgctgga cagtcaacac aagccgtcac cggaatgttc 1260 aatgtgtata gagcgtcaca aatgctcttt cccggagaaa gaattcttga agatgcaaag 1320 aaattttcat ataattattt gaaagaaaaa caatcgacaa atgagcttct tgataaatgg 1380 atcatcgcca aagacttacc tggagaggtt ggatatgcgc tagacatacc atggtatgca 1440 agcttaccgc gactcgagac aagatattac ttagagcaat acgggggcga ggatgatgtt 1500 tggattggaa aaactctata caggatggga tatgtgagca ataatacgta ccttgaaatg 1560 gccaaattgg actacaataa ctatgtggcc gtgcttcaac tcgaatggta cactatccag 1620 caatggtatg ttgatatcgg tatcgaaaag tttgaaagtg acaatatcaa aagcgtatta 1680 gtgtcgtatt acttggctgc agccagcata ttcgagccgg aaaggtccaa ggaacgaatc 1740 gcgtgggcta aaaccaccat attagttgac aagatcacct caatttttga ttcatcacaa 1800 tcctcaaaag aggacataac agcctttata gacaaattta ggaacaaatc gtcttctaag 1860 aagcattcaa taaatggaga accatggcac gaggtgatgg ttgcactgaa aaagacccta 1920 cacggcttcg ctttggatgc actcatgact catagtcaag acatccaccc gcaactccat 1980 caagcttggg agatgtggtt gacgaaattg caagatggag tagatgtgac agcggaatta 2040 atggtacaaa tgataaatat gacagctggt cgttgggtat ccaaagaact tttaactcat 2100 cctcaatacc aacgcctctc aaccgtcaca aatagtgtgt gtcacgatat aactaagctc 2160 cataacttca aggagaattc cacgacggta gactcgaaag ttcaagaact agtgcaactt 2220 gtgtttagcg acacgcccga tgatcttgat caggatatga aacagacgtt tctaaccgtc 2280 atgaaaacct tctactacaa ggcgtggtgt gatccgaaca cgataaatga ccatatctcc 2340 aaggtgttcg agattgtaat a 2361 <210> 3 <211> 2352 <212> DNA <213> Stevia rebaudiana <400> 3 atgaatcttt cactatgcat cgcgtcccct ttgttaacca aatcaaatcg acccgcggct 60 ctgtcagcta ttcatacagc atcaacttca catggtggac aaactaatcc cactaatctg 120 atcattgata caaccaaaga acggatccaa aaacagttta aaaatgtaga aatttctgtt 180 tcttcatatg acacagcatg ggtagccatg gtcccttctc caaactcacc caaatcgcct 240 tgtttccctg agtgtctcaa ttggttaatt aataatcagc ttaatgatgg ttcatggggt 300 cttgttaatc acactcataa tcataatcac ccgttgctta aagattctct atcttcaaca 360 ttagcatgta ttgttgcatt aaaaagatgg aatgttgggg aagatcaaat aaataaaggt 420 ctaagtttta ttgagtcaaa tcttgcttca gctactgaaa aaagtcaacc atctcccatt 480 ggttttgaca tcatatttcc tggtttgctt gagtatgcga aaaacttgga cataaacctc 540 ctttcaaaac aaacagattt tagtttgatg ctacataaga gggaattgga gcaaaaaaga 600 tgccattcaa atgagatgga tggatacttg gcgtatatct ctgaaggact cggtaattta 660 tatgattgga atatggtgaa gaaatatcag atgaaaaatg gttctgtttt caactcacca 720 tcagcaacag ctgctgcttt cattaatcat caaaatcctg gttgtcttaa ttatttaaat 780 tcacttttgg acaagtttgg taatgcagtc ccaacagttt atcctcatga tttatttatc 840 cgactttcta tggttgacac aattgaaaga ttaggaattt cacaccattt cagagtggaa 900 attaaaaatg ttttagatga aacatacaga tgttgggtgg aacgagatga gcaaatattc 960 atggatgttg taacatgtgc tttagccttt cggttattaa ggatcaatgg gtatgaagtt 1020 tccccagatc cattggctga aattactaat gaattagctt tgaaagacga atatgcagct 1080 cttgaaacat atcatgcgtc acatatatta taccaagagg atttatcttc tggaaaacaa 1140 atcttgaagt cagctgattt cctcaaagag ataatatcca ctgattcaaa caggctttct 1200 aaattaattc acaaagaggt ggaaaatgct cttaagttcc ctatcaatac cggtttagaa 1260 cgcataaaca ctagacgaaa tatacagctt tacaatgtag acaatacaag aattctgaaa 1320 actacatatc actcatcaaa tattagtaac actgattacc taaggttggc tgttgaagat 1380 ttctacacct gccaatctat ttatcgtgaa gaattaaaag gtcttgaaag gtgggtggta 1440 gagaataagt tggaccagct caagtttgct aggcaaaaga ccgcctactg ttatttctct 1500 gttgctgcaa cactttcgtc tcccgaatta tcagatgcgc gtatttcatg ggccaaaaat 1560 ggcatattaa ctacagtagt tgatgacttt tttgatatcg gtggtacaat cgatgaattg 1620 accaacctga ttcaatgtgt tgaaaaatgg aatgtagatg tcgacaagga ttgttgttca 1680 gagcatgttc ggattttatt tttagcatta aaagatgcaa tctgttggat tggagatgaa 1740 gcttttaaat ggcaagcgcg cgatgtaact agccatgtta ttcaaacttg gttggaacta 1800 atgaatagta tgttgagaga agctatatgg acaagagatg cttatgtgcc aacattaaat 1860 gaatatatgg aaaacgctta cgtgtcattt gcattaggcc cgattgtcaa gccggctatt 1920 tactttgtgg ggcccaaatt atcagaggag attgttgaaa gctctgaata tcataatcta 1980 tttaagctaa tgagcacgca gggtcgactt ctaaacgata tccatagctt caagagggaa 2040 tttaaggaag gcaaattaaa cgcggtagca ttgcatttga gtaacggaga aagtgggaaa 2100 gtggaagaag aggttgtgga ggagatgatg atgatgatta aaaacaagag gaaagaatta 2160 atgaaattaa tttttgaaga aaatggtagc attgttccta gagcttgtaa agatgcattt 2220 tggaacatgt gtcacgtgtt gaattttttt tacgcaaacg atgacgggtt tactggaaac 2280 acgattcttg atactgtgaa ggacatcatt tacaacccgt tggtgcttgt gaatgaaaat 2340 gaagaacaaa gg 2352 <210> 4 <211> 1542 <212> DNA <213> Stevia rebaudiana <400> 4 atggatgcgg ttactggtct gctgactgtt cctgcgactg cgattaccat tggtggcacc 60 gcagtggccc tggcggtcgc tctgatcttc tggtacctga aaagctacac gtccgctcgt 120 cgttctcagt ctaaccacct gccgcgtgta ccggaagtac cgggcgttcc actgctgggt 180 aacctgctgc aactgaagga gaaaaaaccg tacatgacct tcacccgctg ggctgcgacc 240 tacggtccga tctatagcat caaaacgggc gcaacgagca tggtcgtggt atcttctaac 300 gaaatcgcta aagaagcact ggtcacccgc ttccagagca tcagcacccg taacctgtcc 360 aaagccctga aagtgctgac tgctgataag accatggttg caatgtctga ctatgacgac 420 taccacaaga ccgtgaaacg tcacatcctg accgcggtgc tgggcccgaa cgctcagaaa 480 aaacatcgta tccatcgtga tatcatgatg gataacatct ccactcagct gcatgaattt 540 gtgaaaaaca acccggagca ggaggaagtg gacctgcgta aaattttcca gtctgaactg 600 tttggtctgg cgatgcgtca ggctctgggc aaagatgtgg aatccctgta tgtcgaagac 660 ctgaaaatta ccatgaatcg tgacgaaatc ttccaggttc tggttgtaga cccgatgatg 720 ggtgccatcg acgttgattg gcgcgacttc ttcccgtatc tgaaatgggt tccgaacaag 780 aaattcgaaa ataccattca gcagatgtat attcgtcgtg aagccgttat gaaatccctg 840 atcaaagagc acaaaaagcg tattgcatct ggcgagaaac tgaatagcta tattgattac 900 ctgctgagcg aagcgcagac tctgaccgat caacagctgc tgatgtccct gtgggaaccg 960 attatcgagt cttccgatac caccatggta accaccgaat gggcaatgta cgaactggct 1020 aaaaacccga aactgcagga ccgtctgtac cgcgacatca aatccgtttg tggtagcgaa 1080 aaaatcaccg aagagcacct gtcccaactg ccgtacatca ctgcaatctt ccacgagact 1140 ctgcgtcgtc attctccggt tccgatcatc ccactgcgtc acgtgcacga agacactgtt 1200 ctgggcggtt accacgtgcc agccggcacc gaactggcgg ttaacattta cggctgcaac 1260 atggacaaaa acgtctggga aaacccggaa gagtggaacc ctgaacgctt catgaaagaa 1320 aacgaaacta ttgatttcca aaagactatg gcgtttggcg gtggtaaacg cgtatgcgct 1380 ggttctctgc aggcactgct gacggcgtct atcggcatcg gtcgcatggt tcaggaattt 1440 gaatggaagc tgaaagatat gacccaggaa gaagtaaaca cgatcggtct gaccactcag 1500 atgctgcgcc ctctgcgcgc tatcattaag ccgcgtatct aa 1542 <210> 5 <211> 1542 <212> DNA <213> Stevia rebaudiana <400> 5 atggatgccg tcaccggttt gctaacagtt ccggcaaccg caataaccat cggcggtacg 60 gccgtcgcac tcgccgtcgc tcagatattc tggtacctca aaagctacac atctgcacgc 120 aggagccaat caaaccatct ccctcgggtt cccgaggtac ctggtgtgcc attattgggg 180 aatttattgc agttgaagga gaagaaacct tacatgactt ttacgagatg ggcggcaact 240 tatggtccga tttattcgat taaaaccgga gcaacttcta tggtggtcgt cagttcaaat 300 gaaattgcaa aggaggcatt ggttaccaga tttcaatcta tctcaaccag aaacctatca 360 aaggcattaa aggttctcac agcagataaa accatggtgg cgatgagtga ttatgatgat 420 tatcataaga ctgtcaaacg ccatatactg accgctgttt tgggaccaaa tgctcagaag 480 aaacaccgca tccataggga catcatgatg gataatatat caacccaact tcatgaattt 540 gttaaaaata atcctgaaca agaggaagtg gatctaagga aaatattcca atccgaactt 600 tttggattag ctatgagaca agcattggga aaggatgtgg agagcttata tgttgaggat 660 cttaaaatca ccatgaaccg agacgagata tttcaggtat tggttgttga cccgatgatg 720 ggtgcaattg acgtcgactg gagagatttc ttcccgtatc taaagtgggt cccgaataaa 780 aagtttgaaa acacgatcca acaaatgtat atccggagag aagctgtgat gaagtctctt 840 attaaagaac ataaaaaacg tattgcatcc ggagagaaat taaacagcta cattgattac 900 ttgctatcgg aagcacaaac gttaaccgat caacaactac ttatgtctct atgggaacct 960 attattgaat catcagacac cactatggtt acaactgaat gggctatgta tgaacttgca 1020 aaaaacccca aacttcagga tcgtttgtat cgggatatca aaagtgtttg cgggtcagag 1080 aagattacag aagaacactt gtctcaactg ccatacataa ctgccatttt tcatgaaacc 1140 ttgagaaggc atagtccagt tcctataatt ccattaagac acgtgcatga agacacagtg 1200 ttaggagggt accatgtgcc agctggaacc gagctagcgg taaacattta tggatgtaac 1260 atggataaga atgtgtggga gaatcctgaa gaatggaatc cagagagatt catgaaggaa 1320 aatgaaacga tagatgtcca gaaaacaatg gcgtttggag gtggaaagcg cgtatgtgct 1380 ggttcgcttc aagcattgtt gactgcttcc attggaattg gaagaatggt gcaagagttt 1440 gagtggaaac tgaaagatat gacccaagaa gaagttaata cgattgggct tacgacccag 1500 atgcttcgtc cactgcgggc cataataaag cccaggatat ga 1542 <210> 6 <211> 1431 <212> DNA <213> Stevia rebaudiana <400> 6 atgattcagg tgctgacccc gatcctgctg ttcctgatct tctttgtttt ctggaaagta 60 tacaagcacc agaaaactaa aattaacctg ccgccgggca gcttcggttg gccgtttctg 120 ggcgaaactc tggctctgct gcgtgctggc tgggattctg aaccggaacg cttcgtccgt 180 gaacgcatta aaaaacatgg ctccccactg gttttcaaaa cgagcctgtt tggcgatcgt 240 tttgccgtgc tgtgcggtcc ggccggtaac aaatttctgt tttgcaacga gaacaaactg 300 gtggcatctt ggtggcctgt cccggtacgt aaactgttcg gcaaaagcct gctgactatc 360 cgcggcgatg aagccaaatg gatgcgtaaa atgctgctgt cctatctggg cccggatgcg 420 tttgcgaccc attacgcagt aacgatggac gtagtgaccc gccgtcacat tgacgttcac 480 tggcgtggca aagaagaagt caacgtgttc cagaccgtta agctgtatgc cttcgagctg 540 gcatgtcgtc tgttcatgaa tctggatgac ccgaaccaca tcgcgaaact gggctccctg 600 ttcaacatct tcctgaaggg catcattgaa ctgccgatcg acgttcctgg cacccgtttc 660 tactcttcta aaaaggcggc tgcggctatc cgtatcgaac tgaagaaact gattaaagcc 720 cgcaaactgg aactgaagga gggtaaagca tctagctccc aagacctgct gagccatctg 780 ctgacctctc ctgacgaaaa cggtatgttc ctgaccgaag aagagatcgt tgataacatc 840 ctgctgctgc tgttcgcagg tcacgacacg tccgcgctgt ctatcaccct gctgatgaaa 900 accctgggtg aacactccga cgtgtatgat aaagttctga aagaacagct ggaaatttct 960 aaaaccaaag aagcgtggga aagcctgaaa tgggaggata tccagaagat gaaatactcc 1020 tggtctgtta tctgcgaggt gatgcgtctg aatccgccgg ttatcggtac ttaccgtgaa 1080 gcactggtag atatcgacta cgcgggttac actattccga aaggttggaa actgcattgg 1140 agcgcggtgt ccacccagcg tgatgaagca aacttcgaag acgttactcg tttcgacccg 1200 tctcgctttg agggtgcggg tccgaccccg ttcaccttcg ttccgttcgg cggtggtcca 1260 cgcatgtgtc tgggtaagga atttgctcgc ctggaagttc tggctttcct gcacaacatt 1320 gtaacgaact tcaaatggga tctgctgatc ccggacgaga aaatcgaata tgacccgatg 1380 gctactccag ctaaaggtct gccgatccgt ctgcacccac accaagtcta a 1431 <110> AJOU UNIVERSITY INDUSTRY-ACADEMIC COOPERATION FOUNDATION <120> Recombinant microorganism with kaurene, kauronic acid, or steviol production ability and method for preparing kaurene, kauronic acid, or steviol using the same <130> 15 <150> KR 10-2012-0040906 <151> 2012-04-19 <160> 6 <170> KopatentIn 2.0 <210> 1 <211> 867 <212> DNA <213> Rhodobacter sphaeroides <400> 1 atggcgtttg aacagcggat tgaagcggca atggcagcgg cgatcgcgcg gggccagggc 60 tccgaggcgc cctcgaagct ggcgacggcg ctcgactatg cggtgacgcc cggcggcgcg 120 cgcatccggc ccacgcttct gctcagcgtg gccacggcct gcggcgacga ccgcccggct 180 ctgtcggacg cggcggcggt ggcgcttgag ctgatccatt gcgcgagcct cgtgcatgac 240 gatctgccct gcttcgacga tgccgagatc cggcgcggca agcccacggt gcatcgcgcc 300 tattccgagc cgctggcgat cctcaccggc gacagcctga tcgtgatggg cttcgaggtg 360 ctggcccgcg ccgcggccga ccagccgcag cgggcgctgc agctggtgac ggcgctggcg 420 gtgcggacgg ggatgccgat gggcatctgc gcggggcagg gctgggagag cgagagccag 480 atcaatctct cggcctatca tcgggccaag accggcgcgc tcttcatcgc cgcgacccag 540 atgggcgcca ttgccgcggg ctacgaggcc gagccctggg aagagctggg agcccgcatc 600 ggcgaggcct tccaggtggc cgacgacctg cgcgacgcgc tctgcgatgc cgagacgctg 660 ggcaagcccg cggggcagga cgagatccac gcccgcccga acgcggtgcg cgaatatggc 720 gtcgagggcg cggcgaagcg gctgaaggac atcctcggcg gcgccatcgc ctcgatcccc 780 tcctgcccgg gcgaggcgat gctggccgag atggtccgcc gctatgccga gaagatcgtg 840 ccggcgcagg tcgcggcccg cgtctga 867 <210> 2 <211> 2361 <212> DNA <213> Stevia rebaudiana <400> 2 atgaagaccg gcttcatctc tcccgccacc gtcttccacc accgtatttc tccggcaacc 60 accttccgcc accacctttc tccggcgacc accaactcca ctggaattgt agctcttaga 120 gacatcaact tccggtgtaa agcggtatcc aaagagtact ctgatttact acaaaaagat 180 gaggcttcat ttaccaagtg ggacgatgac aaagtgaagg accatttgga cacaaataag 240 aatttgtatc caaacgatga gatcaaggag tttgttgaga gcgtgaaagc aatgtttggt 300 tctatgaatg acggagaaat aaatgtgtca gcgtatgata cggcttgggt tgcactcgtg 360 caagatgttg atggaagtgg ttcccctcaa tttccatcaa gtttggagtg gatcgcgaac 420 aatcaactct cagatgggtc ttggggcgat catttgttat tttcggctca tgataggatc 480 attaacacgt tggcatgtgt tatagcgcta acttcttgga acgtccatcc aagtaaatgt 540 gaaaaaggac tgaattttct tagagaaaac atatgtaaac tcgaagacga gaacgcggaa 600 catatgccaa ttggttttga agtcacgttc ccgtcgctaa tagatatcgc aaagaagcta 660 aatattgaag ttcctgagga tactcctgcc ttaaaagaaa tttatgcaag aagagacata 720 aaactcacaa agataccaat ggaagtattg cacaaagtgc ccacaacttt acttcatagt 780 ttggaaggaa tgccagattt ggaatgggaa aaacttctga aattgcaatg caaagatgga 840 tcatttctgt tttctccatc atctactgct tttgcactca tgcaaacaaa agatgaaaag 900 tgtcttcagt atttgacaaa tattgttacc aaattcaatg gtggagttcc gaatgtgtac 960 ccggtggatc tattcgaaca tatttgggta gttgatcgac ttcaacgact tgggatttct 1020 cgttatttca aatcagagat caaagattgc gttgaatata ttaacaagta ttggacaaag 1080 aatgggattt gttgggcaag aaacacgcac gtacaagata ttgatgatac cgcaatggga 1140 tttagggttt taagagcaca tggttatgat gttactccag atgtatttcg acaatttgag 1200 aaggatggta aattcgtatg tttcgctgga cagtcaacac aagccgtcac cggaatgttc 1260 aatgtgtata gagcgtcaca aatgctcttt cccggagaaa gaattcttga agatgcaaag 1320 aaattttcat ataattattt gaaagaaaaa caatcgacaa atgagcttct tgataaatgg 1380 atcatcgcca aagacttacc tggagaggtt ggatatgcgc tagacatacc atggtatgca 1440 agcttaccgc gactcgagac aagatattac ttagagcaat acgggggcga ggatgatgtt 1500 tggattggaa aaactctata caggatggga tatgtgagca ataatacgta ccttgaaatg 1560 gccaaattgg actacaataa ctatgtggcc gtgcttcaac tcgaatggta cactatccag 1620 caatggtatg ttgatatcgg tatcgaaaag tttgaaagtg acaatatcaa aagcgtatta 1680 gtgtcgtatt acttggctgc agccagcata ttcgagccgg aaaggtccaa ggaacgaatc 1740 gcgtgggcta aaaccaccat attagttgac aagatcacct caatttttga ttcatcacaa 1800 tcctcaaaag aggacataac agcctttata gacaaattta ggaacaaatc gtcttctaag 1860 aagcattcaa taaatggaga accatggcac gaggtgatgg ttgcactgaa aaagacccta 1920 cacggcttcg ctttggatgc actcatgact catagtcaag acatccaccc gcaactccat 1980 caagcttggg agatgtggtt gacgaaattg caagatggag tagatgtgac agcggaatta 2040 atggtacaaa tgataaatat gacagctggt cgttgggtat ccaaagaact tttaactcat 2100 cctcaatacc aacgcctctc aaccgtcaca aatagtgtgt gtcacgatat aactaagctc 2160 cataacttca aggagaattc cacgacggta gactcgaaag ttcaagaact agtgcaactt 2220 gtgtttagcg acacgcccga tgatcttgat caggatatga aacagacgtt tctaaccgtc 2280 atgaaaacct tctactacaa ggcgtggtgt gatccgaaca cgataaatga ccatatctcc 2340 aaggtgttcg agattgtaat a 2361 <210> 3 <211> 2352 <212> DNA <213> Stevia rebaudiana <400> 3 atgaatcttt cactatgcat cgcgtcccct ttgttaacca aatcaaatcg acccgcggct 60 ctgtcagcta ttcatacagc atcaacttca catggtggac aaactaatcc cactaatctg 120 atcattgata caaccaaaga acggatccaa aaacagttta aaaatgtaga aatttctgtt 180 tcttcatatg acacagcatg ggtagccatg gtcccttctc caaactcacc caaatcgcct 240 tgtttccctg agtgtctcaa ttggttaatt aataatcagc ttaatgatgg ttcatggggt 300 cttgttaatc acactcataa tcataatcac ccgttgctta aagattctct atcttcaaca 360 ttagcatgta ttgttgcatt aaaaagatgg aatgttgggg aagatcaaat aaataaaggt 420 ctaagtttta ttgagtcaaa tcttgcttca gctactgaaa aaagtcaacc atctcccatt 480 ggttttgaca tcatatttcc tggtttgctt gagtatgcga aaaacttgga cataaacctc 540 ctttcaaaac aaacagattt tagtttgatg ctacataaga gggaattgga gcaaaaaaga 600 tgccattcaa atgagatgga tggatacttg gcgtatatct ctgaaggact cggtaattta 660 tatgattgga atatggtgaa gaaatatcag atgaaaaatg gttctgtttt caactcacca 720 tcagcaacag ctgctgcttt cattaatcat caaaatcctg gttgtcttaa ttatttaaat 780 tcacttttgg acaagtttgg taatgcagtc ccaacagttt atcctcatga tttatttatc 840 cgactttcta tggttgacac aattgaaaga ttaggaattt cacaccattt cagagtggaa 900 attaaaaatg ttttagatga aacatacaga tgttgggtgg aacgagatga gcaaatattc 960 atggatgttg taacatgtgc tttagccttt cggttattaa ggatcaatgg gtatgaagtt 1020 tccccagatc cattggctga aattactaat gaattagctt tgaaagacga atatgcagct 1080 cttgaaacat atcatgcgtc acatatatta taccaagagg atttatcttc tggaaaacaa 1140 atcttgaagt cagctgattt cctcaaagag ataatatcca ctgattcaaa caggctttct 1200 aaattaattc acaaagaggt ggaaaatgct cttaagttcc ctatcaatac cggtttagaa 1260 cgcataaaca ctagacgaaa tatacagctt tacaatgtag acaatacaag aattctgaaa 1320 actacatatc actcatcaaa tattagtaac actgattacc taaggttggc tgttgaagat 1380 ttctacacct gccaatctat ttatcgtgaa gaattaaaag gtcttgaaag gtgggtggta 1440 gagaataagt tggaccagct caagtttgct aggcaaaaga ccgcctactg ttatttctct 1500 gttgctgcaa cactttcgtc tcccgaatta tcagatgcgc gtatttcatg ggccaaaaat 1560 ggcatattaa ctacagtagt tgatgacttt tttgatatcg gtggtacaat cgatgaattg 1620 accaacctga ttcaatgtgt tgaaaaatgg aatgtagatg tcgacaagga ttgttgttca 1680 gagcatgttc ggattttatt tttagcatta aaagatgcaa tctgttggat tggagatgaa 1740 gcttttaaat ggcaagcgcg cgatgtaact agccatgtta ttcaaacttg gttggaacta 1800 atgaatagta tgttgagaga agctatatgg acaagagatg cttatgtgcc aacattaaat 1860 gaatatatgg aaaacgctta cgtgtcattt gcattaggcc cgattgtcaa gccggctatt 1920 tactttgtgg ggcccaaatt atcagaggag attgttgaaa gctctgaata tcataatcta 1980 tttaagctaa tgagcacgca gggtcgactt ctaaacgata tccatagctt caagagggaa 2040 tttaaggaag gcaaattaaa cgcggtagca ttgcatttga gtaacggaga aagtgggaaa 2100 gtggaagaag aggttgtgga ggagatgatg atgatgatta aaaacaagag gaaagaatta 2160 atgaaattaa tttttgaaga aaatggtagc attgttccta gagcttgtaa agatgcattt 2220 tggaacatgt gtcacgtgtt gaattttttt tacgcaaacg atgacgggtt tactggaaac 2280 acgattcttg atactgtgaa ggacatcatt tacaacccgt tggtgcttgt gaatgaaaat 2340 gaagaacaaa gg 2352 <210> 4 <211> 1542 <212> DNA <213> Stevia rebaudiana <400> 4 atggatgcgg ttactggtct gctgactgtt cctgcgactg cgattaccat tggtggcacc 60 gcagtggccc tggcggtcgc tctgatcttc tggtacctga aaagctacac gtccgctcgt 120 cgttctcagt ctaaccacct gccgcgtgta ccggaagtac cgggcgttcc actgctgggt 180 aacctgctgc aactgaagga gaaaaaaccg tacatgacct tcacccgctg ggctgcgacc 240 tacggtccga tctatagcat caaaacgggc gcaacgagca tggtcgtggt atcttctaac 300 gaaatcgcta aagaagcact ggtcacccgc ttccagagca tcagcacccg taacctgtcc 360 aaagccctga aagtgctgac tgctgataag accatggttg caatgtctga ctatgacgac 420 taccacaaga ccgtgaaacg tcacatcctg accgcggtgc tgggcccgaa cgctcagaaa 480 aaacatcgta tccatcgtga tatcatgatg gataacatct ccactcagct gcatgaattt 540 gtgaaaaaca acccggagca ggaggaagtg gacctgcgta aaattttcca gtctgaactg 600 tttggtctgg cgatgcgtca ggctctgggc aaagatgtgg aatccctgta tgtcgaagac 660 ctgaaaatta ccatgaatcg tgacgaaatc ttccaggttc tggttgtaga cccgatgatg 720 ggtgccatcg acgttgattg gcgcgacttc ttcccgtatc tgaaatgggt tccgaacaag 780 aaattcgaaa ataccattca gcagatgtat attcgtcgtg aagccgttat gaaatccctg 840 atcaaagagc acaaaaagcg tattgcatct ggcgagaaac tgaatagcta tattgattac 900 ctgctgagcg aagcgcagac tctgaccgat caacagctgc tgatgtccct gtgggaaccg 960 attatcgagt cttccgatac caccatggta accaccgaat gggcaatgta cgaactggct 1020 aaaaacccga aactgcagga ccgtctgtac cgcgacatca aatccgtttg tggtagcgaa 1080 aaaatcaccg aagagcacct gtcccaactg ccgtacatca ctgcaatctt ccacgagact 1140 ctgcgtcgtc attctccggt tccgatcatc ccactgcgtc acgtgcacga agacactgtt 1200 ctgggcggtt accacgtgcc agccggcacc gaactggcgg ttaacattta cggctgcaac 1260 atggacaaaa acgtctggga aaacccggaa gagtggaacc ctgaacgctt catgaaagaa 1320 aacgaaacta ttgatttcca aaagactatg gcgtttggcg gtggtaaacg cgtatgcgct 1380 ggttctctgc aggcactgct gacggcgtct atcggcatcg gtcgcatggt tcaggaattt 1440 gaatggaagc tgaaagatat gacccaggaa gaagtaaaca cgatcggtct gaccactcag 1500 atgctgcgcc ctctgcgcgc tatcattaag ccgcgtatct aa 1542 <210> 5 <211> 1542 <212> DNA <213> Stevia rebaudiana <400> 5 atggatgccg tcaccggttt gctaacagtt ccggcaaccg caataaccat cggcggtacg 60 gccgtcgcac tcgccgtcgc tcagatattc tggtacctca aaagctacac atctgcacgc 120 aggagccaat caaaccatct ccctcgggtt cccgaggtac ctggtgtgcc attattgggg 180 aatttattgc agttgaagga gaagaaacct tacatgactt ttacgagatg ggcggcaact 240 tatggtccga tttattcgat taaaaccgga gcaacttcta tggtggtcgt cagttcaaat 300 gaaattgcaa aggaggcatt ggttaccaga tttcaatcta tctcaaccag aaacctatca 360 aaggcattaa aggttctcac agcagataaa accatggtgg cgatgagtga ttatgatgat 420 tatcataaga ctgtcaaacg ccatatactg accgctgttt tgggaccaaa tgctcagaag 480 aaacaccgca tccataggga catcatgatg gataatatat caacccaact tcatgaattt 540 gttaaaaata atcctgaaca agaggaagtg gatctaagga aaatattcca atccgaactt 600 tttggattag ctatgagaca agcattggga aaggatgtgg agagcttata tgttgaggat 660 cttaaaatca ccatgaaccg agacgagata tttcaggtat tggttgttga cccgatgatg 720 ggtgcaattg acgtcgactg gagagatttc ttcccgtatc taaagtgggt cccgaataaa 780 aagtttgaaa acacgatcca acaaatgtat atccggagag aagctgtgat gaagtctctt 840 attaaagaac ataaaaaacg tattgcatcc ggagagaaat taaacagcta cattgattac 900 ttgctatcgg aagcacaaac gttaaccgat caacaactac ttatgtctct atgggaacct 960 attattgaat catcagacac cactatggtt acaactgaat gggctatgta tgaacttgca 1020 aaaaacccca aacttcagga tcgtttgtat cgggatatca aaagtgtttg cgggtcagag 1080 aagattacag aagaacactt gtctcaactg ccatacataa ctgccatttt tcatgaaacc 1140 ttgagaaggc atagtccagt tcctataatt ccattaagac acgtgcatga agacacagtg 1200 ttaggagggt accatgtgcc agctggaacc gagctagcgg taaacattta tggatgtaac 1260 atggataaga atgtgtggga gaatcctgaa gaatggaatc cagagagatt catgaaggaa 1320 aatgaaacga tagatgtcca gaaaacaatg gcgtttggag gtggaaagcg cgtatgtgct 1380 ggttcgcttc aagcattgtt gactgcttcc attggaattg gaagaatggt gcaagagttt 1440 gagtggaaac tgaaagatat gacccaagaa gaagttaata cgattgggct tacgacccag 1500 atgcttcgtc cactgcgggc cataataaag cccaggatat ga 1542 <210> 6 <211> 1431 <212> DNA <213> Stevia rebaudiana <400> 6 atgattcagg tgctgacccc gatcctgctg ttcctgatct tctttgtttt ctggaaagta 60 tacaagcacc agaaaactaa aattaacctg ccgccgggca gcttcggttg gccgtttctg 120 ggcgaaactc tggctctgct gcgtgctggc tgggattctg aaccggaacg cttcgtccgt 180 gaacgcatta aaaaacatgg ctccccactg gttttcaaaa cgagcctgtt tggcgatcgt 240 tttgccgtgc tgtgcggtcc ggccggtaac aaatttctgt tttgcaacga gaacaaactg 300 gtggcatctt ggtggcctgt cccggtacgt aaactgttcg gcaaaagcct gctgactatc 360 cgcggcgatg aagccaaatg gatgcgtaaa atgctgctgt cctatctggg cccggatgcg 420 tttgcgaccc attacgcagt aacgatggac gtagtgaccc gccgtcacat tgacgttcac 480 tggcgtggca aagaagaagt caacgtgttc cagaccgtta agctgtatgc cttcgagctg 540 gcatgtcgtc tgttcatgaa tctggatgac ccgaaccaca tcgcgaaact gggctccctg 600 ttcaacatct tcctgaaggg catcattgaa ctgccgatcg acgttcctgg cacccgtttc 660 tactcttcta aaaaggcggc tgcggctatc cgtatcgaac tgaagaaact gattaaagcc 720 cgcaaactgg aactgaagga gggtaaagca tctagctccc aagacctgct gagccatctg 780 ctgacctctc ctgacgaaaa cggtatgttc ctgaccgaag aagagatcgt tgataacatc 840 ctgctgctgc tgttcgcagg tcacgacacg tccgcgctgt ctatcaccct gctgatgaaa 900 accctgggtg aacactccga cgtgtatgat aaagttctga aagaacagct ggaaatttct 960 aaaaccaaag aagcgtggga aagcctgaaa tgggaggata tccagaagat gaaatactcc 1020 tggtctgtta tctgcgaggt gatgcgtctg aatccgccgg ttatcggtac ttaccgtgaa 1080 gcactggtag atatcgacta cgcgggttac actattccga aaggttggaa actgcattgg 1140 agcgcggtgt ccacccagcg tgatgaagca aacttcgaag acgttactcg tttcgacccg 1200 tctcgctttg agggtgcggg tccgaccccg ttcaccttcg ttccgttcgg cggtggtcca 1260 cgcatgtgtc tgggtaagga atttgctcgc ctggaagttc tggctttcct gcacaacatt 1320 gtaacgaact tcaaatggga tctgctgatc ccggacgaga aaatcgaata tgacccgatg 1380 gctactccag ctaaaggtct gccgatccgt ctgcacccac accaagtcta a 1431

Claims (10)

GGDPS (geranylgeranyl diphosphate synthase)를 코딩하는 유전자; CDPS (copalyl diphosphate synthase)를 코딩하는 유전자; KS (kaurene synthase)를 코딩하는 유전자; 및 KO (kaurene oxidase)를 코딩하는 유전자를 포함하는, 스테비오사이드의 전구체인 카우린산 제조용 재조합 벡터.
A gene encoding geranylgeranyl diphosphate synthase (GGDPS); A gene coding for CDPS (copalyl diphosphate synthase); A gene encoding KS (kaurene synthase); And a gene encoding KO (kaurene oxidase), which is a precursor of stevioside.
제 1항에 있어서, 상기 GGDPS를 코딩하는 유전자는 로도박터 스페로이드(Rhodobacter sphaeroides)로부터 유래된 서열번호 1로 표시되는 뉴클레오티드인 것을 특징으로 하는, 카우린산 제조용 재조합 벡터.
The recombinant vector according to claim 1, wherein the gene encoding GGDPS is a nucleotide sequence of SEQ ID NO: 1 derived from Rhodobacter sphaeroides .
제 1항에 있어서, 상기 CDPS를 코딩하는 유전자는 스테비아 레바우디아나 (Stevia rebaudiana)로부터 유래된 서열번호 2로 표시되는 뉴클레오티드인 것을 특징으로 하는, 카우린산 제조용 재조합 벡터.
2. The recombinant vector according to claim 1, wherein the gene encoding CDPS is a nucleotide sequence of SEQ ID NO: 2 derived from Stevia rebaudiana .
제 1항에 있어서, 상기 KS를 코딩하는 유전자는 스테비아 레바우디아나 (Stevia rebaudiana)로부터 유래된 서열번호 3으로 표시되는 뉴클레오티드인 것을 특징으로 하는, 카우린산 제조용 재조합 벡터.
The recombinant vector according to claim 1, wherein the gene encoding KS is a nucleotide sequence of SEQ ID NO: 3 derived from Stevia rebaudiana .
제 1항에 있어서, 상기 K0를 코딩하는 유전자는 스테비아 레바우디아나 (Stevia rebaudiana)로부터 유래된 서열번호 4 또는 서열번호 5로 표시되는 뉴클레오티드인 것을 특징으로 하는, 카우린산 제조용 재조합 벡터.
The recombinant vector for producing kauric acid according to claim 1, wherein the gene encoding KO is a nucleotide sequence of SEQ ID NO: 4 or SEQ ID NO: 5 derived from Stevia rebaudiana .
제 5항에 있어서, 상기 서열번호 5로 표시되는 뉴클레오티드는 L28Q, N284H 및 F446V의 세 개의 돌연변이를 가지고 있는 KO 유전자를 코딩하는 것을 특징으로 하는, 카우린산 제조용 재조합 벡터.
6. The recombinant vector for producing kauric acid according to claim 5, wherein the nucleotide represented by SEQ ID NO: 5 encodes a KO gene having three mutations L28Q, N284H and F446V.
제 1항에 있어서, 상기 재조합 벡터는 하기와 같이 표시되는 것을 특징으로 하는, 카우린산 제조용 재조합 벡터.
Figure pat00001
The recombinant vector according to claim 1, wherein the recombinant vector is expressed as follows.
Figure pat00001
제 1항 내지 제 7항 중 어느 한 항의 재조합 벡터로 형질 전환된, 스테비오사이드의 전구체인 카우린산 생성능을 가지는 재조합 미생물.
8. A recombinant microorganism having the ability to produce kauric acid, which is a precursor of stevioside, transformed with the recombinant vector of any one of claims 1 to 7.
제 8항에 있어서, 상기 미생물은 대장균, 박테리아, 효모 및 곰팡이로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는, 카우린산 생성능을 가지는 재조합 미생물.
The recombinant microorganism according to claim 8, wherein the microorganism is at least one member selected from the group consisting of E. coli, bacteria, yeast and fungi.
(a) 제 1항 내지 제 7항 중 어느 한 항의 카우린산 제조용 재조합 벡터로 형질 전환된 재조합 미생물을 배양하는 단계; 및
(b) 상기 (a)단계에서 수득한 미생물 배양액으로부터 카우린산을 회수하는 단계;로 이루어지는, 스테비오사이드의 전구체인 카우린산의 제조 방법.
(a) culturing a recombinant microorganism transformed with a recombinant vector for producing kauric acid according to any one of claims 1 to 7; And
(b) recovering kauric acid from the microbial culture obtained in the step (a), wherein the kauric acid is a precursor of stevioside.
KR1020140146182A 2012-04-19 2014-10-27 Recombinant microorganism with kauronic acid production ability and method for preparing kauronic acid using the same KR101533350B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120040906 2012-04-19
KR20120040906 2012-04-19

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020130043540A Division KR101533355B1 (en) 2012-04-19 2013-04-19 Recombinant microorganism with steviol production ability and method for preparing steviol using the same

Publications (2)

Publication Number Publication Date
KR20140134635A true KR20140134635A (en) 2014-11-24
KR101533350B1 KR101533350B1 (en) 2015-07-06

Family

ID=49383761

Family Applications (3)

Application Number Title Priority Date Filing Date
KR1020130043540A KR101533355B1 (en) 2012-04-19 2013-04-19 Recombinant microorganism with steviol production ability and method for preparing steviol using the same
KR1020140146182A KR101533350B1 (en) 2012-04-19 2014-10-27 Recombinant microorganism with kauronic acid production ability and method for preparing kauronic acid using the same
KR1020140146190A KR101533352B1 (en) 2012-04-19 2014-10-27 Recombinant microorganism with kaurene production ability and method for preparing kaurene using the same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020130043540A KR101533355B1 (en) 2012-04-19 2013-04-19 Recombinant microorganism with steviol production ability and method for preparing steviol using the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020140146190A KR101533352B1 (en) 2012-04-19 2014-10-27 Recombinant microorganism with kaurene production ability and method for preparing kaurene using the same

Country Status (2)

Country Link
KR (3) KR101533355B1 (en)
WO (1) WO2013157887A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104557530A (en) * 2013-11-18 2015-04-29 福建医科大学 Ent-kaurene diterpene derivatives as well as preparation method and application thereof
US10463062B2 (en) * 2014-11-05 2019-11-05 Manus Bio Inc. Microbial production of steviol glycosides
CN105541937B (en) * 2016-01-19 2019-11-05 苏州赛分科技有限公司 The isolation and purification method of steviol glycoside in STEVIA REBAUDIANA
WO2018012644A1 (en) * 2016-07-11 2018-01-18 아주대학교산학협력단 Recombinant microorganism for producing steviol glycoside

Also Published As

Publication number Publication date
KR20130118279A (en) 2013-10-29
KR101533350B1 (en) 2015-07-06
WO2013157887A1 (en) 2013-10-24
KR101533352B1 (en) 2015-07-06
KR101533355B1 (en) 2015-07-06
KR20140134636A (en) 2014-11-24

Similar Documents

Publication Publication Date Title
US20220162653A1 (en) Preparation of (R)-3-Hydroxybutyric Acid or Its Salts by One-Step Fermentation
CN111712570B (en) Engineering strain for producing psicose and derivatives thereof, construction method and application thereof
WO2021170097A1 (en) Novel flavone hydroxylases, microorganism for synthesizing flavone c-glycoside compounds, and use thereof
KR101533352B1 (en) Recombinant microorganism with kaurene production ability and method for preparing kaurene using the same
JP2021515555A (en) Production by biosynthesis of steviol glycosides rebaugioside J and rebaugioside N
KR100427529B1 (en) Recombinant thermostable enzyme converts maltose to trehalose
KR101669041B1 (en) Recombinant microoganisms for producing stevioside and method for stevioside using the same
CN110885846A (en) Microorganism for synthesizing baicalein and scutellarein, preparation method and application thereof
CN111235191B (en) Method for synthesizing acetaminophenol by microorganisms
KR101669044B1 (en) Recombinant microoganisms for producing steviolbioside and method for steviolbioside using the same
CN110892068B (en) UDP-glycosyltransferase
CN111197020A (en) Recombinant bacterium for producing milbemycins as well as construction method and application thereof
CN111424065B (en) Method for glycosylating stevioside compounds by using glycosyltransferase
CN113584110A (en) Construction and application of engineering strain for biosynthesizing mogroside V by taking mogrol as substrate
CN117616129A (en) Compositions and methods for producing rebaudioside D
US20140308715A1 (en) Microbial conversion of sugar acids and means therein
CN110072995B (en) Kaurenoic acid hydroxylase
KR101669057B1 (en) Recombinant microoganisms for producing steviolmonoside and method for steviolmonoside using the same
KR102489243B1 (en) Recombinant microorganism for producing S-methylmethionine, and method for preparing S-methylmethionine using the same
KR101669051B1 (en) Recombinant microoganisms for producing rubusoside and method for rubusoside using the same
CN110106222B (en) Application of glycosyltransferase in synthesizing glycyrrhizic acid
US20240102025A1 (en) Gene combination for expressing and producing terrequinone a in escherichia coli and use thereof
KR101939398B1 (en) Preparing L-ribose and L-ribulose based on L-Arabinose
KR20240048579A (en) Novel protein, composition and method for producing phloretin comprising the same
CN114395590A (en) Method for producing levodopa by microbial fermentation and application

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
FPAY Annual fee payment

Payment date: 20180411

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20190326

Year of fee payment: 5